
energies

Article

Flexibility Control in Autonomous Demand Response by
Optimal Power Tracking

Klaus Rheinberger 1,2,* , Peter Kepplinger 1,2 and Markus Preißinger 1,2

����������
�������

Citation: Rheinberger, K.;

Kepplinger, P.; Preißinger, M.

Flexibility Control in Autonomous

Demand Response by Optimal Power

Tracking. Energies 2021, 14, 3568.

https://doi.org/10.3390/en14123568

Academic Editor: Pedro Faria

Received: 6 May 2021

Accepted: 9 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Energy Research Center, Vorarlberg University of Applied Sciences, Hochschulstraße 1,
6850 Dornbirn, Austria; peter.kepplinger@fhv.at (P.K.); markus.preissinger@fhv.at (M.P.)

2 Josef Ressel Centre for Intelligent Thermal Energy Systems, Vorarlberg University of Applied Sciences,
Hochschulstraße 1, 6850 Dornbirn, Austria

* Correspondence: klaus.rheinberger@fhv.at; Tel.: +43-5572-792-3811

Abstract: In the regime of incentive-based autonomous demand response, time dependent prices
are typically used to serve as signals from a system operator to consumers. However, this approach
has been shown to be problematic from various perspectives. We clarify these shortcomings in a
geometric way and thereby motivate the use of power signals instead of price signals. The main
contribution of this paper consists of demonstrating in a standard setting that power tracking
signals can control flexibilities more efficiently than real-time price signals. For comparison by
simulation, German renewable energy production and German standard load profiles are used for
daily production and demand profiles, respectively. As for flexibility, an energy storage system with
realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions
on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is
outperformed with regards to imbalance energy, peak consumption, storage variation, and storage
losses without the need for additional communication or computation efforts. It is further shown that
the advantages of the optimal power tracking approach compared to the pricing approach increase
with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal
power tracking is able to integrate renewable energy production efficiently, has additional benefits,
and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and
economic implementation.

Keywords: demand response; energy storage; autonomous optimization; real-time pricing; power
tracking

1. Introduction

The main goal of an electrical energy system is to maintain a productive and stable
operation, i.e., to match production and consumption by controlling flexibilities efficiently.
We define a flexibility as the feasibility to change the power profile over a certain time
range. Historically, to a great extent, flexibilities were available on the production side.
The growing share of renewable energy sources (RES) is leading to a reduction in those,
putting the question of how to control flexibilities on the demand side into focus. Demand
side flexibilities offer the possibility of changing consumption to deviate from demand,
including time-shifting, peak-shaving, and load-leveling potentials. For an example of a
current production side flexibility analysis, we refer to [1], who investigated the value of
operating nuclear power plants more flexibly in view of system security after the loss of a
production unit.

A possible way to control demand side flexibilities is to incentivize such changes
via demand response (DR) programs. For recent comprehensive reviews of DR, we refer
to [2–4]. Here, we give a short overview of DR approaches that relate to the method
proposed here.
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Autonomous DR uses one-way communication to the consumers and thereby protects
privacy and keeps computational efforts low. For example, real-time pricing (RTP), which
is offered by multiple utilities, uses time-dependent prices as signals to incentivize changes
in consumers’ consumption profiles. According to the prices received, consumers optimize
their cost over a given time period autonomously. An application of RTP to thermal
flexibilities is given in [5], where Kepplinger et al. autonomously control electric domestic
hot water heaters using expected demand and a pseudo cost function. Koltsaklis et al. [6]
present a price-based framework for smart homes that integrates several types of flexibilities
and energy sources. It results in a mixed-integer LP that includes peak load constraints.
Field tests of autonomously controlled flexibilities using RTP were performed for example
in [7,8]. RTP has, however, been shown to be problematic from a stability and optimality
perspective, cf. the recent works [9–12]. We will illustrate and explain these problems
hereafter.

