
Waste object classification
with AI on the edge
accelerators

Master Thesis

Submitted in Fulfillment of the Degree

Master of Science in Engineering, MSc

Vorarlberg University of Applied Sciences

Master’s in Mechatronics

Support Vorarlberg University of Applied Sciences

Prof. (FH) Dipl.-Ing. Amann Robert

Support Kasetsart University at Faculty of Engineering

Assoc. Prof. Dr. Chowarit Mitsantisuk

Handed in by

Schneider Michael, BSc

51835259

Dornbirn, 31.12.2020

Kurzreferat

Klassifizieren von Abfallobjekten mit Edge KI
Prozessoren

Das Klassifizieren von Abfall mit Neuronalen Netzen ist bereits Thema in einigen
wissenschaftlichen Arbeiten. Eine Anwendung im Embedded Systems Bereich mit
aktuellen KI-Prozessoren zur Beschleunigung der Inferenze wurde dabei noch nicht be-
handelt. In dieser Masterarbeit wird ein Prototyp erstellt der Müllobjekte klassifiziert
und den für das Objekt zutreffende Behälter automatisch öffnet. Der Einsatzbereich
liegt dabei auf dem öffentlichem Raum.

Für die Klassifizierung wird ein Datenset mit 25,681 Bilder und 11 Klassen erstellt um
die Convolutional Neuronal Networks EfficientNet-B0, MobileNet-v2 und NASNet-
Mobile neu zu trainieren. Diese Convolutional Neuronal Network werden auf den
aktuellen Edge KI-Prozessoren von Google, Intel und Nvidia ausgeführt und auf
Leistung, Verbrauch und Genauigkeit verglichen.

Die Masterarbeit evaluiert das Ergebnis dieses Vergleiches und zeigt dabei die Vor-
und Nachteile der jeweiligen Prozessoren sowie der Convolutional Neuronal Networks.
Für den Prototpen wird die am besten geeignete Kombination aus Hardware und
KI-Architekture verwendet und auf der Universitätsmesse KasetFair2020 ausgestellt.
Dabei wird eine Meinungsumfrage zur Anwendung der Maschine durchgeführt.

II

Abstract

Waste object classification with AI on the edge
accelerators

The classification of waste with neural networks is already a topic in some scientific
papers. An application in the embedded systems area with current AI processors to
accelerate the inference has not yet been discussed. In this master work a prototype
is created which classifies waste objects and automatically opens the appropriate
container for the object. The area of application is in the public space.

For the classification a dataset with 25,681 images and 11 classes is created to
re-train the Convolutional Neuronal Networks EfficientNet-B0, MobileNet-v2 and
NASNet-Mobile. These Convolutional Neuronal Network run on the current Edge
AI processors from Google, Intel and Nvidia and are compared for performance,
consumption and accuracy.

The master thesis evaluates the result of these comparisons and shows the advantages
and disadvantages of the respective processors and the Convolutional Neuronal
Networks. For the prototype, the most suitable combination of hardware and AI
architecture is used and exhibited at the university fair KasetFair2020. An opinion
survey on the application of the machine is conducted.

III

Contents

List of Figures VII

List of Tables XI

Listings XII

Acronyms 1

Summary 3

1 Introduction 4

2 Literature Review 6

3 Concepts 8
3.1 Google Coral USB Accelerator . 9
3.2 Nvidia Jetson Nano . 10
3.3 Intel Neuronal Compute Stick 2 . 10

4 Waste Categories and Materials 11

5 Hardware Overview 13
5.1 USB Accelerator . 14
5.2 Jetson Nano - Graphics Processing Unit 15
5.3 Coral - Tensor Processing Unit . 16
5.4 Intel Neuronal Compute Stick 2 - Vision Processing Unit 17

6 Convolutional Neuronal Network Architecture 21
6.1 MobileNet-v2 . 22
6.2 NASNetMobile . 26
6.3 EfficientNet-B0 . 28

IV

Contents

7 Training of the Neuronal Networks 32
7.1 Parameters . 33
7.2 Training time . 35
7.3 Training evalutation . 39
7.4 Confusion Matrix of Keras models 41
7.5 Precision, Recall and F1-score . 43

8 Compiling the Keras models for the edge frameworks 45
8.1 Keras to TFlite for edge TPU . 47
8.2 To TF-TRT for Jetson Nano . 49
8.3 Openvino optimization . 50

9 Experiment Information 52

10 Experiment Result of Coral USB Accelerator 54
10.1 CPU Workload . 54
10.2 Memory Workload . 57
10.3 Inference Time . 58
10.4 Power Consumption . 61
10.5 Efficiency . 62
10.6 Confusion Matrix . 63
10.7 Precision, Recall and F1-score . 65

11 Experiment Result of Nvidia Jetson Nano 67
11.1 CPU Workload . 67
11.2 Memory Workload . 69
11.3 Inference Time . 70
11.4 Power Consumption . 72
11.5 Efficiency . 73
11.6 Confusion Matrix . 74
11.7 Precision and Recall . 76

12 Experiment Result of Intel Neuronal Compute Stick 2 78
12.1 CPU Workload . 78
12.2 Memory Workload . 80
12.3 Inference Time . 81
12.4 Power Cosumption . 83
12.5 Efficiency . 84
12.6 Confusion Matrix . 85
12.7 Precision, Recall and F1-value . 87

13 Conclusion of the Evaluation 89

14 Prototype 91
14.1 Usage at Kasetfair2020 . 95

V

Contents

15 Conclusion 97

Appendices 106

VI

List of Figures

3.1 Overview diagram of the concept 9

4.1 Overview of the waste flow in Bangkok 11
4.2 Example images of the 10 used categories 12

5.1 Block diagram of the first version of Googles TPU 16
5.2 Block diagram of Streaming Hybrid Architecture Vectore Engine with

the functional units PEU (predicated execution unit), BRU (branch
and repeat unit), two 64-bit LSU (load and store unit), 128-bit VAU
(vector arithmetic unit), 32-bit IAU (integer arithmetic unit), 32-bit
SAU (skalar arithmetic unit) and a 128-bit CMU (compare and move
unit) . 18

6.1 General architecture of a convolutional neuronal network 21
6.2 The standard convolutional filters in (a) are replaced by two layers:

depthwise convolution in (b) and pointwise convolution in (c) to
build a depthwise separable filter 23

6.3 Difference of the Convolution Block between Mobilenet-v1 and
Mobilenet-v2 . 25

6.4 Result architecture for the mobile NAS model after optimisation
and structure of the convolution blocks 27

6.5 Illustration of different forms of scaling for convolution neuronal
networks . 28

6.6 Layer structure overview of the squeeze convolution block and linear
bottleneck . 29

6.7 Illustration of the Swish in comparison to the ReLu6 activation
function . 31

VII

List of Figures

7.1 EffNet example of the added output layers to brake down the output
from 1000 classes to 11. The input is defined for a 3 channel image
with a 224x224 resolution. The ’?’ stands for the batchsize which
will be defined at the inference . 32

7.2 MobileNet-v2 training and validation accuracy and loss result . . . 39
7.3 NASNet-Mobile training and validation accuracy and loss result . . 40
7.4 EfficientNet-B0 training and validation accuracy and loss result . . 40
7.5 Confustion matrix from different CNN-Models on Coral USB Accel-

erator . 41
7.6 Confusion matrix of the NASNet-Mobile Keras classification models 42
7.7 Confusion matrix of the EfficientNet-B0 Keras classification models 42
7.8 Precision and Recall matrix of the Keras models trained with GPU

and TPU accelerator . 44
7.9 F1 value matrix of the Keras models trained with GPU and TPU

accelerator . 44

8.1 Work flow from Mobilenet-v2 training to different hardware specific
models . 46

8.2 Workflow to compile Tensorflow model to TFlite-edgeTPU format
for Google Coral hardware . 47

9.1 TC66 USB C power meter to measure power consumption at the
edge devices . 52

VIII

List of Figures

10.1 CPU workload histograms with standard operating frequency on
Coral USB Accelerator . 55

10.2 Average CPU Workload with different CNN-Models on Coral USB
Accelerator and standard operating frequency 55

10.3 Histogram of CPU workload on Coral USB Accelerator with NAS-M
TPU model and maximum operating frequency 56

10.4 Average CPU Workload with different CNN-Models on Coral USB
Accelerator and maxium operating frequency 56

10.5 Average memory Workload with different CNN-Models on Coral
USB Accelerator . 57

10.6 Inference time histograms with standard operating frequency on
Coral USB Accelerator . 59

10.7 Average inference time with different CNN-Models on Coral USB
Accelerator and standard operating frequency 59

10.8 CPU workload histograms with standard operating frequency on
Coral USB Accelerator . 60

10.9 Average inference time with different CNN-Models on Coral USB
Accelerator and maximum operating frequency 60

10.10Average power consumption with different CNN-Models on Coral
USB Accelerator . 61

10.11Average efficiency with different CNN-Models on Coral USB Accelerator 62
10.12Confusions matrix of the MobileNet-v2 and NASNet-Mobile trained

with GPU and TPU accelerator and compiled for the Coral USB
Accelerator . 64

10.13Precision and recall matrix of the CUA compiled models trained
with GPU and TPU accelerator . 66

10.14F1-score matrix of the CUA compiled models trained with GPU and
TPU accelerator . 66

11.1 CPU workload histograms on Jetson Nano 68
11.2 Average CPU Workload with different CNN-Models on Jetson Nano 69
11.3 Average memory Workload with different CNN-Models on Jetson

Nano . 69
11.4 Inference time histograms of the MNV2, NAS-M and EffNet running

on the Jetson Nano . 71
11.5 Average inference time with different CNN-Models on Jetson Nano 72
11.6 Average power consumption with different CNN-Models on Jetson

Nano . 73
11.7 Average efficiency with different CNN-Models on Jetson Nano . . 73
11.8 Confustion matrix from different CNN-Models on Jetson Nano . . 75
11.9 Confustion matrix from different CNN-Models on Jetson Nano . . 77
11.10Average efficiency with different CNN-Models on Jetson Nano . . 77

IX

List of Figures

12.1 CPU workload histograms on Neuronal Compute Stick 2 79
12.2 Average CPU Workload with different CNN-Models on Neuronal

Compute Stick 2 . 79
12.3 Average memory Workload with different CNN-Models on Neuronal

Compute Stick 2 . 80
12.4 Inference time histograms on Neuronal Compute Stick 2 82
12.5 Average inference time with different CNN-Models on Neuronal

Compute Stick 2 . 82
12.6 Average power consumption with different CNN-Models on Neuronal

Compute Stick 2 . 83
12.7 Average efficiency with different CNN-Models on Neuronal Compute

Stick 2 . 84
12.8 Confustion matrix from different CNN-Models on Neuronal Compute

Stick 2 . 86
12.9 Confustion matrix from different CNN-Models on Neuronal Compute

Stick 2 . 88
12.10Average efficiency with different CNN-Models on Neuronal Compute

Stick 2 . 88

14.1 Mechanical construnction of the prototype terminal 93
14.2 CAD model of the bin open mechanic with a S3003 servomotor for

the prototype . 93
14.3 Flowchart of the opening logic of the prototype 94
14.4 Result of the opinion survey at Kasetfair2020 96

X

List of Tables

5.1 Hardware specification tablehardware specifications of the used con-
figurations of AI accelerators . 13

5.2 Benchmark between USB2.0 and USB3.0 of Intel NCS2 and Google
CUA . 14

5.3 Comparison different quatize model architectures with Google TPU,
Desktop CPU and Embedded CPU 19

5.4 Inference performance results from Jetson Nano, Raspberry Pi 3,
Intel Neural Compute Stick 2, and Google Edge TPU Coral Dev
Board . 20

6.1 Base structure of the Mobilenet-v2 24
6.2 Base structure of the EfficientNet-B0 30

7.1 Overview of learning parameters with the TPU and GPU accelerators 34
7.2 Overview of learning parameters with the TPU and GPU accelerators 35

13.1 Overview of the evaluation results of the Convolutional Neuronal
Networks on the edge devices Coral USB Accelerator Jetson Nano
Neuronal Compute Stick 2 . 90

XI

Listings

7.1 First 5 epochs of pretraining the Mobilenet-v2 with GPU accelerator 36
7.2 First 5 epochs of pretraining the Mobilenet-v2 with TPU accelerator 36
7.3 First 5 epochs of pretraining the NASNetMobile with GPU accelerator 37
7.4 First 5 epochs of pretraining the NASNetMobile with TPU accelerator 37
7.5 First 5 epochs of pretraining the Efficientnet-B0 with GPU accelerator 38
7.6 First 5 epochs of pretraining the Efficientnet-B0 with TPU accelerator 38

8.1 Compiling information from Efficientnet-B0 Keras model to TFlite
Edge TPU Model . 48

8.2 Compiling information from Mobilenet-v2 Keras model to TFlite
Edge TPU Model . 48

8.3 Compiling information from NASNetMobile Keras model to TFlite
Edge TPU Model . 49

8.4 Parameter settings for converting Keras saved models to TF-TRT
model . 50

8.5 Compiler information about used TensorRT version 50
8.6 Optimizer information from Mobilenet-v2 Keras model to Intel

Openvino framework . 51
8.7 Optimizer information from Mobilenet-v2 Keras model to Intel

Openvino framework . 51
8.8 Optimizer information from NASNetMobile Keras model to Intel

Openvino framework . 51
8.9 Optimizer information from NASNetMobile Keras model to Intel

Openvino framework . 51
8.10 Optimizer information from Efficientnet-B0 Keras model to Intel

Openvino framework . 51
8.11 Optimizer information from Efficientnet-B0 Keras model to Intel

Openvino framework . 51

9.1 Experiment code of the Python3.7 script to determine the perfor-
mance data of the inference . 53

XII

Listings

1 Python code to create confusion matrix and collect time - cpu -
memory datas on Corals Edge TPU 107

2 Python code to create confusion matrix and collect time - cpu -
memory datas on Nvidias TensorRT Engine 110

3 Python code to create confusion matrix and collect time - cpu -
memory datas on Intels Openvino Engine for Myriad VPU 113

XIII

Acronyms

AI Artificial Intelligence. III, 3, 4, 8, 45, 97, 98
ASIC Application Specific Integrated Circuit. 9

CISC Complex Instruction Set Computer. 16
CNN Convolutional Neuronal Network. II–IV, XI, 3–

9, 11, 14, 21–31, 33, 41, 43, 45, 49, 52, 54, 63, 67,
69, 70, 72, 74, 76, 78, 80, 81, 83–85, 87, 89–92,
95, 97, 98

CPU Central Processing Unit. 10, 13–16, 48, 49, 53,
54, 67, 69, 78

CUA Coral USB Accelerator. VIII, IX, XI, 3, 13, 14,
41, 52, 54–64, 66, 78–80, 89–91, 97, 98

EffNet EfficientNet-B0. II, III, VIII, IX, 3, 21, 28, 32,
33, 35, 38–42, 47, 48, 50–52, 54, 67–76, 78, 89,
97, 98

GFLOPS Giga Floating Point Operations Per Second. 13
GPU Graphics Processing Unit. IV, 3, 10, 15, 17, 32,

33, 35, 39, 41, 43, 49, 57, 62, 63, 65, 67, 69, 70,
72–74, 76, 78, 80, 81, 83, 89, 97

IR Intermediate Representation. 50, 98

MAC Multiply Accumulate Operation. 16
MAD Multiply-Add. 16
MNV2 MobileNet-v2. II, III, VIII, IX, 3, 21, 22, 26, 32,

33, 35, 36, 39, 41, 48, 50–52, 54–65, 67–89, 91,
92, 97, 98

MXU Matrix Multiply Unit. 16

1

Acronyms

Nano Jetson Nano. IX, XI, 3, 68, 69, 71–73, 75, 77,
89, 90, 97, 98

NAS Neural Architecture Search. 26
NAS-M NASNet-Mobile. II, III, VIII, IX, 3, 21, 32, 33,

35, 37, 39–42, 48–52, 54–65, 67–76, 78–87, 89,
97

NCS2 Neuronal Compute Stick 2. V, X, XI, 3, 13, 14,
17, 45, 52, 78–90, 97, 98

RPI4 Raspberry Pi 4. 13, 54, 61, 78, 80, 91

SHAVE Streaming Hybrid Architecture Vectore Engine.
VII, 17, 18

SVM Support Vector Maschine. 6

TF Tensorflow. 50
TOPS Tera Operations Per Second. 13, 16
TPU Tensor Processing Unit. IV, 3, 13, 14, 16, 17,

32, 33, 39, 41, 43, 47, 48, 54, 57, 61–63, 65, 67,
70, 72–74, 76, 78, 80, 81, 83, 89, 97

VPU Vision Processing Unit. IV, 3, 13, 14, 17, 97

2

Summary

In this thesis a concept is developed that classifies waste objects via a video stream.
The classification is done with a Convolutional Neuronal Network on a AI accelerator.
The system should have a high accuracy and low power consumption. To achieve
this, an AI system specially developed for the application in embedded systems is
used. For this very current field of application new technologies and computing units
have been developed, of which 3 are described and compared in this thesis. The
Edge-AI devices used are the Coral USB Accelerator developed by Google with the
edge Tensor Processing Unit, Nvidia’s smallest developer board Jetson Nano with an
integrated Tegra Embedded Graphics Processing Unit and Intels Neuronal Compute
Stick 2 which uses a Myriad X Vision Processing Unit developed by Movidius. For
the classification of images the Convolutional Neuronal Networks are the state of
the art network architectures. In recent years, newer networks have been developed,
especially in the mobile area, which require significantly less resources than the
standard CNN models. The neural network model is the main factor for accuracy and
plays an important role in performance. For the concept 3 CNN models developed
for mobile use are trained and tested with the data set of the waste objects. For the
training the Tensorflow/Keras framework is used. The models are thus the Keras
pre-trained mobile CNNs MobileNet-v2, NASNet-Mobile and EfficientNet-B0. In
co-operation with the Faculty of Environmental Technology, 10 categories of waste
have been identified, covering the majority of public waste. From these 10 categories,
a data set of 25,681 samples was created which is divided into 70% training, 20%
validation and 10% testing. The models were trained with the training and validation
set on Google Colab platform with the cloud GPU and TPU respectively. This is
to detect if the AI accelerator used in the training has an effect on the result of
the CNN inference. The test data was used to create confusion matrices from the
Keras models to determine the quality. The Keras models were then compiled and
optimized for the respective platforms of the end devices. The compiled models are
used to run an experiment on the Edge devices. The 2667 images of the test data set
are classified by the models. During this process CPU and memory usage, inference
time and power consumption were measured. Based on the findings of the results, a
prototype was developed to test the concept under real conditions. This prototype
was exhibited at the university fair Kasetfair2020. In co-operation with the Faculty of
Environmental Engineering an opinion survey about AI in Reycling was conducted.

3

1 Introduction

This thesis is part of the Master Program "Mechatronics" at the FH Vorarlberg
University of Applied Sciences and is written during a study abroad stay at the
Kasetsart University in Bangkok, Thailand.

One of the biggest problems this time is the global climate change. Part of this problem
is global resource consumption and waste management. The Open World Bank
classifies Thailand as a country with an upper middle income economy. According
to the book "What a Waste 2.0: A Global Snapshot of Solid Waste Management
to 2050" from the Open World Bank upper-middle income countries, like Thailand,
have a recycling rate of 4% and 30% of the waste gets open dumb. As an East Asian
country, Thailand is part of the region that generate the most waste. Kaza et al. 2018

According to a 2017 study by Chualongkorn University in Bangkok, 34% of Bangkok
residents do not separate their waste. The reasons for this are: no nearby waste
collection point (4%); no vehicle to transport the waste (4%); low sales value of
recyclable waste (5%); no knowledge about how to recycle (9%); no matter because
it is remixed (14%); no interest, no time (20%); no space for the waste (20%) and
too few waste containers (22%). Vassanadumrongdee and Kittipongvises 2018

On the basis of the Pollution Control Department Report 2018 of Thailand, 27%
of Thailands municipal solid waste of 2108 or 7.36 million tons where not disposed
appropriatly. Also 2,881 local administrative organizations have no proper solid waste
management. Booklet on Thailand State of Pollution 2019

Due to the rapid increase of the computing power of processors is it now possible to
use Artificial Intelligence in various areas. This thesis deals specifically with the area
of AI in embedded systems or rather confessed AI on the Edge.
Artificial Intelligence on the Edge is a very hot topic as it works without an Internet
connection. This results in a higher data security and since no data transfer is
necessary, higher speed is achieved. Further advantages are the low power consumption
and the better scalability. Due to the better real-time processing it is a key technology
in the area of Internet of Things and Industry 4.0. It is therefore not surprising
that all major processor manufacturers such as Google, Intel or Nvidia have already
launched hardware in this area.

This thesis will connect the problem with waste management and the AI on the
Edge technology. There the Edge AI is used to solve a classification problem with
images. For this we use different Convolutional Neuronal Network in the mobile

4

1 Introduction

area, Efficientnet-B0, Mobilenet-v2 and NASNetMobile. These are pre-trained CNN
models for edge devices that are available in the Tensorflow-Keras framework that is
used in this thesis. The data set to re-train the models contain waste images from
the public sector and is created in co-operation with the Faculty of Environmental
Engineering of Kasetsart University.

As hardware the three devices from Google, Intel and Nvidia are used. These use
different processors for parallel processing with different advantages and disadvantages.
In an experiment the three CNN models are executed on these edge devices and
tested for accuracy, speed, power consumption, CPU and memory usage.

Based on the gained knowledge, a prototype is created which takes pictures in real
time with the help of a camera and classifies them. The result of the classification is
used to automatically open the correct waste bin.

5

2 Literature Review

A considerable amount of research has been and is still being done in the field of
artificial intelligence, especially in the area of image processing. The classification of
objects is a method with a wide range of applications. The scientific work mentioned
here refers to the recognition and classification of waste objects.

In the work Bircanoğlu et al. 2018 an Convolutional Neuronal Network architecture
is developed called RecycleNet. The developed model is compared with the most
common CNNs MobileNet, DenseNet and ResNet for accuracy and speed. The
inference of the models is executed on a PC, whereby the performance of the execution
is benchmarked between the Xeon CPU with 2.20 GHz and the GTX980 GPU.

The research project of George E. Sakr et al. Sakr et al. 2016 compares the classifica-
tion of waste objects by a CNN and a Support Vector Maschine for an autonomous
recycling machine. For the comparison the AlexNet Convolutional Neuronal Network
is used. The technology with the higher accuracy is listed on a Raspberry Pi3 without
AI accelerator which uses LEDs to assign the correct container.

In the article Costa et al. 2018 an experiment is conducted which compares CNNs
like VGG16 and AlexNet, as well as classifiers like SVM, K-Nearest Neighbor and
Random Forest for accuracy. The objects are classified in 4 classes: glass, metal,
paper and plastic.

The topic of waste object classification with convolution neuronal networks is also
treated by Yinghao Chu et al. in the research article Chu et al. 2018. The classification
is based on a multilayer hybrid system consisting of a CNN, the in 2012 published
AlexNet, and a multilayer perceptron. The waste objects is positioned and rotated in
a dark grey box, using a high resolution camera. Furthermore, sensors are used to
measure the weight and detect whether the object is metallic. The object information
is collected by a PC and evaluated by the multilayer hybrid system and classifies the
object to recyclable or others.

Another field of application is the detection of waste on waste trays as used in fast
food chains. This topic is dealt with in the research work of Sousa, Rebelo, and
Cardoso 2019. It deals with the hierarchical deep learning application of image
recognition and classification. The work uses the Faster R-CNN for this purpose.

