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Kurzreferat

In dieser Arbeit wird ein Konzept für ein Empfehlungssystem für das Infor-
mationsportal swissmom erarbeitet. Das Kaltstartproblem und die schwanger-
schaftsbedingten zeitlichen Interessensänderungen müssen in diesem Konzept
berücksichtigt werden. Eine Stand der Technik Analyse über Empfehlungssys-
teme evaluiert geeignete Modelle für die Lösung beider Herausforderungen. Es wird
eine explorative Datenanalyse durchgeführt, in der sich zeigt, dass der Schwanger-
schaftsmonat des Artikels ein wichtiger Indikator dafür ist, wie relevant ein Artikel
für einen User ist. Da in den vorhandenen Daten die Schwangerschaftsphase der
werdenden Mütter nicht bekannt ist, sind weder kollaboratives Filtern, inhalts-
basiertes Filtern, hybride Modelle noch kontextbewusste Empfehlungssysteme
geeignet. Das vorgeschlagene Konzept für ein Empfehlungssystem ist daher ein
fallbasiertes Modell, welches Artikel empfiehlt, die zur selben Schwangerschafts-
phase gehören wie der gerade angesehene Artikel.

Dieses Empfehlungssystem benötigt für jeden Artikel den Schwangerschaftsmonat,
in welchem dieser Artikel relevant ist. Diese Information ist jedoch nur bei 31%
aller Artikel über Schwangerschaft bekannt. Diese Arbeit sucht deshalb einen
Ansatz, welcher den Schwangerschaftsmonat anhand des Artikeltexts bestimmen
kann. Die Herausforderungen bei dieser Aufgabe sind, dass nur wenige Trai-
ningsdaten verfügbar sind und die Artikeltexte der unterschiedlichen Schwanger-
schaftsmonate oftmals dieselben Begriffe beinhalten, da alle Artikel vom Thema
Schwangerschaft handeln. In mehreren Experimenten wird das schlagwortbasierte
TF-IDF Modell mit dem kontextbasierten BERT Modell verglichen. Es zeigt sich
dabei, dass der kontextbasierte Ansatz zu besseren Ergebnissen führt.
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Abstract

A concept for a recommender system for the information portal swissmom is de-
signed in this work. The challenges posed by the cold start problem and the
pregnancy-related temporal interest changes need to be considered in the concept.
A state-of-the-art research on recommender systems is conducted to evaluate suit-
able models for solving both challenges. The explorative data analysis shows that
the article’s month of pregnancy is an important indicator of how relevant an ar-
ticle is to a user. Neither collaborative filtering, content-based filtering, hybrid
models, nor context-aware recommender systems are applicable because the user’s
pregnancy phase is unknown in the available data. Therefore, the proposed rec-
ommender system concept is a case-based model that recommends articles which
belong to the same gestation phase as the currently viewed article.

This recommender system requires that the month of pregnancy, in which an article
is relevant, is known for each article. However, this information is only available for
31% of all articles about pregnancy. Consequently, this work looks for an approach
to predict the month of gestation based on the article text. The challenges with this
are that only few training data are available, and the article texts of the various
months of pregnancy often contain the same terms, considering all articles are
about pregnancy. A keyword-based approach using the TF-IDF model is compared
with a context-based approach using the BERT model. The results show that the
context-based approach outperforms the keyword-based approach.
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1 Introduction

Recommender systems do a pre-selection for us and present us with a manageable
list of relevant options from the vast choice of available content that is available
online nowadays. A recommender system helps us, for example, to choose the
next movie on Netflix or to find further interesting articles to read. Netflix showed
how valuable a sound recommender system is with its Netflix Prize. In 2009,
Netflix held a competition in which the winning team received one million dollars
(Netflix, Inc. 2021). Since 2007, ACM RecSys holds a yearly conference to discuss
and present numerous new research for recommender systems. Additionally, ACM
RecSys announces a new challenge every year to solve a real-world task (ACM
RecSys 2021). This work proposes a concept for a recommender system for the
information portal swissmom1. The following sections describe the challenges that
need to be considered and the particular aims of this work.

1.1 Problem Statement

Recommender systems have to deal with different challenges that strongly depend
on the data used. This work designs a concept for a recommender system for swiss-
mom, which belongs to the company CH Regionalmedien AG (CH Regionalmedien
AG 2021b). The website is, according to its information, ”the most visited Swiss
information portal with a large forum about wanting children, pregnancy, birth,
baby, and child” (CH Regionalmedien AG 2021a). swissmom offers about 5,000
articles on the website for reading. About 285,000 users visit the website within
one week, whereby approximately 90% of these users visit the website for the first
time. The main challenges of a recommender system for this particular type of
data are the cold start problem and changes in users’ interests, which strongly
depend on the course of pregnancy.

1.1.1 Cold Start Problem

A recommender system needs knowledge about users and their interests to generate
sound, personalised recommendations. As mentioned before, 90% of the users who
visit swissmom’s website are on the website for the first time, which means there

1swissmom.ch
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is no information available about these users and their interests. The problem
of having no information about users is known as the cold start problem. A
recommender system for swissmom needs to deal with this particular problem for
new users. Netflix’s solution to the cold start problem is to present new users
with a list of movies. After the users choose the ones they like, they get access to
the streaming platform. This approach allows Netflix to create a user profile for
new users and generate sound suggestions. However, this option is not suitable for
an information portal. Users often arrive at an article on the information portal
via a Google search. If users need to rate a selection of articles before getting
access to an article, most users will look for another website that provides similar
information.

1.1.2 Pregnancy-Related Temporal Interest Changes

In a recommender system like Netflix, users have constant interests over a long
period. It is not relevant for the user whether Netflix suggests action movie A
first and action movie B five months later or vice versa. Most of swissmom’s
content is subject to a time sequence closely linked to the user. For example, a
user is interested in articles about the first month of pregnancy during the first
visit. It is suitable to recommend other articles from the beginning of pregnancy
during this visit. However, these articles are no longer relevant for the user five
months later. There are already algorithms for recommender systems that can
learn temporal components, but these are either periodic temporal components
independent of the user or temporal sequences of interactions (Campos, Rubio,
and Cantador 2014). Periodic temporal components could be, for example, morn-
ing/evening or summer/winter. Alternatively, a recommender system can learn
temporal sequences of interactions, but these do not have a fixed time interval.
For example, a user first buys a printer and only then printer cartridges. However,
it does not matter whether the user buys the printer cartridges a week or a month
later. Therefore, it is also irrelevant whether printer cartridges are recommended
to the user a week or a month later. Especially in the case of pregnancy, the time
gap between interactions plays an important role.

1.2 Aim of the Work

This work aims to find a suitable approach for a recommender system that can
deal with the cold start problem and the temporal interest changes. For this pur-
pose, a state-of-the-art research is conducted, which gives an overview of current
models and concepts of recommender systems. An exploratory data analysis on
swissmom’s data is carried out to investigate the behaviour of users. swissmom’s
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data consists of data that is collected with Google Analytics and data from the in-
ternally used content management system (CMS). Google Analytics tracks which
articles were visited by a user and when the user visited the article. Additional
information about the articles, such as the categories and weeks of pregnancy in
which an article is relevant, is stored in the CMS. Based on the findings of the data
analysis, the models and concepts from the state-of-the-art research will be evalu-
ated, and applicable approaches will be selected that will help generate meaningful
recommendations for users. Experiments using these methods will be carried out
to determine how suitable these approaches are for creating sound recommenda-
tions. An overview of possible improvements of the recommender system concept
is given in an outlook.
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2 State-of-the-Art

Klahold (2009) defines a recommender system as a system consisting of a user,
a context, and a set of recommended items. The context, in turn, consists of
the current situation, the user profile, and the complete set of all items. The
task of a recommender system is to recommend those items from the complete
set that are most useful to the user under the given context. For example, when
recommending restaurants to a user, the user’s current location is considered the
current situation and the recommended items differ depending on this location.
The same goes when a user is currently viewing a comedy movie’s description,
and recommendations for other movies are shown beneath this description. The
current situation is now the viewed movie. In this situation, recommending more
comedy movies is more beneficial to the user than recommending horror movies.
These two examples make it evident that the usefulness of a recommended item
depends not only on the user’s interests but also on the current situation.

There are four basic recommender system models. This section explains these
models and the types of data used. Furthermore, context-aware recommender
systems are described. This type of recommender system deals with domain-
specific data and can be used with any of the four basic models. Finally, the
essential evaluation metrics for recommender systems with implicit feedback data
are explained.

2.1 Types of User-Item Interactions

Recommender systems distinguish between two types of user-item interactions:
explicit and implicit feedback. Users give explicit feedback by rating items. The
rating is usually based on a scale ranging from dislike to like. The rating scale can
be, for example, an interval-based 5-star rating or a binary rating such as thumbs
up/down. Unary ratings only allow the expression of liking an item. Their use
is limited in explicit feedback and is used, for example, by Facebook. The only
possible rating for a Facebook post is “like”. Not liking a Facebook post does not
automatically mean the user dislikes the post. It could be that the user either
never saw the post or that the user has a neutral feeling regarding it.
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Implicit feedback is gathered from the behaviour of users, for example, clicks, pur-
chases, and shares. Implicit feedback assumes that specific user actions implicate
positive feedback. Hence, implicit feedback can only use unary ratings.