For the electric utility, RTP and other signal-based autonomous DR programs give
rise to the bilevel optimization problem of finding the best (price) signal to propagate. The
signal is optimal when the induced individual consumptions in total match the desired
production as close as possible. Lübkert et al. [13] studied the RTP bilevel optimization
problem of controlling domestic electric water heaters to track a given power profile. They
show that with the optimal price signal, consumption profiles are induced, which differ
significantly, although leading to the same costs. The authors concluded that the approach
is not suitable to control the load of a single water heater. They proposed a method for
generating price functions that adapted the aggregated consumption of many water heaters
approximately to a desired profile. Kovács [14] introduced a bilevel programming approach
to RTP in an electric grid of prosumers (followers) and a retailer (leader). The prosumers
optimize their controllable load and their battery charging schedule to maximize their
utility and minimize their costs. The so-called “optimistic” assumption was adopted in
this publication, i.e., if a follower has more than one optimal solution according to its
own objective, then the most favorable for the leader is chosen. This assumption favors
effectively constant prices and clashes with the autonomy of the followers’ optimization.
Other works [15,16] apply the optimistic assumption as well. In a recent work [17], Kis et al.
investigated the problems of the optimistic assumption and propose a way to overcome
them by solving the pessimistic variant instead.

To give a simple illustration of the questionability of the optimistic assumption,
consider a lossless energy storage system (ESS) and a consumer in need to charge it to some
fixed amount within some fixed time. For a flat, i.e., with a constant price over this time,
the solution space of the optimization coincides with the whole feasibility region, as every
feasible consumption has the same cost. The flexibility cannot be controlled. However, by
applying the optimistic assumption, this price signal can induce any desired consumption
of the leader as long as it is feasible.

Game-theoretic DR approaches are given, e.g., in [18–21]. Yang et al. [19] can induce
any feasible consumption with an appropriate price by using non-linear utility functions for
the customers. The approach of Mohsenian-Rad et al. [18] leads to a distributed algorithm
which needs message exchanges between consumers.

Related to game-theoretic approaches are other complex algorithms using two-way
communications, market-based mechanisms, and distributed computing [22–25]. The
communication between customers is often price-based. Hu et al. [22] consider prosumers
in a distribution grid. The prosumers send their consumption schedules to a central intelli-
gence, which optimizes prices, that are subsequently sent to all prosumers, who return new
optimal schedules, and so on. Moldernik et al. [26] propose a control strategy that consists
of profile prediction, in advance global planning and real-time local control. Their approach
is an iterative, distributed algorithm led by a global controller. Worthmann et al. [27] and
Braun et al. [28] used non-price-based methods to control distributed flexibilities.

Cai et al. [29] apply a two-level flexibility control mechanism for building thermal
loads that, at one level, maximizes the operational flexibility over the next hour and, at
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the other level, optimizes the operational costs of participating in energy and frequency
markets. Though this approach is eventually price-based, it does not lead to marginal load
trajectories as regulation capacities are needed for participation in the frequency market.

In centralized DR frameworks like [30,31], a central intelligence system uses infor-
mation about the current state of every consumer’s devices and demand, computes an
optimal matching, and finally operates the consumers’ flexibilities according to the optimal
plan. However, privacy and scalability problems emerge in centralized DR approaches.

Non-price-based DR approaches were also applied by Wang et al. [32], who formulated
an electrical load tracking problem that includes power generation and consumption as
flexibilities. Hindi et al. [33] propose a framework for reducing energy imbalances in the
grid by jointly controlling the supply side and the demand side. They designed a model
predictive controller for tracking a time-varying reference signal. The control scheme results
in a quadratic program, uses knowledge of the plant model and feedback information from
the demand side, and thus, is not autonomous. Logenthiran et al. [34] use a desired load
curve to control shiftable loads in an RTP DR program. The desired load curve is chosen in
a way to be inversely proportional to electricity market prices. Callaway [35] uses power
tracking in a thermal control setting to mitigate RES power fluctuations. However, the
control is used to produce short-time scale responses of one hour or less.

