
Development of a Library for the Detection and
Prevention of Errors Concerning Memory
Management and Concurrency in C Programs
for Microcontrollers Based on ARM Cortex-M
Processors

Master Thesis
to obtain the academic degree

Master of Science in Engineering (MSc)

Vorarlberg University of Applied Sciences
Computer Science

Supervised by
Prof. (FH) Dipl.-Ing. Patrick Ritschel

Submitted by
Johannes Koch

Dornbirn, August 2021

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig
angefertigt habe. Die aus fremden Quellen direkt oder indirekt übernommenen
Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner
anderen Prüfungsbehörde vorgelegt und auch noch nicht veröffentlicht.

Dornbirn, am 21.08.2021 Johannes Koch

Statuary Declaration

I declare that I have developed and written the enclosed work completely by
myself, and have not used sources or means without declaration in the text.
Any thoughts from others or literal quotations are clearly marked. This Master
Thesis was not used in the same or in a similar version to achieve an academic
degree nor has it been published elsewhere.

Dornbirn, on 21.08.2021 Johannes Koch

Kurzreferat

Die Fehlersuche in Softwareanwendungen kann eine große Herausforderung
darstellen. Neben dem Wissen bezüglich der Existenz eines Fehlers ist es auch
notwendig die Ursache dessen herauszufinden um ihn beheben zu können. Die
Suche nach der Fehlerursache kann dabei zeit- und kostenintensiv sein. Im All-
gemeinen wird der Teil der Software, welcher vermutlich fehlerhaft ist, analysiert
und zur Laufzeit mittels Debugger untersucht. Die Analyse kann dabei durch
Instrumentierung begleitet werden um zusätzliche Informationen zu sammeln.
Die Analyse wird durch die Existenz unterschiedlicher Fehlerkategorien, welche
gegebenenfalls individuell behandelt werden müssen, erschwert. Diese Arbeit
beschäftigt sich mit dieser Problemstellung in Bezug auf die Entwicklung von
eingebetteten Softwareanwendungen. Der Fokus dieser Arbeit liegt dabei auf
der Erkennung und Behebung von Fehlern in Zusammenhang mit Speicherver-
waltung und Nebenläufigkeit und soll Entwicklerinnen und Entwickler bei der
Fehlersuche unterstützen. Es werden spezifische Eigenschaften der Advanced
RISC Machines (ARM) Cortex-M Prozessoren genutzt um Fehler und deren
Ursachen zu erkennen beziehungsweise zu verhindern. Ein Beispiel dafür ist
die Memory Protection Unit, welche verwendet wird um den Stack-Speicher
von einzelnen Tasks in einem real-time operating system (RTOS) zu isolieren.
Die gesamte Implementierung versucht so viele Fehlerinformationen wie möglich
zur Verfügung zu stellen. Ein weiterer Teil dieser Arbeit ist ein selbst erstellter
Speicherallokator welcher Fehler in Bezug auf dynamische Speicherverwaltung
erkennt und meldet. Ebenso wurde ein Eclipse Plugin umgesetzt, welches den
Source-Code durch Asserts instrumentiert um Zugriffe auf Arrays abzusichern.
Damit sichergestellt ist, dass die erarbeitete Lösung nicht nur für neue Projekte
geeignet ist, sondern auch in bestehende Produkte eingearbeitet werden kann
wurde die Lösung in Zusammenhang mit bestehenden, kommerziellen Produk-
ten evaluiert.

Abstract

Debugging errors in software applications can be a major challenge. It is not
enough to know that a specific error exists, but the cause of it must be found
in order to be able to fix it. Finding the source of an error can be time and
cost intensive. The general approach is to analyse and debug the presumably
erroneous part of the software. The analysis can be accompanied by instru-
mentation to gather additional information during the program execution. The
analysis is made more difficult by the existence of different errors categories.
Each category may need to be handled individually. Especially in embedded
software applications, which commonly lack features like process or memory
isolation, error detection and prevention can be even more challenging. This is
the kind of problem this thesis tackles. This thesis tries to support developers
during debugging and troubleshooting. The main focus is on errors related to
memory management and concurrency. Specific features and properties of Arm
Cortex-M processors are used to try to detect errors as well as their causes. For
example, the memory protection unit is used to isolate the stack memories of
different tasks running in a RTOS. The thesis tries to provide as much informa-
tion as possible to the developer when reporting errors of any kind. The solution
developed in this thesis also contains a custom memory allocator, which can be
used to track down errors related to dynamic memory management. Further-
more, a Eclipse plugin has been developed which provides assertions for array
accesses to detect and prevent out-of-bound accesses. The resulting solution has
been implemented in commercial embedded software applications. This ensures
that the developed solution is not only suitable for newly developed applications,
but also for the integration into already existing products.

Table of Contents

List of Figures i

List of Listings iv

1 Introduction 1
1.1 Motivation . 1
1.2 Objective . 3

2 State of the Art 4
2.1 Static Analysis . 4
2.2 Dynamic Analysis . 5
2.3 Instrumentation . 6
2.4 Example: Valgrind . 6

2.4.1 Code Instrumentation . 7
2.4.2 Execution . 8
2.4.3 Code Translation . 8
2.4.4 Event System & Function Replacement/Wrapping 8

2.5 Example: Generic Model-Based Source Code Instrumentation
(GEMS) . 9

3 Errors in Embedded Software Development 12
3.1 Classification of Errors in Embedded Software Development . . . 12
3.2 Errors Discussed in This Thesis 12

4 Sheaperd - A Library to Support Debugging and Testing of
ARM Cortex-M Devices 15
4.1 Secure Heap (Sheap) - A Custom Memory Allocator 16

4.1.1 Memory Allocation and Block Layout 17
4.1.2 Error Detection . 25

4.2 Memory Protection Module & Stackguard 33
4.2.1 Memory Protection Unit 34
4.2.2 Memory Protection Module 39
4.2.3 Stackguard . 40

4.3 Array Bound Asserter . 43
4.3.1 Eclipse Plugin and CDT Integration 43
4.3.2 Modifying the Abstract Syntax Tree (AST) 44

5 Results and Discussion 46
5.1 Case Study - Integrating Sheaperd into Commercial Applications 46

5.1.1 Stack Alignment . 46
5.1.2 Context Switching . 47
5.1.3 Sheap and Array Assertion 49
5.1.4 Executing the Application 49
5.1.5 Conclusion of the Integration 51

5.2 Sheaperd Design Decisions and Outlook 51

5.3 ARMv8-M Architecture Outlook 53

Glossary 55

References 61

List of Figures

1 TIOBE Index showing the popularity of programming languages
over time. 2

2 Market share of embedded programming languages according to
the 2019 Embedded Markets Study conducted by AspenCore . . 2

3 Valgrind core provides the code that will be instrumented by the
tool. 7

5 The code instrumentation flow of the GEMS framework. The
source code programs are translated into a universal intermedi-
ate representation (IR), which is then instrumented. After the
instrumentation, the IR is translated back into source code. To
execute the resulting programs, a language-specific execution li-
brary is needed. (Source: Chittimalli and Shah 2012, p. 911 [7])
. 10

4 Valgrind translation process. Dead code elimination, constant
folding and copy Propagation are explained in the glossary. . . . 11

6 Kim and Huh[10] have collected and derived this table from sev-
eral research papers regarding defects of embedded software ap-
plications. They extracted these 12 embedded software defects
using content analysis procedures. See the source for more de-
tails. (Source: Kim and Huh, p. 10 [10]) 13

7 An example memory block of the Sheap allocator located at ad-
dress 0×20002800. The header and boundary data is used to
mark if a block is in use, to navigate through the heap, ease the
coalescing of memory blocks and for error detection. 18

8 The heap after the initialisation of the Sheap allocator with a
size of 1000 bytes. Note that the displayed memory is configured
for interpretation as 32-bit integer values. Therefore, the display
of the 16-bit crc and the alignment offset values are displayed in
the opposite order as explained in figure 7. 19