6

2 Literature Review

A comparison between the CNNs ResNet50, VGG16 and ResNet18 is made in the
experiment from the work of Dipesh Gyawali et al. Gyawali et al. 2020. In this work
the CNNs are trained on the 4 classes plastic, paper, metal and glass and compared
for their accuracy.

The current research in the field of waste object classification is concerned with
excluding the comparison of different Convolutional Neuronal Network architectures
or other machine classification methods. The accuracy is the only factor that is
compared in these studies. A comparison of CNNs designed for embedded systems is
still open for waste classification. Furthermore, the use of AI accelerators has not yet
been considered in the research work, which is a focus of this thesis.

7

3 Concepts

This chapter discuss the concept of this master thesis. The idea is to create a
prototype that acts as a recycling assistant to help people to dispose their waste in
the right containers. The field of application is limited to the public space, otherwise
it would go beyond the scope of this master thesis. Prerequisites for the prototype
are independence of location, highest possible accuracy and classification speed.

The garbage is captured with a video stream and each frame serves as input for
Convolutional Neuronal Network, which then predicts what type of waste it is. The
CNN is executed by Artificial Intelligence on the Edge. Depending on the prediction
of the CNN, the waste container intended for this class, is opened. The concept is
illustrate in the diagram 3.1

AI on the Edge is on of the most current topic. It offers, in contrast to the cloud based
solution, the possibility to run AI systems without internet connection. The data
is evaluated directly at the end device, which results in a significantly lower latency
time. Since the data is not transmitted via the web, these systems offer a higher
data security. Edge-AI’s are designed for use with embedded systems, therefore they
consume less power than a server based solution. Lee, Tsung, and Wu 2018

Chip manufacturers like Intel (section 3.3) and Nvidia (section 3.2) already offer
versions of their processors for edge computing. Also Google (section 3.1) offers its
2016 processor designed specifically for machine learning of neural networks as an
edge version. For the concept, the development versions of these manufacturers are
compared with each other. The respective advantages and disadvantages of each
processor, as well as their handling, are discussed.

Since edge hardware is generally embedded systems, its performance and memory is
often limited. Therefore, CNN models have been developed for this application area.
The various models differ in accuracy, speed and memory consumption.
To manipulate and train the models of neural networks the Tensorflow/Keras Frame-
work is used. This framework is developed by Google Brain, the Deep Learning
department of Google LCC. This framework is used because, according to the manu-
facturers, it is possible to compile Tensorflow model to the respective end devices.
Furthermore the Keras framework for the mobile area offers 3 different pre-trained
CNNs EfficientNet, MobileNet-v2 and NASNet-Mobile. The 3 models are executed
on the Edge processors and compared on CPU and memory usage, accuracy, speed
and power consumption.

8

3 Concepts

From the result of the comparison, the most suitable combination of CNN and Edge
devices is used for the prototype.

Figure 3.1: Overview diagram of the concept

3.1 Google Coral USB Accelerator

Coral is the product range of Google’s edge TPUs. The external USB version is used
in this case, which interacts with a Raspberry Pi 4 via the USB interface. At the
time of writing the edge TPU was available as external version aIs SoM (System on
Modul), PCIe accelerator, M.2 accelerator A+E and B+M or as a developer board.
There could be performance differences between these variants, which will not be
discussed further. More information about the developer board can be read in the
spectrum IEEE review paper Cass 2019

Google released its Tensor Processing Unit at its own in-house exhibition in 2016,
and has been using the technology at their data center for a year. The unit is
specifically designed for machine learning applications of neural networks (ASIC). In
year 2018, Google made the 2 version of the TPU for cloud computing available and
the embedded version has been commercially available since 2019.

9

3 Concepts

The heart of a TPU is the 8-bit matrix multiplication unit which consists of NxN
multiplication accumulators that perform 8-bit multiplications. The product of the
multiplication is summed up and stored in an accumulator. To save energy when
reading the SRAM, a systolic array is used, reducing the number of read and write
commands. Furthermore, the TPU acts as a co-processor via the PCIe interface.
Inference Models are loaded into the TPU’s memory completely if possible to avoid
interaction with the host CPU and save time during deployment. The TPU uses a
CISC instruction set to facilitate hardware design and debugging. N. Jouppi et al.
2018; N. P. Jouppi et al. 2017

3.2 Nvidia Jetson Nano

Nvidia offers their own platform for edge computing with their Jetson. The Jetson
Nano is the smallest Graphics Processing Unit device in this series with 128 cores.
Nvidia has developed its own Linux operating system for the Jetson series, the
"Linux4Tegra". It is a Ubuntu 18.4 version specially adapted for machine learning
and parallel computing. In this thesis the developer board will be used but also a
module version with the same specification can be purchased.

GPUs have been used in the visual area of computers since the mid 1990s. In contrast
to conventional CPUs, which processes tasks very quickly and sequentially, GPU are
designed for parallel processing. Modern GPUs are machines for massive parallel
computations and are therefore suitable for training AI. A GPU consists of many cores
that can be used individually. In order to access them, the programming technique
CUDA developed by NVIDIA is used. Baji 2018; Nickolls and Dally 2010 ; Garland
et al. 2008

3.3 Intel Neuronal Compute Stick 2

In 2016 Intel takes over the chip manufacturer Movidius, which has specialized in
low-power processors in the field of machine vision. From this takeover Intel developed
the Myriad X VPU, which is also built into the NCS2. Vision Processing Units are
co-processors that are specially designed to perform machine vision tasks in the AI
area. Myriad X contains 16 programmable SHAVE cores and a dedicated neural
engine to accelerate the inference of neural networks.

Like the GPU, the VPU has multiple cores and is designed for high parallelization
tasks. However, the VPU differs from the GPU in its special purpose. GPUs usually
still contain hardware for the application of 3D graphics which is missing in the VPU.
Also the memory architecture of the GPU is designed for bitmap images. Barry,
Brick, et al. 2015; Barry, Connor, et al. 2015; Libutti et al. 2020 Rivas-Gomez et al.
2018;

10

4 Waste Categories and Materials

In order to solve the classification problem, the pre-trained CNN will be re-trained.
For this purpose, a data set is created that contains the images of the objects to be
classified. For this master thesis, the data set is divided into 10 categories, see figures
at 4.2, that cover most of the public waste. Explicit attention was also paid to the fact
that the categories differ in form, color and transparency to facilitate classification by
the CNN. This subdivision was made in agreement with Assist.Prof.Cheema Soralump
from the Faculty of Environment Engineering. This selection also covers most of the
waste thrown into the sea. These are, according to the Pollution Control Department
Report 2019 from Thailand, plastic bags (18.9%), plastic bottles (8.6%), thin plastic
shopping bags (8.4%), foam dishes and bowls (6.9%), glass bottles (6.6%), food and
snack packages (6.1%), straw and swizzle sticks (4.6%), foam scraps (4.4%), foam
meal boxes (3.8%) and plastic cups (3.6%). The remaining 28.1% consists of various
types of waste. Booklet on Thailand State of Pollution 2019
A general overview of the waste flow in Thailand is seen in figure 4.1

Figure 4.1: Overview of the waste flow in Bangkok
Source: Assist.Prof.Cheema Soralump

11

4 Waste Categories and Materials

(a) Example image of
the food bowl class

(b) Example image of
the food box class

(c) Example image of
the glas bottle class

(d) Example image of
metal can class

(e) Example image of
plastic bag class

(f) Example image of
plastic bottle class

(g) Example image of
plastic cup class

(h) Example image of
plastic cutlery class

(i) Example image of
snack wrap class

(j) Example image of
tetrapack class

Figure 4.2: Example images of the 10 used categories

12

5 Hardware Overview

In this chapter the technical specification of the hardware is explained in more
detail. An overview hardware specifications of the main- or host-CPU with the AI
accelerator system is provided in the table 5.1. The advantages and disadvantages of
AI acceleration processors and their design are considered. A general comparison of
this devices was done by Nokia Bell Lab at a AI and IoT challenge 2019 in New York
and the result can be read in the paper Antonini et al. 2019

At the end of this chapter are the benchmark test from Coral 5.3 and Nvidia 5.4
illustrated. It should give an overview of the inference speed of the used hardware
devices and the supported neuronal network architectures.

Hardwarespecifications

Type RPI4
+ Intel NCS2

RPI4
+ GoogleCUA

Nvidia
Jetson Nano

CPU
Quad-core ARM

Cortex-A72
64-bit @ 1.5 Ghz

Quad-core ARM
Cortex-A72

64-bit @ 1.5 Ghz

Quad-Core ARM
Cortex-A57

64-bit @ 1.42 Ghz
RAM 2GB LPDDR4 4GB LPDDR4 4GB LPDDR4

AI accelerator (extern) Intel Myriad
X VPU

(extern) Google Edge
TPU coprocessor

(intern) 128-core Maxwell

Host-Interface USB 3.0 USB 3.0 PCIe
Spezified Performance 4 TOPS 4 TOPS 472 GFLOPS

Spezified Consumption ca. 4 W
(1W VPU + 3W RPI4)

ca. 5 W
(1W/2W TPU + 3 RPI4)

ca.5W

Advantages lower power consumption
large intern memory

lower power consumption
fast inference
many modules

higher flexability
higher accuracy

Disadvantages slow inference
lower flexability

lower flexability
small intern memory

shared memory
high power consumption

Table 5.1: Hardware specification tablehardware specifications of the used
configurations of AI accelerators

Source: https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://www.intel.ai/intel-movidius-myriad-vpus

https://coral.ai/products/accelerator

13

5 Hardware Overview

5.1 USB Accelerator

The Edge TPU and the Myriad VPU are used here as USB accelerators. These are
external co-processors that communicate with the host CPU via the USB interface.
USB 3.0 is recommended for both devices, the lower data transfer rate with USB
2.0 can become a bottleneck and thus reduce performance. The table 5.2 shows the
performance difference of the inference between the two processors on the MobileNet-
v2 SDD, which is a object recognition CNN. A huge gap in performance can be
seen in the Coral edge TPU, with USB 3.0, where the inference is about 5 times
faster than with USB 2.0. With a 30% faster inference the Myriad VPU performs
significantly better with USB 3.0 than with USB 2.0. Similar values are obtained in
the experiment from the paper Antonini et al. 2019.

As co-processors, these USB accelerators have their own computing unit as well as
their own memory and therefore put less strain on the resources of the main CPU.
This allows several devices to be used in parallel on one host. A disadvantage is the
lower transfer speed of the USB interface compared to the PCIe bus.

Setup
Raspberry Pi 4

MobileNet-v2 SDD
(ms)

Google CUA USB2.0 102,3
Google CUA USB3.0 18,2
Intel NCS2 USB2.0 116,7
Intel NCS2 USB3.0 80,4

Table 5.2: Benchmark between USB2.0 and USB3.0 of Intel NCS2 and Google CUA
Source: https://www.hackster.io/news/benchmarking-the-intel-neural-compute-

stick-on-the-new-raspberry-pi-4-model-b-e419393f2f97

14

5 Hardware Overview

5.2 Jetson Nano - Graphics Processing Unit

The GPU is another programmable processor besides the CPU. While a CPU consists
of 1 or few cores, a GPU has thousands of cores. Originally, the GPU was developed
for displaying 3D graphics on a computer. Nowadays the cores can be programmed
directly, for example with the CUDA framework from Nvidia, which makes it possible
to perform massive parallel tasks on a GPU. Therefore, this technology is very
much used in the field of AI. Because of the enormous number of operations that
are executed in parallel during training and with a CPU, this cannot be done in a
reasonable amount of time. Garland et al. 2008; Baji 2018

The Jetson Nano uses a 128 core Maxwell GPU as AI accelerator. Compared to
the TPU and VPU, the Nano is much more flexible, because interger and floating
point can be calculated. It also supports all common platforms. Most deep neural
network models can be executed directly, but with a lower performance. For the ideal
use Nvidia’s TensorRT engine should be used. The Nano can also be used to train
smaller neural networks. The major drawbacks of the embedded GPU are higher
power consumption and the shared 4GB RAM memory with the CPU. This has the
consequence that the GPU quickly runs out of memory when other programs are
running.

15

5 Hardware Overview

5.3 Coral - Tensor Processing Unit

The TPU is a processor specifically designed to train and inference neural networks.
The basic functions required for this are multiplication and addition of numbers.
To perform these functions as quickly as possible, the TPU has a Matrix Multiply
Unit. The first version of the TPU consisted of 256x256 8-bit integer multiply
accumulates (MACs or MADs) with a clock frequency of 700MHz. In addition, the
processor contains arithmetic units for activation and pooling, a unified buffer to
store intermediate values of operations and a bus system for fast data transfer. For
communication with the host CPU a CISC instruction set us which is aligned to
Googles AI framework Tensorflow. The block diagram of v1 TPU is shown in figure
5.1. N. Jouppi et al. 2018; N. P. Jouppi et al. 2017; Ross et al. 2016

The Edge-TPU is a significantly downsized version of the original TPU, whose
construction has not yet been published. From the performance data of 4 TOPS it
can be assumed that it has a 64x64 8-bit integer MXU. The application area of the
Coral is limited to the execution of 8-bit quantized neural networks. A disadvantage
is that only models from the Tensorflow framework are supported by the CISC
instruction set. Libutti et al. 2020; Jacob et al. 2018

Figure 5.1: Block diagram of the first version of Googles TPU
Source: N. Jouppi et al. 2018

16

5 Hardware Overview

5.4 Intel Neuronal Compute Stick 2 - Vision
Processing Unit

A Myriad X Vision Processing Unit is used in the Intel Neuronal Compute Stick 2,
not to be confused with the Video Processing Unit (also called VPU) for decoding
and encoding videos. This processor is a special development for machine vision with
focus on possible low power consumption. In order to achieve this, the built-in vector
processors, hardware accelerators and memory architecture are optimally coordinated.
Furthermore, the multi-core and multi-channel memory subsystem and the caches are
software controlled, which enables a higher workload. The performance of the Myriad
X VPU comes from 16 SHAVE processors, 2 RISC CPUs with a clock frequency of
700MHz and the high-performance video hardware filters. To reduce latency, data is
stored on the internal 4GB DRAM. Ionica and Gregg 2015; Rivas-Gomez et al. 2018;
Intel® Neural Compute Stick 2 Product Specifications 2020

In order for the SHAVE processors to deliver high performance with low energy,
they have a wide and deep register that controls several functional units with a
variable-length long instruction word (VLLIW). High parallel readability is achieved
by SIMD. The SHAVE processors combine the advantages of a GPU, DPS and RISC.
As with the GPU, 8-, 16-, and 32-bit integer and 16-, 32-bit floating point arithmetic
can be used. Furthermore, it is easier to programming of multi-core tasks. In the
figure 5.2 the block diagram of Streaming Hybrid Architecture Vectore Engine is
displayed. Barry, Brick, et al. 2015

The advantage of the Intel NCS2 is that it supports integer and floating point
arithmetic, same as the GPU but with a similar power consumption as the Coral.
Like the GPU it is also more platform independent than the Edge TPU. But as can
seen in the table, it is much slower than the other devices and also not all networks
can be compiled for the NCS2.

17

5 Hardware Overview

Figure 5.2: Block diagram of Streaming Hybrid Architecture Vectore Engine with the
functional units PEU (predicated execution unit), BRU (branch and repeat unit),
two 64-bit LSU (load and store unit), 128-bit VAU (vector arithmetic unit), 32-bit
IAU (integer arithmetic unit), 32-bit SAU (skalar arithmetic unit) and a 128-bit

CMU (compare and move unit)
Source: Barry, Brick, et al. 2015

18

5 Hardware Overview

Model architecture *Desktop CPU **Embedded CPU Desktop CPU
TPU CUA

***Dev Board
Edge TPU

DeepLab V3
(513x513)

2 FPS 0,8 FPS 19 FPS 4 FPS

DenseNet
(224x224)

2 FPS 0,9 FPS 50 FPS 40 FPS

Inception v1
(224x224)

11 FPS 2 FPS 294 FPS 243 FPS

Inception v4
(299x299)

1 FPS 0,3 FPS 11 FPS 9 FPS

Inception-ResNet V2
(299x299)

1 FPS 0,3 FPS 17 FPS 14 FPS

MobileNet v1
(224x224)

18 FPS 6 FPS 416 FPS 416 FPS

MobileNet v2
(224x224)

19 FPS 8 FPS 384 FPS 384 FPS

MobileNet v1 SSD
(224x224)

9 FPS 2 FPS 153 FPS 90 FPS

MobileNet v2 SSD
(224x224)

9 FPS 3 FPS 183 FPS 71 FPS

ResNet-50 V1
(299x299)

2 FPS 0,5 FPS 20 FPS 17 FPS

ResNet-50 V2
(299x299)

1 FPS 0,5 FPS 20 FPS 16 FPS

ResNet-152 V2
(299x299)

0,5 FPS 0,2 FPS 7 FPS 6 FPS

SqueezeNet
(224x224)

18 FPS 4 FPS 476 FPS 500 FPS

VGG16
(224x224)

1 FPS 0,2 FPS 3 FPS 3 FPS

VGG19
(224x224)

0,9 FPS 0,1 FPS 3 FPS 3 FPS

*Desktop CPU: 64-bit Intel(R) Xeon(R) Gold 6154 CPU @ 3.00GHz
**Embedded CPU: Quad-core Cortex-A53 @ 1.5GHz
***Dev Board: Quad-core Cortex-A53 @ 1.5GHz + Edge TPU

Table 5.3: Comparison different quatize model architectures with Google TPU,
Desktop CPU and Embedded CPU

Source: https://coral.ai/docs/edgetpu/benchmarks/

19

5 Hardware Overview

Model
Architecture

Application Framework Nvidia
Jetson Nano

Raspberry Pi3
+ NCS2

Google Edge
TP Dev Board

Res-Net 50
(224x224)

Classification Tenorflow 36 FPS 16 FPS DNR

MobileNet-v2
(300x300)

Classification Tensorflow 64 FPS 30 FPS 130 FPS

SSD ResNet-18
(960×544)

Object Detection Tensorflow 5 FPS DNR DNR

SSD ResNet-18
(480×272)

Object Detection Tensorflow 16 FPS DNR DNR

SSD ResNet-18
(300×300)

Object Detection Tensorflow 18 FPS DNR DNR

SSD Mobilenet-V2
(960×544)

Object Detection Tensorflow 8 FPS 1.8 FPS DNR

SSD Mobilenet-V2
(480×272)

Object Detection Tensorflow 27 FPS 7 FPS DNR

SSD Mobilenet-V2
(300×300)

Object Detection Tensorflow 39 FPS 11 FPS 48 FPS

Inception V4
(299×299)

Classification PyTorch 11 FPS DNR 9 FPS

Tiny YOLO V3
(416×416)

Object Detection Darknet 25 FPS DNR DNR

OpenPose
(256×256)

Pose Estimation Caffe 14 FPS 5 FPS DNR

VGG-19
(224×224)

Classification MXNet 10 FPS 5 FPS DNR

Super Resolution
(481×321)

Image Processing PyTorch 15 FPS 0.6 FPS DNR

Unet
(1x512x512)

Segmentation Caffe 18 FPS 5 FPS DNR

Table 5.4: Inference performance results from Jetson Nano, Raspberry Pi 3, Intel
Neural Compute Stick 2, and Google Edge TPU Coral Dev Board
Source: https://devblogs.nvidia.com/jetson-nano-ai-computing/

DNR = "did not run"

20

6 Convolutional Neuronal
Network Architecture

Convolutional Neuronal Networks are currently the first choice for network architec-
tures in the application area of image classification, recognition and segmentation.
CNN are classical feedforword networks. Which means that the information of the
input image flows through the network without feedback. The general structure of a
CNN consists of several convolution layers. A convolution layer contains a pair of a
convolution function followed by a pooling function, sometimes also a subsampling
function. The layers are all connected together to form a fully connected layer
structure. Networks which have many layers are called Deep Convolutional Neuronal
Network. The illustration 6.1 gives a simplified view of the structure of a CNN.Rawat
and Z. Wang 2017; Albawi, Mohammed, and Al-Zawi 2017

In this thesis we deal with CNNs which are specially designed for mobile applications.
These 3 models are the MobileNet-v2, the NASNet-Mobile and the EfficientNet-B0.
These models are available as pre-trained models in the Tensorflow/Keras framework
which is used here. These models are therefore tested for accuracy, inference speed
and efficiency on the 3 available AI edge devicesKeras n.d.

Figure 6.1: General architecture of a convolutional neuronal network
Source: Rawat and Z. Wang 2017

21

6 Convolutional Neuronal Network Architecture

6.1 MobileNet-v2

The MobileNet-v1 is a Convolutional Neuronal Network class designed by Google
which is mainly located in the mobile application area. The main focus of the
MobileNet class is the latency time which was ignored in previous compact CNN.
In order to achieve a higher speed the MobileNets use depthwise separable folding
layers illustrate in figure 6.3a. Such a layer consists of a depthwise convolution
filter and a pointwise convolution filter. This significantly reduces the costs for the
calculation effort compared to the use of a standard convolution layer. With the
standard convolution a 3D filter with the dimensions height, width and depth is used
to determine the property from the image. For MobileNets this is divided into 2 steps.
In the first step, the depth-wise convolution, a 2D filter is applied separately for each
depth (channel), but no new features are determined here yet. In the second step of
the pointwise convolution, the separated channels are merged again to determine the
features. In the figure 6.2 you observe the difference between the standard convolution
and the depthwise separable convolution. After each filter there is a batchnorm and
a ReLU6 activation function, see figure 6.6. At the end of the network there is a
softmax layer for classification. Howard et al. 2017

The MobileNet-v2 improves the MobileNet-v1 by replacing the depthwise separable
convolution block by a bottleneck residual block, see figure 6.3b. The idea of the
MobileNet-v2 is to bring the more interesting information of the input tensor into a
smaller subspace. For this purpose, a 1x1 extension convolution filter and a residual
connection is added to the depth-separable convolution block. The functionality of the
pointwise convolution filter also changes. With MobileNet-v1 the number of channels
remains the same or can be increased, with MobileNet-v2 on the other hand the
number of channels is reduced, hence the name 1x1 projection convolution. Reducing
the number of channels reduces the amount of data flowing through the Convolutional
Neuronal Network. To avoid loss of information, the channels are expanded again
with the 1x1 projection convolution at the input of the remaining bottleneck residual
block 6.3b. The operation can be understood as a compress-decompress cycle. The
residual connection is responsible for a better flow of the gradient, as seen in ResNet
Targ, Almeida, and Lyman 2016. It is only used when the number of channels
between input and output is the same, which is not often the case. Furthermore the
batch standard and ReLU6 is used again as activation function as well as softmax
for classification. Only after the projection convolution no activation function is
used because this leads to an extensive loss of information. The structure of the
MobileNet-v2 is shown in the table 6.1.Sandler et al. 2018

22

6 Convolutional Neuronal Network Architecture

Figure 6.2: The standard convolutional filters in (a) are replaced by two layers:
depthwise convolution in (b) and pointwise convolution in (c) to build a depthwise

separable filter
Source: Howard et al. 2017

23

6 Convolutional Neuronal Network Architecture

Stage
i

Operator
Fi

Resolution
Hi x Wi

Channels
Ci

1 Conv2d 2242 x 3 32
2 Bottleneck 1122 x 32 16
3 Bottleneck 1122 x 16 24
4 Bottleneck 562 x 24 40
5 Bottleneck 282 x 32 80
6 Bottleneck 142 x 64 112
7 Bottleneck 142 x 96 192
8 Bottleneck 72 x 160 320
9 Conv2d 1x1 72 x 320 1280
10 Average Pooling 7x7 72 x 1280 -
11 Conv2d 1x1 1 x 1 x 1280 kclasses

Table 6.1: Base structure of the Mobilenet-v2
Source: Sandler et al. 2018

24

6 Convolutional Neuronal Network Architecture

(a) Depthwise Seperable Convolution Block (b) Bottleneck Residual Block

Figure 6.3: Difference of the Convolution Block between Mobilenet-v1 and
Mobilenet-v2

25

6 Convolutional Neuronal Network Architecture

6.2 NASNetMobile

The Neural Architecture Search is the version of the MnasNet adapted for the Keras
platform, which is also a Convolutional Neuronal Network developed by Google.
NAS stands for Neural Architecture Search and is an automatic design technique
for creating artificial neural networks. The idea of NAS is to optimize existing CNN
architectures, in case of MnasNet the MobileNet-v2. The MNV2 Structure is divided
into 7 blocks with a variable number of repeatable layers. For the optimization a
partial search space for the blocks is defined as follows.