While explicit ratings are often better suited to learn the interests and dislikes of
users, which in turn helps generate sound recommendations, this type of feedback
is more difficult to gather because it requires actions by users. There is far more
implicit feedback data available than explicit ratings. These large amounts of data
make implicit feedback very suitable for neural networks. Hence, research of recent
years increasingly focuses on neural networks in recommender systems.

2.2 Basic Recommender System Models

Figure 2.1: Overview of basic recommender system models

There are four basic models to design a recommender system: collaborative filter-
ing, content-based filtering, knowledge-based models, and hybrid models (Felfer-
nig, Jeran, et al. 2013). An overview of all models and their further categorisation
is shown in figure 2.1. For the sake of completeness, it is essential to mention that
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some literature considers knowledge-based models as a special case of content-
based filtering.

Figure 2.2: Overview of types of data and associated recommender system models

The models are mainly categorised based on the data used. There are two types
of data: user-item interactions and item attributes. Figure 2.2 displays the dif-
ferent types of data and the associated models. Collaborative filtering models use
user-item interactions. Content-based filtering models use both types of data. In
contrast to collaborative filtering, content-based filtering uses only the interactions
of the user for whom the recommendations are generated. Knowledge-based mod-
els only use item attributes. Hybrid models are combinations of the other three
models and use the necessary data of each model.

2.2.1 Collaborative Filtering

Collaborative filtering models work with user-item interactions (Felfernig, Jeran,
et al. 2013). These models predict the ratings of items by calculating similarities
between users. The basic idea behind these models is that if user A liked ten
movies, and user B gave positive ratings for 8 of these movies, user B would most
probably enjoy the other two movies as well.
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Collaborative filtering models differentiate between memory-based and model-
based methods (Yang et al. 2016). Memory-based methods, also called neigh-
bourhood-based collaborative filtering algorithms in the literature, calculate the
similarity between users (user-based collaborative filtering) or items (item-based
collaborative filtering) to predict unknown ratings. The idea behind user-based col-
laborative filtering is to find users with similar interests and predict the unknown
ratings based on the k most similar users. Item-based collaborative filtering uses
items that have been similarly rated by multiple users to predict missing ratings
of an item. The advantages of memory-based models are their simplicity. Model-
based methods use data mining and machine learning algorithms to build a model
to predict ratings. Examples of model-based methods are Bayesian networks (Su
and Khoshgoftaar 2006), clustering models (Ungar and Foster 1998), and latent
semantic models (Hofmann 2004). Model-based methods can handle sparse data
better than memory-based methods. However, model-based methods have more
difficulties with users and items that are unknown during training.

One of the main problems of collaborative filtering models is sparse data. Each user
interacts with or rates only a small subset of items, leading to sparse data. This
makes it more difficult to find similar users. Another challenge is the popularity
bias. Popular items tend to be recommended more and are therefore more visible to
users, leading to more interactions between popular items and users. The opposite
is true for unpopular items. Collaborative filtering models need the interaction
history of a user with items to be able to find similar users. Therefore, these
models cannot find similar users and recommend items for new users. The same
applies to new items. These models cannot recommend items without user ratings.
This is known as the cold start problem.

2.2.2 Content-Based Filtering

Content-based filtering uses attributes and descriptive characteristics of items and
the interests of a user, which are learned from historical user-item interactions,
to predict recommendations (Lops, Gemmis, and Semeraro 2011). Based on the
items’ attributes, similarities between items can be calculated. This method offers
the advantage of easily explainable recommendations. Providing explanations for
recommended items can increase the chance of a user interacting with the recom-
mendation. An example of this would be “since you have read article X, you might
also like article Y”. In contrast to the collaborative filtering approach, content-
based filtering models can also recommend new items, provided that the new items
have similar properties to the present items. This model can also provide better
recommendations for users with a unique taste because it does not rely on other
users with similar interests. The significant disadvantage of this approach is that
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the recommendations are not very diverse, and users receive only recommended
items from their previous interests.

A content-based filtering system consists of three phases. The preprocessing step
transforms the attributes and descriptive characteristics in a vector-space repre-
sentation, whereby the representation depends highly on the type of items. The
second step learns the interests of each user from the historical user-item interac-
tions. The interests are modelled in a user profile and provide a relation between
a user’s interests and the extracted item characteristics from step one. The last
step is predicting and ranking recommendations for a certain user based on the
user’s profile from step two and the item feature extractions from step one.

Feature extraction depends highly on the items used in the recommender systems.
In most recommender systems, items have unstructured text attributes, for ex-
ample, the description of a movie or the text of an article. The most common
approach is to extract keywords from the unstructured text and represent them
together with their frequency in vector-space. In order to do this, the text is bro-
ken down into individual words. Alternatively, the text can be split into phrases
such as “hot dog” as well. It can be helpful to remove stop-words such as “a” or
“the” to minimise the list of keywords to relevant ones. Stemming can also be
used to consolidate words with the same root, for example, “bird” and “birds” or
“stand” and “standing”. Pazzani and Billsus (1997) recommend using only 50-300
keywords to mitigate overfitting. The frequency can be calculated by counting the
occurrence of each keyword per article.

2.2.3 Knowledge-Based Recommender System

Knowledge-based recommender systems are very similar to content-based filtering.
Both techniques match the interests of a user to the attributes of the items. For
example, if a user on Netflix is interested in action movies, this interest can be
matched to the corresponding movie genre. The difference between the two models
lies in how the interests of users are collected and how long those interests are
stored. Content-based filtering uses historical user-item interactions to learn the
interests of each user. The learned interests are then stored in the user profile.
Knowledge-based models, in contrast, do not utilise user-item interactions. Users
must explicitly specify their interests before the recommender system can generate
recommendations (Felfernig, Friedrich, et al. 2011). An example of a knowledge-
based model would be a recommender system for houses. Users specify their needs
with different filters for the price range, size, number of rooms and other attributes.
The user then receives recommendations for houses that fulfil the requirements
from the user’s input. Depending on the item domain, the mapping of the filters
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to item attributes can be complex and requires domain knowledge. An example
of a complex mapping for the house recommender system would be a filter that
distinguishes between “homes for singles”, “small family homes”, and “big family
homes”. This filter needs to be mapped to several attributes of a house, such as
the number of bedrooms and bathrooms and the size of the house.

The interests of a user are usually not stored in a long-term user profile. Hence, if
users want recommendations again at a later time, they must specify their interests
again. This is particularly useful in domains where the interests of users change
each time they use the recommender system. An example of this would be a
recommender system for a hotel booking platform.

Knowledge-based models are divided into constraint-based (Felfernig, Friedrich,
et al. 2011) and case-based (McGinty and Reilly 2011) models. Constraint-based
systems use, as their name suggests, constraints to specify the requirements for
the recommendations. For example, a user can select specific attribute values or a
lower or upper limit. The example recommender system for houses is a constraint-
based model. The system will show items that match the given constraints. Case-
based systems present a list of items to a user. Each item represents a different
case example, and users can choose the example that best matches their interests.
For example, a case-based model for houses would present several images of houses
of different sizes to the user. Based on the chosen item, the system will recommend
similar items.

The main advantage of knowledge-based models is that they can deal with the
cold start problem because they do not rely on historical user-item interactions
to learn the interests of a user. However, this technique requires actions from the
user before the system can generate recommendations, which is not suitable for all
applications. Therefore, knowledge-based systems are mostly used in complex item
domains. Content-based filtering systems and case-based systems use similarity
functions to generate recommendations. Hence, both systems have the problem
that the recommendations are hardly diverse. If users do not like one recommended
item, they usually like none of the recommendations. A straightforward approach
to mitigate this problem is the bounded random selection strategy. Instead of the
top k recommendations, k items are randomly selected from a list of top bk items
(Smyth and McClave 2001).

2.2.4 Hybrid Recommender System

Each of the discussed models has different advantages and disadvantages. A hybrid
recommender system (Burke 2002) is a combination of different models, for exam-
ple, a collaborative filtering model combined with a knowledge-based model. This
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combination can lead to better results in specific scenarios as it allows leveraging
the different advantages of the models.

2.3 Context-Aware Recommender System

Additional information such as location or time can be substantial to create sound
recommendations depending on the domain. For example, when recommending
restaurants, the location where the user wants to eat is a decisive criterion for
the recommendations. Contextual information always depends on the situation
in which the recommendation is made. For swissmom, the user’s current preg-
nancy phase at the time when the recommendations are to be made is decisive for
generating recommendations. Recommender systems that work with context data
have many names in the literature and are called context-aware, context-based or
context-sensitive recommender systems.