The difficulties of RTP in autonomous DR and the successful application of other
signals and tracking in non-autonomous DR settings motivates the idea of also using
different signals and tracking in the setting of autonomous DR. We consider an ESS as the
consumer’s flexibility and propose to use a production power signal to circumvent the
non-linear bilevel optimization of autonomous RTP. Each consumer’s ESS should track the
production power signal as closely as possible in the L1-norm (sum of absolute values).
We term this approach optimal power tracking (OPT) and reason it in the following way:
A flexibility defines a set of power profiles that are made feasible by the flexibility. We
call this set the flexibility region of the ESS. Cost optimization according to a given price
signal is a linear program (LP) and thus results in a consumption profile that lies at the
boundary of the flexibility region.The interior of the flexibility region is never occupied by
cost optimal solutions. This fact is reflected by the observation that multiples of a price
signal lead to the same optimal consumption. Thus, price signals cannot parameterize
the complete feasibility region. RTP is therefore inefficient for matching consumption
to a given production because it typically does not lead to a consumption that matches
production best. By design, OPT overcomes the boundary restriction and uses the entire
flexibility region. With OPT, consumption profiles are inducible, which are not inducible
by means of RTP. In its L1-norm (sum of absolute values) formulation, OPT is a non-linear
optimization problem. It can, however, be reformulated as an LP.

On the basis of this reasoning, we hypothesize that:

OPT can control demand side flexibilities more efficiently than RTP.

In order to test this hypothesis, we compare the two algorithms over one year re-
garding the indicators imbalance energy (measured as L1-distance to production), peak
consumption, storage variation and storage losses.

In summary, previous studies have already successfully applied the tracking of power
signals in the realm of DR. However, they typically did not question prices as an incentive
signal. To the best of the authors’ knowledge, this paper is the first to investigate the
use of power signals from a system operator to consumers in an autonomous DR setting.
Furthermore, a quantitative comparison of OPT with RTP in the same DR setting regarding
multiple indicators has been missing in the literature. Thus, the main objective of this study
is to provide a fair comparison of OPT and RTP for the control of autonomous flexibilities
concerning cost and stability indicators, computational effort and extensibility.

The rest of the paper is organized as follows: In Section 2, we formalize the consumer’s
optimization problems RTP and OPT using a simple electrical energy system model and
illustrate the corresponding solution structures in a simplified 2D model. We specify the
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production, price and demand data, and give the parameter configuration for comparison.
In Section 3, the resulting indicator values of RTP and OPT are given for different ESS
capacities. Section 4 concludes the paper with a discussion of the findings and suggestions
for next steps.

2. Materials and Methods

In this section, we model a simple but typical DR setting. Both optimization ap-
proaches, RTP and OPT, are presented in detail. They aim to control the consumer’s
flexibility in order to match consumption to a given production without changing the
consumers known demand. Note that in this setting the consumer does not experience any
discomfort as the demand side flexibility only consists of the ESS and no customer behav-
ior, represented by the given demand profile, is changed. We illustrate the flexibility and
the optimization approaches to gain an understanding of their (dis-)advantages. Finally,
we state the simulation settings that were used for the quantitative comparisons of RTP
with OPT.

2.1. Energy System Model

For the sake of simplicity and interpretability, we consider an electric utility with
only one consumer whose data are known deterministically. Our electrical energy sys-
tem model is depicted in Figure 1, and a list of the symbols and units used is given in
Table 1 at the end of this section. Its main characteristics correspond to the model used by
van de Ven et al. [36].

ESS
S

controllersystem
operator

known production

direct consumption cdir

known demand

signal σ

consumption c

charge
sin

discharge
sout

p

d

Figure 1. Energy system model: the power transfers between electric utility, ESS and household demand are indicated as
solid lines. The dashed lines indicate signal communication (the signal which the electric utility sends to the household and
the controller signals).