• Convolution operation: standard convolution, depthwise convolution, inverted
bottleneck convolution

• Kernal size: 3x3 or 5x5

• Squeeze and excitation ratio: 0, 0.25

• Skip operation: poolling, identity residual or no skip

• Filter size: Fi

• Layer number: Ni

By reinforcement learning, the parameters in the partial search space are optimized
for high accuracy and low latency. A recurrent neural network (RNN) based controller
is used to change the parameters. The feedback for the accuracy comes from a
training engine and the latency from a mobile phone engine. The architecture
resulting from this optimization can be seen in the figure 6.4 Zoph and Le 2017;
Zoph, Vasudevan, et al. 2018

26

6 Convolutional Neuronal Network Architecture

Figure 6.4: Result architecture for the mobile NAS model after optimisation and
structure of the convolution blocks
Source: Tan, Chen, et al. 2019

27

6 Convolutional Neuronal Network Architecture

6.3 EfficientNet-B0

The EfficientNets are another Convolutional Neuronal Network architecture from the
development of Google Research. Here a new method for scaling a neural network is
applied. In general, Convolutional Neuronal Networks are scaled up to achieve better
accuracy but consume more resources. The most common methods are scaling up in
depth or width, sometimes the resolution of the input is increased. However, only
one dimension is always increased. The idea of EfficientNet is to use a compound
scaling method that increases all 3 dimensions equally with a scaling constant φ in
the equations 6.3 and general scaling methods are seen in the illustration 6.5. By
setting the scaling constant the scaling can be adjusted to the available computing
power. Scaling does not change the model architecture, so a good basic architecture
is essential. For this purpose, a similar structure as for MnasNet is used, but the
EfficientNet uses mobile inverted bottleneck convolution layer (MBConv) 6.6c with
a Swish activation function, see figures 6.4,6.7. The MBConv is a combination of
a standard bottleneck convolution, figure 6.6b and a squeeze and excitation block,
figure 6.6a. The structure of the EfficientNet-B0 is illustrated in the table 6.2. The
values α, β, γ are searched with a small grid search and for the EfficientNet-B0 the
following values were found α = 1.2, β = 1.1, γ = 1.15 under the condition that
α ∗ β2 ∗ γ2 ≈ 2. Sandler et al. 2018 Tan, Chen, et al. 2019

depth : d = αφ (6.1)

width : w = βφ (6.2)

resolution : r = γφ (6.3)

Figure 6.5: Illustration of different forms of scaling for convolution neuronal networks
Source: Tan, Chen, et al. 2019

28

6 Convolutional Neuronal Network Architecture

(a) Squeeze and excitation
block

(b) Standard Bottleneck
Block

(c) Layer structure overview
of the mobile inverted

Bottleneck MBConv6 layer
with squeeze and excitation

optimization

Figure 6.6: Layer structure overview of the squeeze convolution block and linear
bottleneck

Source: Zoph, Vasudevan, et al. 2018

29

6 Convolutional Neuronal Network Architecture

Stage
i

Operator
Fi

Resolution
Hi x Wi

Channels
Ci

1 Conv3x3 224 x 224 32
2 MBConv1, k3x3 112 x 112 16
3 MBConv6, k3x3 112 x 112 24
4 MBConv6, k5x5 56 x 56 40
5 MBConv6, k3x3 28 x 28 80
6 MBConv6, k5x5 14 x 14 112
7 MBConv6, k5x5 14 x 14 192
8 MBConv6, k3x3 7 x 7 320
9 Conv1x1 & Pooling & FC 7 x 7 1280

Table 6.2: Base structure of the EfficientNet-B0
Source: Tan and Le 2019

Swish function: swish(x) = x ∗ σ(βx) = x

1 + e−βx
(6.4)

β constant or trainable parameter

Sigmoid function: σ(z) =
1

1 + e−z
(6.5)

Rectified linear unit: ReLU(x) = max(0, x) =

{
0, ifx < 0

x, ifx ≥ 0

}
(6.6)

30

6 Convolutional Neuronal Network Architecture

Figure 6.7: Illustration of the Swish in comparison to the ReLu6 activation function
Source: Ramachandran, Zoph, and Le 2017

31

7 Training of the Neuronal
Networks

The retraining of the base models MobileNet-v2, NASNet-Mobile and EfficientNet-B0
takes places on Colab. This has the benifit to use Google hardware accelerators,
what will reduce the time of training distictly, as the own hardware usually is not
as capable. Google provides two hardware accelerators, a cloud GPU and a TPU.
In this work both processing units are used to create a model. It will be observed if
there is an impact of a TPU trained model on the Edge-TPU.

For the problem in this work the output of the neuronal network is set to 11 classes,
see figure 7.1. One class for the background and 10 classes for defined waste categories.

Figure 7.1: EffNet example of the added output layers to brake down the output
from 1000 classes to 11. The input is defined for a 3 channel image with a 224x224
resolution. The ’?’ stands for the batchsize which will be defined at the inference

32

7 Training of the Neuronal Networks

7.1 Parameters

Tensorflow 2.1.0 is used for training the CNNs, which is the latest stable version at
the time of training.

The dataset contains 25,681 images from 11 classes and is splited in 66% training,
22% validiation and 11% test samples. The dataset where converted into TFrecords
file to get a efficient way to train with Tensorflow.

For the TPU training the TFrecords files has to be stored in a Google Cloude Storage
Bucket otherwise it is not possible to cache the dataset, see under "Cannot use local
filesystem" at Troubleshooting | Cloud TPU 2020.
For the GPU both system Google drive and Cloud Storage are possible and this case
Google drive is used.

The Tensor Processing Unit only supports tf.float32, tf.int32, tf.bfloat16 and tf.bool,
see under "Unsupported data typ" Troubleshooting | Cloud TPU 2020. Wherefore
the input image is cast to tf.float32 and input label to tf.int32.
The GPU can handle any tf.datatypes so the input is set to tf.float16 and the ouput
to uint8. With the GPU it is therefore possible to adapt the Keras models better to
the specifications of the edge hardware than is possible with the TPU .

Both models get compiled with the "Adam-optimizer" (Kingma and Ba 2017) and
"categorical cross-entropy", see equation 7.2. The result of this loss function is a
measure of the quality of the probability from the Softmax activation function, seen
at equation 7.1. These parameters are often used for models with One-Hot-Encoding.
In both cases the batchsize is set on 64 samples and 20 epochs for the full training.
The number of steps is calculated with the max number of training samples divided
by the batchsize for GPU-accelerator.
TPUs are design to handle large batchsizese. To get the best perfromance the
batchsize is multiplied by the number of cores, in this case are 8 cores available. In
one step 8 cores calculate parallel the gradient from 64 samples, therefore the steps
per epoch decrease by the number of cores. Anyway to have the same quantity of
steps per epoch and consequently a similar result, the batchsize is not multiplied by
the number of cores. The table 7.1 gives an overview of the use training settings with
the cloud GPU and the cloud TPU.

The table 7.2 show the trainable and total parameters of each base Keras model. As
a rule of thumb, more parameters mean a better accuracy and slower inference. A
larger number of parameters means in any case a greater training effort. It can be
seen that the MNV2 has fewer parameters than the other two models. Therefore the
MNV2 is faster to train and should have higher inference speed than the NAS-M and
EffNet which has nearly the same amout of parameters.

33

7 Training of the Neuronal Networks

Softmax function: σ(z)j =
ezj∑K
k=1 e

zk
(7.1)

Cross-Entropy function: CE = − 1

K

C∑
j

lj ∗ log(σ(z)j) (7.2)

K dimension of output tensor
z input vector with K dimensions
l ground truth vector, one-hot encoded label of the true class

Setting GPU-Accelerator TPU-Accelerator
TF.Version TF 2.1.0 TF 2.1.0

Train samples 17916 17916
Valid. samples 5098 5098
Dataset fromat TFrecord TFrecord

Storage Google Drive Google Cloud Storage
Input shape (None,224,224,3) (None,224,224,3)
Input output (None,16) (None,16)
Types image tf.float16 tf.float32
Types label tf.uint8 tf.int32
Encoding One-Hot-Encoding One-Hot-Encoding
Optimizer Adam optimizer Adam optimizer

Loss function Categorical crosstropy Categorical crosstropy
Batch size 64 64
Epochs 20 20
Steps 280 279

Learning rate
schedular

epoch <= 20 = 1e-4
20 >epoch <=40 = 1e-5
40 >epoche <=50 = 1e-6

epoch <= 20 = 1e-4
20 >epoch <=40 = 1e-5
40 >epoche <=50 = 1e-6

Table 7.1: Overview of learning parameters with the TPU and GPU accelerators

34

7 Training of the Neuronal Networks

Parameters MobileNet-v2 NASNet-Mobile EfficientNet-B0
Trainable Parameters 2,592,907 4,537,501 4,376,583

Non-trainable Parameters 34,112 36,738 42,016
Total Parameters 2,627,019 4,574,239 4,418,599

Table 7.2: Overview of learning parameters with the TPU and GPU accelerators

7.2 Training time

In this section we take a look on the training velocity of the different models on the
two cloud accelerators. The time to train one model depends on the model structure,
dataset size and training settings. The time, that is needed to update the weights of
neurons, is a indicator of the cost to create a new model.

An epoch stands for a complete run of the data set. The step is an update of the
gradient, whereby it is usual to use the batch size to calculate the number of steps
with Epoch =

Dataset_size
Batch_size . Furthermore, the total time for an epoch and a step

is determined, as well as the error and the accuracy during training as during the
validation.

The table 7.2 shows the number of parameters to be trained. It follows that the
MNV2 model takes the least time to recalculate the weights. Followed by the EffNet
and the NAS-M takes the most time. A look at the following 3 illustrations 7.1, 7.3,
7.5 of the first 5 steps of each training of the models confirm the expected behavior.
It is noticeable that the EffNet takes much less time compared to the 7.3, although
both have similar parameters to be trained.

Compared to the TPU, the GPU needs much less time to initialize. After the
initialization the TPU has a clear advantage over the GPU. Training time with the
TPU is 66% less with the MobileNet-v2 than training with the GPU. The Nasnet
achieves 50% and the EfficientNet-B0 even 75%. For more information about the
benchmark of Google’s Cloud processing units see N. P. Jouppi et al. 2017 and Y. E.
Wang, Wei, and Brooks 2019

When training with the TPU, all 8 cores are always used to update the weights. In
contrast to the GPU where only the required number of cores is used. To get the
best performance out of the TPU, each core should be used at full capacity. Usually
the Batch_size is simply multiplied by 8. To get a better comparison, this was not
done in this training.

35

7 Training of the Neuronal Networks

MobileNet-v2

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 280/280 [==============================] - 91 s 325ms/ step - l o s s : 0 .8515 - accuracy :

0 .7520 - va l_los s : 3 .3345 - val_accuracy : 0 .4469 - l r : 1 .0000 e - 04
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 280/280 [==============================] - 85 s 302ms/ step - l o s s : 0 .6241 - accuracy :

0 .8188 - va l_los s : 2 .9255 - val_accuracy : 0 .5277 - l r : 1 .0000 e - 04
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 280/280 [==============================] - 85 s 305ms/ step - l o s s : 0 .3644 - accuracy :

0 .8938 - va l_los s : 2 .6677 - val_accuracy : 0 .6160 - l r : 1 .0000 e - 04
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 280/280 [==============================] - 85 s 304ms/ step - l o s s : 0 .2160 - accuracy :

0 .9381 - va l_los s : 1 .6893 - val_accuracy : 0 .7318 - l r : 1 .0000 e - 04
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 280/280 [==============================] - 85 s 303ms/ step - l o s s : 0 .1532 - accuracy :

0 .9546 - va l_los s : 1 .3364 - val_accuracy : 0 .7949 - l r : 1 .0000 e - 04

Listing 7.1: First 5 epochs of pretraining the Mobilenet-v2 with GPU accelerator

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 279/279 [==============================] - 256 s 919ms/ step - l o s s : 1 .8706 - accuracy :

0 .4010 - va l_los s : 2 .4619 - val_accuracy : 0 .4012
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 279/279 [==============================] - 24 s 85ms/ step - l o s s : 0 .8831 - accuracy :

0 .7101 - va l_los s : 1 .2624 - val_accuracy : 0 .7065
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 279/279 [==============================] - 24 s 85ms/ step - l o s s : 0 .3885 - accuracy :

0 .8784 - va l_los s : 0 .6069 - val_accuracy : 0 .8636
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 279/279 [==============================] - 24 s 85ms/ step - l o s s : 0 .1435 - accuracy :

0 .9584 - va l_los s : 0 .2824 - val_accuracy : 0 .9332
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 279/279 [==============================] - 24 s 88ms/ step - l o s s : 0 .0427 - accuracy :

0 .9885 - va l_los s : 0 .1511 - val_accuracy : 0 .9666

Listing 7.2: First 5 epochs of pretraining the Mobilenet-v2 with TPU accelerator

36

7 Training of the Neuronal Networks

NASNet-Mobile

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 280/280 [==============================] - 225 s 804ms/ step - l o s s : 0 .9086 - accuracy :

0 .7316 - va l_los s : 3 .5660 - val_accuracy : 0 .0822
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 280/280 [==============================] - 166 s 593ms/ step - l o s s : 0 .5332 - accuracy :

0 .8429 - va l_los s : 3 .8819 - val_accuracy : 0 .2713
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 280/280 [==============================] - 166 s 593ms/ step - l o s s : 0 .2630 - accuracy :

0 .9231 - va l_los s : 4 .1208 - val_accuracy : 0 .3721
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 280/280 [==============================] - 167 s 595ms/ step - l o s s : 0 .1413 - accuracy :

0 .9572 - va l_los s : 3 .3297 - val_accuracy : 0 .4672
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 280/280 [==============================] - 166 s 593ms/ step - l o s s : 0 .0723 - accuracy :

0 .9783 - va l_los s : 2 .3847 - val_accuracy : 0 .5857

Listing 7.3: First 5 epochs of pretraining the NASNetMobile with GPU accelerator

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 279/279 [==============================] - 445 s 2 s / step - l o s s : 1 .8604 - accuracy :

0 .3893 - va l_los s : 2 .7718 - val_accuracy : 0 .1559
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 279/279 [==============================] - 78 s 281ms/ step - l o s s : 0 .6299 - accuracy :

0 .8072 - va l_los s : 2 .8165 - val_accuracy : 0 .2969
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 279/279 [==============================] - 77 s 277ms/ step - l o s s : 0 .2104 - accuracy :

0 .9380 - va l_los s : 1 .9313 - val_accuracy : 0 .5192
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 279/279 [==============================] - 78 s 279ms/ step - l o s s : 0 .0549 - accuracy :

0 .9847 - va l_los s : 1 .2406 - val_accuracy : 0 .6799
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 279/279 [==============================] - 78 s 278ms/ step - l o s s : 0 .0190 - accuracy :

0 .9953 - va l_los s : 0 .8056 - val_accuracy : 0 .7890

Listing 7.4: First 5 epochs of pretraining the NASNetMobile with TPU accelerator

37

7 Training of the Neuronal Networks

EfficientNet-B0

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 280/280 [==============================] - 149 s 531ms/ step - l o s s : 1 .0536 - accuracy :

0 .6824 - va l_los s : 1 .8567 - val_accuracy : 0 .5404
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 280/280 [==============================] - 109 s 391ms/ step - l o s s : 0 .4824 - accuracy :

0 .8519 - va l_los s : 1 .2278 - val_accuracy : 0 .6471
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 280/280 [==============================] - 109 s 390ms/ step - l o s s : 0 .2623 - accuracy :

0 .9253 - va l_los s : 0 .4140 - val_accuracy : 0 .8559
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 280/280 [==============================] - 109 s 391ms/ step - l o s s : 0 .1399 - accuracy :

0 .9606 - va l_los s : 0 .2538 - val_accuracy : 0 .9174
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 280/280 [==============================] - 108 s 385ms/ step - l o s s : 0 .0825 - accuracy :

0 .9787 - va l_los s : 0 .1588 - val_accuracy : 0 .9508

Listing 7.5: First 5 epochs of pretraining the Efficientnet-B0 with GPU accelerator

1 Epoch 00001: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
2 Epoch 1/20
3 279/279 [==============================] - 141 s 507ms/ step - l o s s : 1 .6444 - accuracy :

0 .4912 - va l_los s : 0 .4626 - val_accuracy : 0 .8899
4
5 Epoch 00002: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
6 Epoch 2/20
7 279/279 [==============================] - 28 s 101ms/ step - l o s s : 0 .4648 - accuracy :

0 .8652 - va l_los s : 0 .1683 - val_accuracy : 0 .9487
8
9 Epoch 00003: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .

10 Epoch 3/20
11 279/279 [==============================] - 28 s 99ms/ step - l o s s : 0 .1413 - accuracy :

0 .9638 - va l_los s : 0 .0842 - val_accuracy : 0 .9781
12
13 Epoch 00004: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
14 Epoch 4/20
15 279/279 [==============================] - 29 s 104ms/ step - l o s s : 0 .0579 - accuracy :

0 .9861 - va l_los s : 0 .0737 - val_accuracy : 0 .9802
16
17 Epoch 00005: LearningRateScheduler reduc ing l e a rn i ng ra t e to 0 . 0001 .
18 Epoch 5/20
19 279/279 [==============================] - 29 s 105ms/ step - l o s s : 0 .0292 - accuracy :

0 .9940 - va l_los s : 0 .0646 - val_accuracy : 0 .9838

Listing 7.6: First 5 epochs of pretraining the Efficientnet-B0 with TPU accelerator

38

7 Training of the Neuronal Networks

7.3 Training evalutation

In this section the learning curves of the training of the respective models are evaluated.
The diagrams show the course of the determined accuracy (definition is in chapter
7.4) and the loss of the cross-entropy 7.2 during training and validation.

The best result was achieved with EfficientNet-B0 with an accuracy value of >0.98
and a loss value < 0.1. Also with MobileNet-v2 and NASNet-Mobile an acceptable
result was achieved with >0.98 accuracy and < 0.2 loss.
It is noticeable that the validation values at the beginning of the TPU training of
the EfficientNet-B0 are better than the training values. This could be due to the
fact that the validation takes place after an epoch and the curves rise and fall very
quickly.

A smoother training process can be noticed with the TPU models, which have
significantly less deflections than the training processes of the GPU models. Optimal
values are also reached faster with the TPU than with the GPU.

MobileNet-v2

(a) with GPU-Accelerator (b) with TPU-Accelerator

Figure 7.2: MobileNet-v2 training and validation accuracy and loss result

39

7 Training of the Neuronal Networks

NASNet-Mobile

(a) with GPU-Accelerator (b) with TPU-Accelerator

Figure 7.3: NASNet-Mobile training and validation accuracy and loss result

EfficientNet-B0

(a) with GPU-Accelerator (b) with TPU-Accelerator

Figure 7.4: EfficientNet-B0 training and validation accuracy and loss result

40

7 Training of the Neuronal Networks

7.4 Confusion Matrix of Keras models

In this section the accuracy, seen in the equation 7.3 of the models is determined
with 2667 test images. A confusion matrix is created for each model. The columns
represent the correct class and the rows represent the predicted class.

The confusion matrices reflect the results of the learning curves. With an overall
accuracy of 0.954 and an macro-F1 (see chapter 7.5) score of 0.951, the GPU-trained
EfficientNet-B0, see matrix 7.7a scores best. The worst prediction is obtained by
NASNet-Mobile with TPU training seen at matrix 7.6b with an accuracy of 0.8943 and
macro-F1 of 0.879. The accuracy (equation: 7.3) and the macro F1-score (equation:
7.7) are general indicators of the quality of CNN. The accuracy indicates the ratio
between all correct (True Positive + True Negative) to all predicted samples to the
complete number of samples (True Positive + True Negative + False Positive + False
Negative). The macro F1-score instead use the harmonic mean of precision and recall
what is more accurate for a unbalanced matrix.

It is noticeable that TPU trained models perform on average 2 % worse than GPU
models. TPUs are not as flexible as GPU, which we can see in the supported
arithmetic which affects the accuracy accordingly. Furthermore the TPU is designed
for larger data sets than used in this project.

Accuracy =
TP + TN

TP + TN + FP + FN
(7.3)

MobileNet-v2

(a) trained with GPU-Accelerator (b) trained with TPU-Accelerator

Figure 7.5: Confustion matrix from different CNN-Models on Coral USB Accelerator

41

7 Training of the Neuronal Networks

NASNet-Mobile

(a) trained with GPU-Accelerator (b) trained with TPU-Accelerator

Figure 7.6: Confusion matrix of the NASNet-Mobile Keras classification models

EfficientNet-B0

(a) trained with GPU-Accelerator (b) trained with TPU-Accelerator

Figure 7.7: Confusion matrix of the EfficientNet-B0 Keras classification models

42

7 Training of the Neuronal Networks

7.5 Precision, Recall and F1-score

This section deals with the indicators precision, recall and F1-score. These values
give information about the performance of the neural network over the individual
categories. Shung 2020

The precision (equation: 7.4) is the ratio of all correctly predicted units TP (True
Positives) by the amount of times this class was determined as a result TP+FP (True
Positives + False Positives). It thus indicates how often a class is interpreted for
another class. The table 7.8a shows the precision values for each category. The 2
categories background and plastic bottle. The background class is used to determine
whether an object is in front of the camera or not. A low precision value means
that the object cannot be recognized as such. This has a negative effect on the
performance but does not affect the quality of the sorting. In contrast to the plastic
bottle class. Here it shows that some objects are wrongly recognized as plastic bottles,
which has a negative effect on the quality of the sorting. In this case it is mainly
glass bottles that are misinterpreted, this can be seen in the confusions matrix 7.4.

The recall (equation: 7.5) describes the ratio of all correctly classified units TP (True
Positives) of a class to the total number of units TP + TN (True Positives + False
Negatives). It is a measure of how well the CNN can classify a class with the given
features of the class. In the table 7.8b the values of the recall are listed for the
respective categories. Here the glass bottle class stands out, which shows significant
low values for all models. This is due to the similar features of a glass bottle with a
plastic bottle, as already mentioned for precision. Furthermore you can see that TPU
trained models are better able to assign the background than GPU trained models.