Temporal data is frequently used as additional context. This special case of a
context-aware recommender system is called a time-sensitive recommender system
(Campos, Rubio, and Cantador 2014). Time can have two different roles in a
recommender system: sequential or contextual. Temporal sequences can be used
to adapt to changes in the interests of a user. One way to do this is by penalising
older ratings with a decaying factor. Another possibility with time sequences is to
learn temporal sequences of interactions. For example, users who bought furniture
for a baby will generally purchase diapers in the future. A time-sensitive model
can learn less obvious sequences of interactions.

Time as a context is used to recommend different content based on the time. For
example, an online shop for clothes will recommend different types of clothes based
on the current season. Time here does not mean the actual date, but for example,
morning, summer, or weekend. The categorisation of the time depends on the
domain of the data. For an online clothing shop, categorising time into months
or seasons makes more sense than a detailed division into morning and evening
or days of the week. For Netflix, on the other hand, such a precise division is
applicable because consumption patterns for films and series during the week are
different from those at the weekend. In a time-sensitive recommender system,
each user-item interaction additionally contains the time of the interaction. The
time can be processed either during pre-filtering, training or post-filtering. In pre-
filtering, all ratings with an irrelevant time are filtered out. For example, if the
recommender system wants to create recommendations for the summer season, all
ratings without the time category summer are removed before training. In post-
filtering, training is done with all ratings. The recommendations are generated,
and all recommendations with the wrong time category are filtered out. Lastly,
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with a more complex model, the time category can be included in the training
process. In this case, the model is trained to ignore all irrelevant time categories.
Combinations are also possible. For example, the time is handled during training
as well as post-filtering.

2.4 Evaluation of Recommender System

The performance of a recommender system is determined through offline evalua-
tion (Herlocker et al. 2004). Historical user-item interactions are used to calculate
metrics in offline evaluation, which makes the evaluation results comparable be-
tween different algorithms. However, the significance of the results is limited. For
example, a recommender system could generate the perfect recommendations for
a user. However, if this user has never interacted with the generated recommen-
dations in the historical data, the evaluation result for this user will be poor. The
final performance of a recommender system can, therefore, only be evaluated in
an online setting. This means that users will receive recommendations from the
finished recommender system. It is then measured how often users interact with
the recommended items. Since this work designs the concept for the recommender
system but does not implement a ready-to-use prototype, only metrics for offline
evaluation are described in this section. Furthermore, these metrics are limited to
those that can be applied to implicit ratings, as the data of swissmom consists of
implicit feedback.

2.4.1 Accuracy

The goals of a recommender system, and thus what the evaluation measures, can
be different. For example, it may be important that the recommendations are as
diverse as possible. In most cases, accuracy is defined as the goal (Shani and Gu-
nawardana 2011). Accuracy indicates how often the recommender system correctly
predicts if a user likes or dislikes a particular item. Accuracy can be measured
well and is therefore suitable for evaluation. Basically, for implicit feedback data,
accuracy is measured by generating recommendations for each user and comparing
how many of these recommended items are in the test data. The following metrics
are all based on measuring accuracy.

2.4.2 Metrics

A recommender system predicts the rating a user would give for all user-item
combinations with a missing rating. As implicit feedback has no ratings, the
rating is 1 if the user has interacted with this item and 0 otherwise. One way to
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evaluate the accuracy is to calculate the deviation between the actual rating and
the calculated rating. This approach is especially suitable for explicit feedback
data but not for implicit feedback. Ranking evaluation methods such as utility-
based ranking evaluation and receiver operating characteristic (ROC) (Fawcett
2004) are suitable for evaluating recommender systems with implicit feedback.

Utility-Based Ranking Evaluation

Utility-based methods measure the usefulness of an item to a user. Average recip-
rocal hit-rate (ARHR) (Deshpande and Karypis 2004) is an often-used metric for
implicit feedback data. Equation 2.1 shows the calculation of ARHR for user u.
Equation 2.2 shows the calculation of the global ARHR value, which is the mean
ARHR of all users.

ARHR(u) =
∑

j∈Iu,vj≤L

1

vj
(2.1)

ARHR =
1

m

m∑
u=1

ARHR(u) (2.2)

The total number of users is denoted as m, and Iu is the set of all items of user u
that are in the test data. For each user u a list of recommendations is generated.
The items in each list are ranked from 1 to L, where 1 represents the highest
relevance for a user. The rank of item j in the generated recommendation list is
denoted as vj. The hit-rate is calculated for each generated recommendation that
exists in Iu. ARHR is the sum of all hit-rates for one user. For example, items
A and B exist in the test data for user Z. The generated recommendation list of
length L = 2 contains item B at rank 1 and item C at rank 2. The hit-rate for
item B is 1/1 = 1 and for item C 0 because this item does not occur in the test
data. ARHR for user Z is 1 + 0 = 1. The higher an interacted item is ranked in
the predicted recommendation list, the higher its hit-rate. The highest hit-rate,
achieved by an item at rank 1, is 1. The hit-rate of a generated recommendation
that is not present in the test data is 0.

Receiver Operating Characteristic (ROC)

ROC methods measure recall and precision. Recall is the proportion of interacted
items that the recommender system recommends. The proportion of recommended
items with which the user interacted is called precision. The interacted items are
the items in the test data set. This set of items is also called ground truth and is
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denoted as G in the following equations. The calculation of precision and recall
for a user are shown in equations 2.3 and 2.4.

Precision(t) = 100
|S(t) ∩G|
|S(t)|

(2.3)

Recall(t) = 100
|S(t) ∩G|
|G|

(2.4)

The higher the metrics, the better the recommendations generated. However, a
high precision usually means a low recall and vice-versa. The length of the list
of recommendations is denoted as t, and S(t) is the set of top t recommended
items. For example, the items A, B, and C are in the test data, which means G =
{A,B,C}. The recommended list contains the items A and D, therefore, t = 2 and
S(t) = {A,D}. The calculation of precision and recall results in 100 ∗ 1/2 = 50%
and 100 ∗ 1/3 = 33%, respectively. One of the two recommendations occurs in the
test data, leading to a precision of 50%. Recall is lower than precision because out
of the three items in the test data, only one item is actually recommended. The
two metrics, precision and recall, are calculated for different t and displayed in a
graph as a Precision-Recall curve for interpretability.

The ROC curve is easier to interpret. This curve also needs two metrics to be
calculated: recall referred to as true-positive rate (TPR) and false-positive rate
(FPR). The equations of TPR and FPR for a user are given in 2.5 and 2.6, respec-
tively. The set of all items is denoted as U . TPR should be as high as possible,
while FPR should be as low as possible.

TPR(t) = 100
|S(t) ∩G|
|G|

(2.5)

FPR(t) = 100
|S(t) \G|
|U \G|

(2.6)
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3 Data Analysis

This section describes the conducted explorative data analysis on swissmom’s data.
The findings will be used to evaluate which recommender system models are suit-
able.

The data set consists of data collected via Google Analytics from 7 February until
7 March 2021 and contains 2.5 million entries. Google Analytics tracks the inter-
actions of users with the website. Each interaction consists of a unique user-id,
the article’s URL, the article’s id, and the date of the page view. Additional in-
formation about the articles was retrieved from swissmom’s CMS. Articles that
are relevant in specific weeks of pregnancy have the week number as an additional
property. Generally, each article can be assigned to multiple weeks with a value
between 0-1, determining the article’s relevancy. For simplicity, each article has
the week with the highest relevancy assigned. Unfortunately, the user’s week of
gestation is unknown. This section assumes that the user is in the same week of
pregnancy as the first article visited by this user, which has an assigned week of
pregnancy. This assumption is based on the fact that most users visit an article
from swissmom because they found a link to the article during a Google search.
Therefore, it stands to reason that users are looking for information about their
current week of pregnancy and visit an article relevant to the user’s current phase
of pregnancy. This additional information makes it possible to analyse if a rela-
tionship between the pregnancy week of articles and users exists.

3.1 Categories of Articles

swissmom has a total of 4,530 articles about the topics “wanting children”, “preg-
nancy”, “baby”, “child”, “family”, and other subjects. Figure 3.1 shows the num-
ber of interactions per category in per cent. In addition, the number of articles
per category is also shown in per cent. About 45% of all visited articles are on
pregnancy, making this the most popular topic among users. About a third of
all articles are written about pregnancy, which makes “pregnancy” the topic with
the most articles. The second favourite topic of users is “baby” with 36% of all
interactions. The remaining three topics each account for less than 6% of all in-
teractions. This makes sense for the topic “wanting children” as less than 5% of
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Figure 3.1: Number of interactions and articles in per cent per category

all articles are written about this subject. However, even though about 20% of all
articles cover the topic “family”, only 4% of all interactions are in this category.

It was further analysed how many different categories were visited by each user
during one month. Since the goal of the recommender system is to encourage
users to read more articles, it is more interesting to analyse the behaviour of
users that viewed multiple articles during the analysed period. Hence, the number
of different categories was counted for users with at least five interactions. The
median number of categories for these users is two. 25% of all users viewed articles
from only a single category, and 75% of all users viewed articles from two or fewer
categories, which suggests that users are generally interested in articles about one
or two topics.