9 Control flow of the memory allocation in the Sheap allocator.
Individual statements like concurrency handling with mutual ex-
clusion have been omitted in this flowchart for the sake of clarity.
. 20

10 Control flow of the memory deallocation in the Sheap allocator.
Individual statements like concurrency handling with mutual ex-
clusion have been omitted in this flowchart for the sake of clarity.
Coalescing means merging free adjacent memory blocks to one
bigger block. More detailed information about the pointer valid-
ity check and the illegal write check is available in chapter 4.1.2. 21

11 The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes. 22

12 The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes and a subsequent
deallocation for the second memory block. 24

i

13 The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes and subsequent
deallocation for the second memory block and following the third
memory block. 24

14 Aligned memory block in the heap with marked allocated user size
and the additional alignment offset. A caller must not use the
additionally aligned offset. The Sheap allocator can detect out of
bounds writes directly behind the bound when freeing an aligned
memory block if the data written out of the bound is distinguish-
able from the configurable SHEAPERD SHEAP OVERWRITE VALUE (de-
fault: 0xFF). 26

15 The Sheaperd Eclipse plugin provides a view which can be used to
translate an address to the associated source file and line number
using the addr2line executable. 31

16 The heap after the Sheap allocator performed allocations, using
the extended memory layout (Extended Memory Block Layout)
for three memory blocks of the sizes 17, 50 and 150 bytes. The
yellow highlighted parts of the headers/boundaries are the iden-
tifications of the caller that prompted the allocation. 32

17 The MPU Type Register (MPU TYPE) provides information about
the number of available regions. The processor does not provide
a MPU if the DREGION field is zero. (Source: ARM 2010, p. 636
[5]) . 34

18 The MPU Control Register (MPU CTRL) is used to enable and
disable the MPU, the memory background region and the hard
fault behaviour. (Source: ARM 2010, p. 637 [5]) 35

19 The MPU Region Number Register (MPU RNR) is used to select
the currently active region. Adjustments in the MPU RBAR and
MPU RASR registers will affect the region selected in the REGION

field. (Source: ARM 2010, p. 638 [5]) 35
20 The MPU Region Base Address Register (MPU RBAR) is used to

specify the base address of the selected region. The address can
be specified in the ADDR field. The REGION field can be used in
combination with the VALID field to update the region in the
MPU RNR register. (Source: ARM 2010, p. 639 [5]) 36

21 MPU Region Attribute and Size Register (MPU RASR) is used to
configure the size, the activation, the subregions and the at-
tributes of the current region. (Source: ARM 2010, p. 640 [5]) . 37

22 The ARM Cortex-M3/M4 can use the MPU memory attributes
internally and additionally propagates them to the external sys-
tem. The external system can make use of the attributes as well.
For example, an external cache can check the C (cacheable) flag
to see if caching is permitted. (Source: Yiu 2014, p. 363 [24]) . . 38

23 STMicroelectronics recommendation for the configuration of the
MPU region attributes for their Cortex-M4 implementation. (Source:
STM 2020, p. 199 [17]) . 38

ii

24 The possible AP field values of the MPU RASR register. The effec-
tively resulting permission can be obtained from the access and
the note columns. (Source: ARM 2010, p. 642 [5]) 39

25 The Eclipse console of the Sheaperd Eclipse plugin. The console
is used to record the inserted assertions. The hyperlinks can be
used to directly open the insertion location. 45

26 The Keil RTX SCV handler is implemented in assembler. Line
191 (1.) branches to C functions that handle the specific SVCs.
Line 194 (2.) stores return values to the current stack. In line 206
(3.) a stack overflow check is performed if a task switch occurred
during the SVC. 48

27 Comparison of the creation of memory regions in ARMv7-M and
ARMv8-M architecture. A region of size 274 KB at the base
address 0x3BC00 should be created. In the ARMv7-M architec-
ture, multiple regions need to be allocated to cover the mentioned
region. (PMSAv7) The ARMv8-M architecture allows MPU re-
gions of any size at a granularity of 32 bytes and can simply create
a single region. (PMSAv8) (Source: ARM 2016, p. 15 [6]) 54

28 An example segmentation of the secure and non-secure memory
sections using the TrustZone technology. The secure section con-
tains security critical components that need to stay unaltered.
The non-secure memory sections contain the common applica-
tion code, which does not need to be secured. (Source: Yiu 2016,
p. 3 [25]) . 54

29 An example AST describing a C function which obtains the
length of a provided string. 55

30 Different scenarios where a process is terminated and the associ-
ated memory is freed. The dashed area represents the free mem-
ory. (Source: Tanenbaum and Bos 2015, p. 192 [18] 56

31 Copy propagation: the copy statement ’int i = argc;’ turns
into dead code after the copy propagation. 56

32 Dangling pointer: A pointer being used after it has been freed . . 57
33 Dangling pointer: A pointer being used after the variable it points

to ran out of scope . 57
34 Dead code example: the body of the if condition will never be

executed. Therefore the compiler can omit it when generating
code. 57

35 Phases of compilation with intermediate representation. (Source:
Aho et al. 2014, p. 4f [1]) . 59

36 Distinction between a CPU and a MCU. 60

iii

List of Listings

1 Double free error: Freeing dynamically allocated data twice . . . 4
2 An excerpt of the Sheaperd library showing the different asser-

tion categories, the callback function prototype as well as the
intitialization function. 16

3 Sheap malloc macro: The macro obtains the program counter
from the register before calling the actual memory allocation.
The r1 register is used temporarily to get hold of the program
counter and restored to its previous content after the memory
allocation. The Sheap allocator uses the program counters to
create a history of the allocation requests. Furthermore, the pro-
gram counters can be used in the extended memory layout. (See
chapter Extended Memory Block Layout) 27

4 Sheap free macro: The macro obtains the program counter from
the register before calling the actual memory deallocation. The
r1 register is used temporarily to get hold of the program counter
and restored to its previous content after the memory dealloca-
tion. The Sheap allocator uses the program counters to create
a history of the allocation requests. Furthermore, the program
counters can be used in the extended memory layout. (See chap-
ter Extended Memory Block Layout) 28

5 The assembly file for the gcc compiler that provides the allocation
and deallocations functions which automatically obtain the link
register (lr) and use it as identification for the subsequent calls
to the sheap allocator functions. The used registers are initially
stored on the stack (push) and restored (pop) after the branch
to the respective sheap function. 29

6 The Sheap heap statistic structure which is used to accumulate
statistics of the current heap. It can be obtained by the user
using the listed function. 33

7 The mpu region t typedef, which used to configure MPU mem-
ory regions using the Memory Protection Module. 40

8 The stack frame typedef, which represents the basic stack frame
which is automatically pushed onto the stack as part of the excep-
tion entry behaviour of a Cortex-M device using the ARMv7-M
architecture. (ARM 2010, p. 536 [5]) 42

9 The original function as well as the erroneous assertion from ear-
lier versions of the Sheaperd Eclipse plugin resulting from directly
using the array subscript as assertion condition. 44

10 The current Sheaperd Eclipse plugin (V3.5.0) checks the array
subscript for pre- or postfix increment/decrement operators (line
five) and adjusts the assertion condition accordingly (line four). . 45

iv

1 Introduction

During software development, errors can and will occur. Most of them will be
found during debugging and testing, but some errors may live long enough to
be delivered to an end user. Statistics show that, on average, delivered software
contains 1-25 errors per 1000 lines of code (LOC). (McConnell 2004, p. 521
[12])
Because these errors are not detected during development and testing, they can,
if they occur, lead to limitations or even to the failure of the software leading to
damage (e.g., financial, loss of reputation). The knowledge about the existence
of an error is important, but along comes the problem of finding the cause for
it. Depending on the kind and source of the error, tracking down and/or the
reconstruction of it can prove to be difficult. The research done in this thesis
focuses on the problem of detecting and avoiding of specific forms of these kinds
of errors mentioned above. Chapter 1.1 highlights the wide adoption of the C
programming language and Arm processors in the field of embedded software
development. The following chapter 1.2 presents the concrete objective of this
thesis.