The F1-score (equation: 7.6) is the harmonic average of precision and recall. In
contrast to the accuracy, high values are penalized when calculating the F1-score.
The F1 therefore describes neural networks with an unbalanced confusion matrix
better than the accuracy of a class. The macro-F1 (equation: 7.7) is the average of
all F1-scores of the Convolutional Neuronal Network and describes the quality like
the general accuracy. In this case, the test dataset is relatively balanced in terms of
the number of samples per class. Therefore, only a minimal difference between the
accuracy and the macro F1-score. Shmueli 2020

Precision =
TP

TP + FP
(7.4)

Recall =
TP

TP + FN
(7.5)

43

7 Training of the Neuronal Networks

TP True Positive
FP False Positive
FP False Negative

F1− score =
2 ·Recall · Precision
Recall + Precision

(7.6)

MacroF1 =
1

N

N∑
i=0

F1scorei (7.7)

N Number of F1-scores

(a) Precision matrix of the Keras models
trained with GPU and TPU accelerator

(b) Recall matrix of the Keras models
trained with GPU and TPU accelerator

Figure 7.8: Precision and Recall matrix of the Keras models trained with GPU and
TPU accelerator

Figure 7.9: F1 value matrix of the Keras models trained with GPU and TPU
accelerator

44

8 Compiling the Keras models for
the edge frameworks

This chapter describes how to adapt and compile the created Keras models to the
respective frameworks of the Artificial Intelligence edge devices. An overview of
how the Keras model is compiled on the respective end devices is shown in the flow
diagram 8.1.

In this master thesis embedded devices for AI applications from different manufac-
turers are used. Each manufacturer offers its own framework so that the hardware
can run the CNN or provide the optimal performance. The Keras models are first
converted into a Tensorflow format. Since, except for the GPU of the Jetson Nano,
no hardware supports the Keras format. For the framework of Nvidia and Intel
the Tensorflow saved model format is used, while for the EdgeTPU a Tensorflow
Lite format is required. When converting to the saved model the structure of the
model is still preserved, but when converting to the TFlite format the model gets
optimized with a loss of information. A backwards compilation is therefore no longer
possible. For the Openvino Framework the TF2 saved model is converted to a TF1.15
froozen model format. Since the NCS2 does not yet fully support the Intermediate
Representation (IR) v11 and compiling to IRv6 causes problems with the saved model,
which will not be explained further. Antonini et al. 2019; TensorFlow Lite Converter
2020; Using the SavedModel Format | TensorFlow Core 2020

To transfer the Tensorflow format to the respective AI engines the Framework APIs
offer their own compilers. These are discussed in more detail in the respective
subchapters.

45

8 Compiling the Keras models for the edge frameworks

Figure 8.1: Work flow from Mobilenet-v2 training to different hardware specific
models

46

8 Compiling the Keras models for the edge frameworks

8.1 Keras to TFlite for edge TPU

This subchapter deals with the compilation from TFlite to TFlite-edgeTPU, which is
necessary for using Coral.

As described in the previous chapters, the edge TPU only supports uint8 arithmetic.
The model parameters must therefore be compilable to full 8-bit interger arithmetic.
Further conditions are constant tensor size and model parameters, as well as highest
3 dimensional tensors. For tensors with more than 3 dimensions, the inner ones
must not have values greater than 1. Currently, the edge TPU does not support all
tensorflow operations. The supported operations are published on the official Coral
website TensorFlow Models on the Edge TPU 2020. When training and compiling
the models the TF2 is used which sets the input and output of the model to float by
default. Since the edge TPU can only handle 8-bit integer, the compiler outsources
the input and output tensor to the host CPU. The compilation workflow is explained
in the diagram 8.2.

Figure 8.2: Workflow to compile Tensorflow model to TFlite-edgeTPU format for
Google Coral hardware

Source: TensorFlow Models on the Edge TPU 2020

The following listings 8.1, 8.2, 8.3 contain the information that the compiler outputs
after successful compilation. This information includes the time the compiler took to
compile, the size of the input and output model and how much internal memory on the
edge TPU and external memory on the Raspberry Pi is used by the model. Further
information are the number of subgraphs and the total number of operations. The
operations are organized into those performed on the edge TPU and those performed
on the host CPU. Due to a problem in the compiler the EfficientNet-B0 (see listing:
8.1) could not be compiled at this time. According to Coral support, the bug will be
fixed in the next update. Coral-Support 2020a

47

8 Compiling the Keras models for the edge frameworks

When comparing the compiling information from listing 8.2 and listing 8.3, the
NASNet-Mobile with 759 operations and 7.64 MiB is significantly heavier than the
MobileNet-v2 with 73 operations and 3.11 MiB. Accordingly, the compiler needs
7213ms to optimize the NASNet-Mobile model, while only 410ms are required for
the MobileNet-v2. The Coral has only a small internal memory with 8 MiB. The
MobileNet-v2 requires 3.33MiB for caching, so it fits completely on the memory. The
NASNet-Mobile with its 6.31 MiB is too large for the internal memory, which is
why 221.44 KiB are buffered externally. External buffering significantly reduces the
performance of the model, since the latency increases when loading the model. Except
for the input and output operations, all operations for the inference are executed on
the TPU. The input and output operations are floating-point operations that are not
supported by the TPU, so the calculation is done on the CPU.

EfficientNet-B0 compiling information

1 Edge TPU Compiler ve r s i on 2 .1 .302470888
2
3 In t e rna l compi ler e r r o r . Aborting !

Listing 8.1: Compiling information from Efficientnet-B0 Keras model to TFlite Edge
TPU Model

MobileNet-v2 compiling information

1 Edge TPU Compiler ve r s i on 2 .1 .302470888
2
3 Model compiled s u c c e s s f u l l y in 410 ms .
4
5 Input s i z e : 3 .06MiB
6 Output s i z e : 3 .11MiB
7 On- chip memory used f o r caching model parameters : 3 .33MiB
8 On- chip memory remaining f o r caching model parameters : 4 .39MiB
9 Off - chip memory used f o r streaming uncached model parameters : 0 .00B

10 Number o f Edge TPU subgraphs : 1
11 Total number o f ope ra t i ons : 73
12
13 Model s u c c e s s f u l l y compiled but not a l l ope ra t i ons are supported by the Edge TPU.
14 A percentage o f the model w i l l i n s t ead run on the CPU, which i s s lower .
15 I f po s s i b l e , c on s ide r updating your model to use only ope ra t i ons supported by the

Edge TPU.
16
17 Number o f ope ra t i ons that w i l l run on Edge TPU: 71
18 Number o f ope ra t i ons that w i l l run on CPU: 2
19 See the operat ion log f i l e f o r i nd i v i dua l operat ion d e t a i l s .

Listing 8.2: Compiling information from Mobilenet-v2 Keras model to TFlite Edge
TPU Model

48

8 Compiling the Keras models for the edge frameworks

NASNet-Mobile compiling information
1 Edge TPU Compiler ve r s i on 2 .1 .302470888
2
3 Model compiled s u c c e s s f u l l y in 7213 ms .
4
5 Input s i z e : 5 .47MiB
6 Output s i z e : 7 .64MiB
7 On- chip memory used f o r caching model parameters : 6 .31MiB
8 On- chip memory remaining f o r caching model parameters : 0 .00B
9 Off - chip memory used f o r streaming uncached model parameters : 221 .44KiB

10 Number o f Edge TPU subgraphs : 1
11 Total number o f ope ra t i ons : 759
12
13
14 Model s u c c e s s f u l l y compiled but not a l l ope ra t i ons are supported by the Edge TPU.
15 A percentage o f the model w i l l i n s t ead run on the CPU, which i s s lower .
16 I f po s s i b l e , c on s ide r updating your model to use only ope ra t i ons supported by the

Edge TPU.
17
18 Number o f ope ra t i ons that w i l l run on Edge TPU: 757
19 Number o f ope ra t i ons that w i l l run on CPU: 2
20 See the operat ion log f i l e f o r i nd i v i dua l operat ion d e t a i l s .

Listing 8.3: Compiling information from NASNetMobile Keras model to TFlite Edge
TPU Model

8.2 Keras To TF-TRT for Jetson Nano

In this section the optimization from Tensorflow saved model to Tensorflow TensorRT
for the Jetson Nano is covered.

The Tegra GPU used in the Jetson Nano can be performed by the CUDA library
from Nvidia in a general parallel task. Thus, most frameworks can be executed
directly without compilation. To get the best possible performance, Nvidas TensorRT
software development kit is used. TensortRT uses its own inference engine to execute
the neural networks. Tensorflow models can not be put directly into a TensorRT
format but TensorRT offers a Tensorflow-TRT container that allows the engine to
run the optimized Tensorflow model from the box. To optimize the neural networks,
layers are combined with each other and the distribution of the calculation to the
CUDA cores is improved. This improves the energy and memory consumption as
well as the latency. TensorRT allows parameter optimization to half precision 16-bit
floating point or 8-bit integer like Coral. In this case the models are converted to
FP16. Nvidia TensorRT Developer-Guide 2020; Nvidia TF-TRT User-Guide 2020

Certain parameters are set for the compilation, these can be seen in the listing 8.4.
These are the used precision with FP16 and the maximum workspace with 100 MiB.
The max_workspace parameter determines how much memory may be allocated
for the execution of the CNN. The Tegra GPU of the Jetson Nano shares a 4Gb
memory with the CPU, which is not sufficient for too much workspace. This has
the consequence that the TensorRT engine cannot be generated and the model is
executed with low performance as Tensorflow model. The Listing 8.5 shows the
output information of the compiler, which is limited to the used TensorRT version.
It is therefore not evident to what extent the models differ after compilation.

49

8 Compiling the Keras models for the edge frameworks

1 conversion_params = t r t .DEFAULT_TRT_CONVERSION_PARAMS. _replace (precision_mode=t r t .
TrtPrecis ionMode . FP16 ,

2 max_workspace_size_bytes=100* 1028)

Listing 8.4: Parameter settings for converting Keras saved models to TF-TRT model

1 Converting to TF-TRT FP16 . . .
2 INFO: t en so r f l ow : Linked TensorRT ve r s i on : (5 , 1 , 5)
3 INFO: t en so r f l ow : Loaded TensorRT ve r s i on : (5 , 1 , 5)
4 INFO: t en so r f l ow : Running aga in s t TensorRT ve r s i on 5 . 1 . 5

Listing 8.5: Compiler information about used TensorRT version

8.3 Keras Openvino optimization

In this subchapter we discuss the optimization of the Tensorflow model for the Intel
Openvino Framework.

The Openvino framework uses an Intermediate Representation of a network to read,
load and execute models on the Inference engine. The openvino toolkit offers a model
optimizer that transfers models into an IR across the framework. For an intermediate
representation 2 files are used to describe the network. An .xml file to describe the
network topology and .bin file which contains the weights and label data. For more
information about the Intermediate Representation, see Duboscq et al. 2013,Cyphers
et al. 2018 .The Openvino framework uses its own graph representation format and
operation set. For the compilation the Openvino version 2020.1 is used which already
has IR11. At compile time the NCS2 supports IR7 and the corresponding operation
set, so the models are compiled on IR7 instead of IR11. The OpenvinoToolKit 2020.1
should be able to directly translate Tensorflow saved models to IR. In this project,
however, the translation failed, it is assumed that it is a version conflict between TF2
and IR7, but the reason is not discussed further. As work around the TF2 saved
model is compiled into a TF1.15 froozen model format, which can be translated to
IR7 without problems. Model Optimizer Developer Guide - OpenVINO™ Toolkit 2020

When converting from TF2 saved model to TF1.15 froozen model we get the following
information, the number of parameters which could be frozen and the number of
parameters which were converted. For the MobileNet-v2 (see listing 8.6) 264 variables
get converted, for the NASNet-Mobile (see listing 8.8) 1128 variables and for the
EfficientNet-B0 (see listing 8.10) 313 variables.

The listings 8.7, 8.9 8.11 show the compile information of the Openvino optimizer.
These consist of the IR version, the file name, compile time and the size or memory
consumption of the source model. All models are translated to IR7 as described
above. Just like the EdgeTPU, the NASNet-Mobile model takes significantly more
time to compile and memory storage than the other models. Which is to be expected
with considerably more parameters. Notice that the Openvino optimized models are
significantly larger than the other edge devices.

50

8 Compiling the Keras models for the edge frameworks

MobileNet-v2 compiling information

1 INFO: t en so r f l ow : Froze 264 va r i a b l e s .
2 INFO: t en so r f l ow : Converted 264 va r i a b l e s to const ops .

Listing 8.6: Optimizer information from Mobilenet-v2 Keras model to Intel Openvino
framework

1 Model Optimizer ve r s i on : 2020 . 1 . 0 - 61 - gd349c3ba4a
2
3 [SUCCESS] Generated IR ve r s i on 7 model .
4 [SUCCESS] XML f i l e : / frozen_model . xml
5 [SUCCESS] BIN f i l e : / frozen_model . bin
6 [SUCCESS] Total execut ion time : 12 .21 seconds .
7 [SUCCESS] Memory consumed : 317 MB.

Listing 8.7: Optimizer information from Mobilenet-v2 Keras model to Intel Openvino
framework

NASNet-Mobile compiling information

1 INFO: t en so r f l ow : Froze 1128 va r i a b l e s .
2 INFO: t en so r f l ow : Converted 1128 va r i a b l e s to const ops .

Listing 8.8: Optimizer information from NASNetMobile Keras model to Intel
Openvino framework

1 Model Optimizer ve r s i on : 2020 . 1 . 0 - 61 - gd349c3ba4a
2
3 [SUCCESS] Generated IR ve r s i on 7 model .
4 [SUCCESS] XML f i l e : / frozen_model . xml
5 [SUCCESS] BIN f i l e : / frozen_model . bin
6 [SUCCESS] Total execut ion time : 52 .51 seconds .
7 [SUCCESS] Memory consumed : 425 MB.

Listing 8.9: Optimizer information from NASNetMobile Keras model to Intel
Openvino framework

EfficientNet-B0 compiling information

1 INFO: t en so r f l ow : Froze 313 va r i a b l e s .
2 INFO: t en so r f l ow : Converted 313 va r i a b l e s to const ops .

Listing 8.10: Optimizer information from Efficientnet-B0 Keras model to Intel
Openvino framework

1 Model Optimizer ve r s i on : 2020 . 1 . 0 - 61 - gd349c3ba4a
2
3 [SUCCESS] Generated IR ve r s i on 7 model .
4 [SUCCESS] XML f i l e : / frozen_model . xml
5 [SUCCESS] BIN f i l e : / frozen_model . bin
6 [SUCCESS] Total execut ion time : 19 .72 seconds .
7 [SUCCESS] Memory consumed : 376 MB.

Listing 8.11: Optimizer information from Efficientnet-B0 Keras model to Intel
Openvino framework

51

9 Experiment Information

In the following chapter the structure of the comparison experiment of AI acceleration
devices is described.

The goal of this experiment is to test the performance of the peripheral devices Google
Coral USB Accelerator, Nvidia Jetson Nano and the Intel Neuronal Compute Stick 2
with the 3 Convolutional Neuronal Network’s for mobile applications MobileNet-v2,
NASNet-Mobile and EfficientNet-B0. The following key figures are determined:
The utilization of the CPU and RAM memory during the inference, the inference
time per image, the power consumption and the resulting efficiency. Furthermore,
a Confusion matrix is created from which the accuracy, F1-score, precision and
recall are determined. The standard power supplies of the experimental units could
influence the result by low power output. Therefore, a Damper S-50-5 power supply
with 50W (5V - 10A) output line is used for a stable supply. For measuring the
power consumption a TC66 USB-C power meter, illustrated in the picture 9.1, is
used. The measuring device delivers voltage and ampere in a measuring cycle of
1s, which are recorded live from PC via Micro-USB. For the power consumption it
is important to note that the test is performed directly at the device and not via
a remote connection. The power consumption in idle is to be understood with the
configuration of screen via HDMI and the input devices keyboard and mouse. Also
note that the Python API of the AI accelerator is used for the experiment. The use
with the C++ API is not considered.

Figure 9.1: TC66 USB C power meter to measure power consumption at the edge
devices

52

9 Experiment Information

The determination of the key data and the creation of the confusion matrix is done
with a Python3.7 script. The same test data set with 2667 images that was used
for testing the Keras models in Colab is used, which allows a better comparison of
the results. During the experiment the timestamp before and after the inference
is stored for each image, so the inference time per sample is calculated. For each
inference the current CPU and RAM usage is collected in a list. To create the
Confusion Matrix the result of the Inference determines the row and the Current
Class determines the column. Whereby with a comparison of the result correct and
wrong results are counted. At the end of each run the results are stored in an .CSV
file. The Pythoncode of the Python script can be seen in the listing 9.1. To reduce
the influence of fluctuations, 10 runs are performed per CNN model and end device.
The recording of the power consumption is done externally with a USB-C meter.

1 # Loop throuht a l l c l a s s e s from de f ined l a b e l s
2 f o r ac tua l_c la s s in l a b e l s :
3 # Load and preproce s s image
4 image = readImage ()
5 input_data = preprocessImage (Image)
6 # Get s t a r t time to measure the i n f e r e n c e time
7 s t a r t = time ()
8 # Get the One−Hot encoded r e s u l t from the i n f e r e n c e
9 i_pred i c t = c la s s i fy_image (input_data)

10 # Get stop time
11 stop = time ()
12 # Get index from the ac tua l_c la s s
13 j_actual = l a b e l s . index (ac tua l_c la s s)
14 # Inc r ea s e va r i ab l e r i gh t i f i n d i c e s are same , e l s e i n c r e a s e wrong
15 i f i_pred i c t == j_actual :
16 r i gh t += 1
17 e l s e :
18 wrong += 1
19 # Inc r ea s e array f i e l d from both i n d i c i e s
20 confMatrix [i_pred i c t] [j_actual] += 1
21 # Add time , CPU in % and Memory in % to l i s t s
22 t ime_l i s t . append (stop - s t a r t)
23 cpu_l i s t . append (cpu)
24 mem_list . append (mem)

Listing 9.1: Experiment code of the Python3.7 script to determine the performance
data of the inference

The edge-TPU and the edge-GPU have additional power settings. The Coral offers
the possibility to switch between a standard and maximum operation frequency
of the TPU. With the standard frequency the power is halved which reduces the
power consumption to 1W at full load for the TPU. The Jetson Nano offers a similar
possibility, here a 5W and 10W mode can be set, which limits the GPU power to 5W
or 10W. Note that not only the GPU frequency is reduced, but also the CPU and
hardware accelerators. The 5W mode is set when used with a 5V-2A power supply
or with multiple peripherals. In the experiment only the 10W mode is used to get
the best performance from the system. For Coral both frequencies are taken into
account, because the host CPU is not affected and the TPU is not loaded by using a
batch size of 1.

53

10 Experiment Result of Coral
USB Accelerator

This chapter evaluates the results of the experiment on the CUA with the MobileNet-
v2 and NASNet-Mobile, running on TPU at standard and at maximum frequency.
The EfficientNet-B0 can not be compiled at the time of the experiment and is therefore
not considered. The evaluation includes the CPU and RAM memory consumption,
inference time, power consumption, efficiency as well as the accuracy, F1-score,
precision and recall calculated by the confusions matrix. As Host-CPU a Raspberry
Pi 4 with 4GB RAM is used which communicates with the USB accelerator via the
USB3 interface.

10.1 CPU Workload

This subchapter shows the utilization of the host CPU as a histogram in percent
during the conclusion of the dataset on the Edge TPU. The CPU used is an ARM v8
quad-core Cortex-A72 64-bit SoC with 1.5GHz.

In the figures 10.1 and 10.3 the histograms of the CPU load on the MobileNet-v2 and
the NASNet-Mobile with the standard and maximum frequency of the TPU can be
seen. The bar charts 10.2 and 10.4 show the average CPU usage. The histograms of
the MobileNet-v2 show an inconsistent CPU usage. The values jump between 0% and
25% at STD frequency and 0% and 25%-35% at MAX frequency. The NASNet-Mobile
shows a more constant load. The values are in the interval of 15% and 45% utilization
or 0%. Furthermore, the average utilization of the NASNet-Mobile with ∼16% is
lower than the MobileNet-v2 with ∼21%. The operation frequency of the TPU
hardly influences the workload of the CPU, although the input and output sensors
are calculated on the CPU and not on the TPU. A difference between the GPU and
TPU trained models is not visible in this test.

The results show the advantages of an external AI accelerator. The host CPU is
rarely used in the conclusion. Since the calculations, except for the input and output
of the CNN, take place completely on the edge-TPU. It is obvious that the CPU
of the main board has no significant influence on the inference of the Coral USB
Accelerator.

54

10 Experiment Result of Coral USB Accelerator

with standard frequency

(a) Histogram of CPU workload on Coral
USB Accelerator with MNV2 GPU model

and standard operating frequency

(b) Histogram of CPU workload on Coral
USB Accelerator with MNV2 TPU model

and standard operating frequency

(c) Histogram of CPU workload on Coral
USB Accelerator with NAS-M GPU model

and standard operating frequency

(d) Histogram of CPU workload on Coral
USB Accelerator with NAS-M TPU model

and standard operating frequency

Figure 10.1: CPU workload histograms with standard operating frequency on Coral
USB Accelerator

Figure 10.2: Average CPU Workload with different CNN-Models on Coral USB
Accelerator and standard operating frequency

55

10 Experiment Result of Coral USB Accelerator

with maximal frequency

(a) Histogram of CPU workload on Coral
USB Accelerator with MNV2 GPU model

and maxium operating frequency

(b) Histogram of CPU workload on Coral
USB Accelerator with MNV2 TPU model

and maximum operating frequency

(c) Histogram of CPU workload on Coral
USB Accelerator with NAS-M GPU model

and maximum operating frequency

(d) Histogram of CPU workload on Coral
USB Accelerator with NAS-M TPU model

and maximum operating frequency

Figure 10.3: Histogram of CPU workload on Coral USB Accelerator with NAS-M
TPU model and maximum operating frequency

Figure 10.4: Average CPU Workload with different CNN-Models on Coral USB
Accelerator and maxium operating frequency

56

10 Experiment Result of Coral USB Accelerator

10.2 Memory Workload

In this section the result of the RAM memory consumption is discussed. The CUA
has its own small internal memory to store model data and reduce latency. If this is
not enough, model data is stored in the external memory of the host, in this case the
4GB.

The diagrams 10.5a and 10.5b show the average memory consumption during the
experiment in percent. The memory consumption differs between the models by
only 0.7% which is 28MB. From the compilation of the models it is known that the
MobileNet-v2 can be cached on the internal memory. While the NASNet-Mobile on
the host memory occupies 221.44KiB (∼226KB), but in view of the 4GB memory
the ∼226KB are not very relevant. Also the operation frequency does not show a
big influence, only on the mobile net the consumption increases by 0.4% (16MB). As
shown in the compilation, the GPU and TPU trained model do not differ in size, so
as expected there is no difference in memory consumption.

The result of the memory consumption clearly shows the advantage of a USB AI
accelerator. By shifting the computation to an external chip, the host system is less
stressed and more resources are available for other tasks. It has to be taken into
account that only 1 image per inference (batch size =1) is used in the experiment.
The TPU is designed for larger amounts of data, so the memory consumption is very
relevant for an optimal usage.

(a) with standard operating frequency (b) with maximal operating frequency

Figure 10.5: Average memory Workload with different CNN-Models on Coral USB
Accelerator

57

10 Experiment Result of Coral USB Accelerator

10.3 Inference Time

In the following subchapter the results of the Inference Time for the MobileNet-v2 and
NASNet-Mobile are evaluated with the standard and maximum operations frequency.