Time is measured in h, power in kW, energy in kWh, and costs in EUR. Without loss
of generality, we use a unit time step ∆t = 1 h. Consumption is optimized over one day,
i.e., over N = 24 periods. The initial and end time points of the periods are 0, ∆t, . . . , N∆t.
Periods are indexed by their initial time points t ∈ T = {0, ∆t, . . . , (N − 1)∆t}. The initial
state of charge (SOC) of the ESS for the time point t = 0 is given as S0. Power values are
constant over each period. The utility has an ex ante known production profile p = (pt)t∈T .
Likewise, the consumer faces a known demand profile d = (dt)t∈T over the same day.
The ESS of the consumer has efficiency factors ηin and ηout for charging and discharging,
respectively. Before the day starts, the utility sends a signal σ = (σt)t∈T to the consumer,
which in turn is used by the consumer to determine the following optimal power profiles:
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• Consumption c = (ct)t∈T ,
• Direct consumption cdir = (cdir

t )t∈T ,
• Storage charging power sin = (sin

t )t∈T ,
• Storage discharging power sout = (sout

t )t∈T .

The efficiency factors, the initial SOC, and the charging and discharging powers
determine the SOC St at the period ends t = ∆t, . . . , N∆t. The consumption schedule of a
day is given by the power profiles (c, cdir, sin, sout). A consumption schedule is restricted
by the following constraints:

• Lower and upper bounds for ct, cdir
t , sin

t , and sout
t for all periods t ∈ T:

cmin ≤ ct ≤ cmax (1)

cdir
min ≤ cdir

t ≤ cdir
max (2)

sin
min ≤ sin

t ≤ sin
max (3)

sout
min ≤ sout

t ≤ sout
max (4)

• Power conservation at the junctions for all periods t ∈ T:

ct = cdir
t + sin

t (5)

dt = cdir
t + sout

t (6)

• Lower and upper bounds for the SOC

St = S0 +
t−∆t

∑
τ=0

(ηinsin
τ − η−1

outs
out
τ )∆t

for all periods t = ∆t, . . . , N∆t:

Smin ≤ St ≤ Smax (7)

• Fixed SOC Send at the end of the day:

S24 = Send (8)

• In order to prevent charging and discharging at the same time, binary variables βin
t

and βout
t are introduced to formulate the constraints:

sin
t ≤ sin

maxβin
t (9)

sout
t ≤ sout

maxβout
t (10)

βin
t + βout

t ≤ 1 (11)

for each period t = ∆t, . . . , N∆t.

Compared with the real situation, this model does not consider uncertainties in
production, in the initial SOC, in the efficiency factors of the ESS, and in consumer demand.
Nevertheless, the model is appropriate and sufficient for gaining a deeper understanding
of the implications of flexibility control via price and power signals.

The symbols and units used for the energy system model are summarized in Table 1.
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Table 1. Symbols and units used for the energy system model.

Symbol Quantity Unit

t index of time periods h
∆t time step h
N number of time periods
T set of time periods
pt production during period t kW
σt signal value during period t kW for OPT

EUR/kWh for RTP
πt price during period t EUR/kWh
ct consumption during period t kW
cmin, cmax minimum resp. maximum consumption kW
cdir

t direct consumption during period t kW
cdir

min, cdir
max minimum resp. maximum direct consumption kW

ηin efficiency factor for charging
ηout efficiency factor for discharging
sin

t storage charging power during period t kW
sout

t storage discharging power during period t kW
sin

min, sin
max min. resp. max. storage charging power kW

sout
min, sout

max min. resp. max. storage discharging power kW
βin

t 1 if charging during period t , 0 else
βout

t 1 if discharging during period t , 0 else
S0 initial SOC kWh
St SOC at the end of period t kWh
dt demand during period t kW