1.1 Motivation

As mentioned in the introduction, software bugs will occur and can have serious
consequences. Especially programming languages like C, which allow manual
memory management and even require it when using dynamic memory, offer
additional error potential, in contrast to languages with automatic memory
management like, for example, Java. Looking at the Common Weakness Enu-
meration (CWE) Top 25 of 2020 one can see that the existence of errors related
to memory management is still relevant. (Mitre 2020, [13]) In the Top 10 of
this list are three CWEs which can be directly associated with typical mem-
ory management errors in C. Ranked on place two is CWE-787: Out-of-bounds
Write. An error like this can only occur when using programming languages
which do not perform bounds checking, like C for example. The same applies
to place four: CWE-125: Out-of-bounds Read. On place eight is a specific case
of a dangling pointer: CWE-416: Use After Free. This error occurs if manu-
ally requested memory has been freed by the developer, but the pointer to the
memory location is still being used (See figure 32). Such a problem will only
occur when using manual memory management like C.

Despite the mentioned properties and potential errors, the C programming
language is still very actively used. Taking a look at the TIOBE Index one
can see the ongoing popularity of C. Figure 1 shows the popularity of different
programming language with C and Java as the most popular languages.
In embedded software development, C is also one of the most used languages.
The IEEE Spectrum1 programming languages rating puts C on place two after

1IEEE Spectrum: Top programming languages (accessed 23 March 2021)
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

1

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

Figure 1: TIOBE Index showing the popularity of programming languages over
time.

Figure 2: Market share of embedded programming languages according to the
2019 Embedded Markets Study conducted by AspenCore

python in the embedded category. The 2019 Embedded Markets Study con-
ducted by AspenCore2 places C on first place by a margin of 30% before C++
and python. (See figure 2)

Another dominant part of the embedded market are processors based on
architectures from Arm. According to the Arm Strategic Review 2017 3 Arm
processor designs were in 34% of all sold silicon chips containing a processor in
the year 2016. Arm develops and offers three different CPU architecture profiles
(A, R and M) to its customers. The A-Profile (Application) is intended to be

2AspenCore: 2019 Embedded Markets Study (accessed 30 March 2021)
https://www.embedded.com/wp-content/uploads/2019/11/EETimes Embedded 2019 Embedded Markets Study.pdf

3Arm Strategic Review 2017 (accessed 23 March 2021)
https://www.arm.com/-/media/global/company/investors/Arm%20Strategic%20Review%20-
%202017.pdf?revision=8473a535-6f7e-4ce5-85fe-0eb6f1f75487&la=en

2

https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.arm.com/-/media/global/company/investors/Arm%20Strategic%20Review%20-%202017.pdf?revision=8473a535-6f7e-4ce5-85fe-0eb6f1f75487&la=en
https://www.arm.com/-/media/global/company/investors/Arm%20Strategic%20Review%20-%202017.pdf?revision=8473a535-6f7e-4ce5-85fe-0eb6f1f75487&la=en

used for high performance markets such as mobile devices or notebooks. The
R-Profile (Real-Time) provides high performance processors for safety-critical
environments. The M-Profile (Microcontroller) is intended to be used in em-
bedded systems. 4 The Cortex-M series is a processor family that is based on
the M-Profile and therefore intended for usage in embedded applications.

Despite the prevalence of the C programming language and the Arm M-
Profile in terms of the Arm Cortex-M processor family in the embedded world,
there seems to be no (freely available) supporting framework or library to help
developers track down memory or concurrency related errors on specifically
these platforms. As mentioned before, such errors are still common and can
result in expensive and complex debugging efforts.

1.2 Objective

Debugging and tracking down of memory or concurrency related errors often
seems non-deterministic, and it can be time and cost intensive to track them
down and fix them. The objective of this thesis is to provide support for devel-
opers. It focuses on development, debugging and testing support for software
written in plain C for embedded systems. More precisely, an assistance for the
developer to detect or even prevent memory and concurrency related errors dur-
ing runtime or debugging time will be elaborated. The thesis focuses explicitly
on the Cortex-M processor family and will use specific characteristics of these
processors to have the best possibilities to detect and prevent errors at disposal.
The main focus is on the models: M3, M4 and M7 and therefore on the ARMv7-
M architecture. Embedded applications are partly built using a RTOS to allow
the usage of different tasks that will be run concurrently by the RTOS. The
2019 Embedded Markets Study conducted by AspenCore5 showed that 65% of
embedded projects used some kind of operating system. The solution devel-
oped in this thesis will also provide support for the usage in combination with a
RTOS. Furthermore, the provided features will be used for error detection and
prevention.
As described in chapter 2 partial solutions for these kinds of errors already exist
in the context of more powerful computer systems. These solutions are mainly
possible due to the fact that either some altered form of C is used or additional
hardware in the form of additional CPU cores or a Memory Management Unit
(MMU) is available.
This thesis will provide a solution for the problem mentioned in the context of
embedded systems, in the form of the Cortex-M processor family and the usage
of plain C.

4Arm CPU architecture profiles (accessed 27 March 2021)
https://www.arm.com/why-arm/architecture/cpu

5See 2

3

https://www.arm.com/why-arm/architecture/cpu

2 State of the Art

There are several ways to detect errors in software. Common to all solutions is
the requirement of analysis or tracing to determine where or even why errors
occur. Such an analysis can be performed automatically by a specific tool, like
a compiler, for example. It can also be performed manually by a software tester
or a developer. In general, the different possibilities can be broken down into
static and dynamic analysis.

2.1 Static Analysis

Static analysis in general means that the analysis is performed without executing
the program concerned. This form of examination can be performed on both
the source code of a software and the resulting machine code. The analysing
entity processes the source or machine code and tries to confirm the correctness
of the software, or at least remove or highlight obvious errors. When referring
to static analysis, people tend to assume that tools are performing the analysis
automatically. While this can be the case, it is not the only way of performing
static analysis. Code reviews, also called code inspections or code walkthroughs,
are performed manually by the development team. (Huang 2009, p. 146 [9]) In
regard to static analysis tools, a compiler poses a prime example. A compiler
will, for example, perform lexical, syntax and semantic analysis. This includes,
among other things, type checking. (Aho et al. 2014, p. 5-9 [1]) A failed
type check will stop the compilation process and return an error which can, for
example, be highlighted for the user by an integrated development environment
(IDE). A wide variety of static code analysis tools exist today and many are
already part of IDEs, or can be added manually as plugins.

An important aspect in static analysis is the distinction of syntactic and
semantic errors. Although compilers can detect syntactic and semantic errors
partially, consider the example in listing 1.

1 #include <stdlib.h>

2

3 int main(int argc , char* argv []) {

4 int* pValue = malloc(sizeof(int) * 10);

5 if(pValue == NULL){

6 // Perform out of memory handling

7 }

8 free(pValue);

9 free(pValue); // Doubel free error resulting in

10 // undefined behaviour

11 }

Listing 1: Double free error: Freeing dynamically allocated data twice

4

From the point of view of the compiler, the code in listing 1 is perfectly
fine. Nevertheless, the code will result in undefined behaviour6. Modern IDEs
or static analysis tools in general, like a linter, will produce warnings for such a
simple double free error. However, such an error may also not be obvious. For
example, when two tasks are sharing the same pointer and both try to free the
pointer independently of each other. In such a scenario, it may not be possible
at all to detect this error using static analysis.

2.2 Dynamic Analysis

There are limitations to static analysis. Static analysis is performed without
executing the program to be analysed. Yet there are errors which occur only at
runtime and can only be detected during execution of the program. This kind of
errors are tackled with dynamic analysis. Dynamic analysis is performed during
the execution of a program. This does not necessarily mean that the program
is run on a hardware CPU. As we will see in chapter 2.4 it may also be a simu-
lated execution environment. There are various dynamic analysis tools that are
dealing with memory-related errors, some of the best known being AddressSan-
itizer7, Valgrind8, Dmalloc9 and Intel Inspector10. Most of these tools support
different platforms, but are not designed with embedded requirements in mind
or they don’t provides support for Arm, in this case especially the Cortex-M
cores with Armv7-M/Armv7E-M architecture. For example, the Intel Inspector
is only available for Windows and Linux operating systems (10). Another lim-
itation is the resources needed for such tools to operate. This is evident when
considering Valgrind’s memcheck. Memcheck will slow down the execution of
a program by 20-30 times and will at least require 25% of additional memory
([20], [21]).