The determined time value for the inference is shown is ms with the STD frequency in
the histograms 10.6 and with the MAX in the histograms 10.8. The average inference
times of the models are shown in the figures 10.7 with STD frequency and 10.9 with
MAX frequency. From the results it is clear that there is no significant difference
between the different trained models. But you can clearly see the difference in
performance between the MobileNet-v2 and the NASNet-Mobile. The MobileNet-v2
needs on average 7.1ms or 7.2ms in standard mode and 5.7ms in maximum mode.
While the NASNet-Mobile needs 21ms in standard mode and 14.3ms on average,
which is about 3 times more. The performance difference between the two operation
frequencies standard and maximum is visible in both models. The average inference
time is reduced by approx. ∼20% with the MobileNet-v2 and by approx. ∼30%
with the NASNet-Mobile. This result agrees with the results of the MobileNet-v1
benchmark on CUA from the paper Libutti et al. 2020.

As expected, the result shows a lower inference time for the MobileNet-v2 with the
lighter modelstructure of 73 operations and a total largest of 3.11MiB, than the more
complex NASNet-Mobile with 759 operations and a size of 757MiB. Performance is
also improved with the use of the maximum frequency of 20% for the MobileNet-v2
and 30% for the NASNet-Mobile. In both cases the Edge TPU is not fully utilized
due to the single frame inference.

58

10 Experiment Result of Coral USB Accelerator

with standard frequency

(a) Histogram of inference time on Coral
USB Accelerator with MNV2 GPU model

and standard operating frequency

(b) Histogram of inference time on Coral
USB Accelerator with MNV2 TPU model

and standard operating frequency

(c) Histogram of inference time on Coral
USB Accelerator with NAS-M GPU model

and standard operating frequency

(d) Histogram of inference time on Coral
USB Accelerator with NAS-M TPU model

and standard operating frequency

Figure 10.6: Inference time histograms with standard operating frequency on Coral
USB Accelerator

Figure 10.7: Average inference time with different CNN-Models on Coral USB
Accelerator and standard operating frequency

59

10 Experiment Result of Coral USB Accelerator

with maximal frequency

(a) Histogram of inference time on Coral
USB Accelerator with MNV2 GPU model

and maximum operating frequency

(b) Histogram of inference time on Coral
USB Accelerator with MNV2 TPU model

and maximum operating frequency

(c) Histogram of inference time on Coral
USB Accelerator with NAS-M GPU model

and maximum operating frequency

(d) Histogram of inference time on Coral
USB Accelerator with NAS-M TPU model

and maximum operating frequency

Figure 10.8: CPU workload histograms with standard operating frequency on Coral
USB Accelerator

Figure 10.9: Average inference time with different CNN-Models on Coral USB
Accelerator and maximum operating frequency

60

10 Experiment Result of Coral USB Accelerator

10.4 Power Consumption

The following section deals with the result of the power consumption of the MobileNet-
v2 and the NASNet-Mobile with STD and MAX operation frequency. The measured
values are obtained with a TC66 USB-C meter. The following equipment is used for
the measurement, Raspberry Pi 4, Coral USB Accelerator, screen via HDMI mini
and bluetooth receiver for mouse and keyboard.

The bar graphs 10.10a and 10.10b show the average power consumption of the
MobileNet-v2 and the NASNet-Mobile for the two frequencies. Below the standard
frequency it can be seen that the NASNet-Mobile with 5.17W consumes approximately
∼330mW less than the MobileNet-v2 with 5.42W or 5.5W. At the maximum frequency
both models have a consumption of 5.5W. In idle mode the RPI4 needs 3.02W on
average.

Due to the low batch size of 1, the Edge TPU is not continuously loaded and
therefore the consumption hardly differs between the operation modes. This is also
shown by the benchmark test of MobileNet-v1 Libutti et al. 2020. The difference
in the NASNet-Mobile is probably due to the limited internal memory and the half
operations frequency. When compiling the NASNet-Mobile you can see that the
221.44KiB of the model is reloaded. By reloading the model data, the TPUs are more
often in a waiting state and therefore the average consumption is reduced. Officially
this assumption is not confirmed, Coral Support points out the reduction of memory
and frequency in STD mode. The architectures and the libary of the Edge-TPU are
not open-source, therefore no further information are given. Coral-Support 2020b

(a) with standard operating frequency (b) with maximal operating frequency

Figure 10.10: Average power consumption with different CNN-Models on Coral USB
Accelerator

61

10 Experiment Result of Coral USB Accelerator

10.5 Efficiency

The following section discusses the efficiency of the models MobileNet-v2 and NASNet-
Mobile with half operations frequency and full operations frequency. The specification
is how much power in mW is needed to classify an image.

The two diagrams in 10.11a and 10.11b display the power consumption of a sample
for the MobileNet-v2 and NASNet-Mobile. The diagram 10.11a represents the result
for with STD frequency. The MobileNet-v2 consumes an average of 39-40 mW for an
image and the NASNet-Mobile 108-109mW. The efficiency in MAX mode is shown in
figure 10.11b. The consumption is reduced to 31mW for the MobileNet-v2 and to
79mW for the NASNet-Mobile.

The result of the experiment shows that in this case with the Coral USB Accelerator
the best efficiency is achieved with the MobileNet-v2 and at the maximum operations
frequency. It is obvious that the MobileNet-v2 has a much better efficiency than the
NASNet-Mobile, because it needs approximately only one third of the energy for a
classification. Furthermore it is recognizable that in MAX mode the consumption per
sample is reduced by about 25%. The efficiency of Graphics Processing Unit trained
and Tensor Processing Unit trained models are identical.

(a) with standard operating frequency (b) with maximal operating frequency

Figure 10.11: Average efficiency with different CNN-Models on Coral USB
Accelerator

62

10 Experiment Result of Coral USB Accelerator

10.6 Confusion Matrix

In the following section the confusion matrices of the neural network models MobileNet-
v2 and NASNet-Mobile are shown in GPU and TPU trained version. To create the
confusions matrix, a test data set with 2667 images of the CUA is classified. The
result determines the row and the right class determines the column. Furthermore,
the accuracy and the F1 score of the respective Convolutional Neuronal Networks
are determined.

The figure 10.12 represents the 4 confusions matrices of the tested CNN models. The
best accuracy value 0.935 and macro F1-Score 0.933 are calculated with the GPU
trained model MobileNet-v2 10.12a. Least accurate is the TPU trained NASNet-
Mobile model with an accuracy of 0.876 and a macro-F1 of 0.881. The TPU trained
MobileNet-v2 with an accuracy of 0.907 and macro-F1 0.899 and the GPU trained
NASNet-Mobile with an accuracy of 0.905 and macro-F1 0.914 show a similar
performance. It is apparent that the NASNet-Mobile models the macro-F1 is higher
than the accuracy. With the MobileNet-v2 models, on the other hand, the accuracy
is higher than macro-F1.

In the comparison of the two model architectures the MobileNet-v2 performs better
than the NASNet-Mobile. This is reflected in the fact that the MobileNet-v2 con-
struction allows a better distinction between the classes glass bottle and plastic bottle
than the NASNet-Mobile construction. This is shown by the macro-F1 score between
the MobileNet-v2 and NASNet-Mobile architectures. For the NASNet-Mobile models,
the accuracy is lower than the F1 score, while for the MobileNet-v2 models it is the
other way round. This is an indication that one class influences the result, in this
case the glass bottle. Furthermore, it can be seen that the GPU trained models have
better accuracy values and macro F1-score than the TPU models.

63

10 Experiment Result of Coral USB Accelerator

(a) Confusion matrix on Coral USB
Accelerator with MNV2 GPU trained model

(b) Confusion matrix on Coral USB
Accelerator with MNV2 TPU trained model

(c) Confusion matrix on Coral USB
Accelerator with NAS-M GPU trained

model

(d) Confusion matrix on Coral USB
Accelerator with NAS-M TPU trained

model

Figure 10.12: Confusions matrix of the MobileNet-v2 and NASNet-Mobile trained
with GPU and TPU accelerator and compiled for the Coral USB Accelerator

64

10 Experiment Result of Coral USB Accelerator

10.7 Precision, Recall and F1-score

In this subchapter the parameters precision, recall and F1-score determined from the
confusions matrix are evaluated. The precision describes how often the prediction
of the current class is true while the recall describes how often the current class is
correctly classified as such. The F1-score is the harmonic average of precision and
recall

The two matrices 10.13a and 10.13b show the determined precision and recall of
the MobileNet-v2 and the NASNet-Mobile. It can be seen that the TPU trained
models have a low precision, MobileNet-v2 0.626 and NASNet-Mobile 0.739, in the
background class. Furthermore, it can be seen that the NASNet-Mobile networks
classify plastic bottles with a low precision. At recall the class glass bottle is the
most striking. The recall value is low with 0.458 for the TPU trained and 0.664 for
the GPU trained NASNet-Mobile models as well as for the MobileNet-v2 models
with 0.653 with TPU accelerator and 0.838 with GPU accelerator. In the F1 score
matrix representation 10.14 the values of the harmonic mean of precision and recall
are presented. The GPU trained MobileNet-v2 does not fall below the value 0.85
for any class, the TPU trained model shows the values of the class background with
0.753 and the class glass bottle with 0.756. For the GPU trained NASNet-Mobile
model, the glass bottle class depicts a low score of 0.756 and for the TPU trained
model the classes glass bottle with 0.618 and plastic bottles with 0.775 shows a bad
F1 score.

The results demonstrate that the models created with the TPU accelerator often
do not recognize objects correctly and classify them as background, whereas the
background is usually recognized correctly. Furthermore, all models have difficulties
to classify glass bottles correctly, mostly they are recognized as plastic bottles. Due
to the similar features like shape and transparency this behaviour is expected.

65

10 Experiment Result of Coral USB Accelerator

Precision and Recall

(a) Precision matrix of the CUA compiled
models trained with GPU and TPU

accelerator

(b) Recall matrix of the CUA compiled
models trained with GPU and TPU

accelerator

Figure 10.13: Precision and recall matrix of the CUA compiled models trained with
GPU and TPU accelerator

F1-score

Figure 10.14: F1-score matrix of the CUA compiled models trained with GPU and
TPU accelerator

66

11 Experiment Result of Nvidia
Jetson Nano

In the following chapter the results of the experiment on Nvidia Jetson Nano developer
board with the CNN models MobileNet-v2, NASNet-Mobile and EfficientNet-B0 are
evaluated in both GPU and TPU versions. Only the 10W mode of the Jetson Nano is
considered to get the best performance. Note that the 4GB memory is shared by the
CPU and the GPU. The results show the CPU and memory usage during inference,
inference time, power consumption and the resulting efficiency. Furthermore, the
resulting confusion matrices of the models are used to determine the accuracy, the
macro F1 score, the precision, the recall and the F1 score for all classes.

11.1 CPU Workload

This section deals with the determined CPU workload during the experiment. A
quad-core ARM Cortex-A57 64-bit with 1.42 Ghz is used as CPU for the Jetson
Nano. The measured values are displayed as a histogram and the average load as a
bar chart.

The measured values of the CPU utilization are visible as histogram in the figure
11.1. The average workload can be read in the illustration 11.2. According to the
histograms 11.1a and 11.1b, the utilization of the CPU ranges from 15% to 50% for
the MobileNet-v2 models. The histograms 11.1c and 11.1d indicate an interval from
20% to 50% for the NASNet-Mobile models. The EfficientNet-B0 is like the MNV2
in the range of 15% and 50%, see histogram 11.1e and 11.1f. The average values for
the MNV2 are 27%, for the NAS-M around 37.5% and for the EffNet about 29.5%.

67

11 Experiment Result of Nvidia Jetson Nano

(a) Histogram of CPU workload on Jetson
Nano with MNV2 GPU model

(b) Histogram of CPU workload on Jetson
Nano with MNV2 TPU model

(c) Histogram of CPU workload on Jetson
Nano with NAS-M GPU model

(d) Histogram of CPU workload on Jetson
Nano with NAS-M TPU model

(e) Histogram of CPU workload on Jetson
Nano with EffNet GPU model

(f) Histogram of CPU workload on Jetson
Nano with EffNet TPU model

Figure 11.1: CPU workload histograms on Jetson Nano

68

11 Experiment Result of Nvidia Jetson Nano

Figure 11.2: Average CPU Workload with different CNN-Models on Jetson Nano

11.2 Memory Workload

This section discusses the memory consumption in percent during the inference with
the CNNs MobileNet-v2, NASNet-Mobile and EfficientNet-B0. The Jetson Nano uses
a 4GB LPDDR4 1600MHz RAM used by the CPU and the GPU.

The diagram 11.3 indicates the consumption of the 4GB memory of the Jetson Nano.
The load for the MNV2 is 85-86%, for the NAS-M 90-92% and for the EffNet 92-98%.
The memory of the Jetson Nano is quite exhausted in the inference compared to the
other end devices.

However, the memory of the GPU is additionally occupied by the CPU in the case of
the Jetson Nano. Therefore it is not possible to determine exactly how much memory
the respective models need. In general the memory consumption depends on the size
of the CNN which is consistent with the result. The result demonstrates that the
memory for the GPU is a main element of performance and is highly loaded.

Figure 11.3: Average memory Workload with different CNN-Models on Jetson Nano

69

11 Experiment Result of Nvidia Jetson Nano

11.3 Inference Time

The following section evaluates the result of the measured Inference Time of the
Convolutional Neuronal Network MobileNet-v2, NASNet-Mobile and EfficientNet-B0
on the Jetson nano. The results are listed in ms and can be seen in the subsequent
histogram. The experiment has been run in 10W full power mode.

The figure 11.4 contains the histograms of the inference time of the edge-CNNs models
in the GPU and TPU trained version. The classification times varies for all models
within a range of 5ms. The MobileNet-v2 has the best result, with inference times
ranging primarily between 15ms and 20ms, see 11.4a and 11.4b. This is the situation
for the GPU and TPU models. The inference times of the NASNet-Mobile model
are in most cases in the range of 44ms and 49ms and are the highest times of the
models, 11.4c and 11.4d. The EfficientNet-B0 is positioned between the MNV2 and
NAS-M with a spread of 32ms to 38ms, 11.4e and 11.4f. In the representation 11.5
the average inference time of the CNNs is visible. The MNV2 with an average time
of 17.6ms takes only half as much time to predict an image as the EffNet with 35ms
and a third of the time as the NAS-M with 48ms.

The results demonstrate a very variable behavior of the embedded GPU at the
operations times. There is no difference between the GPU and TPU trained versions
of the models. As expected, the NAS-M that has the most parameters to compute,
needs most for a classification. While the number of parameters is only one criterion
for the duration of the inference, it is recognizable that the structure of the CNN has
a significant influence on the performance. Thus, the EfficientNet-B0 has similarly
numerous parameters to be calculated as the NAS-M, but needs much less time. The
histograms also show that especially with the larger models the inference time can
take extreme values. It is assumed that these extreme values are caused by the small
shared 4GB memory.

70

11 Experiment Result of Nvidia Jetson Nano

(a) Histogram of inference time on Jetson
Nano with MNV2 GPU model

(b) Histogram of inference time on Jetson
Nano with MNV2 TPU model

(c) Histogram of inference time on Jetson
Nano with NAS-M GPU model

(d) Histogram of inference time on Jetson
Nano with NAS-M TPU model

(e) Histogram of inference time on Jetson
Nano with EffNet GPU model

(f) Histogram of inference time on Jetson
Nano with EffNet TPU model

Figure 11.4: Inference time histograms of the MNV2, NAS-M and EffNet running on
the Jetson Nano

71

11 Experiment Result of Nvidia Jetson Nano

Figure 11.5: Average inference time with different CNN-Models on Jetson Nano

11.4 Power Consumption

This section explains the energy consumption of the Jetson Nano during the experi-
ment with the MobileNet-v2, NASNet-Mobile and EfficientNet-B0 and respectively
as GPU and TPU trained models. The edge-GPU is operated in 10W power mode.

The bar chart 11.6 illustrates the average consumption of the Convolutional Neuronal
Network’s during the inference on the Jetson Nano. The MNV2 needs as GPU version
7.52W and as TPU version 7.68W on average. For the NAS-M 8.76W for the GPU
model and 8.98W for the TPU model are calculated as mean values. For the EffNet
model the consumption is 8.51W for the GPU model and 8.42W for the TPU model
as an average. In idle mode 3.37W is required.

As a result of the experiment it is obvious that the model structure and the size of
CNNs have an influence on the power consumption of the edge-GPU. The MNV2 with
the least parameters consumes the least, while the NAS-M with the most parameters
consumes the most, followed by the EffNet. There is no significant difference between
the models trained with GPU and TPU.

72

11 Experiment Result of Nvidia Jetson Nano

Figure 11.6: Average power consumption with different CNN-Models on Jetson Nano

11.5 Efficiency

In this subchapter the efficiency of the MNV2, NAS-M and EffNet models represented.
The efficiency is calculated from the inference time and the energy consumption.
Therefore, the result is the power consumption per sample and is given in mW.

The efficiency describes how much power is needed to classify a single image. The
calculated result is illustrated in the figure 11.7 in mW by sample. With 132mW for
the GPU and 135mW for the TPU model, the MobileNet-v2 needs much less power
to predict an image. The NASNet-Mobile has the highest consumption per image
with 414mW (GPU) and 43mW (TPU). With 298mW (GPU) and 299mW (TPU)
per sample, the EfficientNet-B0 ranks between the two models.

The advantage of the MobileNet-v2 can be clearly seen from the result of the efficiency
which is the ratio of energy consumption and inference time. The MNV2 requires
on average only one third of the energy per prediction than the NAS-M and about
55% less than the EfficientNet-B0. The GPU and TPU trained models have similar
performance.

Figure 11.7: Average efficiency with different CNN-Models on Jetson Nano

73

11 Experiment Result of Nvidia Jetson Nano

11.6 Confusion Matrix

In the following subchapter the output of the determined confusion matrices for the
models MobileNet-v2, NASNet-Mobile and EfficientNet-B0, each as a model trained
with a cloud GPU and TPU is presented. The matrix contain 2667 images with 11
classes. From the Confustion Matrices the following parameters are calculated: the
accuracy, the macro-F1, precision and recall as well as the F1 score for each class.

The figure 11.8 shows the 6 confusion matrices of the used models MNV2, NAS-M
and EffNet in GPU and TPU version, respectively. The columns represent the current
class and the row the predicted class. Furthermore, the accuracy and the macro-F1
are determined, both key figures describe the quality of the CNN. Whereby the
macro-F1 quantifies the sum of the F1-score of the individual classes and describes
the quality better in case of uneven matrices. The EfficientNet-B0 trained with the
GPU 11.8e gives the best values with a accuracy of 0.952 and a macro-F1 of 0.951,
followed by the TPU trained model 11.8f with a accuracy of 0.942 and a macro-F1
of 0.939. Good results are also given by the MobileNet-v2 with a accuracy of 0.936
on the GPU trained model 11.8a and 0.912 on the TPU trained model 11.8b. The
macro-F1 is determined with 0.934 for the GPU trained model and 0.904 for the
TPU trained model. The NAS-M provides the lowest result with an accuracy of 0.915
(GPU trained 11.8c) or 0.889 (TPU trained 11.8d) and a macro-F1 of 0.921 (GPU
trained) or 0.893 (TPU trained).

From the confusion matrices it can be seen that the GPU versions of the models
perform better in the classification of the images than the TPU trained models.
Especially the glass bottle class turns out to be difficult to classify, due to the
similarity with the plastic bottles. The NAS-M TPU trained model 11.8d performs
worst. It can be observed that the accuracy of the MNV2 and EffNet models is
minimally higher than the macro-F1, while the NAS-M models have a slightly higher
accuracy than the macro-F1. That the values are close together is due to the similar
number of images per class.

74

11 Experiment Result of Nvidia Jetson Nano

(a) Confusion matrix on Jetson Nano
with MNV2 GPU model

(b) Confusion matrix on Jetson Nano
with MNV2 TPU model

(c) Confusion matrix on Jetson Nano
with NAS-M GPU model

(d) Confusion matrix on Jetson Nano
with NAS-M TPU model

(e) Confusion matrix on Jetson Nano
with EffNet GPU model

(f) Confusion matrix on Jetson Nano
with EffNet TPU model

Figure 11.8: Confustion matrix from different CNN-Models on Jetson Nano

75

11 Experiment Result of Nvidia Jetson Nano

11.7 Precision and Recall

The following section discusses the precision, recall and F1 score obtained from the
confusion matrices. The precision is a measure of how often the prediction of one
class was correct. The recall describes how often a class was predicted correctly. The
F1-Score is the harmonic mean value of these two key ratios.

In the matrix 11.9a the precision values of the 6 Convolutional Neuronal Networks
can be viewed. The background class values of the TPU are noticeable. Compared to
the other values, these are relatively low with MNV2 with 0.680, NAS-M with 0.798
and EffNet with 0.779. Furthermore, the NAS-M model has a very low precision
for the plastic bottles, whereas the MNV2 and EffNet models also have a precision
below 0.9. The values for the recall are listed in the matrix 11.9. Here the negative
classification of the glass bottles is particularly apparent. The GPU models provide
with 0.773 for the MNV2, 0.711 for the NAS-M and 0.758 for the EffNet a better
recall value than the TPU models with 0.639 for the MNV2, 0.473 for the NAS-M
and 0.686 for the EffNet. The F1 score values in the matrix 11.10 represent the
harmonic mean of precision and recall. Here you can observe a low value of 0.786 for
the background class of the TPU trained MNV2. For the glass bottle class there are
the TPU models with 0.748 MNV2, 0.618 NAS-M and 0.797 EffNet and the GPU
trained NAS-M with 0.780.

The following statements can be derived from precision, recall and F1 values. TPU
trained models have a tendency to declare more classes as background than GPU
trained models. In general the problem with the classification of glass bottles is
confirmed. The model structure of the NAS-M shows more weaknesses in filtering
the different features between glass and plastic bottles.

76

11 Experiment Result of Nvidia Jetson Nano

(a) Confusion matrix on Jetson Nano with
MNV2 GPU model

(b) Confusion matrix on Jetson Nano with
MNV2 TPU model

Figure 11.9: Confustion matrix from different CNN-Models on Jetson Nano

F1-value

Figure 11.10: Average efficiency with different CNN-Models on Jetson Nano

77

12 Experiment Result of Intel
Neuronal Compute Stick 2

In this chapter the result of the experiment on the Intel Neuronal Compute Stick
2 is evaluated. The Neuronal Compute Stick 2 uses a Raspberry Pi 4 with 2GB of
memory in this setting. The result includes the CPU and memory usage, the energy
consumption, the inference time as well as a Confusions Matrix for each model, which
determines the accuracy, macro-F1 and for each class the precision, recall and F1
score. The CNN models MobileNet-v2 and NASNet-Mobile in a GPU and TPU
trained option each are used in this experiment. The EfficientNet-B0 is not yet
supported by the Openvino framework, so it can not be executed on the VPU.The
interaction with the host CPU takes place via the USB3 interface.

12.1 CPU Workload

The following subchapter deals with the load of the host CPU during the inference
with the 2 model architectures MNV2 and the NAS-M. The host CPU is an ARM v8
quad-core Cortex-A72 64-bit SoC with 1.5GHz.

In the figure 12.1 the measured values of the CPU workload per inference are plotted
as a histogram. For the most part, the load of the models varies between 0% and
40%. The figure 12.2 shows the average values of the CPU utilization. It can be seen
that the TPU trained models with 13% each load the host CPU less than the two
GPU trained models with 22% for the MNV2 and 17% for the NAS-M.