2.2. Real-Time Pricing

In the RTP regime, a price signal σ = π with units EUR/kWh is sent by the electric
utility, as the system operator, to the consumer’s controller. The controller solves:

min. ∑
t∈T

πtct∆t (12)

subject to all constraints (1) to (11). The decision variables of this LP are comprised of the
consumer schedule (c, cdir, sin, sout) and the auxiliary binary variables βin = (βin

t )t∈T and
βout = (βout

t )t∈T .
Typically, spot market prices are positively correlated with energy production. With

such price signals, cost minimization leads to consumption profiles that correlate negatively
with production. For peak shaving, this effect is desirable, as can be seen for example
in the work of Widergren et al. [37]. In this paper, however, the objective is to match
consumption with production. Therefore, we use pseudo-prices that perfectly anticorrelate
with production. More precisely, our price signal π is derived from the production p by
first standardizing p to zero mean and unit standard deviation, then multiplying it with
−1, and finally subtracting its minimum value, such that π ≥ 0.

An LP can be visualized in the space of the decision variables by the price vector π
and the feasibility region. The feasibility region of the cost minimization problem (12)
determines the flexibility region that we introduced in Section 1. In the energy system
model above, we consider various power profiles of production, demand and consumption
over one day, which are constant during each time period. In this setting, a power profile
is a vector in Rn. As a depictable example for a flexibility region, we now consider only
two hours together with a lossless ESS of a capacity of 5 kWh, an initial SOC of 0 kWh and
a maximum charging power 5 kW. The final SOC S2 is not fixed. In this setting, for the
sake of illustrating it in two dimensions, direct consumption is made possible by enabling
concurrent charging and discharging, i.e., by dropping the constraints (10) to (11). The
complete consumption c = (c0, c1) flows into the ESS, and the given demand d = (1, 3) is
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taken completely from the ESS. Figure 2 shows the corresponding flexibility region as a
convex set in R2.

0 1 2 3 4 5 6
c0

0

1

2

3

4

5

6

c 1

demand

consumption

Figure 2. RTP in a simplified flexibility region (shaded region). The arrow depicts the price vector
π. The contour lines of the cost function are orthogonal to the price vector. The resulting optimal
consumption (dark dot) always lies at the boundary of the flexibility region.

Figure 2 also reveals the known fact that any solution of an LP lies on the boundary
of the feasibility region. Changing the price signal changes the resulting boundary point.
More specifically, the LP solver always returns a vertex of the flexibility region. The interior
of the flexibility region is unreachable by RTP. This leads to the question of how one can
induce an inner point as the consumption resulting from autonomous optimization. Our
approach to this problem consists of sending a power tracking signal to the household and
is detailed in the next subsection.

2.3. Optimal Power Tracking

In the OPT regime, the system operator, e.g., the electric utility, estimates the daily ag-
gregate demand energy of the household and runs a production profile p whose aggregate
energy equals the estimated aggregate demand energy of the household and is otherwise
beneficial for the utility. This power profile is sent as signal σ = p to the household whose
device solves the L1-norm, non-linear optimization tracking problem:

min. ∑
t∈T
|pt − ct|∆t (13)

subject to all constraints (1) to (11). Again, the decision variables are comprised of the
consumer schedule (c, cdir, sin, sout) and the auxiliary binary variables βin and βout.

Figure 3 shows that with OPT, interior points of the consumer’s flexibility region can
be induced as consumptions. If the tracking signal p lies outside the flexibility region, then
the OPT solution lies at the boundary, but it need not be a vertex as in the RTP regime.

The optimization problem (13) corresponds to minimizing the L1-norm of the differ-
ence vector p− c and is thus non-linear. It can, however, be reformulated as the LP:

min. ∑
t∈T

at∆t (14)

with the additional constraints −at ≤ pt − ct ≤ at using the auxiliary variables at ≥ 0 for
all times t ∈ T.
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0 1 2 3 4 5 6
c0

0

1

2

3

4

5

6

c 1

demand

production = consumption

Figure 3. OPT in a simplified flexibility region (shaded region). The dark dot depicts the production
signal to be tracked. The contour lines of the objective function are lines of constant L1-distance to the
production signal. As the latter lies within the flexibility region, it coincides with the consumption
returned by the OPT problem.