Considering listing 1 again. We already discussed that the code will compile
and result in undefined behaviour. If we take a look at the approach of Dmal-
loc on detecting memory errors, we see that the default allocation functions
(malloc, calloc, realloc and free) are replaced with a custom allocator im-
plementation. (See 9) This replacement implementation has to provide memory
to the user same as the original implementation. However, to detect a mem-
ory error, the allocation functions need to perform additional logic and possible
need to manage additional data. (Huang 2009, p. 163 [9]) In the case of Dmal-
loc, examples for the additional logic and data are: statistics about the current
heap, logging and heap integrity verification. Generally, the additional logic
is called instrumentation and the additional data is called metadata. All
tools performing dynamic analysis have to instrument the program to analyse

6Man page malloc(3) (accessed 09 April 2021):
https://man7.org/linux/man-pages/man3/free.3.html

7AddressSanitizer (accessed 13 April 2021): https://github.com/google/sanitizers/wiki/AddressSanitizer
8Valgrind (accessed 13 April 2021): https://valgrind.org/
9Dmalloc (accessed 13 April 2021): https://dmalloc.com/

10Intel Inspector (accessed 13 April 2021):
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html

5

https://github.com/google/sanitizers/wiki/AddressSanitizer
https://valgrind.org/
https://dmalloc.com/
https://software.intel.com/content/www/us/en/develop/tools/oneapi/components/inspector.html

in some way. (Nethercote 2004, p. 11f [15]) There are different possibilities to
instrument software. Two different examples of instrumentation are explained
in the chapters 2.4 and 2.5.

2.3 Instrumentation

In the context of software development, instrumentation refers to the process of
adding additional statements to a software with the intent to gather information
during the execution. (Huang 2009, p. 163 [9]) This gathered information is
used for different purposes like, for example: profiling, error detection, logging
and collecting metadata (See Dmalloc example in chapter 2.2). Profiling in this
case means the measurement of the memory consumption or the time complexity
of the program.

Instrumentation, and program analysis, can be further subdivided into source
instrumentation/analysis and binary instrumentation/analysis. The former is
performed on source code and when adding new instrumentation, the code
needs, at least in the context of compiled programming languages, a recom-
pilation for the instrumentation to take effect. The latter does not need recom-
pilation, as the already compiled binary is instrumented. (Nethercote 2004, p.
12f [15]) It is important to realise that both approaches come with requirements.
The source instrumentation is specific to the programming language in use, but
it is generally platform independent. Binary instrumentation on the other hand
depends on the platform, but not on a specific programming language. (Nether-
cote 2004, p. 2f [15]; Mußler 2010, p. 12 [14]) In the following chapters 2.4 and
2.5 an example of both kinds of instrumentation is provided. Chapter 2.4 shows
an example of binary instrumentation in the form of the dynamic binary in-
strumentation framework Valgrind. Chapter 2.5 shows an example of source
instrumentation in the form of the GEMS framework.

2.4 Example: Valgrind

Valgrind is a dynamic binary instrumentation (DBI) framework. A DBI frame-
work provides the foundation to develop dynamic binary analysis (DBA) tools.
DBA tools use the framework to instrument the binary. Typical examples of
DBA tools are profilers and error detection tools. In the context of Valgrind
error detection tools are also called checkers. (Nethercote and Seward 2007,
para. 1.1 [16]) While this section will take a closer look at Valgrind, other DBI
frameworks exist. The most popular beeing Intel ’s Pin and DynamoRIO. All
frameworks seem to be under active development as of publication of this thesis,
with the latest stable releases from 2020 respectively, 2021.

When developing a new DBA tool, it is much easier to build upon an existing
framework like Valgrind instead of creating everything from scratch. A Valgrind
tool, for example, will use the available core features and instrument the specific
parts of the code which the core provides. (See figure 3)

6

Figure 3: Valgrind core provides the code that will be instrumented by the tool.

2.4.1 Code Instrumentation

The code instrumentation approach Valgrind uses is disassemble-and-resynthesise
(D&R). (Nethercote and Seward 2007, para. 3.5 [16]) As the name suggests
the provided binary, respectively, the machine code is disassembled and trans-
lated into a intermediate representation (IR). The Valgrind IR is RISC-like and
therefore each instruction performs only one specific operation. (Nethercote and
Seward 2007, para. 3.6 [16]) The mapping to the IR does not need to be one to
one. A single machine code statement can result in multiple IR statements. The
created IR is then provided to the tool plugin, as shown in figure 3, instrumented
as needed and returned to the core. After the translation and instrumentation,
the IR is translated into an instruction list and finally into machine code. The
generated machine code will be executed and not the original client code. (See
section 2.4.3 and figure 4 for a more detailed explanation)
The D&R approach is a unique feature of Valgrind as other DBI’s like Dy-
namoRIO or Intel’s Pin use a copy-and-annotate (C&A) approach. The C&A
approach copies single machine code instructions as they are and annotate each
instruction with additional information. The advantage of this technique is the
preservation of the original machine code. Tools which depend on low-level in-
formation, e.g., if a specific instruction has been used, can profit from a C&A
approach. To mitigate this problem in the D&R approach Valgrind’s IR sup-
ports marker statements that hold information about the original instruction.
A noteworthy advantage of the D&R approach is that the client code and the
instrumentation use the same IR, which makes the instrumentation code as
powerful as the client code, and optimisation can be performed equally well.
(Nethercote and Seward 2007, para. 3.5 [16])

7

2.4.2 Execution

The starting procedure of Valgrind begins with the initialisation of some sub-
systems and the loading of the client executable. After the setup of the client
stack and data segment, the tool is prompted to initialise itself. Afterwards,
additional subsystems are initialised and the translation and execution of the
client code starts. The Valgrind core, the tool and the client code reside in the
same process and share the address space. (Nethercote and Seward 2007, para.
3.3 [16])
While Valgrind itself runs on the host CPU, the instrumented client program
runs on a virtual CPU. Similarly, the Client CPU registers (also called guest
registers) are stored, among other data, in the client ThreadState which is
managed by the Valgrind core per individual client thread. (Nethercote and
Seward 2007, para. 3.4 [16]; Valgrind Developers [22])

2.4.3 Code Translation

Due to the D&R approach of Valgrind, the translation from machine code to the
IR and back to machine code is complex. The process consists of eight phases,
which are presented in Figure 4. The advantage of using a DBI framework is
clearly visible. The developer of a tool based on Valgrind only needs to interact
with Phase 3 from figure 4 to instrument a binary. The IR that is used for the
code translation and instrumentation is expressive, but there are limitations.
It can, for example, not express memory allocations and deallocations or other
memory state and guest register adjustments done by clients. To mitigate this
limitation, Valgrind provides an event system and function replacement/wrap-
ping. (Nethercote and Seward 2007, para. 3.12 [16])

2.4.4 Event System & Function Replacement/Wrapping

The event system is used to communicate changes to guest registers and memory
state done by clients. The event system provides different callbacks, which a
tool can register for. For example, there are pre reg read and post reg write

events. This events inform registered callbacks that a register is going to be
read by a system call respectively that a system call has written a new value
to a register. (Nethercote and Seward 2007, para. 3.12 [16]) This callbacks are
essential for tools that use shadow values. Shadow values will not be explained
in this thesis. For additional information about shadow values and there usage
in Memcheck see [16] and [15].