3.2 User

Figure 3.2 shows a boxenplot with the number of interactions per user on the x-
axis. Most users visit very few articles.The median is two interactions per user,
and 75% of all users visited three articles or less between 7 February 2021 and 7
March 2021. The data set contains 849,105 unique users, of which 48% have only
viewed exactly one article. A few users visited more than 200 pages in the period
under review.
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Figure 3.2: Number of interactions per user

3.3 Article

Figure 3.3 shows a boxenplot with the number of interactions per article on the
x-axis. The data set contains 4,141 articles. Only a few articles are very popular

Figure 3.3: Number of interactions per article
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and visited more than 10,000 times. 75% of the articles are visited 517 times or less
during one month. The plot clearly shows a popularity bias in the data. The two
articles with the most visits have over 30,000 and over 50,000 views, respectively.
These articles have a disproportionate number of interactions compared to the
others. Both pages are ordinary articles and not the landing page, an error page
or something similar.

3.4 Date

Figure 3.4: Number of interactions per day

Figure 3.4 shows a barplot with the number of interactions per day on the y-axis.
The x-axis shows the number of the day, ranging from 7 February 2021 (day 0) to
7 March 2021 (day 28). The interactions are fairly evenly distributed.
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3.5 Articles with a Week of Pregnancy

Figure 3.5: Per cent of interactions with week of pregnancy and per cent of articles
with week of pregnancy

In this section, the analysis of articles with an assigned week of gestation is de-
scribed. Almost all of these articles belong to the category “pregnancy”. swissmom
offers articles for weeks 5-42. Figure 3.5 shows that 22.9% of all interactions were

Figure 3.6: Number of interactions per week of pregnancy
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with an article with an assigned week of pregnancy, and 10.8% of all articles have
a week of pregnancy assigned.

Figure 3.6 shows a barplot with the number of interactions per week of pregnancy
on the y-axis and the week of pregnancy on the x-axis. Articles relevant in week
five were visited over 60,000 times. The interactions per week of gestation are
unevenly distributed, with most interactions in week five followed by week 42 with
over 35,000 interactions.

Figure 3.7: Number of articles per week of pregnancy

To better understand the distribution of interactions per week of gestation, the
number of articles per week is analysed. A barplot visualising this is displayed
in figure 3.7. The y-axis shows the number of articles, and the x-axis shows the
week of pregnancy. Each week has at least seven and at most 18 articles. The
distribution of articles per week differs from the distribution of interactions per
week, meaning that the high interest of users in week five cannot be explained
by a greater variety of articles in this week. Users seem to be most interested in
articles about the beginning (week five) and the end (week 42) of the pregnancy.
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3.6 Span of Relevant Weeks of Pregnancy for Users

This section analyses how large the span between the lowest and highest week of
pregnancy is that a user viewed. The span is calculated for each day individually.
For example, if user A visited two articles on day one, and one is relevant in week
five, and the other is about week six, then this counts as a span of one week. If the
same user A visits the website seven days later and reads three articles, all about
week 12, then this counts as a span of zero weeks. The span is calculated daily and
not over the entire month. Otherwise, the span is generally longer for those users
who read articles on different days than those who visited the website only once.
In addition, this analysis better shows the short-term interests of users during a
single visit. Furthermore, the span is calculated for all users who viewed at least
two articles with an assigned week in one day. Calculating the span for users who
only viewed one article would always result in a span of zero weeks and distort the
result. A span of zero weeks means that a user only viewed articles from the same
week of pregnancy. A span of two means that a user has viewed articles where
the weeks of pregnancy are two weeks apart. This would be the case if the user
viewed articles from weeks 35, 37 and optionally 36. The data is split into three
categories: users with two, three and more than three interactions per day.

Figure 3.8: Number of interactions per user and date

Figure 3.8 shows that over 60,000 users looked at exactly two articles on a single
day. About 20,000 users viewed exactly three articles, and slightly fewer users
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Figure 3.9: Span of relevant weeks of pregnancy per user and date

visited more than three articles. Figure 3.9 shows the span between weeks of
pregnancy per user and day as a boxplot for each of the three categories. The
y-axis shows the span in weeks, and the x-axis shows the number of interactions
per user. The median span increases with an increasing number of interactions.
The median span is zero weeks for users with two interactions per day. For users
with three and more than three interactions per day, the median range is five and
11 weeks, respectively. This analysis shows that users are interested in information
from a more extended period and not only from a specific pregnancy week.

3.7 Week of Pregnancy

The user’s week of pregnancy is unknown in the data set. To analyse if there is a
correlation between the week of pregnancy of an article and the week of pregnancy
of a user, it is assumed that the user is in the same week of gestation as the first
article viewed by this user, that has an assigned week.

Figure 3.10 shows the known week of pregnancy of articles on the y-axis and
the assumed week of users on the x-axis. The interactions are counted for each
combination of the users’ and articles’ week of gestation. For example, the bottom
left cell value of the plot contains how many articles about week five were viewed by
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Figure 3.10: Significance of the known week of pregnancy of articles for the as-
sumed week of pregnancy of users

users in the assumed fifth week of pregnancy. The values are visualised by colours,
with high values represented by dark colours and low values by light colours. Most
articles were viewed by users in the assumed fifth week of pregnancy. These users
mainly looked at articles about the same week, showing that articles about a
particular week are more significant to users that are hypothetically in the same
week. This is also true, albeit to a lesser extent, for most other weeks. Articles
about a particular week of pregnancy are visited more by users who are not just
in the same week as the article, but in the same phase of pregnancy, whereby
the phase can span over several weeks. This can be seen well in figure 3.10, as
darker colours, and thus higher values, occur not just on the diagonal but also
close to it. For example, users in the hypothetical week eight of pregnancy visited
articles about the eighth week the most. This can be seen in figure 3.10 because
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the darkest blue of the column with the label “8” is in the row of the eighth week
of pregnancy of articles. Lighter blue shades can be seen in rows 5-7 and 9-11,
indicating that these weeks are also significant to users in the eighth week. The
correlation between the week of pregnancy of articles and users is 0.68, which is a
moderate positive correlation.

3.8 Conclusion

The analysis showed that we have to deal with the cold start problem since 75%
of all users visit three or fewer articles, which means there is not much informa-
tion about them, and a user profile cannot be created. Hence, collaborative and
content-based filtering techniques are poorly suited to generate recommendations
for these users because both models rely on historical user-item interactions to
create user profiles. Three or fewer historical interactions per user are not enough
to extract interests for content-based filtering or to find similarities to other users
for collaborative filtering. The popularity bias in articles also suggests that col-
laborative filtering is inapplicable as this technique is known to have problems
recommending unpopular items.

Analysing the categories of articles has shown that most users view articles from
a maximum of two categories. From these findings, it can be deduced that a
recommender system should generally recommend articles from the same category,
which can be achieved with content-based filtering or a knowledge-based model.
The approach with a knowledge-based model has the additional advantage that
more complex rules can be introduced. For example, suppose it turns out that
users who view articles from the category “family” generally also visit articles
about children. In this case, a knowledge-based model could recommend further
articles about the topics “family” and “child” to a user who is currently reading
an article about family.

Examining the categories of articles also suggests that “pregnancy” is the most
significant topic because articles from this category are visited most frequently
by users. Therefore, sound recommendations should be generated for users that
are interested in this subject. Furthermore, the analysis of the week of pregnancy
implies that the pregnancy phase of a user is essential, and articles about the cur-
rent pregnancy phase of the user are more interesting. To solve the challenge with
pregnancy-related temporal interest changes, collaborative and content-based fil-
tering techniques can only be used in a context-aware recommender system where
the pregnancy phase of users is known and used as an additional context. In
this case, techniques such as pre-filtering or post-filtering could generate a list of
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recommendations containing only articles from relevant weeks of gestation. How-
ever, the user’s pregnancy phase is unknown. Therefore, neither context-aware
recommender systems nor collaborative and content-based filtering models are
suitable. The data analysis showed that users mainly visit articles belonging to
the same phase of pregnancy. Instead of using the user’s week of gestation, which
is unknown, the article’s week of gestation can be considered an indicator of the
pregnancy phase of a user. Hence, the proposed recommender system concept is a
case-based model. For all articles about pregnancy, this model uses the currently
viewed article and generates recommendations based on the pregnancy week of the
article. For all other categories, the category of the article indicates the interest
of a user and articles from the same category will be recommended.
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4 Methodology

The data analysis indicates that the assumed week of pregnancy of a user correlates
with the week of pregnancy of the visited article. For the recommendations to be
meaningful to a pregnant user, articles about the pregnancy phase of the user
should be recommended. The data analysis has shown that articles from a span
of 11 weeks are especially interesting to users. The data from swissmom does not
contain any information about the pregnancy phase of the user. Therefore, this
work does not attempt to learn this because no evaluation is possible. swissmom
editors determined the most relevant week of pregnancy for 481 articles. These
are 31% of all articles from the category “pregnancy”. Thus, for 69% of articles
about pregnancy, the week still needs to be determined to recommend relevant
articles to a pregnant user. In this section, different methods are applied to the
articles to determine the pregnancy phase of an article. Due to the small amount
of data, the article’s month of pregnancy is determined instead of the week. There
are different ways to divide pregnancy into months. In the approach chosen in this
work, a month consists of four weeks. Thus, at 42 weeks, a pregnancy lasts eleven
months instead of the known nine months.