The L1-norm of (p− c)∆t can be interpreted economically as the amount of energy and
thus money needed to balance the daily mismatch between production and consumption.
For this reason, we use the L1-norm. Alternative norms like the L2-norm (Euclidean norm)
are, however, also capable of inducing interior points as consumption profiles and can be
argued to have their advantages.

We used the following simulation settings to calculate four important indicators and
thereby test the hypothesis stated in the introduction.

2.4. Simulation Settings

To simulate complete renewable energy production, the total solar and wind gen-
eration of 2018 in Germany [38] is scaled to the production profiles of our model. The
2018 standard load profiles of the Stromnetz Berlin [39] are rescaled to an aggregate yearly
household demand of 1000 kWh before using them for the demand profiles. The energy of
each daily production profile equals the corresponding aggregate demand energy. Both
efficiency factors of the ESS are set to ηin = ηout = 0.95. Its capacity is varied to reflect
different storage settings: Smax = 0, 0.25, 0.5, 1, 2, 4, 6, 8, and 10 kWh. All lower bounds in
the electrical consumption model are chosen to be zero: cmin = cdir

min = sin
min = sout

min = 0 kW.
The following upper bounds are used: cmax = cdir

max = 35 kW, sin
max = sout

max = C · Smax kW
with a battery C-rate of C = 1

2h . The initial and final SOC values are both set to the respec-
tive mean capacity: S0 = Send = 0.5 · Smax, in order to have a continuous SOC-transition
between days.

3. Results

The LPs were solved in Python using the Gurobi Optimizer [40]. The computations
were performed on a laptop with an Intel Core i7-4700MQ 3144 MHz CPU. For a given
parameter setting, the RTP computations needed approximately 7.5 s for the simulation
year. The LP of each day involved 144 variables (96 continuous and 48 binary) and
169 constraints. The respective OPT computations needed approximately 9.0 s. The LP of
each day involved 168 variables (120 continuous and 48 binary) and 217 constraints. The
respective benchmark computations needed approximately 1.5 s.
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To compare the effects of RTP and OPT over a complete year, the following indicators
were computed for each day:

• Defined as the sum of absolute differences between production and consumption,
the distance to production (D2P) measures the amount of imbalance energy and is
thereby relevant for the costs of the electric utility:

D2P = ‖p− c‖1∆t = ∑
t∈T
|pt − ct|∆t (15)

• Defined as the maximum consumption, peak consumption (PC) is relevant for the
stability of transmission and distribution networks:

PC = max
t∈T

ct (16)

• Defined as the sum of absolute consumption changes, storage variation (SV) is relevant
for the lifetime of the ESS, and thus, for the consumer’s costs:

SV = ∑
t∈T
|St − St−1| (17)

• Defined as the energy loss of the ESS, storage loss (SL) is also relevant for the con-
sumer’s costs, and is an important indicator for energy efficiency:

SL = (1− ηin) ∑
t∈T

sin
t ∆t + (

1
ηout
− 1) ∑

t∈T
sout

t ∆t (18)

When the consumer does not operate an ESS, consumption coincides with demand.
These consumption profiles served as benchmarks for D2P and PC.

Figure 4 shows histograms of the indicator values for Smax = 2.0.
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The objective of OPT is the minimization of D2P. Therefore, it is not surprising that OPT
can decrease D2P to almost zero kWh. The D2P values of RTP, however, are even higher
than the benchmark of no flexibility. This is partly due to the non-optimal price signal used.
But even with a bilevel-optimized price signal, RTP could have only induced boundary
points of the consumer’s flexibility region. Thus, in all cases where the given production lies

Figure 4. Histograms of indicator values for Smax = 2.0.
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The objective of OPT is the minimization of D2P. Therefore, it is not surprising that
OPT can decrease D2P to almost zero kWh. The D2P values of RTP, however, are even
higher than the benchmark of no flexibility. This is partly due to the non-optimal price
signal used. However, even with a bilevel-optimized price signal, RTP could have only
induced boundary points of the consumer’s flexibility region. Thus, in all cases where the
given production lies inside this region, there exists no price signal that could induce this
production, whereas OPT will always induce a perfectly matching consumption.