The aspect of heap memory allocation and deallocation is not tracked by
the event system. To be able to track these events in a tool, the tool needs to
provide a replacement or a wrapper implementation. Valgrind supports function
replacement, and therefore a tool can provide an alternative implementation
for a specific function. The alternative implementation can call the replaced
function and thus offer function wrapping. (Nethercote and Seward 2007, para.
3.13 [16])

8

2.5 Example: Generic Model-Based Source Code Instru-
mentation (GEMS)

The Generic Model-Based Source Code Instrumentation (GEMS) framework
tries, as the name suggest, to provide a universal instrumentation framework
for different programming languages. The developers of the framework de-
fined a core IR which contains the common constructs of all the source lan-
guages, as well as language-specific models that contain the distinct differences
of each language. Furthermore, a so-called Unified Programming Language
Model (UPLM), which is a union of all IR models, is defined. (Chittimalli and
Shah 2012, p. 909 [7]) Figure 5 shows the instrumentation process using GEMS.
The programs (source codes) are translated into a IR. This IR contains an Ab-
stract syntax tree (AST) which is used to perform the instrumentation. After
the instrumentation, the IR is translated to source code, which now includes the
instrumentation. The developers highlighted the separation of concerns. The
instrumentation does not depend on the programming language. However, this
means that translators from source code to IR and from IR back to the source
code are needed for each language. When executing the programs after the
instrumentation, a language-specific execution library is needed.

The general approach of the GEMS instrumentation is quite similar to the
array bound asserter, described in chapter 4.3. The bound asserter is imple-
mented as a Eclipse plugin. The Eclipse environment is used to create and
obtain an AST of the associated source code. This AST is traversed and, sim-
ilar to the Probe Insertor in figure 5, the instrumentation code is inserted and
reflected in the source code again. The concrete instrumentation in this case are
custom assert statements for array accesses. Another similarity to the GEMS
instrumentation is the fact that the instrumentation needs an execution library.
In case of the array bound asserter, a specific include directive is inserted into
the source code files. The user needs to make sure that the needed library is
available.

9

Figure 5: The code instrumentation flow of the GEMS framework. The source
code programs are translated into a universal IR, which is then instrumented.
After the instrumentation, the IR is translated back into source code. To execute
the resulting programs, a language-specific execution library is needed. (Source:
Chittimalli and Shah 2012, p. 911 [7])

10

Figure 4: Valgrind translation process. Dead code elimination, constant folding
and copy Propagation are explained in the glossary.
(Nethercote and Seward 2007, para. 3.7 [16])

11

3 Errors in Embedded Software Development

This chapter provides a categorisation of errors in embedded software develop-
ment. Chapter 3.1 describes the additional challenges of embedded systems in
contrast to non-embedded application software. It also gives a general overview
of the error categories in embedded software. The following chapter 3.2 describes
on which error categories this thesis focuses.

3.1 Classification of Errors in Embedded Software Devel-
opment

Software development for embedded systems poses additional challenges for de-
velopers compared to developing non-embedded software applications based on
operating systems like Linux distributions, Windows or macOS. Embedded soft-
ware needs to implement and control all the hardware drivers which are needed
to properly operate the device by itself. Embedded software also needs to process
hardware and software interrupts. Hardware interrupts can occur, for example,
when receiving a message via the serial interface. Depending on the priority
of an occurring interrupt and on the activation of interrupts in general, the as-
sociated interrupt handler will be called. In general, interrupt service routines
(ISR) should execute as briefly as possible and never block the execution, as this
could, for example, result in errors related to timing or task management. If
multiple task are needed, the developer needs to configure them properly for the
specific RTOS in use. Furthermore, as there is most likely no virtual memory
abstraction, the RTOS respectively the developer needs to make sure that the
tasks are isolated properly. With these additional challenges and responsibili-
ties also comes additional potential for errors, as well as additional sources of
errors. Kim and Huh[10] have developed, based on several additional research
papers on embedded software defects, the following table (6). It records their
final collection of accumulated and derived embedded software defects. Some
defects, like E11 - Dynamic memory, apply to programs written in C in general.
However, error codes like E7 - Device driver or E8 - Hardware interrupt affect
embedded software exclusively.

3.2 Errors Discussed in This Thesis

The different defects listed in 6 are ranked according to different metrics. One
of the metrics is called D+R. The D value represents the degree to which one
defect affects other defects listed in the table. The R value represents the degree
to which a specific defect is affected by other defects listed in the table. The
combination of these values as D+R value represents the sum of the D and R
value and therefore shows how strongly this defect interacts with other defects.
(Kim and Huh, p. 12 [10]) The defect E3 - Task management has the highest
D+R value of all defects. This means that it is a central component regarding
defects and a good candidate for debugging defects.

12

Figure 6: Kim and Huh[10] have collected and derived this table from several
research papers regarding defects of embedded software applications. They ex-
tracted these 12 embedded software defects using content analysis procedures.
See the source for more details. (Source: Kim and Huh, p. 10 [10])

13

This thesis focuses on detection or even prevention of errors related to dy-
namic memory management (E11), shared memory (E12), out-of-bound array
access (E1) as well as concurrency related errors (E3). (See table 6) One of
the biggest tasks when fixing errors is to find the source of the error. Arafa
et al. [2] conducted a study in 2017 where participants (intermediate-level de-
velopers) tried to fix bugs in a RTOS. The RTOS is similar to one they have
already worked with. One of the observations of the study is that over 93%
of the participants considered finding the bug to be more difficult, or at least
as difficult, as fixing the bug. The evaluation of the study showed that only
63% of the bugs have been located by the participants. (Arafa 2017, p. 2 ff.
[2]) To support developers with error detection or even error prevention, the
following chapter 4 introduces the Sheaperd library. The library is intended to
support developers during the testing and debugging process. As finding errors
can prove even more difficult than fixing them, the detection and reporting of
errors and, if possible, their origin is a key feature of the Sheaperd library.

14

4 Sheaperd - A Library to Support Debugging
and Testing of ARM Cortex-M Devices

The Sheaperd C library was developed as part of this thesis. The library is
designed to help developers to detect and fix errors and focuses on errors related
to memory management and concurrency. It consists of three main modules.
Sheap is a custom memory allocator which is described in detail in chapter 4.1.
The Stackguard module and its base module, the Memory Protection module, is
presented in chapter 4.2. Additionally, the Eclipse plugin provides array bound
assertions as well as debug support in the form of an integrated executor view
and is explained in detail in chapter 4.3. This chapter describes the general
concepts of the Sheaperd library.

When initializing the Sheaperd module, a user can provide a callback func-
tion (sheaperd assertion cb). This function will be called when an assert
inside the library fails. The callback provides an error category as well as a text
describing the assertion. Listing 2 shows the error categories and the callback
registration. The library can be configured using several defines, which are used
for conditional compilation. The default settings are defined in the file opt.h.
This file includes the file sheaperdopts.h which represents the user defined
settings. Any setting in sheaperdopts.h has priority over the default settings.

15

1 typedef enum {

2 SHEAPERD_GENERAL_ASSERT ,

3 SHEAPERD_ARRAY_BOUND_CHECK ,

4 SHEAP_INIT_INVALID_SIZE ,

5 SHEAP_NOT_INITIALIZED ,

6 SHEAP_OUT_OF_MEMORY ,

7 SHEAP_SIZE_ZERO_ALLOC ,

8 SHEAP_ERROR_INVALID_BLOCK ,

9 SHEAP_ERROR_DOUBLE_FREE ,

10 SHEAP_ERROR_NULL_FREE ,

11 SHEAP_ERROR_OUT_OF_BOUND_WRITE ,

12 SHEAP_ERROR_FREE_PTR_NOT_IN_HEAP ,

13 SHEAP_ERROR_FREE_INVALID_BOUNDARY ,

14 SHEAP_ERROR_FREE_INVALID_HEADER ,

15 SHEAP_ERROR_FREE_BLOCK_ALTERED_CRC_INVALID ,

16 SHEAP_ERROR_COALESCING_NEXT_BLOCK_ALTERED_INVALID_CRC ,

17 SHEAP_ERROR_COALESCING_PREV_BLOCK_ALTERED_INVALID_CRC ,

18 SHEAP_ERROR_MUTEX_CREATION_FAILED ,

19 SHEAP_ERROR_MUTEX_DELETION_FAILED ,

20 SHEAP_ERROR_MUTEX_IS_NULL ,

21 SHEAP_ERROR_MUTEX_ACQUIRE_FAILED ,

22 SHEAP_ERROR_MUTEX_RELEASE_FAILED ,

23 SHEAP_CONFIG_ERROR_INVALID_ALLOCATION_STRATEGY

24 } sheaperd_assertion_t;

25

26 typedef void (* sheaperd_assertion_cb) (sheaperd_assertion_t assert ,

char msg []);

27 void sheaperd_init(sheaperd_assertion_cb assertionCallback);

Listing 2: An excerpt of the Sheaperd library showing the different assertion
categories, the callback function prototype as well as the intitialization function.