When working with text data, two representations of data are common: bag-of-
words representation (Joachims 1998) and sequential representation. The bag-of-
words representation uses the frequency of words in a text. This approach focuses
on keywords and loses the order of words in the text and, therefore, the context.
The sequential representation maintains the order of words in a text. Machine
learning models can thus better understand the context of words. An experiment
for each type of text representation is conducted to determine the articles’ month
of pregnancy. The first experiment uses the bag-of-words representation, and the
second experiment the sequential representation. Thus, it can be investigated
whether keywords or context are better suited to determine the article’s month of
gestation.

A commonly used approach for bag-of-words representation is the term frequency
- inverse document frequency (TF-IDF) (Salton and Buckley 1988) model, used
together with various text preprocessing methods and regression models in the
first experiment. The state-of-the-art approach that uses contextual information in
texts is the bidirectional encoder representations from transformers (BERT) model
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developed by Devlin et al. (2019). This model is used in the second experiment.

As mentioned before, both experiments will predict the article’s month of gesta-
tion. In machine learning terms, the predicted attribute is called label. There are
two types of prediction tasks: classification and regression. Classification is used
for categorical label types, such as “Cat” and “Bird”, and regression is used for
numerical label types. Simply put, the output of a classifier is one of the given
labels. This predicted label is compared to the actual label and is either the same
or not. The result of a regressor is a number. In this case, it is possible to calculate
the distance between the actual label and the predicted label. Larger deviations
between the predicted label and the actual label thus lead to a larger error. The
months are numerical and larger deviations between the prediction and the actual
month of pregnancy should lead to a larger error in the evaluation. Therefore,
regression is used to determine the month of gestation.

Both approaches will use 5-fold cross-validation for training and evaluation. In k-
fold cross-validation, the training data are split into k equal-sized data sets, called
folds. k − 1 folds are used for training. The last fold is used for evaluation. This
step is repeated k times, with each fold being used exactly once for evaluation.
The average of all results of the k evaluations is then the final evaluation result.
This method is used for small data sets where not enough data is available for
distinct training and evaluation sets.

Root mean squared error (RMSE) is used as a metric for the performance of the
regression models and is given in equation 4.1. The vector containing the actual
labels is denoted as y, and ŷ contains the predicted labels. The number of records
in the data set for which labels were predicted is denoted as n.

RMSE(y, ŷ) =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (4.1)

4.1 TF-IDF Model

In this section, the article texts are represented using the TF-IDF model. This
model uses the bag-of-words representation, where the normalised frequency of
words is calculated with TF-IDF. This type of representation considers the indi-
vidual words of the texts separately, but it pays no attention to context or the order
in which the words occur. The preprocessing of texts is an important step that can
significantly influence the performance of the subsequently used regression algo-
rithm. Several preprocessing methods are described in this section. Additionally,
the experiments using the TF-IDF model will be explained.

32



4.1.1 Text Preprocessing Methods

First, some text mining terminology is defined. Texts are usually called docu-
ments. The set of all documents is called corpus. Texts are split into smaller letter
sequences, usually on a word basis. These letter sequences are called tokens. The
document “the ball and the shoe” is broken down into the tokens “the”, “ball”,
“and”, “the”, “shoe”. This example shows that two tokens can consist of the same
word. Words are usually referred to as terms. Terms are unique and have a fre-
quency. So in the example text, there is only one term “the” with the frequency
of two but two tokens “the”.

Bag-Of-Words Representation

Text data must first be transformed from an unstructured representation into a
structured representation before it can be used in machine learning. The TF-IDF
model uses the bag-of-words representation, which represents each document as a
vector. The dimension of the vector corresponds to the number of terms in the
corpus. Each dimension of the vector is assigned to exactly one term. The vector
itself contains the frequency of the term in the respective document. Figure 4.1
illustrates an example of a bag-of-words representation for a corpus consisting of
the two documents “blue, blue, blue is a colour”, and “the ball is blue”. The bag-
of-words representation of each document is shown as a row vector. The corpus
contains the terms “blue”, “is”, “a”, “colour”, “the”, “ball”. The frequency of

Figure 4.1: Example of bag-of-words representation
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each term within the document is counted and stored in the vector. For example,
“blue” occurs three times in document d1 and one time in document d2.

Alternatively, a binary representation is possible, which uses 1 instead of the fre-
quency if a term is present in the document and 0 if the term does not occur.

Text Extraction

All non-textual elements are removed during text extraction, which is necessary,
for example, when using web page content. The text on web pages is embedded
in HTML tags. These tags must be removed so that only the plain text is pro-
cessed. Furthermore, punctuation marks such as comma and points also need to
be removed. After all documents of the corpus consist only of plain text, each
document is split into tokens.

Stop-Word Removal

An essential step of preprocessing is the handling of stop-words, which are common
words such as “the” or “of” that frequently appear in texts but have no special
meaning. Stop-words depend on the language of the text, and lists of stop-words
exist for several languages. Stop-word removal is a common approach that reduces
the number of terms in the corpus (Saif, Fernandez, and Alani 2014).

Stemming & Lemmatisation

Stemming and lemmatisation are algorithms to consolidate words with the same
root (Porter 1980). For example, the words “tree” and “trees” have the root “tree”
or the words “run” and “running” have the root “run”. In most scenarios, it does
not make sense to distinguish between words with the same root. For example,
a user interested in articles containing the word “tree” most likely wants to read
articles about “trees”. Using stemming or lemmatisation can reduce the total
number of terms. If this data is then used to train a machine learning algorithm,
the reduced number of features can reduce overfitting and improve accuracy.

Stemming reduces each word to its stem. The stem does not necessarily correspond
to a word. For example, the words “argue” and “arguing” are reduced to the stem
“argu”. There are various stemming techniques, such as lookup tables and suffix
stripping. In lookup tables, the unstemmed word variants are stored for each stem.
Each word is then looked up in the table during stemming, and the correct stem
is determined. In suffix stripping, various rules are applied to reduce words to the
stem. For example, the endings “ly”, “ed”, and “ing” are removed from each word.
Lemmatisation reduces each word to its lemma. Unlike a stem, a lemma is still a
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valid word. The lemma of “argue” and “arguing” is “argue”. Lemmatisation uses
more complex rules that involve the context of words. This technique is, therefore,
more complex and slower but more accurate. For example, the words “universal”
and “university” are reduced to “univers” when stemming. Lemmatisation, on the
other hand, recognises that these words have different meanings. The lemmas are
“universal” and “university”.

TF-IDF

The less frequent a term appears in documents, the more information can be gained
from this term. This can be taken into account when the occurrence of each term is
normalised with a frequency-based normalisation. With this approach, terms that
occur in many documents are down weighted. TF-IDF is an often-used frequency-
based normalisation. The term frequency (TF) is multiplied with the inverse
document frequency (IDF). TF for the term i and for document d is calculated
by counting the occurrence of term i in document d. Equation 4.2 shows the
calculation of IDF for the term i.

IDFi = log(n/ni) (4.2)

The number of documents in the corpus is denoted as n, and ni is the number
of documents containing the term i. IDFi is 0 for a term that is present in every
document.

Figure 4.2: Example of TF-IDF calculation
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Figure 4.2 shows an example of the calculation of TF-IDF for a corpus containing
two documents. TF-IDF is calculated for the term “blue” and “green” for docu-
ment d1. “blue” appears in all documents which always results in a TF-IDF of 0.
“green” occurs twice in the first document, resulting in a TF-IDF of 1.4.

4.1.2 Experiments

Each article from swissmom has several attributes that contain text. These include
title, headline, label, teaser title, description, text, and categories. Attributes such
as the title or description summarise the article’s content and contain words that
are particularly relevant to the article. If the frequency of words is counted in
all textual attributes and not only in the text, more weight can be given to these
words. Therefore, all textual attributes of the article are used for the representation
of an article.

The data is preprocessed in different ways to evaluate which method or combina-
tion of methods is most suitable. The following methods are used:

1. No Preprocessing

2. Stop-Word Removal

3. Stemming

4. Stop-Word Removal combined with Stemming

5. Lemmatisation

6. Stop-Word Removal combined with Lemmatisation

The Python platform Natural Language Toolkit (NLTK)1 is very popular for text
preprocessing. NLTK’s German stop-word list and implementation of the Snowball
Stemmer were used. NLTK, unfortunately, does not offer an implementation for
lemmatisation in German, so the Python library spaCy2 was used for this task.
spaCy is a very helpful library for building text preprocessing pipelines in natural
language processing (NLP) applications.

1www.nltk.org/
2spacy.io/
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After preprocessing, the normalised term frequency is calculated using TF-IDF by
utilising the implementation of scikit-learn3. The month of pregnancy is used as the
label. The label was linearly scaled from 2-11 to 0-1 with min-max normalisation.
Several regression algorithms were used for training to rule out the possibility
that the results were poor because an inappropriate regression model was chosen.
Ridge regression (Hoerl and Kennard 1970) and Support Vector Regression (SVR)
(Drucker et al. 1996) are trained and evaluated using 5-fold cross-validation. The
implementations of scikit-learn were used for training and evaluation.