It shows that the host CPU, as with the Coral USB Accelerator, is not very heavily
loaded by the USB accelerator. The models trained with the cloud TPU load the
CPU even less than the cloud GPU trained models. In general, the host CPU does
not have a great impact on the performance of the NCS2.

78

12 Experiment Result of Intel Neuronal Compute Stick 2

(a) Histogram of CPU workload on
Neuronal Compute Stick 2 with MNV2

GPU model

(b) Histogram of CPU workload on
Neuronal Compute Stick 2 with MNV2

TPU model

(c) Histogram of CPU workload on Coral
USB Accelerator with NAS-M GPU model

(d) Histogram of CPU workload on Coral
USB Accelerator with NAS-M TPU model

Figure 12.1: CPU workload histograms on Neuronal Compute Stick 2

Figure 12.2: Average CPU Workload with different CNN-Models on Neuronal
Compute Stick 2

79

12 Experiment Result of Intel Neuronal Compute Stick 2

12.2 Memory Workload

The following section shows the memory usage during the inference with the MNV2
and NAS-M CNNs discussed in their GPU and TPU trained version. In this case,
the Raspberry Pi 4 has a 2GB LPDDR4-3200 SDRAM.

The bar graph 12.3 indicates the average memory usage during the inference in
percent. The NAS-M in the GPU trained version stands out with a very low value of
19%. While the other models with 35% on the MNV2 GPU model and 44% on the
TPU model or the TPU trained NAS-M with 38% are more or less in the same range.

The results demonstrate that the TPU trained models use more memory than the
GPU trained models. Furthermore, it shows that the MNV2 needs more memory
than the NAS-M models. It is expected that the NASNet-Mobile models with their
larger structure has a higher memory consumption than the MobileNet-v2 with the
lighter structure. The Neuronal Compute Stick 2 has, in contrast to the Coral USB
Accelerator, a large 4GB internal DRAM memory, so the 2GB memory of the host
CPU should not have a big impact. This suggests that the memory of the host CPU
is occupied by other tasks of the operating system or the Openvino framework.

Figure 12.3: Average memory Workload with different CNN-Models on Neuronal
Compute Stick 2

80

12 Experiment Result of Intel Neuronal Compute Stick 2

12.3 Inference Time

The following subchapter covers the inference time of the GPU and TPU trained
MNV2 and NAS-M Convolutional Neuronal Networks on the Neuronal Compute
Stick 2.

In the figure 12.4 the measured times of the 2 models MobileNet-v2, NASNet-Mobile
with the respective GPU and TPU trained version are plotted as histogram. The
MNV2 models operate according to the histograms 12.4a, 12.4b are in a range of 26ms
to 29ms per classification. The time values measured for the two NAS-M 12.4c and
12.4 models are in a range from 77ms to 81ms per inference.The TPU trained models
have a wider distribution than the GPU trained models. The diagram 12.5 represents
the mean inference time of the 4 models. Obviously the MNV2 with 27.7ms (as
GPU version) and 27.8ms (as TPU version) needs much less time than the NAS-M
networks with 79.1ms (as GPU version) and 80.2ms (as TPU version). There is no
significant difference between the GPU and TPU trained models at MNV2. With the
NAS-M model, the TPU-trained model needs on average 1ms more for a prediction.

From the results of the histogram one can see that the MobileNet-v2 predicts much
faster than the NASNet-Mobile. This is understandable because of the complexity
and parameter differences between models. The determined average inference time of
28ms of the MNV2 corresponds to the result of 24ms from the benchmark test of
the Mobilenet-v1 Libutti et al. 2020. Furthermore it can be seen that the inference
time of the TPU trained models varies more than the GPU trained models.

81

12 Experiment Result of Intel Neuronal Compute Stick 2

(a) Histogram of inference time on Neuronal
Compute Stick 2 with MNV2 GPU model

(b) Histogram of inference time on Neuronal
Compute Stick 2 with MNV2 TPU model

(c) Histogram of inference time on Neuronal
Compute Stick 2 with NAS-M GPU model

(d) Histogram of inference time on Neuronal
Compute Stick 2 with NAS-M TPU model

Figure 12.4: Inference time histograms on Neuronal Compute Stick 2

Figure 12.5: Average inference time with different CNN-Models on Neuronal
Compute Stick 2

82

12 Experiment Result of Intel Neuronal Compute Stick 2

12.4 Power Cosumption

In this section the energy consumption of the Neuronal Compute Stick 2 during the
classification with the MobileNet-v2 and NASNet-Mobile models is discussed. Both
models use the cloud-GPU and cloud-TPU options. Unlike the other models, the
NCS2 does not have a power reduction setting.

In the following bar chart 12.6 the mean values of the energy consumption of the 4
Convolutional Neuronal Networks are shown. All models are in the range of 5.5W,
the MNV2 needs 5.6W whereas the 0.1W are negligible. In idle mode the host CPU
with the NCS2 needs 3.53W on average.

With the Neuronal Compute Stick 2 there is no influence of the model architecture
on the power consumption. There is also no difference in power consumption between
the GPU and TPU trained models. All models in this experiment required 5.5W
during inference, while in sleep mode 3.5W is consumed. This results in an average
consumption of 2W at inference, which is in conformance with the result of the
benchmark test of the Mobilenet-v1. Libutti et al. 2020

Figure 12.6: Average power consumption with different CNN-Models on Neuronal
Compute Stick 2

83

12 Experiment Result of Intel Neuronal Compute Stick 2

12.5 Efficiency

In this section the efficiency of the Neuronal Compute Stick 2 is explained for the
models MobileNet-v2 and NASNet-Mobile.

The bar chart 12.7 indicates the mean efficiency for the following models in mW:
MNV2 GPU trained, MNV2 TPU trained, NAS-M GPU trained and NAS-M TPU
trained. The two MNV2 CNNs require 155mW or 152mW with the TPU version for
a prediction. The NAS-M models have an average consumption of 437mW with the
GPU version or 441mW with the TPU version for a classification.

It turns out that the MobileNet-v2 models in both versions require about one third of
the energy for a prediction than the NASNet-Mobile models. There is no significant
difference between a GPU and TPU trained model.

Figure 12.7: Average efficiency with different CNN-Models on Neuronal Compute
Stick 2

84

12 Experiment Result of Intel Neuronal Compute Stick 2

12.6 Confusion Matrix

In this subchapter the created confusion matrices of the Convolutional Neuronal
Networks performed in the experiment are explained. The models are the MobileNet-
v2 in a cloud GPU and TPU trained version and the NASNet-Mobile in the GPU and
TPU trained version. When the matrix is generated, all 2667 images of the test data
set are classified with each model on the Neuronal Compute Stick 2. The predicted
result determines the row of the confusions matrix while the real class specifies the
column. From the confusion matrix the precision, the macro-F1 and for each class
the precision, recall and F1 score are estimated.

In the figure 12.8 the confusion matrices of the 4 neural networks MobileNet-v2 trained
with GPU and TPU and the NASNet-Mobile trained with GPU and TPU are shown.
The quality of the Convolutional Neuronal Network is determined with the accuracy
and the macro-F1. The accuracy is the ratio of all correctly classified samples to all
incorrectly classified samples. The macro-F1 is the mean of the harmonic mean of
precision and recall of all classes and has a higher power if the number of test data
per class is unequal. For the MNV2 models the accuracy is 0.933 for the GPU model
and 0.911 for the TPU model while 0.931 for the GPU model and 0.854 for the TPU
model for the macro-F1.For the NASNet-Mobile the following values for the accuracy
result: 0.846 with the GPU trained model and 0.780 with the TPU trained model
plus for the macro-F1 0.902 with the GPU trained model and 0.772 with the TPU
trained model.

The determined accuracy and macro-F1 of the models clearly shows that the TPU
trained models classify the classes worse than the GPU trained models. Furthermore,
it is obvious that the MNV2 models generally give a better result than the NAS-M
models. Noticeable is the glass bottle and plastic cup class on the NAS-M GPU
model as well as the glass bottle and plastic bottle class on the TPU model. The
openvino optimized NAS-M models give a poor prediction for these classes.

85

12 Experiment Result of Intel Neuronal Compute Stick 2

(a) Confusion matrix on Neuronal Compute
Stick 2 with MNV2 GPU model

(b) Confusion matrix on Neuronal Compute
Stick 2 with MNV2 TPU model

(c) Confusion matrix on Neuronal Compute
Stick 2 with NAS-M GPU model

(d) Confusion matrix on Neuronal Compute
Stick 2 with NAS-M TPU model

Figure 12.8: Confustion matrix from different CNN-Models on Neuronal Compute
Stick 2

86

12 Experiment Result of Intel Neuronal Compute Stick 2

12.7 Precision, Recall and F1-value

The following subchapter deals with the precision, recall and F1 score determined for
each class. These characteristics are determined from the confusion matrices of the
models MobileNet-v2 and NASNet-Mobile. The precision describes how often the
prediction of a class was correct, while the recall indicates the ratio of the incorrectly
determined samples of a class to their total number. The F1-score is the harmonic
mean of precision and recall of a class.

In the figure 12.9a the precision values of the classes are visible. The background class
of the MNV2 with 0.747 (GPU) and 0.653 (TPU) as well as the NAS-M with 0.737
(GPU) and 0.396 (TPU) have a low precision. Also problematic are the precision
values of the NAS-M models for the glass bottle class with 0.762 (GPU), 0.768 (TPU),
the plastic bottle class with 0.660 (GPU), 558 (TPU) and the tetrapack class with
0.774 (GPU), 0.676 (TPU). The recall of the respective classes and CNN models are
shown in the figure 12.9. As expected, the glass bottle class shows a bad result with
0.747 for the GPU and 0.632 for the TPU trained model of the MNV2 as well as
with 0.646 for the GPU trained and 0.227 for the TPU trained model of the NAS-M.
Other notable low values are the background with 0.789 and the plastic cup with
0.764 on the GPU model of the NAS-M as well as the plastic cup with 0.708 and
the tetrapack with 0.764 on the TPU trained model of the NAS-M.The matrix in
12.10 illustrates the F1 score of classes and models. The values of the background
class are low with 0.767 for the TPU model of the MNV2 as well as 0.762 for the
GPU and 0.558 for the TPU model of the NAS-M. Also for the glass bottle class, the
results are small with 0.743 (TPU) MNV2, 0.699 (GPU) NAS-M and 0.351 (TPU)
NAS-M. For the NASNet-Mobile model, the plastic bottle class with 0.752 for the
GPU and 0.796 for the TPU model as well as the tetrapack class with 0.717 for the
TPU model are still in a critical range.

The results of the precision, recall and F1 scores show that the model deteriorates
significantly after the Openvino optimization. This is clearly evident in the back-
ground class where many samples were incorrectly classified as background. The
same applies to the NASNet-Mobile model and the plastic bottles and tetrapack. In
general the glass bottles are difficult to predict, but the NAS-M TPU model is not
able to detect these objects. The NAS-M models also perform poorly when detecting
plastic cups and tetrapack.

87

12 Experiment Result of Intel Neuronal Compute Stick 2

Precision and Recall

(a) Confusion matrix on Neuronal Compute
Stick 2 with MNV2 GPU model

(b) Confusion matrix on Neuronal Compute
Stick 2 with MNV2 TPU model

Figure 12.9: Confustion matrix from different CNN-Models on Neuronal Compute
Stick 2

F1-value

Figure 12.10: Average efficiency with different CNN-Models on Neuronal Compute
Stick 2

88

13 Conclusion of the Evaluation

In this chapter the results of the evaluation of the AI-edge devices Coral USB Accel-
erator, Jetson Nano and Neuronal Compute Stick 2 are discussed. It is determined
which combinations of Convolutional Neuronal Network and end device are used for
the prototype.

In the table 13.1 are the results of CPU usage, memory consumption, inference time,
power consumption, efficiency and the quality of CNN as accuracy and macro-F1
for each model and for all 3 AI accelerators. The NCS2 with the NASNet-Mobile
trained with the cloud TPU has the lowest CPU usage with 13%. In this case the
CPU usage plays a minor role, since no model or device reaches a critical value.
In this experiment the CUA with values between 10% (400MB) and 11% (440MB)
needs the least memory. Especially the Nano has a very high memory usage, which
can lead to problems during the execution of the prototype, because memory is still
needed for video streaming and displaying the camera views on the screen.
In the inference time, the Coral Edge TPU is clearly outperforming the other AI
accelerators. The best result of 5.7ms is achieved at the maximum operation frequency
with the MNV2 with the GPU and TPU trained version. For the real life application
a low inference time means that more images can be classified in the same time
period.
In terms of power consumption, the USB accelerators are the same, only the CUA
needs less than average with the NAS-M at the standard operating frequency. The
Jetson Nano consumes significantly more power than the other two edge devices.
With the efficiency the advantage of the embedded Tensor Processing Unit is clearly
shown. With 31mW for the MNV2 and 79mW for the NAS-M per classification
of an image, the computing unit requires significantly less energy than the other
technologies.
With the cloud GPU trained MobileNet-v2 model a great accuracy as well as macro-F1
is achieved on all devices. The highest accuracy with 95.2% and a macro-F1 of 95-1 is
achieved with the EfficientNet-B0 on the Jetson Nano.The EffNet is not yet supported
by the Coral and Openvino platforms at the time of this writing. Since the EffNet is
an extension of the MNV2 it is assumed that the accuracy and macro-F1 are in the
same range for the edge TPU and VPU.

As the best solution for the classification of waste objects the combination of the
Coral USB Accelerator and the MobileNet-v2 is assumed. To get a better accuracy
the GPU trained version is used.

89

13 Conclusion of the Evaluation

Models CPU
Workload

MEM
Workload

Inference
Time

Power
Consumption

Efficiency Accuracy Macro-F1

Coral on STD - MNV2
GPU trained

18% 392MB 7.1ms 5.43W 39mW 93.5% 93.3%

Coral on STD - MNV2
TPU trained

21% 400MB 7.2ms 5.50W 40mW 90.7% 89.9%

Coral on STD - NASMobile
GPU trained

16% 424MB 21ms 5.17W 108mW 90.5% 91.4%

Coral on STD - NASMobile
TPU trained

16% 424MB 21ms 5.17W 109mW 87.6% 88.1%

Coral on MAX - MNV2
GPU trained

20% 412MB 5.7ms 5.51W 31mW 93.5% 93.3%

Coral on MAX - MNV2
TPU trained

20% 412MB 5.7ms 5.50W 31mW 90.7% 89.9%

Coral on MAX - NASMobile
GPU trained

17% 424MB 14.3ms 5.51W 79mW 90.5% 91.4%

Coral on MAX - NASMobile
TPU trained

17% 428MB 14.3ms 5.51W 79mW 87.6% 88.1%

Jetson Nano - MNV2
GPU trained

27% 3.36GB 17.6ms 7.52W 132mW 93.6% 93.4%

Jetson Nano - MNV2
TPU trained

27% 3.44GB 17.6ms 7.68W 135mW 91.2% 90.4%

Jetson Nano - NASMobile
GPUtrained

37% 3.68GB 47.2ms 8.76W 414mW 91.5% 92.1%

Jetson Nano - NASMobile
TPU trained

38% 3.60GB 48.0ms 8.89W 430mW 88.9% 89.3%

Jetson Nano - EffNet
GPUtrained

30% 3.92GB 35.0ms 8.51W 298mW 95.2% 95.1%

Jetson Nano - EffNet
TPU trained

29% 3.68GB 35.5ms 8.42W 299mW 94.2% 93.9%

NCS2 - MNV2
GPU trained

22% 700MB 27.7ms 5.60W 155mW 93.3% 93.1%

NCS2 - MNV2
TPU trained

13% 880MB 27.8ms 5.53W 153mW 91.1% 85.4%

NCS2 - NASMobile
GPU trained

17% 380MB 79.1ms 5.47W 433mW 84.6% 90.2%

NCS2 - NASMobile
TPU trained

13% 760MB 80.2ms 5.50W 441mW 78.0% 77.2%

Table 13.1: Overview of the evaluation results of the Convolutional Neuronal
Networks on the edge devices Coral USB Accelerator Jetson Nano Neuronal

Compute Stick 2

90

14 Prototype

The following chapter covers the prototype for testing the concept under real condi-
tions. Furthermore, the prototype was exhibited in cooperation with the Faculty of
Environmental Engineering at the university fair Kasetfair2020. An opinion survey
for the use of Artificial Intelligence in the field of recycling was realised and the
handling of the machine and the performance of the CNN got be observed in general.

To test the concept of waste classification for suitability a simple system is created on
a Raspberry Pi 4. As embedded AI accelerator the Coral USB Accelerator is used with
the MobileNet-v2 as GPU trained version. This combination has proven to be the
most suitable solution in terms of energy consumption, speed, efficiency and accuracy.
A Raspberry PI camera V2.1 with 5MP over the CSI interface is used to record the
video stream. The stream runs on the lowest resolution of 640x480 which allows
a frame rate of 40-90 fps 6. Camera Hardware — Picamera 1.12 Documentation
2020.To display the field of view of the camera and the currently detected class of the
CNN a 7’ inch TFT display is used via the mini HDMI interface. S3003 servo motors
are used for the waste bin opening mechanism. For the mechanics, a 3D printer
produces swivel arms and a clap adapted to the opening of the bins, illustrated in
the CAD figure 14.2. This construction is attached to the head of the bin, which
allows the buckets to be opened or closed with a 120° turn. A PCA9685 pulse width
modulator (PWM) driver is used to control the servo motors. This driver is controlled
via the I2C interface of the Raspberry Pi 4. The power supply is a Damper S-50-5
power supply unit which supplies 5V and 10A. In the illustration 14.1 the front and
back of the terminal is illustrated for the prototype. The hardware components are
located inside this terminal, see 14.1b. The camera is attached to the diagonal edge
below the screen, see front view 14.1a. The camera is thus directed towards the
ground, making the background more constant than when looking straight ahead.
This helps to avoid spontaneous, unwanted classifications.

91

14 Prototype

The control logic is visible in the flow chart 14.3. The process starts with reading of
a new frame from the Raspberry PI camera. The acquired frame is scaled down from
640x480 to 224x224 in preprocessing and converted to a numpy array to match the
format of the input tensor of the MNV2. The CNN classifies the processed image
into one of 11 classes. The first step of the process checks if the reliability of the
prediction falls below the threshold of 0.6. If it does, the result is ignored and the
next frame is read. If it is exceeded, it is checked whether it is a background. A
detected background means that there is no object and therefore the next frame is
read in. If the result is one of the 10 waste categories the initialization of the object
is started by saving the current time stamp and the predicted class. If the result
changes within 1 second, the initialization time and the class is reassigned. If the
result remains the same, the corresponding servomotor for this predicted category is
triggered. The servo motor makes a 120° turn to bring the waste bin flap into an
open position and a 5s timer is started. During this opening time no new frames
are read. After the 5s opening time has passed, the flap is moved back to the closed
position and all variables are initialized to 0 again. The process starts again from the
beginning.

92

14 Prototype

(a) Front view of the prototype terminal (b) Back view of the prototype terminal

Figure 14.1: Mechanical construnction of the prototype terminal

Figure 14.2: CAD model of the bin open mechanic with a S3003 servomotor for the
prototype

93

14 Prototype

Figure 14.3: Flowchart of the opening logic of the prototype

94

14 Prototype

Usage at Kasetfair2020

The following subchapter deals with the experience gained with the prototype under
real conditions at the KasetFair2020. Furthermore, the results of the opinion survey
made in collaboration with Assist.Prof.Cheema Soralump are presented in this section.

The prototype was exhibited at the KasetFair2020 fair from 31 January 2020 to 8
February 2020. The aim was to gain experience about the behaviour of the machine
and the users and to collect real life pictures to improve the Convolutional Neuronal
Network. It turns out that most users were overwhelmed with the first application
of the machine, so personal support was required. Therefore a measurement of the
accuracy and speed was omitted.

The following problems occurred in the application of the prototype:

• Reference to camera position is not sufficient to define the camera’s field of
view.

• Classification sometimes too slow due to classes changing and the resulting
reset of the initialization time.

• Not visible that the trash bin has opened after the classification.

From a technical point of view, the following observations were made:

• Pay more attention to lighting conditions

• Incorrect classification due to incorrect positioning of the object

• Self-locking of the servo motors is not sufficient to keep the flap closed

The knowledge gained results in improvements in the display of the camera’s field
of view. Furthermore, the process is not ideal and must be optimized to reduce the
time needed to classify the object. The opening mechanism has to be designed for a
higher load by the user. It also turns out that the camera view in outdoor use must
be better shielded from sunlight. The position of the sun and reflections influence
the result of the classification too much. Furthermore, one camera is not sufficient to
detect the objects in different positions, therefore additional cameras are necessary.
The opening mechanics will quickly become defective if used incorrectly and should
be redesigned to prevent incorrect use.

The illustration 14.4 shows the results of the opinion research. The survey is to be
observed critically as the answers are rather too positive for reasons of politeness
and friendliness. Basically it can be seen that young adults with academic discharge
are aware of the importance of recycling. The knowledge about correct recycling
is generally good, although there is an interest in the support of recycling through
artificial intelligence.