4.1 Secure Heap (Sheap) - A Custom Memory Allocator

The Sheap part of the Sheaperd library provides a custom heap allocator imple-
mentation. In contrast to common heap allocator implementations, the Sheap
allocator contains additional safeguards. These safeguards are intended to de-
tect common errors related to dynamic memory management. Inevitable, these
additional safety measures are accompanied by disadvantages. The main disad-
vantages are the increase of the space and time complexity. These increases are
introduced by the additional logic for the error detection and the layout of the
memory blocks. The mentioned disadvantages are bearable, as the Sheaperd
library is intended to be used for testing and debugging purposes. Besides the
additional safety measurements, the Sheap allocator can collect information and
statistics, which may help to find the origin of an error.

This chapter will give an overview of the Sheap allocator implementation.
The memory allocation and memory block layout is presented and explained
in chapter 4.1.1. Chapter 4.1.2 shows how the implementation tries to detect
errors at runtime.

16

4.1.1 Memory Allocation and Block Layout

The Sheap memory block layout is depicted in figure 7. The overhead introduced
by Sheap to maintain the heap structure and provide error detection is 16 bytes.
The memory block header (and boundary) consists of the aligned size requested
by the user, the calculated alignment offset and a cyclic redundancy check (crc)
checksum. The size alignment depends on a user-defined value, but will at
least be four bytes. If the value of the alignment offset is greater than zero,
it can be used to check for possible buffer overruns when freeing the memory
block. (See section 4.1.2) The crc checksum is calculated using the data of
the memory block header except the checksum itself. (See figure 7) Initially,
the Sheap allocator is initialized with a starting address and a heap size.
The implementation will create an initial memory block with a payload size
of heap size - overhead(16 bytes). Figure 8 shows the memory after the
heap initialization with a heap size of 1000 bytes and a heap starting address
of 0x20002800. The figure shows that an initial memory block with a size of
984 bytes payload (1000 bytes - 16 bytes overhead) is created. The allocation

flag (A) is zero as the memory is not allocated yet, the alignment offset is zero
as the requested size is already aligned to 4 bytes and the crc has been calculated
and written to memory. The boundary tag mirrors the header for convenience
regarding the coalescing of freed memory blocks and error detection.

Memory Allocation

After the initialisation, the Sheap allocator is ready to use. The general process
of allocating memory with the Sheap allocator is depicted in figure 9. The figure
mentions the search for the next block of adequate size. There are different
approaches to find a block of memory of the requested size. The Sheap allocator
does not use any explicit free list to record available memory blocks. The heap
is traversed using the start address and the memory block size, which is stored
in the header. The Sheap allocator values simplicity and therefore uses a first
fit approach for finding free memory blocks. The first fit strategy traverses the
heap in search of a big enough memory block and uses, as the name suggests,
the first one it finds. This approach is generally fast as it searches as little as
possible and stops as soon as the first suitable block is found. (Tanenbaum and
Bos 2015, p. 192 f. [18]) Nevertheless, it must be mentioned that the first fit
strategy also comes with a disadvantage. It tends to split the large blocks at
the beginning of the heap first. This can result in lots of small memory blocks
in the beginning of the heap which need to be traversed each time a free block
is needed, thus resulting in longer searches. (Wilson et al. 1995, p. 30 f. [23])
Another possible approach for searching free memory blocks would be best fit.
This strategy searches the heap for the best suited memory block in terms of size,
with the idea of wasting as little memory as possible. The main disadvantage
of this approach is that it is exhaustive in general. It may only stop before
traversing the whole heap if a perfect fit is found. (Wilson et al. 1995, p. 30
[23]) These are just two examples of a variety of different approaches.

17

Figure 7: An example memory block of the Sheap allocator located at address
0×20002800. The header and boundary data is used to mark if a block is in
use, to navigate through the heap, ease the coalescing of memory blocks and for
error detection.

18

Figure 8: The heap after the initialisation of the Sheap allocator with a size of
1000 bytes. Note that the displayed memory is configured for interpretation as
32-bit integer values. Therefore, the display of the 16-bit crc and the alignment
offset values are displayed in the opposite order as explained in figure 7.

19

Figure 9: Control flow of the memory allocation in the Sheap allocator. Indi-
vidual statements like concurrency handling with mutual exclusion have been
omitted in this flowchart for the sake of clarity.

This thesis will not go into more detail about other approaches. (See Wilson
et al. [23] for more information on the subject) The Sheap allocator can be
extended to use additional memory allocation strategies besides first fit.

Memory Deallocation

Memory that has been dynamically allocated also needs to be deallocated or
freed again. If memory is not freed, the executing program will most likely run
out of memory at some point in time. The general process of freeing memory
with the Sheap allocator is depicted in figure 10.

Freeing a memory block itself is as simple as changing the allocation flag
(A) from one to zero. However, if that is the only operation that takes place
when freeing a memory block, the memory will suffer from fragmentation at
some point in time. After the initialisation, one big block of memory exists.
(See figure 8) After some memory blocks have been allocated, this one big block
has been divided into multiple smaller blocks. Figure 11 shows the heap as
initialised in Figure 8 after three allocations of 17, 50 and 150 bytes.

20

Figure 10: Control flow of the memory deallocation in the Sheap allocator.
Individual statements like concurrency handling with mutual exclusion have
been omitted in this flowchart for the sake of clarity. Coalescing means merging
free adjacent memory blocks to one bigger block. More detailed information
about the pointer validity check and the illegal write check is available in chapter
4.1.2.

21

Figure 11: The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes.

Let’s assume that some work has been performed with the allocated memory
and now the second memory block in figure 11 should be freed. In this case, a
simple change of the allocation flag (A) to zero is enough, as the adjacent blocks
are still allocated. The block is marked as not allocated and the allocator can
reuse it if a request occurs and the block meets the requested size. Consider
the same procedure, but with the third memory block instead of the second.
When this block is freed, a simple change of the allocation flag will not suffice,
as its successor is also not allocated. If the freeing of a memory block only
adjusts the allocation flag, a bigger memory block cannot be restore even if all
memory blocks have been freed. This means that although enough memory
is theoretically available to fulfill a memory allocation request, the individual
blocks on their own are too small to meet the required size. This is the reason
the deallocation needs to perform coalescing. Please note that other approaches
like deferred coalescing exist where the coalescing is not performed during the
deallocation process. (Wilson et al. 1995, p. 22/43 [23]) The Sheap allocator
focuses on simplicity and coalesces during the deallocation process.

22

Coalescing of Memory Blocks

When a memory block is freed, the allocator needs to try to coalesce the freed
block with the adjacent memory blocks. This is where the chosen memory lay-
out, especially the boundary tags, comes in handy. A request to deallocate a
resource needs to contain a reference to the resource. In the case of dynamic
memory management, the user provides the memory address of the data to free.
The address needs to be an address obtained by the allocator. As the caller is
expected to provide a payload address (see figure 9 showing the allocation pro-
cess), the Sheap allocator will subtract 8 bytes from the provided address to
get the block header address. Using the information of the block header, the
allocator can find the successor block and check if it is allocated or not. Further-
more, the allocator can easily check the predecessor block. If another 8 bytes
are subtracted from the block header, the allocator can obtain the boundary
tag of the predecessor block. The boundary tag contains the information if the
predecessor is allocated or not. Due to the use of boundary tags, the check
of the predecessor block is straightforward, and it can be performed in O(1).
Without boundary tags, the determination of the predecessor will need a second
traversal of the heap in this implementation. Depending on the adjacent blocks
and their allocation flag, the current block is freed and, if possible, coalesced
with its neighbours.