Pazzani and Billsus (1997) recommend using only 50-300 keywords to mitigate
overfitting. Without restriction, the number of features is between 13,000-19,000,
depending on the preprocessing method. Therefore, 300 was used as the lower
limit for the number of features, and the upper limit is all features. In addition,
the regression models are trained with 3,000 and 10,000 features to evaluate the
best number of features. In each case, the k most frequent terms of the entire
corpus are used.

Figure 4.3: RMSE for TF-IDF experiments

3scikit-learn.org
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Results

Table 4.1 presents the RMSE in months for the different preprocessing methods,
number of features and regression models. These results are also displayed visually
as barplots in figure 4.3. A separate plot was made for each regressor. The bars are
grouped by preprocessing method within each plot. Within a group, the results
for the different number of features are shown. The y-axis shows the RMSE and
is cut off below 2.0 for better visualisation of the results.

number of features

all 10,000 3,000 300

no preprocessing

ridge regression 2.21 2.21 2.27 2.44

SVR 2.39 2.38 2.34 2.39

stop-word removal

ridge regression 2.17 2.16 2.20 2.41

SVR 2.39 2.37 2.33 2.32

stemming

ridge regression 2.21 2.20 2.23 2.37

SVR 2.37 2.36 2.33 2.36

stop-word removal + stemming

ridge regression 2.19 2.18 2.24 2.41

SVR 2.37 2.37 2.32 2.32

lemmatisation

ridge regression 2.18 2.18 2.20 2.40

SVR 2.35 2.34 2.31 2.40

stop-word removal + lemmatisation

ridge regression 2.17 2.16 2.19 2.37

SVR 2.38 2.36 2.33 2.30

Table 4.1: RMSE for TF-IDF experiments

Ridge Regression: The worst results with an RMSE over 2.35 are achieved with
300 features independent of the applied preprocessing method. All preprocessing
methods perform identical or slightly better when using 10,000 features instead of
all. Slightly worse results are achieved with 3,000 features. The best results are
achieved with 10,000 features.

SVR: SVR generally performs better with decreasing number of features, which
is inverse to how ridge regression behaves. Comparing the results achieved with
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300 features and 3,000 features for preprocessing methods without a stop-word
removal step, the performance of SVR deteriorates. Hence, the ideal number of
features is 300 if a stop-word removal step is applied and 3,000 otherwise.

Ridge regression performs worse than SVR when using only 300 features. However,
with more features, ridge regression outperforms SVR. The best RMSE for SVR
is 2.30 and for ridge regression 2.16, which means ridge regression is better suited
than SVR to predict the month of pregnancy.

The worst results with ridge regression were obtained when no preprocessing is ap-
plied, closely followed by stemming. The results for stemming can be improved if
stop-word removal is also applied during preprocessing. However, better results are
achieved when using only stop-word removal. This means stemming deteriorates
the performance in this case. Lemmatisation outperforms stemming. However,
better results can be achieved if stop-word removal is applied before lemmatisa-
tion during preprocessing. The best results are achieved with 10,000 features and
either only stop-word removal or stop-word removal and lemmatisation combined,
which means lemmatisation neither deteriorates nor improves the performance in
this case. Hence, ridge regression with 10,000 features and stop-word removal as
the preprocessing method should be used to predict the month of gestation. Nev-
ertheless, the reader should notice that the absolute differences between the results
are very small with a maximum difference of 0.28, and therefore one method is not
better than another with absolute certainty.

4.2 BERT Model

This section describes the experiments conducted with the BERT model. BERT is
a pre-trained language representation model that uses a transformer architecture.
Transformer architectures, in turn, are based on the concept of self-attention. This
section will shortly explain the mechanisms behind self-attention and transform-
ers and give an overview of BERT and how it was trained. The design of the
experiments is also described in this section, and the results are discussed.

4.2.1 Self-Attention

Attention and self-attention mechanisms were initially invented to overcome chal-
lenges in sequence-to-sequence tasks such as translating a text. Self-attention
receives N inputs and calculates attention weights for each input. This can best
be explained with a short example. The example sentence is “My name is Alice.”.
Let us assume the word “is” is masked, and we want to predict the correct word.
In order to do this, we look at the other words of the sentence. We will give the
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Figure 4.4: Visualised attention weights for an example sentence

most attention to the word “name”, and, based on the singular form of this word,
we can assume that the missing word is “is”. If self-attention receives the example
sentence as input, it will calculate attention-weights for each word of the sentence.
The weights for the input word “is” are visualised in figure 4.4 as blue blocks. The
dark blue colour means that the word “name” is very significant to the word “is”.
The visualisation was created with exBERT4.

There are different attention functions for calculating the attention weights, with
additive attention (Bahdanau, K. Cho, and Bengio 2015) and dot-product atten-
tion (Luong, Pham, and Manning 2015) being the most popular methods. BERT
uses scaled dot-product attention, which will be explained in this section. Self-
attention receives a sequence of dimension N as input (Karim, Raimi 2019). For
example, the sequence “Hello World” has dimension two and consists of input 0

= Hello and input 1 = World. In the first step, each input i is transformed into
a word embedding. Word embeddings are numeric representations and consist of a
vocabulary, where each word in the vocabulary is associated with a numeric vector
(Mikolov, Le, and Sutskever 2013). The special feature of word embeddings is that
contextually similar words are assigned to similar vectors. Word embeddings are
usually learned using machine learning.

Before we can calculate the attention weights, the matrices query Q, key K, and
value V need to be calculated from the input. Figure 4.5 visualises the matrix
operations for calculating these matrices. The rows of the input embedding matrix
X consists of the word embedding vectors. This matrix is multiplied with the
weight matrix WQ which results in matrix Q. The same is done with weight
matrices WK and W V to calculate the matrices K and V , respectively. The three
equations are given in 4.3, 4.4, and 4.5.

Q = XWQ (4.3)

4https://huggingface.co/exbert
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K = XWK (4.4)

V = XW V (4.5)

Figure 4.5: Calculate query, key, and values in self-attention

Figure 4.6 shows the calculations of the matrices scores and output. Matrix Q
is multiplied with K> and divided by

√
dk. The dimension of the key vector is

denoted as dk. The Softmax function given in equation 4.6 is applied on every
row of the previously calculated matrix, which results in the scores matrix. The
output is calculated by multiplying the matrix scores with the matrix V . Each
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Figure 4.6: Calculate scores and output

row of the output matrix consists of the attention weights of the corresponding
input. For example, the attention weights of input 0 are in row 0.

Softmax(x) =
ex∑
i e

xi
(4.6)

The complete calculation of attention can be written in a single equation which is
given in 4.7.

Attention(Q,K, V ) = Softmax

(
QK>√

dk

)
V (4.7)

4.2.2 Transformer Architecture

In 2017, Vaswani et al. (2017) proposed a new architecture called transformer
in the paper “Attention Is All You Need”. Transformers are based on attention
mechanisms, which allow for more parallelisation, resulting in faster training time.
The architecture of transformers is illustrated in figure 4.7.

Input

The input of the transformer is first transformed into input embeddings. In NLP
tasks, the input is a word sequence, for example, a sentence or short text. Each
word of the input is transformed into a word embedding. A positional encoding is
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Figure 4.7: Transformer architecture (source: Vaswani et al. 2017)

added to the input embedding so that the transformer architecture can remember
the input sequence order. The positional encoding is a vector with the same
dimension as the input embedding.

Encoder Stack

The encoder stack consists of N layers. The structure of all layers is identical. An
encoder layer consists of the two sublayers multi-head attention and fully connected
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feed-forward network, which is labelled “Feed Forward” in figure 4.7. Each sublayer
additionally has a normalisation layer, which is labelled “Add & Norm” in figure
4.7.

Figure 4.8: Calculation of multi-head Attention

Multi-head attention means that instead of a single self-attention head, h identical
self-attention heads are used. However, the weights in each head are different.
Figure 4.8 visualises the calculation of multi-head attention for the input sequence
“Hello World” with three heads. The input sequence is processed in parallel by
each head. The outputs of all heads are concatenated, which is then multiplied
by the weight matrix WO. According to Vaswani et al. (2017), the calculation for
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MultiHead is given by equation 4.8.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)WO

where headi = Attention(QWQ
i , KWK

i , V W V
i )

(4.8)

Figure 4.9: Fully connected feed-forward neural network

The second sublayer of the encoder is a fully connected feed-forward neural net-
work. For better comprehension, a brief explanation about neural networks is
given here. However, neural networks are complex, and it is not possible to go
into detail here. Generally, a neural network consists of multiple neurons arranged
in layers. Each neuron can have multiple connections to other neurons. In a fully
connected feed-forward neural network, each neuron is connected to every neuron
in the subsequent layer. An example for a fully connected feed-forward neural
network is shown in figure 4.9. A neuron’s input is the sum of all incoming con-
nection weights multiplied by the output of the connected neuron. An activation
function is applied to the input of the neuron. The result is the output of the
neuron. A popular activation function is rectified linear unit (ReLU) (Fukushima
1980), which is given in equation 4.9.