The results for SV and SL are related because higher storage usage leads to higher
losses. Both results show significantly better values for OPT compared to RTP. This is
because the production signals that OPT tries to follow have less variation than the RTP
optimal consumption, which accumulate at times of low prices.

The PC values are not significantly altered by OPT compared to the benchmark. The
PC values of RTP optimal consumption, on the other hand, are more than five times higher.
This adverse effect of RTP occurs for the same reasons as described before for all kinds of
prices, regardless of whether they are bilevel-optimized.

Figure 5 gives the mean and standard deviation values of all indicators for different
ESS capacities.
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For all capacities greater than 1 kWh, RTP results in adverse indicator values compared
to the benchmark and OPT. With increasing capacities, the discrepancies between RTP on
the one hand and OPT and the benchmark on the other hand increase.

All RTP indicators increase with ESS capacity until they stop at some saturation values.
The saturation of RTP is due to the finite aggregate demand. All OPT indicators saturate
earlier and at lower, more favorable values. The saturation of OPT is due to the fact that a
higher capacity corresponds to a larger flexibility region which is of no additional use if
the production is already feasible, i.e., inside the flexibility region. This effect can be seen
best in Figure 5a, where D2P starts to vanish from Smax = 2 kWh on.

As mentioned in section 2, no uncertainties were considered, and all data was as-
sumed to be known perfectly in advance. The results of the deterministic RTP and OPT
optimizations are thus only approximatively realistic. However, it follows that consump-
tions that are induced by OPT and lie inside the flexibility region are more robust against
uncertainties in demand and initial SOC than the vertex solutions of RTP.

Though the L1-norm of the OPT approach can be interpreted as balancing energy,
being cost-relevant for the electric utility, the OPT approach does not necessarily have a
straightforward economic implication for the consumer. Instead of directly transferring
balancing energy costs to the consumer, the consumer could be rewarded by a reduced
tariff for allowing the system operator to control the ESS via OPT.
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different ESS capacities Smax.

For all capacities greater than 1 kWh, RTP results in adverse indicator values compared
to the benchmark and OPT. With increasing capacities, the discrepancies between RTP on
the one hand and OPT and the benchmark on the other hand increase.

All RTP indicators increase with ESS capacity until they stop at some saturation values.
The saturation of RTP is due to the finite aggregate demand. All OPT indicators saturate
earlier and at lower more favorable values. The saturation of OPT is due to the fact that a
higher capacity corresponds to a larger flexibility region which is of no additional use if
the production is already feasible, i.e., inside the flexibility region. This effect can be seen
best in Figure 5a, where D2P starts to vanish from Smax = 2 kWh on.

As mentioned in Section 2, no uncertainties were considered, and all data were
assumed to be perfectly known in advance. The results of the deterministic RTP and OPT
optimizations are thus only approximately realistic. However, it follows that consumptions
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that are induced by OPT and lie inside the flexibility region are more robust against
uncertainties in demand and initial SOC than the vertex solutions of RTP.

Although the L1-norm of the OPT approach can be interpreted as balancing energy,
since it is cost-relevant for the electric utility, the OPT approach does not necessarily have a
straightforward economic implication for the consumer. Instead of directly transferring
balancing energy costs to the consumer, the consumer could be rewarded by a reduced
tariff for allowing the system operator to control the ESS via OPT.

4. Conclusions

In this paper, we analyzed the shortcomings of price signals in autonomous DR and
inferred dropping prices as a means to indirectly induce consumption changes. We suggest,
instead, to directly use the desired power profile as a signal, which shall be tracked by the
consumer’s device. This new OPT approach is able to control the total flexibility. It can
induce consumptions on the demand side that RTP cannot induce, and additionally, shows
multiple system benefits.