Figure 12 shows the heap memory after the second memory block (see figure
11) has been freed. As the adjacent blocks are not free, the only difference is
the allocation flag (A). Figure 13 shows the heap after subsequently freeing the
third memory block. This deallocation resulted in the coalescing of the third
memory block with the second and fourth block. The current state of the heap
now contains two memory blocks with sizes of 20 and 948 bytes. Taking into
account the additional overhead per memory block of 16 bytes, we get the total
heap size of 1000 (948 + 20 + 2 ∗ 16) bytes.

23

Figure 12: The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes and a subsequent deallocation
for the second memory block.

Figure 13: The heap after the Sheap allocator performed allocations for three
memory blocks of the sizes 17, 50 and 150 bytes and subsequent deallocation
for the second memory block and following the third memory block.

24

4.1.2 Error Detection

The Sheap allocator provides additional safeguards to detect or even prevent er-
rors related to dynamic memory management. The error checking is performed
during allocation (malloc) or deallocation (free) operations. There is no dis-
tinct task in place which checks the heap periodically as of now. To provide
information about an error to the user, the Sheaperd asserts are used.

The first error detection approach is to check if the address provided to
the deallocation procedure is valid. The address itself is valid if it is not NULL

and it is within the heap. If the address is invalid, an assert with appropriate
error category will be executed. In the case of an invalid address, the error
categories are SHEAP ERROR NULL FREE or SHEAP ERROR FREE PTR NOT IN HEAP.
(See listing 2)

If the supplied address is valid, the memory block header and the bound-
ary tag are checked for validity. This check is performed using the crc check-
sum. When a memory block is created, the checksum is calculated using the
first six bytes of the header and is written to the header and boundary of
the memory block. The crc depends on the aligned size, the allocation flag
(A) and the alignment offset. The crc is updated when a block is freed, as
this changes the allocation flag (A). The memory block validation calculates
the crc again and compares it with the crc stored in memory. If a mismatch
occurs, an assert with the categories SHEAP ERROR FREE INVALID HEADER or
SHEAP ERROR FREE INVALID BOUNDARY is executed. (See listing 2)

Since the previous check assured that the memory block header and bound-
ary have valid crc checksums, it can be assumed they have not been altered. It
is an assumption because we cannot restrict the memory access to the heap. By
using pointer arithmetic and knowing the structure of the memory block, a user
could intentionally adjust the memory header and boundary. Such malicious
actions are not significant for the Sheap allocator. The allocator is intended to
be used by developers for the purpose of error detection for their own software.
With a valid memory block header, we can detect multiple deallocations, also
known as double free. Multiple deallocation is a serious problem as it generally
results in undefined behaviour11. The detection of such an error can be per-
formed using the allocation flag (A) of the header. If the block is not allocated
(the allocation flag (A) is zero), a multiple deallocation has occurred. In that
case, an assert with the category SHEAP ERROR DOUBLE FREE is executed. (See
listing 2) The detection of multiple deallocation can help to mitigate Use After
Free errors, which are a common source of problems and therefore ranked on
place eight of the CWE Top 25 of 2020. (Mitre 2020, [13])

11Man page malloc(3) (accessed 26 May 2021):
https://man7.org/linux/man-pages/man3/free.3.html

25

Figure 14: Aligned memory block in the heap with marked allocated user
size and the additional alignment offset. A caller must not use the ad-
ditionally aligned offset. The Sheap allocator can detect out of bounds
writes directly behind the bound when freeing an aligned memory block if
the data written out of the bound is distinguishable from the configurable
SHEAPERD SHEAP OVERWRITE VALUE (default: 0xFF).

As explained in 4.1.1, the memory block layout contains the aligned size as
well as the alignment offset. That means that a memory block created dur-
ing allocation can turn out to be larger than requested by the user. Consider
the first memory block from the example heap in figure 11. Figure 14 shows
the mentioned memory block divided into the requested size and the additional
alignment. The user allocated 17 bytes of memory, which resulted in a 20
bytes memory block. The yellow region shows the 17 bytes of memory the
user allocated. The two blue regions mark the size of the alignment offset
stored in the header and the additionally allocated memory itself. The Sheap
allocator can be configured to check the additionally allocated memory. If a
define is available for SHEAPERD SHEAP FREE CHECK UNALIGNED SIZE, the Sheap
allocator will check the memory block for illegal writes in the additionally al-
located memory. The define for SHEAPERD SHEAP FREE CHECK UNALIGNED SIZE

causes an additional define of SHEAPERD SHEAP OVERWRITE ON FREE. This de-
fine is used during the deallocation process. Freed memory will be overwrit-
ten with the SHEAPERD SHEAP OVERWRITE VALUE (default: 0xFF). This enables
the allocator to check if the aligned memory of a block only contains the
SHEAPERD SHEAP OVERWRITE VALUE value or something different. If something
different is found, an out of bounds write has happened and an assert with the
category SHEAP ERROR OUT OF BOUND WRITE will be executed. (See listing 2)

Recording Allocations and Deallocations & Heap Statistics

The detection of an error is useful as it provides the certainty that something is
going wrong. Finding the source of such a problem is an additional challenge.
For example, if the Sheap allocator detects that a multiple deallocation has
happened, it will execute the assert with the related category. The developer
processing the callback gets the corresponding information and can try to locate
the source of the error. Depending on the size and organisation of the project
in use, the task of finding the possible free calls that could cause the problem

26

can be time and cost intensive. In the first approach to provide a mitigation
for problems of this kind, the Sheap allocator provided additional macros for
allocation and deallocation. These macros recorded the program counters of the
callers. The general idea is to store some form of identification (e.g., program
counter) during the allocation and deallocation process. This identification is
stored in an array of user-defined size (SHEAP HEADER ID LOG SIZE). Further-
more, the identifications will be stored inside the memory block itself, if the
extended memory block layout is used. These macros were able to record the
program counter as they were directly inserted into the source code where they
were used. Inline assembler was used to access the respective registers. The
following listings (3 and 4) show the macros, including comments describing the
individual lines of code. Both macros used the r1 register to get hold of the
program counter. Therefore, a backup of the current content of the r1 register
was needed. Following that, the content of the pc register was moved into r1

and r1 was subsequently used to move the content into a C variable (line 8 in
listing 3). The variable was used in the following function calls to the malloc

respectively the free function. After the function returned, the original content
of the r1 register was restored. The macros needed to temporarily use the r1

register, because it is not possible to directly access the program counter from
inline assembly. See the ARM Compiler armcc User Guide for detailed infor-
mation. (ARM 2014, p. 282 [3])
As can be seen in the listings 3 and 4, the sheap allocation functions (sheap malloc

and sheap free) have an additional parameter. It is also possible to call the
functions directly and provide a user-defined form of identification instead of
the program counter.

1 #define SHEAP_MALLOC(size , pVoid) \

2 do { \

3 if(ASSERT_TYPE(size_t , size)){ \

4 register uint32_t r1 asm("r1"); \

5 uint32_t r1Backup = r1; \

6 __asm volatile("mov r1, pc\n"); /* Store the pc in r1 */ \

7 uint32_t pc; \

8 asm("mov %0, r1" : "=r" (pc)); \

9 size_t s = size; \

10 pVoid = sheap_malloc(size , pc); \

11 r1 = r1Backup; \

12 } \

13 } while (0)

Listing 3: Sheap malloc macro: The macro obtains the program counter from
the register before calling the actual memory allocation. The r1 register is used
temporarily to get hold of the program counter and restored to its previous
content after the memory allocation. The Sheap allocator uses the program
counters to create a history of the allocation requests. Furthermore, the program
counters can be used in the extended memory layout. (See chapter Extended
Memory Block Layout)

27

1 #define SHEAP_FREE(pVoid) \

2 do { \

3 register uint32_t r1 asm("r1"); \

4 uint32_t r1Backup = r1; \

5 __asm volatile("mov r1, pc\n"); /* Store the pc in r1 */ \

6 uint32_t pc; \

7 asm("mov %0, r1" : "=r" (pc)); \

8 sheap_free(pVoid , pc); \

9 r1 = r1Backup; \

10 } while (0)

Listing 4: Sheap free macro: The macro obtains the program counter from the
register before calling the actual memory deallocation. The r1 register is used
temporarily to get hold of the program counter and restored to its previous
content after the memory deallocation. The Sheap allocator uses the program
counters to create a history of the allocation requests. Furthermore, the program
counters can be used in the extended memory layout. (See chapter Extended
Memory Block Layout) .