ϕ(x) = max(0, x). (4.9)

In the transformer architecture, the same fully connected feed-forward neural
network is applied individually to each input embedding of the input sequence
(Vaswani et al. 2017). The neural network is given by equation 4.10. The neural
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network consists of two linear transformations. After the first linear transforma-
tion, the ReLU activation function is applied.

FFN(x) = max(0,xW1 + b1)W2 + b2 (4.10)

In the normalisation layer, the sublayer’s input is added to its output and then
normalised. The result is the input of the next sublayer.

Decoder Stack

The decoder stack is very similar to the encoder stack and also has N identical
layers. The decoder layer consists of the three sub-layers masked multi-head at-
tention, encoder-decoder attention (referred to as multi-head attention in figure
4.7), and a fully connected feed-forward network. The feed-forward network has
the same structure as in the encoder.

In the masked multi-head attention layer, all subsequent inputs are masked for
the input at position i. For example, if the sequence “Hello World” is processed
and the attention head calculates the attention weights for input “Hello”, then the
subsequent input “World” is masked and not used in the calculation. Thus, only
those inputs that the decoder has already processed at this point are used for the
calculation of the attention weights. The masking is done by setting the score to
−∞ for the masked inputs before the softmax function is applied.

In the encoder-decoder attention, only the query is calculated with the input of
the sublayer. Key and value are used from the last encoder. Hence, the name
encoder-decoder attention.

Output

A linear transformation and the softmax function are applied after the decoder
stack to calculate the predicted next-token probabilities from the decoder output.

4.2.3 BERT

BERT is a language representation model and was developed by Devlin et al.
(2019). BERT is the first language representation model with deep bidirectional
representations in the layers, which allowed it to achieve new state-of-the-art re-
sults in 11 tasks. The model architecture of BERT is a multi-layer bidirectional
transformer encoder with L layers, the hidden size H and A self-attention heads
(Devlin et al. 2019). The two original models, BERTbase and BERTlarge, use
L = 12, H = 768, A = 12, and L = 24, H = 1024, A = 16, respectively. BERT
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uses only the encoder part of the transformer architecture. The encoder part uses
bidirectional self-attention, which allows BERT to understand the context on both
sides of a token.

Figure 4.10: Example token sequences for BERT

The input of BERT is a token sequence with a maximum length of 512. The token
sequence consists of either a single sentence or a sentence pair. For example, a
sentence pair is a question and its corresponding answer. Sentence here means a
coherent piece of text and not a linguistic sentence. Each token sequence begins
with the special token [CLS], and each sentence ends with the separator token
[SEP]. Two examples for token sequences are visualised in figure 4.10.

BERT was pre-trained with two unsupervised tasks: masked language modelling
(MLM) and next sentence prediction (NSP). MLM, also referred to as Cloze task
(Taylor 1953) in the literature, is used to train the bidirectional representation.
In this task, some tokens are masked, and the machine learning algorithm must
predict the token. For example, in the sentence “My name is Alice.” the to-
ken “name” is masked, so the input of the machine learning algorithm is “My
[MASKED] is Alice”, and the correct output is “name”. For the training of BERT
15% of the input tokens are randomly selected. With a probability of 80%, a se-
lected token is replaced by the token [MASK]. 10% of the time, it is replaced by a
random token and 10% of the time, the token is not changed. NSP is used to learn
the relationship between two sentences. In training, 50% of the time sentence A is
followed by the correct sentence B with label IsNext and 50% of the time sentence
A is followed by a random sentence from the corpus with label NotNext. There
are already numerous pre-trained BERT models that have been trained with texts
from different languages. The training of a BERT model takes several days using
tensor processing units (TPUs), depending on the size of the corpus.

The pre-trained architecture can be used for specific tasks like question answering
or sentiment analysis by adding at least one additional output layer and fine-
tuning all parameters with labelled data. For example, a dropout layer and a
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linear layer with an output dimension of one can be added to solve a regression
task. Depending on the data size, the training of the specific task usually takes
a maximum of one hour on a TPU and is very fast compared to pre-training.
Because so few modifications are required, pre-trained BERT models are suitable
for a wide variety of natural language processing tasks.

4.2.4 Experiments

Figure 4.11: Number of tokens per article text

The BERT model allows a maximum of 512 tokens per input, including the two
special tokens to mark the start and end of the input sequence, which restricts the
text length to 510 tokens per article. Figure 4.11 shows the distribution of the text
length of articles. The text length varies from 17-6,902 tokens, with an average
text length of 525 tokens. Only three articles have more than 3,000 tokens.

The texts are grouped into three categories: short texts with 100 tokens or less,
medium texts with a length up to 510 tokens, and long texts that exceed the limit
of 510 tokens. Figure 4.12 shows the percentage of articles for each category. 42.4%
of all articles exceed the limit of 510 tokens, whereas 14.8% of all articles are very
short. Most articles have an additional description summarising the text. This
description contains up to 83 tokens. If the text is prepended with the description,
only 11.4% of all articles consist of 100 or fewer tokens.

The article texts must be preprocessed to fit the maximum length of 510 tokens.
Sun et al. (2020) proposes three methods to truncate long texts: head-only uses
the first 510 tokens, tail-only the last 510 tokens, and head + tail uses the first

48



Figure 4.12: Per cent of articles with ≤ 100, ≤ 510, > 510 tokens per text (left)
and per text + description (right)

128 and the last 382 tokens. The month of pregnancy was used as the label for
training. Since this is a regression problem, the labels were linearly scaled from
2-11 to 0-1 with min-max normalisation.

A suitable learning rate and number of epochs were determined by hyperparameter
optimisation with W&B5. The learning rate is 1e−4, and the model was trained
for 40 epochs. Since only a few data are available, the training was evaluated with
stratified 5-fold cross-validation. The performance of BERT is measured with
RMSE.

The Python library SimpleTransformers6 was used for creating and training the
BERT model. SimpleTransformers adds a dropout layer and linear layer to the
BERT architecture to solve the regression task. SimpleTransformers uses the Py-
Torch7 implementation for both layers. The PyTorch documentation states that a
dropout layer replaces input elements with 0 with the probability p and scales the
output by factor 1/(1− p) during training. SimpleTransformers uses p = 0.1. The
linear transformation y = W>x + b is applied in the linear layer. SimpleTrans-
formers uses inputs with dimension 768, the output has dimension one.

There are already many pre-trained BERT models. Two models can be used
for German texts. Devlin et al. (2019) trained the model bert-base-multilingual-

5wandb.ai
6simpletransformers.ai
7https://pytorch.org/
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cased with Wikipedia articles from 104 languages. The German company deepset8

trained a purely German BERT model, bert-base-german-cased. The German
Wikipedia, the OpenLegalData data set9 and news articles were used for the train-
ing (deepset 2021). The OpenLegalData data set contains 100,000 German court
decisions and 444,000 citations. Since deepset could achieve better evaluation re-
sults with bert-base-german-cased than bert-base-multilingual-cased, the German
model is used in this work.

Sun et al. (2020) achieved better results by further pre-training the BERT model
with in-domain data on the MLM task. Since the articles on pregnancy use partic-
ular terms and the texts differ less in the terms than is the case, for example, with
an article on sports and one on politics, this work investigates whether further
pre-training also leads to better results in determining the month of gestation.
The bert-base-german-cased model was further pre-trained with swissmom’s ar-
ticle texts on the MLM task. All articles were divided into sentences using the
library spaCy. The model was further trained for five epochs with a learning
rate of 5e−5. The library HuggingFace Transformers10 was used to implement the
training.

Results

Figure 4.13: RMSE for BERT experiments

8https://deepset.ai
9http://openlegaldata.io/research/2019/02/19/court-decision-dataset.html

10https://huggingface.co/transformers
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The three truncation methods were applied to the article text and the article text
prepended with the article’s description (description + text). All six preprocessed
data sets were trained with the original bert-base-german-cased model and the fur-
ther pre-trained model. The training results are shown in table 4.2. Additionally,
the results are visualised as barplots in figure 4.13. A separate plot was created for
the results of the original model and the further pre-trained model. The bars are
grouped by the truncation method within each plot. Within a group, the results
for text and description + text are shown. The y-axis shows the RMSE and is cut
off below 1.8 for better visualisation of the results.