95

14 Prototype

Figure 14.4: Result of the opinion survey at Kasetfair2020

96

15 Conclusion

In this thesis a concept is presented which classifies waste objects with the use of
a Convolutional Neuronal Network and opens the container for this waste category.
Together with the Faculty of Environmental Engineering 10 categories of this food
bowl, food box, glass bottle, metal can, plastic bag, plastic bottle, plastic cup, plastic
cutlery, snackwrap and tetrapack have been defined. With this selection the majority
of public waste is covered. Of these 10 classes plus the background class, a data
set of 25,681 samples has been created. This data set is divided into 70% training
data, 20% validation data and 10% test data. The concept foresees an outdoor
use and therefore the focus is on energy consumption in order to simplify the use
of solar cells. For this purpose, current AI accelerator devices specially developed
for embedded use are purchased and tested for use. The hardware models are the
Google Coral USB Accelerator which is equipped with an edge-Tensor Processing
Unit developed for low performance. The Nvidia Jetson Nano in the developer board
version which is the smallest version of the Jetson series with the Tegra Graphics
Processing Unit. The third device is an Intel Neuronal Compute Stick 2 which
uses a Myriad X Vision Processing Unit developed by Movidius. Furthermore, 3
different CNN architectures are trained and tested. To train and manipulate the
neural networks the Tensorflow/Keras framework is used and executed on the Google
Colaboratory Platform. This Keras platform offers a number of pre-trained CNN
models, for the use in the concept 3 mobile versions are used. These models are
the MobileNet-v2, the NASNet-Mobile and the EfficientNet-B0. These models are
trained in 2 versions, once with the Google cloud GPU and once with the cloud
TPU. It will be examined whether the technology has an impact on the performance
or quality of a neural network. After training, the Keras models are tested for
quality. The models classify the test data set of 2667 samples and with the result
a confusion matrix is created from which the accuracy as well as the macro-F1 is
determined. The result of this test already demonstrated that the GPU trained
models have a higher accuracy and macro-F1 than the GPU trained models. The
best result was the EfficientNet-B0, followed by the MobileNet-v2. All 3 models
delivered a suitable accuracy for the concept. In order to run the models on the end
devices, they must first be converted and optimized for the respective platform of
the manufacturers. The models of the Coral USB Accelerator are first converted
to a TF-lite format and then the parameters are optimized to a quantized 8-bit
INT format. For the GPU of the Jetson Nano no conversion is necessary, for better
performance the models are optimized for the TF-TensorRT format. The parameters
of the model are brought to half precision 16-bit floating point. For the Neuronal

97

15 Conclusion

Compute Stick 2 the CNNs have to be optimized to the Openvino format. As with
the Nano, the parameters are optimized to half precision and then converted to a
Intermediate Representation format. Thereby, it turns out that the most current
model, the EfficientNet-B0 cannot be converted to the CUA and NCS2. Since these
platforms do not support all functions of the model. To determine the most suitable
combination of edge-AI-accelerator and Convolutional Neuronal Network architecture,
a verification is performed where all CNN models are executed on the 3 devices. The
CPU and memory usage, inference time and current consumption during inference
are measured. Furthermore, as with the Keras models, a confusions matrix is created
to determine the quality of the models.The result of the tests shows that with the
MobileNet-v2 on the edge-TPU of the Coral USB Accelerator the best values for the
inference time and energy consumption are reached and therefore the best efficiency
is achieved. Also the accuracy with 93.5% and the macro-F1 with 93.3% are within a
reasonable range in this combination. The CUA generally gives the best result for all
models (except the EffNet). In terms of accuracy and macro-F1, the Jetson Nano
gives slightly better results than the CUA, the best result being are obtained with
the EfficientNet-B0. However, the Jetson Nano requires significantly more energy
than the other two AI on the edge devices. The Neuronal Compute Stick 2 is on
the same level of consumption as the CUA but provides a much slower inference
time and therefore, a reduced efficiency. Furthermore, only the MobileNet-v2 on the
NCS2 provides a suitable result. From the result of the experiment the Coral USB
Accelerator is determined as the most suitable hardware in combination with the
GPU trained MobileNet-v2 for the concept. A prototype was developed to test the
concept under real conditions. The prototype was tested at the KasetFair2020 fair.
In addition, a survey is conducted with the Faculty of Environmental Engineering
to get the opinion of the users about Artificial Intelligence in the field of supported
recycling. The results of the test indicate that the concept works properly, although
from a technical point of view, weaknesses in the classification due to different light
influences as well as in the orientation of the waste object to the camera field of view
have arisen. Furthermore, the user was not immediately aware of how the concept
works, which shows that there must be a greater focus on ease of use. The survey
shows that the main interest comes from young adults with an academic education,
whereby the concept itself received a lot of support from all participants.

98

15 Conclusion

Future Work

This work demonstrates that the concept works and that there is interest. To develop
a concept suitable for everyday use, performance and reliability must be improved.
Therefore, a new architecture of a neural network could be designed, because the
used models are developed for a classification of 1000 classes. The design of an own
board for the use of AI accelerators has to be considered. Thus, the edge-TPU is also
available as a system on a chip (SoC) as a module or via other interfaces like M.2
and PCIe, which allow a higher data transfer rate. From a performance point of view,
using the Python environment is not ideal, so a switch to a C++ environment is
required. Coral already offers C++ libraries for the edge-TPU and recommends them
for optimized performance. Furthermore, the mechanical design of the opening system
has to be reconsidered in order to withstand the application under real conditions and
the resulting load. To achieve a better classification, more than one camera should
be used to detect the outline of the waste object, even if it is not oriented correctly.
Also an infrared camera could be implemented to distinguish glass from plastic or to
detect ice in plastic cups. Interesting are also other concepts that are in the recycling
area with the idea of AI on the edge. Similar concepts could be researched with the
use of object recognition and segmentation. Further, more other applications could
be found in the field of robotics as an additional security in the disposal of medical
waste or as a cheaper solution for machine vision.

99

Bibliography

6. Camera Hardware — Picamera 1.12 Documentation (July 2020). https://picamera.re
adthedocs.io/en/release-1.12/fov.html (cit. on p. 91).

Albawi, Saad; Mohammed, Tareq Abed, and Al-Zawi, Saad (Aug. 2017): “Under-
standing of a Convolutional Neural Network”. In: 2017 International Conference on
Engineering and Technology (ICET), pp. 1–6. doi: 10.1109/ICEngTechnol.2017.
8308186 (cit. on p. 21).

Antonini, Mattia et al. (Nov. 2019): “Resource Characterisation of Personal-Scale
Sensing Models on Edge Accelerators”. In: Proceedings of the First International
Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet
of Things. AIChallengeIoT’19. New York, NY, USA: Association for Computing
Machinery, pp. 49–55. isbn: 978-1-4503-7013-4. doi: 10.1145/3363347.3363363
(cit. on pp. 13, 14, 45).

Baji, Toru (Mar. 2018): “Evolution of the GPU Device Widely Used in AI and
Massive Parallel Processing”. In: 2018 IEEE 2nd Electron Devices Technology and
Manufacturing Conference (EDTM), pp. 7–9. doi: 10.1109/EDTM.2018.8421507
(cit. on pp. 10, 15).

Barry, Brendan; Brick, Cormac, et al. (Mar. 2015): “Always-on Vision Processing
Unit for Mobile Applications”. In: IEEE Micro 35.2, pp. 56–66. issn: 1937-4143.
doi: 10.1109/MM.2015.10 (cit. on pp. 10, 17, 18).

Barry, Brendan; Connor, Fergal, et al. (Feb. 2015): “Vector Processor”. en. US201500466
73A1 (cit. on p. 10).

Bircanoğlu, Cenk et al. (July 2018): “RecycleNet: Intelligent Waste Sorting Using Deep
Neural Networks”. In: 2018 Innovations in Intelligent Systems and Applications
(INISTA), pp. 1–7. doi: 10.1109/INISTA.2018.8466276 (cit. on p. 6).

Booklet on Thailand State of Pollution (2019). Pollution Control Department, Ministry
of Natural Resources and Environment. isbn: 978-616-316-511-4 (cit. on pp. 4, 11).

100

https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1109/ICEngTechnol.2017.8308186
https://doi.org/10.1145/3363347.3363363
https://doi.org/10.1109/EDTM.2018.8421507
https://doi.org/10.1109/MM.2015.10
https://doi.org/10.1109/INISTA.2018.8466276

Bibliography

Cass, Stephen (May 2019): “Taking AI to the Edge: Google’s TPU Now Comes in
a Maker-Friendly Package”. In: IEEE Spectrum 56.5, pp. 16–17. issn: 1939-9340.
doi: 10.1109/MSPEC.2019.8701189 (cit. on p. 9).

Chu, Yinghao et al. (Nov. 2018): “Multilayer Hybrid Deep-Learning Method for Waste
Classification and Recycling”. en. In: Computational Intelligence and Neuroscience
2018, pp. 1–9. issn: 1687-5265, 1687-5273. doi: 10.1155/2018/5060857 (cit. on
p. 6).

Coral-Support (Apr. 2020a): Personal Communication. Hello Michael -

Apologies for the issue and thanks for submitting the model. We’ve found and
fixed the issue with our internal compiler. This will be fixed by the next compiler
release; unfortunately we don’t yet have a release data at this point.

Thanks, Coral Support Team!

Hello Michael,

There are no work arounds available for this issue for now. Please stay in touch
with our website https://coral.ai/news/ for any updates.

Thanks Coral Support Team (cit. on p. 47).

Coral-Support (Apr. 2020b): Personal Communication. Hi Michael -

Thanks for reaching out!

The memory on the TPU is quite limited and I can’t provide too much info into
it. But the general idea is that not all of the input tensors can fit on the chip, so
much of it will be held in the host’s memory (you rpi). There are some changes we
made between the std and the max frequencies that allows more data to be held
on the TPU chips, which takes some load off from the host. This causes the TPU
to run more frequently and produces more heat. Since libedgetpu is still not open
source at this time, those are details that I can’t provide, unfortunately.

Thanks, Coral Support Team! (Cit. on p. 61).

Costa, Bernardo S. et al. (Oct. 2018): “Artificial Intelligence in Automated Sorting
in Trash Recycling”. pt. In: Anais do Encontro Nacional de Inteligência Artificial
e Computacional (ENIAC), pp. 198–205. issn: 0000-0000. doi: 10.5753/eniac.
2018.4416 (cit. on p. 6).

Cyphers, Scott et al. (Jan. 2018): “Intel nGraph: An Intermediate Representation,
Compiler, and Executor for Deep Learning”. In: arXiv:1801.08058 [cs]. arXiv:
1801.08058 [cs] (cit. on p. 50).

101

https://doi.org/10.1109/MSPEC.2019.8701189
https://doi.org/10.1155/2018/5060857
https://doi.org/10.5753/eniac.2018.4416
https://doi.org/10.5753/eniac.2018.4416
https://arxiv.org/abs/1801.08058

Bibliography

Duboscq, Gilles et al. (Oct. 2013): “An Intermediate Representation for Speculative
Optimizations in a Dynamic Compiler”. In: Proceedings of the 7th ACM Workshop
on Virtual Machines and Intermediate Languages. VMIL ’13. Indianapolis, Indiana,
USA: Association for Computing Machinery, pp. 1–10. isbn: 978-1-4503-2601-8.
doi: 10.1145/2542142.2542143 (cit. on p. 50).

Garland, Michael et al. (July 2008): “Parallel Computing Experiences with CUDA”.
In: IEEE Micro 28.4, pp. 13–27. issn: 1937-4143. doi: 10.1109/MM.2008.57
(cit. on pp. 10, 15).

Gyawali, Dipesh et al. (Apr. 2020): “Comparative Analysis of Multiple Deep CNN
Models for Waste Classification”. In: arXiv:2004.02168 [cs]. Comment: 6 pages, 13
figures. arXiv: 2004.02168 [cs] (cit. on p. 7).

Howard, Andrew G. et al. (Apr. 2017): “MobileNets: Efficient Convolutional Neural
Networks for Mobile Vision Applications”. en. In: arXiv:1704.04861 [cs]. arXiv:
1704.04861 [cs] (cit. on pp. 22, 23).

Intel® Neural Compute Stick 2 Product Specifications (June 2020). en. https://ark.inte
l.com /content/www/us/en/ark/products/140109/intel-neural-compute-stick-2.
html (cit. on p. 17).

Ionica, Mircea Horea and Gregg, David (Jan. 2015): “The Movidius Myriad Architec-
ture’s Potential for Scientific Computing”. In: IEEE Micro 35.1, pp. 6–14. issn:
1937-4143. doi: 10.1109/MM.2015.4 (cit. on p. 17).

Jacob, Benoit et al. (2018): “Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference”. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 2704–2713 (cit. on p. 16).

Jouppi, Norman et al. (May 2018): “Motivation for and Evaluation of the First
Tensor Processing Unit”. In: IEEE Micro 38.3, pp. 10–19. issn: 1937-4143. doi:
10.1109/MM.2018.032271057 (cit. on pp. 10, 16).

Jouppi, Norman P. et al. (June 2017): “In-Datacenter Performance Analysis of a Tensor
Processing Unit”. In: 2017 ACM/IEEE 44th Annual International Symposium on
Computer Architecture (ISCA), pp. 1–12. doi: 10.1145/3079856.3080246 (cit. on
pp. 10, 16, 35).

Kaza, Silpa et al. (Dec. 2018): What a Waste 2.0: A Global Snapshot of Solid Waste
Management to 2050. en. The World Bank. isbn: 978-1-4648-1329-0 978-1-4648-
1347-4. doi: 10.1596/978-1-4648-1329-0 (cit. on p. 4).

102

https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1109/MM.2008.57
https://arxiv.org/abs/2004.02168
https://arxiv.org/abs/1704.04861
https://doi.org/10.1109/MM.2015.4
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1596/978-1-4648-1329-0

Bibliography

Keras, Team (n.d.):Keras Documentation: Keras Applications. en. https://keras.io/api
/applications/ (cit. on p. 21).

Kingma, Diederik P. and Ba, Jimmy (Jan. 2017): “Adam: A Method for Stochastic
Optimization”. In: arXiv:1412.6980 [cs]. Comment: Published as a conference paper
at the 3rd International Conference for Learning Representations, San Diego, 2015.
arXiv: 1412.6980 [cs] (cit. on p. 33).

Lee, Yen-Lin; Tsung, Pei-Kuei, and Wu, Max (Apr. 2018): “Techology Trend of Edge
AI”. In: 2018 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT), pp. 1–2. doi: 10.1109/VLSI-DAT.2018.8373244 (cit. on p. 8).

Libutti, Leandro Ariel et al. (Jan. 2020): “Benchmarking Performance and Power of
USB Accelerators for Inference with MLPerf”. en. In: p. 15 (cit. on pp. 10, 16, 58,
61, 81, 83).

Model Optimizer Developer Guide - OpenVINO™ Toolkit (June 2020). https://docs.ope
nvinot oolkit.org/latest/_docs_MO_DG_Deep_Learning_Model_Optimizer_De
vGuide .html (cit. on p. 50).

Nickolls, John and Dally, William J. (Mar. 2010): “The GPU Computing Era”. In:
IEEE Micro 30.2, pp. 56–69. issn: 1937-4143. doi: 10.1109/MM.2010.41 (cit. on
p. 10).

Nvidia TensorRT Developer-Guide (June 2020). en-us. http://docs.nvidia.com/deeplea
rning/ tensorrt/developer-guide/index.html. Concept (cit. on p. 49).

Nvidia TF-TRT User-Guide (June 2020). en-us. http://docs.nvidia.com/deeplearning/
frameworks/tf-trt-user-guide/index.html. Concept (cit. on p. 49).

Ramachandran, Prajit; Zoph, Barret, and Le, Quoc V. (Oct. 2017): “Searching for
Activation Functions”. en. In: arXiv:1710.05941 [cs]. Comment: Updated version of
"Swish: a Self-Gated Activation Function". arXiv: 1710.05941 [cs] (cit. on p. 31).

Rawat, Waseem and Wang, Zenghui (June 2017): “Deep Convolutional Neural Net-
works for Image Classification: A Comprehensive Review”. In: Neural Computation
29.9, pp. 2352–2449. issn: 0899-7667. doi: 10.1162/neco_a_00990 (cit. on p. 21).

Rivas-Gomez, Sergio et al. (May 2018): “Exploring the Vision Processing Unit as
Co-Processor for Inference”. In: 2018 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 589–598. doi: 10.1109/IPDPSW.
2018.00098 (cit. on pp. 10, 17).

103

https://arxiv.org/abs/1412.6980
https://doi.org/10.1109/VLSI-DAT.2018.8373244
https://doi.org/10.1109/MM.2010.41
https://arxiv.org/abs/1710.05941
https://doi.org/10.1162/neco_a_00990
https://doi.org/10.1109/IPDPSW.2018.00098
https://doi.org/10.1109/IPDPSW.2018.00098

Bibliography

Ross, Jonathan et al. (Nov. 2016): “Neural Network Processor”. en. WO2016186801A1
(cit. on p. 16).

Sakr, George E. et al. (Nov. 2016): “Comparing Deep Learning and Support Vector
Machines for Autonomous Waste Sorting”. In: 2016 IEEE International Multi-
disciplinary Conference on Engineering Technology (IMCET), pp. 207–212. doi:
10.1109/IMCET.2016.7777453 (cit. on p. 6).

Sandler, Mark et al. (June 2018): “MobileNetV2: Inverted Residuals and Linear
Bottlenecks”. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4510–4520. doi: 10.1109/CVPR.2018.00474 (cit. on pp. 22, 24,
28).

Shmueli, Boaz (June 2020): Multi-Class Metrics Made Simple, Part II: The F1-Score.
en. https://towardsdatascience.com/ multi-class-metrics-made-simple-part-ii-the-
f1-score-ebe8b2c2ca1 (cit. on p. 43).

Shung, Koo Ping (Apr. 2020): Accuracy, Precision, Recall or F1? en. https://towardsdat
ascience.com/accuracy-precision-recall-or-f1-331fb37c5cb9 (cit. on p. 43).

Sousa, João; Rebelo, Ana, and Cardoso, Jaime S. (Sept. 2019): “Automation of Waste
Sorting with Deep Learning”. In: 2019 XV Workshop de Visão Computacional
(WVC), pp. 43–48. doi: 10.1109/WVC.2019.8876924 (cit. on p. 6).

Tan, Mingxing; Chen, Bo, et al. (May 2019): “MnasNet: Platform-Aware Neural
Architecture Search for Mobile”. en. In: arXiv:1807.11626 [cs]. Comment: Published
in CVPR 2019. arXiv: 1807.11626 [cs] (cit. on pp. 27, 28).

Tan, Mingxing and Le, Quoc V. (Nov. 2019): “EfficientNet: Rethinking Model Scaling
for Convolutional Neural Networks”. en. In: arXiv:1905.11946 [cs, stat]. Comment:
ICML 2019. arXiv: 1905.11946 [cs, stat] (cit. on p. 30).

Targ, Sasha; Almeida, Diogo, and Lyman, Kevin (Mar. 2016): “Resnet in Resnet:
Generalizing Residual Architectures”. In: arXiv:1603.08029 [cs, stat]. arXiv: 1603.
08029 [cs, stat] (cit. on p. 22).

TensorFlow Lite Converter (June 2020). en. https://www.tensorflow.org/lite/convert
(cit. on p. 45).

TensorFlow Models on the Edge TPU (June 2020). en-us. https://coral.ai/docs/edgetp
u/mod els-intro/#compatibility-overview (cit. on p. 47).

Troubleshooting | Cloud TPU (Apr. 2020). en. https://cloud.google.com/tpu/docs/trou
bleshooting (cit. on p. 33).

104

https://doi.org/10.1109/IMCET.2016.7777453
https://doi.org/10.1109/CVPR.2018.00474
https://doi.org/10.1109/WVC.2019.8876924
https://arxiv.org/abs/1807.11626
https://arxiv.org/abs/1905.11946
https://arxiv.org/abs/1603.08029
https://arxiv.org/abs/1603.08029

Bibliography

Using the SavedModel Format | TensorFlow Core (June 2020). en. https://www.tensorfl
ow.org/guide/saved_model (cit. on p. 45).

Vassanadumrongdee, Sujitra and Kittipongvises, Suthirat (Mar. 2018): “Factors
Influencing Source Separation Intention and Willingness to Pay for Improving Waste
Management in Bangkok, Thailand”. en. In: Sustainable Environment Research
28.2, pp. 90–99. issn: 2468-2039. doi: 10.1016/j.serj.2017.11.003 (cit. on
p. 4).

Wang, Yu Emma; Wei, Gu-Yeon, and Brooks, David (Oct. 2019): “Benchmarking
TPU, GPU, and CPU Platforms for Deep Learning”. en. In: arXiv:1907.10701 [cs,
stat]. arXiv: 1907.10701 [cs, stat] (cit. on p. 35).

Zoph, Barret and Le, Quoc V. (Feb. 2017): “Neural Architecture Search with Re-
inforcement Learning”. en. In: arXiv:1611.01578 [cs]. arXiv: 1611.01578 [cs]
(cit. on p. 26).

Zoph, Barret; Vasudevan, Vijay, et al. (Apr. 2018): “Learning Transferable Architec-
tures for Scalable Image Recognition”. en. In: arXiv:1707.07012 [cs, stat]. arXiv:
1707.07012 [cs, stat] (cit. on pp. 26, 29).

105

https://doi.org/10.1016/j.serj.2017.11.003
https://arxiv.org/abs/1907.10701
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1707.07012

Appendices

106

Code to create confusion matrix on Corals Edge
TPU
1 """ Copyright 2019 The TensorFlow Authors . Al l Rights Reserved .
2
3 Licensed under the Apache License , Vers ion 2 .0 (the " L icense ") ;
4 you may not use t h i s f i l e except in compliance with the L icense .
5 You may obta in a copy o f the L icense at
6
7 https ://www. apache . org / l i c e n s e s /LICENSE−2.0
8
9 Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

10 d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an "AS IS" BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .
12 See the L icense f o r the s p e c i f i c language governing permi s s i ons and
13 l im i t a t i o n s under the L icense . """
14
15 "Create Confusionmatrix from t e s t s e t and measure CPU, Memory and Time consumption

during i n f e r e n c e "
16
17 " Import Packages"
18 from __future__ import absolute_import
19 from __future__ import d i v i s i o n
20 from __future__ import pr int_funct ion
21 from datetime import datet ime
22 import os
23 import p s u t i l
24 import time
25 import numpy as np
26 import cv2
27 import glob
28 import csv
29
30 " Import Tensorf low l i t e runtime i n t e r p r e t e r "
31 f o r i in range (10) :
32 try :
33 import t f l i t e_runt ime . i n t e r p r e t e r as t f l i t e
34 break
35 except :
36 cont inue
37
38 "Def ine edge TPU l i b a r y "
39 EDGETPU_SHARED_LIB = ’ l ibedgetpu . so . 1 ’
40
41 "Function to load l a b e l names from t e x t f i l e "
42 de f load_labe l s (path) :
43 f i l e = open (path)
44 f i l e = [l i n e f o r l i n e in f i l e . r e a d l i n e s ()]
45 f i l e = [s . r s t r i p () f o r s in f i l e]
46 return f i l e
47
48 "Function to s e t the input tensor o f the Tensorf low l i t e Edge TPU i n t e r p r e t e r "
49 de f set_input_tensor (i n t e r p r e t e r , image) :
50 tensor_index = i n t e r p r e t e r . get_input_deta i l s () [0] [’ index ’]
51 input_tensor = i n t e r p r e t e r . t enso r (tensor_index) () [0]
52 input_tensor [: , :] = image
53
54 "Function to c r ea t e TensorFlow l i t e Edge TPU i n t e r p r e t e r and i n i t i a l i z e Coral TPU USB

ac c e l e r a t o r "
55 de f make_interpreter (model_f i l e) :
56 model_fi le , * dev i ce = model_f i l e . s p l i t (’@’)
57 return t f l i t e . I n t e r p r e t e r (
58 model_path=model_fi le ,
59 exper imenta l_de legates=[
60 t f l i t e . load_delegate (EDGETPU_SHARED_LIB,
61 { ’ dev i ce ’ : dev i ce [0] } i f dev i ce e l s e {})
62])
63
64 "Function to c l a s s i f y image and return array o f index o f the c l a s s and con f idence

value "
65 de f c la s s i fy_image (i n t e r p r e t e r , image , top_k=1) :
66
67 " Star t i n t e r p r e t e r f o r i n f e r e n c e "
68 set_input_tensor (i n t e r p r e t e r , image)
69 i n t e r p r e t e r . invoke ()
70 output_deta i l s = i n t e r p r e t e r . get_output_detai l s () [0]
71 output = np . squeeze (i n t e r p r e t e r . get_tensor (output_deta i l s [’ index ’]))
72
73 " I f the model i s quant ized (u int8 data) , then dequant ize the r e s u l t s "
74 i f output_deta i l s [’ dtype ’] == np . u int8 :
75 sca l e , zero_point = output_deta i l s [’ quant i za t i on ’]

107

76 output = s c a l e * (output - zero_point)
77
78 ordered = np . a r gpa r t i t i o n (- output , top_k)
79 return [(i , output [i]) f o r i in ordered [: top_k]]
80
81
82 de f main () :
83
84 "Def ine path o f the TensorFlow l i t e Edge TPU model"
85 model_path = ’ model_edgetpu . t f l i t e ’
86
87 "Def ine path o f the t e s t s e t "
88 te s tpath = ’ t e s t / ’
89
90 "Load l a b e l name form t e x t f i l e "
91 labels_path = ’ l a b e l s . txt ’
92 l a b e l s = load_labe l s (labels_path)
93
94 " Ca lcu la te number o f c l a s s e s from l a b e l s "
95 numClass = len (l a b e l s)
96
97 "Create l i s t e to c o l l e c t time , cpu and memory data"
98 t ime_l i s t = l i s t ()
99 cpu_l i s t = l i s t ()