For a comparison of OPT with RTP in a standard DR setting, German renewable
energy production and German standard load profiles were used for daily production
and demand profiles, respectively. The flexibility of the consumer consisted of an ESS
with realistic efficiencies. Imbalance energy, peak consumption, storage variation and
storage losses were analyzed for daily optimizations over a complete year under perfect
information assumptions. The extent of flexibility, given by the ESS capacity, proved to be
an important sensitivity parameter for the chosen indicators.

The main findings of this study are outlined below:

• For the autonomous control of demand side flexibilities, OPT shows favorable charac-
teristics for all indicators, which reflect the matching of production and consumption,
the costs of the electric utility, stability of transmission and distribution networks, the
consumer’s costs and energy efficiency.

• The RTP performance is counterproductive, even inferior compared to the benchmark
case of no flexibility. Similar adverse effects of price-based DR were recently reported
in [9–12].

• OPT overcomes these problems without the need for additional communication or
computation efforts. The proposed approach can be implemented using the same hard-
ware and software as for RTP. We refer to [7,8] as examples for RTP implementations
using embedded systems.

• The advantages of OPT compared to RTP increase with the extent of the flexibility.
The maximal potential of OPT occurs at storage capacities where the flexibility re-
gion encompasses the production profile. The adverse characteristics of RTP keep
increasing with storage capacity until the consumer specific constraints stop them.

This paper presents a proof of concept for the new OPT approach in autonomous DR.
Some limitations should be noted, and several suggestions for enhancements and future
studies can be stated:

We did not use bilevel-optimized prices for the comparison of RTP to OPT because
the optimistic assumption of bilevel optimization has recently been shown to be ques-
tionable [17]. Furthermore, even bilevel-optimized prices are not able to induce inner
points of the consumer’s flexibility region. Nevertheless, a quantitative comparison to
bilevel-optimal prices would be interesting.

Although the results under deterministic assumptions show that OPT outperforms
the RTP approach with regards to all indicators, this remains to be tested in a more
realistic setting including uncertainties. In a setting with partly stochastic boundaries of
the flexibility region, one could increase the robustness of the OPT-optimized consumption
schedule by including penalty terms in the objective function that maximize the distance
to uncertain boundaries.

Another enhancement of the OPT approach could be to use model predictive control
strategies that take into account, e.g., weather forecasts and occupant behavior. Especially
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for specific applications or systems like buildings and electric vehicle fleets that comprise
several components and flexibilities, this could improve performance.

With time-dependent penalty coefficients, the OPT algorithm could be extended to
stress times where the matching between consumption and power signal is reinforced
or attenuated.

When more than one flexibility is controlled with OPT and the aggregate consumption
is matched to a given production, the OPT approach is scalable in different ways to full
system sizes. We give two ideas in this regard:

• The same signal is sent out to all consumers’ controllers. Each controller rescales the
received power signal to the total daily household demand.

• If the flexibilities and demands of consumers can be estimated, individual tracking
signals can be used, which can be better matched by the consumers’ controllers.

The OPT approach can be readily generalized to settings that include other flexibilities
like thermal storages, shiftable or scalable loads, occupant comfort ranges, and electric
vehicles. Aggregations of these flexibilities, e.g., in buildings and distribution grids, can be
handled by considering the Minkowski sum of the individual flexibilities, cf. [41,42].

This study did not compare RTP with OPT in monetary terms but used technical
indicators only. In addition to savings in balancing energy, with OPT the system operator
faces increased freedom in specifying the production profile. Cheaper purchases, power
grid-friendly loads and increased integration of RES lead to competitive advantages, parts
of which could be passed to the consumer via a cheaper tariff. The monetary quantification
of these multiple benefits in specific settings should be considered in future studies.
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