The absolute differences between the results are very small with a maximum dif-
ference of 0.1, which means that no clear statement can be made as to which
experiment performed best. The pre-trained model performed slightly better than
the original BERT model except for the truncation method tail-only combined with
the data set containing only the article text. It would have been expected that
all experiments improved at least slightly when trained on the pre-trained model.
There is no indicator why the truncation-method tail-only without the description
data performed worse than the same experiment trained on the original model.
The best result with an RMSE of 1.99 is achieved with the further pre-trained
model, the truncation method head + tail and without using the description of
articles.

truncation method original BERT further pre-trained

text

head-only 2.05 2.04

tail-only 2.00 2.07

head + tail 2.09 1.99

description+text

head-only 2.05 2.01

tail-only 2.05 2.02

head + tail 2.09 2.03

Table 4.2: RMSE for BERT experiments

4.3 Discussion

The difficulties of both experiments are that very little data is available, and the
texts to be classified are very similar, as all texts are about pregnancy and birth.
This similarity makes it more difficult to predict the month of gestation based on
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the text content than it is, for example, to predict categories such as sports and
politics in news articles. Both experiments used different approaches. The TF-IDF
experiment tries to determine the month of pregnancy by keyword extraction. This
approach is more straightforward than the context-based approach of the BERT
experiment. The BERT model has already been pre-trained with general German
texts to understand the context of words within a short text.

The TF-IDF experiment compared the two complex preprocessing methods stem-
ming and lemmatisation, with the more straightforward approach of removing
stop-words to extract better keywords. Better results could be achieved with the
simple stop-word removal approach. The best result with a RMSE of 2.16 months
is achieved with stop-word removal, 10,000 features and ridge regression.

The BERT experiment compared different truncation methods to deal with
BERT’s problem of handling text longer than 510 tokens. Further pre-training of
the original BERT model with in-domain data from swissmom was also conducted.
The best result with a RMSE of 1.99 months is achieved with the truncation
method head + tail and further in-domain pre-training. BERT outperformed
TF-IDF by 0.17 months.

According to section 3 the span of relevant weeks of pregnancy is 11 weeks or 2.75
months. The results from TF-IDF model and BERT model are both below this
span.
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5 Summary and Outlook

This section will give a short summary of the work done. Furthermore, suggestions
are made to improve the performance of the BERT model for predicting the month
of pregnancy. Possibilities to improve the in-domain pertraining of BERT are
presented. An extension of the recommender system is also briefly mentioned.

5.1 Summary

Section 1 discussed the particular challenges that occur with swissmom’s data
when designing a recommender system. Since 90% of users are visiting the website
for the first time, a recommender system must deal with the cold start problem.
Another complication that was mentioned is that the interests of pregnant users
are dependent on the user’s phase of pregnancy, and the interests, therefore, change
continuously. At the beginning of pregnancy, a user is interested in, among other
things, complications that can occur during the first months. The birth process is
not relevant for most users at this time. If the user is at the end of pregnancy, the
interests are the opposite.

Comprehensive literature research on recommender systems was conducted and
described in section 2. The four basic models and the differences between implicit
and explicit feedback were explained. Context-aware recommender systems were
also considered in the course of the research and described in this section.

An exploratory data analysis was performed on swissmom’s data and the findings
were described in section 3. The Google Analytics data from 7 February until 7
March 2021 containing the user-item interactions was enriched with the week of
gestation and category of articles. The data showed that 75% of all users interacted
with three or fewer articles in the observed period. This confirmed that we need to
deal with the cold start problem when designing the concept of the recommender
system.

There are a total of six categories to which an article can be assigned. The analysis
showed that the majority of users read articles from a maximum of two different
categories. From all categories, “pregnancy” is the most popular one. The inves-
tigation of the pregnancy week of articles suggested that users are most interested
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in articles where the assigned week of gestation is on average no more than 11
weeks apart. This means that users prefer to look at articles that are relevant in
the same pregnancy phase.

The user’s week of gestation is unknown in the data. Therefore, it was assumed
based on the first article viewed by the user that has a week of gestation assigned.
The findings indicated that there is a moderate positive correlation between the
hypothetical week of pregnancy of a user and the actual week of pregnancy of
an article. Furthermore, this analysis also suggested that users are interested in
articles that belong to the same phase of pregnancy. These results also support
the initial statement that there are pregnancy-related temporal changes in interest
which must be addressed in order to generate sound recommendations.

The techniques for recommender systems presented in the state-of-the-art research
were evaluated for their suitability to solve the challenges based on the findings of
the data analysis. Context-aware recommender systems are not applicable because
they need the unknown week of pregnancy of users as context information to pre-
dict sound recommendations. Collaborative and content-based filtering models are
not well-suited to solve the challenge with the cold start problem because they rely
on historical user-item interactions. However, this data is not available for most
users that visit swissmom’s website. Moreover, these two models cannot handle
the temporal changes in interest when the user’s gestational stage is unknown.

On the other hand, case-based recommender systems are very well suited to deal
with the cold-start problem. Therefore, the proposed concept for a recommender
system was a case-based model that recommends articles from the same category
as the article that is currently being viewed. If this article is about pregnancy,
the assigned week of pregnancy is also used for generating recommendations. In
this case, articles that belong to the same pregnancy phase as the currently visited
article are recommended. In doing so, the challenge with the temporal changes of
interest is also solved.

The proposed recommender system needs to know in which week of gestation
each article about pregnancy is relevant. However, the analysis showed that this
information is only known for 31% of all articles on pregnancy. Experiments were
conducted to predict an article’s month of pregnancy, which was described in
section 4. Due to the limited data available, the month was determined rather
than the week. The regression task was evaluated with 5-fold cross-validation.
RMSE was used to determine the performance.

In the first part of the experiments, the keyword-based TF-IDF model was used.
The preprocessing methods stop-word removal, stemming, and lemmatisation were
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applied and compared. It was shown that the best results were not achieved with
the complex methods stemming and lemmatisation but with stop-word removal.
The experiment also showed that 10,000 features are enough to achieve good re-
sults. A RMSE of 2.16 months was achieved with ridge regression, which is below
the interest span of 2.75 months determined in the data analysis.

In the second part of the experiments, the context-based BERT model was used.
Since BERT allows texts with a maximum length of 510 tokens, the three trun-
cation methods head-only, tail-only and head + tail were compared. In addition,
BERT was further pre-trained with in-domain data on the unsupervised MLM
task. Slightly better results could be achieved with further in-domain pre-training.
The best result was achieved with the truncation method head + tail and resulted
in a RMSE of 1.99 months. The BERT model performed better than the TF-IDF
model. In the context of swissmom, it was shown that with little training data
and very subtle differences between the different classes, the context of the words
matters.

5.2 Outlook

The experiments using TF-IDF and BERT showed that the context-based ap-
proach was better suited for predicting an article’s month of pregnancy. The lim-
ited data available for predicting the month was a significant drawback. Increasing
the size of the training data set could help improve BERT’s performance. One pos-
sibility would be to use more data sets with German articles on pregnancy and
birth if such data sets exist and are available. For predicting the articles’ month
of pregnancy, these articles must be assigned to a week or month of pregnancy.
A second possibility to increase the size of the labelled training data set would
be different data augmentation techniques. Sennrich, Haddow, and Birch (2016)
suggest back-translation. In this process, data sets from other languages are trans-
lated into the target language. If there are available data sets with labelled articles
on pregnancy in, for example, English, these could be translated into German and
used as additional training data. Easy data augmentation (EDA), proposed by
Wei and Zou (2019), modifies the existing training texts through the five opera-
tions synonym replacement, random insertion, random swap, and random deletion.
Wei and Zou have evaluated EDA in the context of convolutional neural networks
(CNN) and recurrent neural networks (RNN). However, this method could also
be well suited to generate more training data for BERT. Kumar, Choudhary, and
E. Cho (2021) investigated the use of pre-trained seq2seq models, such as BART,
to generate synthetic training data and achieved even better results than with
EDA and back-translation. BART was proposed by Lewis et al. (2019) and is a
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pre-trained model combining bidirectional and auto-regressive transformers.

Further pre-training of BERT with unlabelled data led to slightly better results in
learning the articles’ month of pregnancy. Again, performance could potentially be
improved by using a more extensive data set. Since unlabelled data is needed here
and this type of data is more available as compared to labelled data, this option is
more accessible to implement than increasing the size of the labelled training data
set. Utilising back-translation, the use of non-German texts on pregnancy is also
possible.

Predicting the month of pregnancy for all pregnancy-related articles creates the
basis for designing a case-based recommender system. When a user reads an
article, the articles about pregnancy can be filtered to only include articles from
the relevant month of gestation. This selection must be further narrowed down by,
for example, ranking all relevant articles with a ranking algorithm and choosing
the top k articles. Often, the ranking of texts in recommender systems is done
by similarity metrics. If recommendations are to be generated for article X, the
k articles with the greatest similarity to X are recommended. When representing
texts with the TF-IDF model, the vector representation of the texts can then be
used to calculate the similarity, for example, the cosine similarity.

A prototype of the proposed recommender system can be evaluated online with
A/B testing. In this testing setup, a user visiting the website is randomly assigned
to group A or group B. Typically, random assignment is done with a probability
of 50%. Users in group A will receive recommendations from the recommender
system under evaluation, and users in group B will receive recommendations from
the currently used recommender system. In this way, it can be tested whether the
original or the new recommender system is better received by the users.

Providing users with the possibility to enter their due date on swissmom’s web-
site would add crucial information to the data. With this information available,
experiments using collaborative filtering approaches could be conducted. If the
experiments are successful, a hybrid recommender system could be implemented
combining the proposed case-based model with the collaborative filtering method.
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