100 mem_list = l i s t ()
101
102 cpu_l i s t . append (p s u t i l . cpu_percent ())
103 mem_list . append (p s u t i l . virtual_memory () [2])
104
105 "Create and i n i t i a l i z e i n t e r p r e t e r o f the Edge TPU"
106 i n t e r p r e t e r = make_interpreter (model_path)
107 i n t e r p r e t e r . a l l o c a t e_ten so r s ()
108 _, h , w, _ = i n t e r p r e t e r . get_input_deta i l s () [0] [’ shape ’]
109
110 "Def ine image dimension "
111 dim =(h ,w)
112
113 " I n i t i a l i z e run with c l a s s f i r s t index "
114 run =1
115
116 " Star t loop througt c l a s s e s "
117 whi le True :
118
119 "Clear l i s t be f o r e c o l l e c t data"
120 t ime_l i s t . c l e a r ()
121 cpu_l i s t . c l e a r ()
122 mem_list . c l e a r ()
123
124 " I n i t i a l i z e con fus ion matrix with ze ro s "
125 confMatrix = [[0 f o r i in range (numClass)] f o r j in range (numClass)]
126
127 " I n i t i a l i z e number o f r i gh t and wrong p r ed i c t i on to zero "
128 r i gh t = 0
129 wrong = 0
130
131 f o r class_name in l a b e l s :
132 "Get path to f o l d e r s with c l a s s images from t e s t s e t "
133 te s t_d i r = tes tpath + class_name
134 f o l d e r s = os . l i s t d i r (t e s t_d i r)
135
136 "Loop througt f o l d e r s with t e s t images "
137 f o r f o l d e r in f o l d e r s :
138 imagePath = tes t_d i r + ’ / ’ +f o l d e r
139 images = [f f o r f in glob . g lob (imagePath + " ∗/∗ . jpg " , r e c u r s i v e=True)]
140
141 "Loop througt images in f o l d e r "
142 f o r imagePath in images :
143
144 "Load image from path and r e s i z e to neuronal network input

dimension "
145 img = cv2 . imread (imagePath)
146 img = cv2 . r e s i z e (img , dim , i n t e r p o l a t i o n = cv2 .INTER_AREA)
147
148 " Star t time measurement"
149 s t a r t = time . time ()
150
151 "Set input data"
152 input_data = np . expand_dims (img , ax i s=0) . astype (np . u int8)
153
154 " Star t i n f e r e n c e on Corals EdgeTPU"
155 r e s u l t s = c la s s i fy_image (i n t e r p r e t e r , input_data)
156
157 " Sp l i t r e s u l t in to index and con f idence "
158 top_k , prob = r e s u l t s [0]
159

108

160 "Stop time measurement"
161 stop = time . time ()
162 t ime_l i s t . append ((stop - s t a r t) * 1000)
163
164 " Ca lcu la te r i gh t and wrong p r ed i c t i o n s "
165 i f l a b e l s [top_k] == class_name :
166 r i gh t = r i gh t +1
167 e l s e :
168 wrong = wrong +1
169
170 "Add p r ed i c t i on to con fus ion matrix "
171 j = l a b e l s . index (class_name)
172 confMatrix [top_k] [j] = confMatrix [top_k] [j] +1
173
174 "Append cpu and memory to l i s t "
175 cpu_l i s t . append (p s u t i l . cpu_percent ())
176 mem_list . append (p s u t i l . virtual_memory () [2])
177
178 "Save confus ionmatr ix , cpu , memory and time l i s t as CSV f i l e "
179 with open (’ ConfMatrix_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as f i l e :
180 wr i t e r = csv . wr i t e r (f i l e)
181 wr i t e r . wr i terows (confMatrix)
182 wr i t e r . writerow ([r ight , wrong])
183
184 with open (’ TimeList_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as t im e f i l e :
185 wr i t e r = csv . wr i t e r (t ime f i l e , quot ing=csv .QUOTE_ALL)
186 wr i t e r . writerow (t ime_l i s t)
187
188 with open (’CPUList_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as c p u f i l e :
189 wr i t e r = csv . wr i t e r (c p u f i l e)
190 wr i t e r . writerow (cpu_l i s t)
191
192 with open (’mem_list_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as memfile :
193 wr i t e r = csv . wr i t e r (memfile)
194 wr i t e r . writerow (mem_list)
195
196 " Increment run to next c l a s s "
197 run = run+1
198
199 "Stop a f t e r l a s t c l a s s "
200 i f run == numClass :
201 break
202
203 i f __name__ == ’__main__ ’ :
204 main ()

Listing 1: Python code to create confusion matrix and collect time - cpu - memory
datas on Corals Edge TPU

109

Code to create confusion matrix on Nvidias
TensorRT Engine
1 """ Copyright 2019 The TensorFlow Authors . Al l Rights Reserved .
2
3 Licensed under the Apache License , Vers ion 2 .0 (the " L icense ") ;
4 you may not use t h i s f i l e except in compliance with the L icense .
5 You may obta in a copy o f the L icense at
6
7 https ://www. apache . org / l i c e n s e s /LICENSE−2.0
8
9 Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

10 d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an "AS IS" BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .
12 See the L icense f o r the s p e c i f i c language governing permi s s i ons and
13 l im i t a t i o n s under the L icense . """
14
15 "Create Confusionmatrix from t e s t s e t and measure CPU, Memory and Time consumption

during i n f e r e n c e "
16
17 " Import Packages"
18 from __future__ import absolute_import
19 from __future__ import d i v i s i o n
20 from __future__ import pr int_funct ion
21 from datetime import datet ime
22 import os
23 import p s u t i l
24 import time
25 import numpy as np
26 import cv2
27 import glob
28 import csv
29
30 " Import Tensorf low l i t e runtime i n t e r p r e t e r "
31 f o r i in range (10) :
32 try :
33 import t f l i t e_runt ime . i n t e r p r e t e r as t f l i t e
34 break
35 except :
36 cont inue
37
38 "Def ine edge TPU l i b a r y "
39 EDGETPU_SHARED_LIB = ’ l ibedgetpu . so . 1 ’
40
41 "Function to load l a b e l names from t e x t f i l e "
42 de f load_labe l s (path) :
43 f i l e = open (path)
44 f i l e = [l i n e f o r l i n e in f i l e . r e a d l i n e s ()]
45 f i l e = [s . r s t r i p () f o r s in f i l e]
46 return f i l e
47
48 "Function to s e t the input tensor o f the Tensorf low l i t e Edge TPU i n t e r p r e t e r "
49 de f set_input_tensor (i n t e r p r e t e r , image) :
50 tensor_index = i n t e r p r e t e r . get_input_deta i l s () [0] [’ index ’]
51 input_tensor = i n t e r p r e t e r . t enso r (tensor_index) () [0]
52 input_tensor [: , :] = image
53
54 "Function to c r ea t e TensorFlow l i t e Edge TPU i n t e r p r e t e r and i n i t i a l i z e Coral TPU USB

ac c e l e r a t o r "
55 de f make_interpreter (model_f i l e) :
56 model_fi le , * dev i ce = model_f i l e . s p l i t (’@’)
57 return t f l i t e . I n t e r p r e t e r (
58 model_path=model_fi le ,
59 exper imenta l_de legates=[
60 t f l i t e . load_delegate (EDGETPU_SHARED_LIB,
61 { ’ dev i ce ’ : dev i ce [0] } i f dev i ce e l s e {})
62])
63
64 "Function to c l a s s i f y image and return array o f index o f the c l a s s and con f idence

value "
65 de f c la s s i fy_image (i n t e r p r e t e r , image , top_k=1) :
66
67 " Star t i n t e r p r e t e r f o r i n f e r e n c e "
68 set_input_tensor (i n t e r p r e t e r , image)
69 i n t e r p r e t e r . invoke ()
70 output_deta i l s = i n t e r p r e t e r . get_output_detai l s () [0]
71 output = np . squeeze (i n t e r p r e t e r . get_tensor (output_deta i l s [’ index ’]))
72
73 " I f the model i s quant ized (u int8 data) , then dequant ize the r e s u l t s "
74 i f output_deta i l s [’ dtype ’] == np . u int8 :
75 sca l e , zero_point = output_deta i l s [’ quant i za t i on ’]

110

76 output = s c a l e * (output - zero_point)
77
78 ordered = np . a r gpa r t i t i o n (- output , top_k)
79 return [(i , output [i]) f o r i in ordered [: top_k]]
80
81
82 de f main () :
83
84 "Def ine path o f the TensorFlow l i t e Edge TPU model"
85 model_path = ’ model_edgetpu . t f l i t e ’
86
87 "Def ine path o f the t e s t s e t "
88 te s tpath = ’ t e s t / ’
89
90 "Load l a b e l name form t e x t f i l e "
91 labels_path = ’ l a b e l s . txt ’
92 l a b e l s = load_labe l s (labels_path)
93
94 " Ca lcu la te number o f c l a s s e s from l a b e l s "
95 numClass = len (l a b e l s)
96
97 "Create l i s t e to c o l l e c t time , cpu and memory data"
98 t ime_l i s t = l i s t ()
99 cpu_l i s t = l i s t ()

100 mem_list = l i s t ()
101
102 cpu_l i s t . append (p s u t i l . cpu_percent ())
103 mem_list . append (p s u t i l . virtual_memory () [2])
104
105 "Create and i n i t i a l i z e i n t e r p r e t e r o f the Edge TPU"
106 i n t e r p r e t e r = make_interpreter (model_path)
107 i n t e r p r e t e r . a l l o c a t e_ten so r s ()
108 _, h , w, _ = i n t e r p r e t e r . get_input_deta i l s () [0] [’ shape ’]
109
110 "Def ine image dimension "
111 dim =(h ,w)
112
113 " I n i t i a l i z e run with c l a s s f i r s t index "
114 run =1
115
116 " Star t loop througt c l a s s e s "
117 whi le True :
118
119 "Clear l i s t be f o r e c o l l e c t data"
120 t ime_l i s t . c l e a r ()
121 cpu_l i s t . c l e a r ()
122 mem_list . c l e a r ()
123
124 " I n i t i a l i z e con fus ion matrix with ze ro s "
125 confMatrix = [[0 f o r i in range (numClass)] f o r j in range (numClass)]
126
127 " I n i t i a l i z e number o f r i gh t and wrong p r ed i c t i on to zero "
128 r i gh t = 0
129 wrong = 0
130
131 f o r class_name in l a b e l s :
132 "Get path to f o l d e r s with c l a s s images from t e s t s e t "
133 te s t_d i r = tes tpath + class_name
134 f o l d e r s = os . l i s t d i r (t e s t_d i r)
135
136 "Loop througt f o l d e r s with t e s t images "
137 f o r f o l d e r in f o l d e r s :
138 imagePath = tes t_d i r + ’ / ’ +f o l d e r
139 images = [f f o r f in glob . g lob (imagePath + " ∗/∗ . jpg " , r e c u r s i v e=True)]
140
141 "Loop througt images in f o l d e r "
142 f o r imagePath in images :
143
144 "Load image from path and r e s i z e to neuronal network input

dimension "
145 img = cv2 . imread (imagePath)
146 img = cv2 . r e s i z e (img , dim , i n t e r p o l a t i o n = cv2 .INTER_AREA)
147
148 " Star t time measurement"
149 s t a r t = time . time ()
150
151 "Set input data"
152 input_data = np . expand_dims (img , ax i s=0) . astype (np . u int8)
153
154 " Star t i n f e r e n c e on Corals EdgeTPU"
155 r e s u l t s = c la s s i fy_image (i n t e r p r e t e r , input_data)
156
157 " Sp l i t r e s u l t in to index and con f idence "
158 top_k , prob = r e s u l t s [0]
159

111

160 "Stop time measurement"
161 stop = time . time ()
162 t ime_l i s t . append ((stop - s t a r t) * 1000)
163
164 " Ca lcu la te r i gh t and wrong p r ed i c t i o n s "
165 i f l a b e l s [top_k] == class_name :
166 r i gh t = r i gh t +1
167 e l s e :
168 wrong = wrong +1
169
170 "Add p r ed i c t i on to con fus ion matrix "
171 j = l a b e l s . index (class_name)
172 confMatrix [top_k] [j] = confMatrix [top_k] [j] +1
173
174 "Append cpu and memory to l i s t "
175 cpu_l i s t . append (p s u t i l . cpu_percent ())
176 mem_list . append (p s u t i l . virtual_memory () [2])
177
178 "Save confus ionmatr ix , cpu , memory and time l i s t as CSV f i l e "
179 with open (’ ConfMatrix_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as f i l e :
180 wr i t e r = csv . wr i t e r (f i l e)
181 wr i t e r . wr i terows (confMatrix)
182 wr i t e r . writerow ([r ight , wrong])
183
184 with open (’ TimeList_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as t im e f i l e :
185 wr i t e r = csv . wr i t e r (t ime f i l e , quot ing=csv .QUOTE_ALL)
186 wr i t e r . writerow (t ime_l i s t)
187
188 with open (’CPUList_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as c p u f i l e :
189 wr i t e r = csv . wr i t e r (c p u f i l e)
190 wr i t e r . writerow (cpu_l i s t)
191
192 with open (’mem_list_ ’ +s t r (run)+’ . csv ’ , ’w ’ , newl ine=’ ’) as memfile :
193 wr i t e r = csv . wr i t e r (memfile)
194 wr i t e r . writerow (mem_list)
195
196 " Increment run to next c l a s s "
197 run = run+1
198
199 "Stop a f t e r l a s t c l a s s "
200 i f run == numClass :
201 break
202
203 i f __name__ == ’__main__ ’ :
204 main ()

Listing 2: Python code to create confusion matrix and collect time - cpu - memory
datas on Nvidias TensorRT Engine

112

Code to create confusion matrix on Intels
Openvino Engine
1 """ Copyright 2019 The TensorFlow Authors . Al l Rights Reserved .
2
3 Licensed under the Apache License , Vers ion 2 .0 (the " L icense ") ;
4 you may not use t h i s f i l e except in compliance with the L icense .
5 You may obta in a copy o f the L icense at
6
7 https ://www. apache . org / l i c e n s e s /LICENSE−2.0
8
9 Unless r equ i r ed by app l i c ab l e law or agreed to in wr i t ing , so f tware

10 d i s t r i bu t ed under the L icense i s d i s t r i bu t ed on an "AS IS" BASIS ,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, e i t h e r expre s s or impl ied .
12 See the L icense f o r the s p e c i f i c language governing permi s s i ons and
13 l im i t a t i o n s under the L icense . """
14
15 "Create Confusionmatrix from t e s t s e t and measure CPU, Memory and Time consumption

during i n f e r e n c e "
16
17 " Import Packages"
18 from __future__ import absolute_import
19 from __future__ import d i v i s i o n
20 from __future__ import pr int_funct ion
21 from datetime import datet ime
22
23 import os
24 import p s u t i l
25 import time
26 import numpy as np
27 import cv2
28 import glob
29 import csv
30
31 " Import Openvino In f e r en c e Engine"
32 from openvino . in f e rence_eng ine import IENetwork , IECore
33
34 "Function to load l a b e l names from t e x t f i l e "
35 de f load_labe l s (path) :
36 f i l e = open (path)
37 f i l e = [l i n e f o r l i n e in f i l e . r e a d l i n e s ()]
38 f i l e = [s . r s t r i p () f o r s in f i l e]
39 return f i l e
40
41
42 de f main () :
43
44 " F i l e s to c r ea t e neuronal network a r ch i t e c t u r e "
45 model_xml = ’ frozen_model . xml ’
46 model_bin = ’ frozen_model . bin ’
47
48 "Def ine as VPU in f e r e n c e "
49 dev i ce = ’MYRIAD’
50
51 "Def ine path o f the t e s t s e t "
52 te s tpath = ’ t e s t / ’
53
54 "Load l a b e l name form t e x t f i l e "
55 labels_path = ’ l a b e l s . txt ’
56 l a b e l s = load_labe l s (labels_path)
57 n_labels = len (l a b e l s)
58
59 " Ca lcu la te number o f c l a s s e s from l a b e l s "
60 numClass = len (l a b e l s)
61
62 "Create l i s t e to c o l l e c t time , cpu and memory data"
63 t ime_l i s t = l i s t ()
64 cpu_l i s t = l i s t ()
65 mem_list = l i s t ()
66
67 cpu_l i s t . append (p s u t i l . cpu_percent ())
68 mem_list . append (p s u t i l . virtual_memory () [2])
69
70 " I n i t i a l i z e neuronal network a r ch i t e c t u r e "
71 i e = IECore ()
72 net = IENetwork (model=model_xml , weights=model_bin)
73
74 a s s e r t l en (net . inputs . keys ()) == 1 , "Sample supports only s i n g l e input t opo l o g i e s "
75 a s s e r t l en (net . outputs) == 1 , "Sample supports only s i n g l e output t opo l o g i e s "
76
77 input_blob = next (i t e r (net . inputs))

113

78 out_blob = next (i t e r (net . outputs))
79 net . batch_size = 1
80
81 " I n i t i a l i z e Openvino Engine with Myriad VPU"
82 n , c , h , w = net . inputs [input_blob] . shape
83 exec_net = i e . load_network (network=net , device_name=dev ice)
84
85 "Def ine image dimension "
86 dim =(h ,w)
87
88 " I n i t i a l i z e run with c l a s s f i r s t index "
89 run = 1
90
91 " Star t loop througt c l a s s e s "
92 whi le True :
93
94 "Clear l i s t be f o r e c o l l e c t data"
95 t ime_l i s t . c l e a r ()
96 cpu_l i s t . c l e a r ()
97 mem_list . c l e a r ()
98
99 " I n i t i a l i z e con fus ion matrix with ze ro s "

100 confMatrix = [[0 f o r i in range (numClass)] f o r j in range (numClass)]
101
102 " I n i t i a l i z e number o f r i gh t and wrong p r ed i c t i on to zero "
103 r i gh t = 0
104 wrong = 0
105
106 f o r class_name in l a b e l s :
107 "Get path to f o l d e r s with c l a s s images from t e s t s e t "
108 te s t_d i r = tes tpath + class_name
109 f o l d e r s = os . l i s t d i r (t e s t_d i r)
110
111 "Loop througt f o l d e r s with t e s t images "
112 f o r f o l d e r in f o l d e r s :
113 imagePath = tes t_d i r + ’ / ’ +f o l d e r
114 images = [f f o r f in glob . g lob (imagePath + " ∗/∗ . jpg " , r e c u r s i v e=True)]
115
116 "Loop througt images in f o l d e r "
117 f o r imagePath in images :
118
119 "Load image from path and r e s i z e to neuronal network input

dimension "
120 img = cv2 . imread (imagePath)
121 img = cv2 . r e s i z e (img , dim , i n t e r p o l a t i o n = cv2 .INTER_AREA)
122
123 input_data = np . ndarray (shape=(n , c , h , w))
124 img = img . t ranspose ((2 , 0 , 1))
125
126 " Star t time measurement"
127 s t a r t = time . time ()
128
129 "Set input data"
130 input_data = img
131
132 " Star t i n f e r e n c e on Openvino Engine"
133 r e s u l t s = exec_net . i n f e r (inputs={ input_blob : input_data})
134
135 "Get r e s u l t from In f e r en c e "
136 r e s u l t s = r e s u l t s [out_blob]
137 r e s u l t = r e s u l t s [0]
138 r e s u l t = np . squeeze (r e s u l t)
139 top_k = np . a r g s o r t (r e s u l t) [- 1]
140
141 "Stop time measurement"
142 stop = time . time ()
143 t ime_l i s t . append ((stop - s t a r t) * 1000)
144
145 " Ca lcu la te r i gh t and wrong p r ed i c t i o n s "
146 i f l a b e l s [top_k] == class_name :
147 r i gh t = r i gh t +1
148 e l s e :
149 wrong = wrong +1
150
151 "Add p r ed i c t i on to con fus ion matrix "
152 j = l a b e l s . index (class_name)
153 confMatrix [top_k] [j] = confMatrix [top_k] [j] +1
154
155 "Append cpu and memory to l i s t "
156 cpu_l i s t . append (p s u t i l . cpu_percent ())
157 mem_list . append (p s u t i l . virtual_memory () [2])
158
159 "Save confus ionmatr ix , cpu , memory and time l i s t as CSV f i l e "
160 with open (’ ConfMatrix . csv ’ , ’w ’ , newl ine=’ ’) as f i l e :
161 wr i t e r = csv . wr i t e r (f i l e)

114

162 wr i t e r . wr i terows (confMatrix)
163 wr i t e r . writerow ([r ight , wrong])
164
165 with open (’ TimeList_ ’+ s t r (run) +’ . csv ’ , ’w ’ , newl ine=’ ’) as t im e f i l e :
166 wr i t e r = csv . wr i t e r (t ime f i l e , quot ing=csv .QUOTE_ALL)
167 wr i t e r . writerow (t ime_l i s t)
168
169 with open (’CPUList_ ’+ s t r (run) +’ . csv ’ , ’w ’ , newl ine=’ ’) as c p u f i l e :
170 wr i t e r = csv . wr i t e r (c p u f i l e)
171 wr i t e r . writerow (cpu_l i s t)
172
173 with open (’mem_list_ ’+ s t r (run) +’ . csv ’ , ’w ’ , newl ine=’ ’) as memfile :
174 wr i t e r = csv . wr i t e r (memfile)
175 wr i t e r . writerow (mem_list)
176
177 " Increment run to next c l a s s "
178 run = run+1
179
180 "Stop a f t e r l a s t c l a s s "
181 i f run == numClass :
182 break
183
184 i f __name__ == ’__main__ ’ :
185 main ()

Listing 3: Python code to create confusion matrix and collect time - cpu - memory
datas on Intels Openvino Engine for Myriad VPU

115

	List of Figures
	List of Tables
	Listings
	Acronyms
	Summary
	Introduction
	Literature Review
	Concepts
	Google Coral USB Accelerator
	Nvidia Jetson Nano
	Intel Neuronal Compute Stick 2

	Waste Categories and Materials
	Hardware Overview
	USB Accelerator
	Jetson Nano - gpu
	Coral - tpu
	Intel Neuronal Compute Stick 2 - vpu

	cnn Architecture
	MobileNet-v2
	NASNetMobile
	EfficientNet-B0

	Training of the Neuronal Networks
	Parameters
	Training time
	Training evalutation
	Confusion Matrix of Keras models
	Precision, Recall and F1-score

	Compiling the Keras models for the edge frameworks
	Keras to TFlite for edge TPU
	Keras To TF-TRT for Jetson Nano
	Keras Openvino optimization

	Experiment Information
	Experiment Result of Coral USB Accelerator
	CPU Workload
	Memory Workload
	Inference Time
	Power Consumption
	Efficiency
	Confusion Matrix
	Precision, Recall and F1-score

	Experiment Result of Nvidia Jetson Nano
	CPU Workload
	Memory Workload
	Inference Time
	Power Consumption
	Efficiency
	Confusion Matrix
	Precision and Recall

	Experiment Result of Intel ncs2
	CPU Workload
	Memory Workload
	Inference Time
	Power Cosumption
	Efficiency
	Confusion Matrix
	Precision, Recall and F1-value

	Conclusion of the Evaluation
	Prototype
	Conclusion
	Appendices