The explained approach reached its limit when working with a different com-
piler. Chapter 5.1 presents the integration of the Sheaperd library into commer-
cial applications. One of these applications uses the Code Composer Studio
(CCS) development environment of Texas Instruments (TI). This environment
also contains the proprietary TI Arm Clang Compiler Tools. At the time of writ-
ing this thesis, the TI compiler tools did not support inline assembler, as it was
used in the macros in the listings 3 and 4. Moreover, the usage of these macros in
the first place originated from the idea of obtaining the current program counter.
Using a function call for allocations and deallocations, as the libc implementa-
tion does, would change the program counter. Nevertheless, the goal was to
provide an equivalent replacement for existing allocator calls. For this reason,
the new approach is to use function calls to allocate and deallocate memory. To
still be able to provide a form of identification, the link register (lr) is used.
This is valid as a regular function call uses the bl (branch and link) instruction,
which will copy the address of the next instruction into the lr register. (ARM
Limited 2013, p. 157 [4]) This information provides the needed identification
when tracking down errors. The first implementation attempt of this approach
was in the form of a C function using inline assembler without accessing C vari-
ables. Despite the usage of the function attribute naked, which should instruct
the compiler to not generate any prologue or epilogue code for this function, it
inserted additional code nevertheless. This was further influenced by the com-
piler’s optimisation settings. During debugging, the compiler optimisation may
be disabled. The compiler inserted code disturbed the program execution. To
overcome this obstacle, the naked C function was implemented entirely in as-
sembler in a separate file. Using this approach, the compiler does not interfere
with the assembler code. Unfortunately, different compilers may define different
assembler directives. This means that the assembly file may need to be adjusted
to contain specific assembler directives like for example .func and .endfunc for
the gcc compiler or .asmfunc and .endasmfunc for the TI compiler. Listing 5

28

shows the assembly file for the gcc compiler. The assembly file initially pushes
the used registers onto the stack. The link register (lr) is moved into the r1

respectively r2 register to be provided as a parameter to the subsequent func-
tion call. After the function returns, the previously pushed values are retracted
(pop) from the stack to restore the original content and to return to the caller.
Using this approach, the lr can automatically be used as identification and the
adjustments that may be needed for the usage of a different compiler will only
affect the assembly file.

1 .thumb

2 .global sheap_malloc_lr

3 .global sheap_calloc_lr

4 .global sheap_free_lr

5

6 sheap_malloc_lr:

7 .func

8

9 push {r1, lr}

10 mov r1, lr

11 bl sheap_malloc

12 pop {r1, pc}

13

14 .endfunc

15

16 sheap_calloc_lr:

17 .func

18

19 push {r1, r2, lr}

20 mov r2, lr

21 bl sheap_calloc

22 pop {r1, r2, pc}

23

24 .endfunc

25

26 sheap_free_lr:

27 .func

28

29 push {r1, lr}

30 mov r1, lr

31 bl sheap_free

32 pop {r1, pc}

33

34 .endfunc

35

36 .end

Listing 5: The assembly file for the gcc compiler that provides the allocation
and deallocations functions which automatically obtain the link register (lr) and
use it as identification for the subsequent calls to the sheap allocator functions.
The used registers are initially stored on the stack (push) and restored (pop)
after the branch to the respective sheap function.

29

The recorded identifications can be obtained programmatically. If the iden-
tification is an address representing the caller, one can get the associated source
file and line number using the addr2line12 executable. For ease of use, the
Sheaperd Eclipse plugin provides a view for this purpose. The user needs to
provide the path to the addr2line executable and the binary of the project in
use. With this information specified, the user can simply enter the correspond-
ing address and obtain the source file and line number. Figure 15 shows an
example of the plugin with an address obtained by the Sheap allocator.

Extended Memory Block Layout

The Sheap allocator provides an optional extended memory layout. If
SHEAPERD SHEAP USE EXTENDED HEADER is defined as one, the allocator will use
the extended memory layout. The extended layout expands the default layout
with four additional bytes. The total increase of size (header and boundary) is
eight bytes, resulting in a per block memory overhead of 24 bytes. The purpose
of the additional layout is to provide more detailed information about alloca-
tions at runtime. The four additional bytes are used to store additional caller
identification. Using this approach, each memory block that has been allocated
or deallocated has an assigned identification. This information can be useful in
different situations. For example, if a memory block is deallocated twice. If the
identifications are stored as part of the memory block, the detection of which
call to the allocator has already performed the deallocation can be performed in
O(1). Figure 16 shows the heap after initialization and subsequent allocations
of 17, 50 and 150 bytes. The identification is stored between the aligned size and
the alignment offset (see figure 7) and it is included in the crc calculation. The
last memory block has an identification value of 0×00000001. This is because
this block has been created from the Sheap allocator and represents the re-
maining memory. The default identification value for automatic allocations can
be defined using SHEAPERD SHEAP AUTO CREATED BLOCK ID and defaults to one.
The identification for a specific memory block can be obtained using the function
sheap status t sheap getAllocationID(void* ptr, uint32 t* id). The
source code file and line number can be obtained using the Sheaperd Eclipse plu-
gin (see 15). This extended layout is optional to still provide an implementation
with smaller memory overhead for restricted systems.

Heap statistics

The Sheap allocator provides a simple heap statistic. General heap information
are stored and updated during the initialization, allocation and deallocation pro-
cedures. The statistic is available for the user by a function (sheap getHeapStatistic).
Refer to listing 6 to see which information is available and how to obtain the
information.

12GNU Binutils addr2line (accessed 20 August 2021)
https://www.gnu.org/software/binutils/

30

https://www.gnu.org/software/binutils/

Figure 15: The Sheaperd Eclipse plugin provides a view which can be used to
translate an address to the associated source file and line number using the
addr2line executable.

31

Figure 16: The heap after the Sheap allocator performed allocations, using the
extended memory layout (Extended Memory Block Layout) for three memory
blocks of the sizes 17, 50 and 150 bytes. The yellow highlighted parts of the
headers/boundaries are the identifications of the caller that prompted the allo-
cation.

32

1 typedef struct{

2 uint8_t* heapMin;

3 uint8_t* heapMax;

4 uint32_t currentAllocations;

5 uint32_t totalBytesAllocated;

6 uint32_t userDataAllocatedAlligned;

7 uint32_t userDataAllocated;

8 size_t size;

9 } sheap_heapStat_t;

10

11 void sheap_getHeapStatistic(sheap_heapStat_t* heapStat);

Listing 6: The Sheap heap statistic structure which is used to accumulate
statistics of the current heap. It can be obtained by the user using the listed
function.

4.2 Memory Protection Module & Stackguard

The Memory Protection of the Sheaperd library provides protection for user de-
fined memory regions. Protecting memory regions can help to detect different
types of errors. Consider a memory region which stores critical information.
This information should only be altered using a specific function. In C the de-
veloper has full control of the whole memory and can access arbitrary memory
locations (consciously and unconsciously). This means that although the critical
information may only be altered consciously in a specific function, it is possible
that the same data is altered in a different way unconsciously. If this data is
crucial for the correct operation of the software, such an unnoticed change may
lead to a system failure. The Memory Protection enables the developer to con-
figure memory regions and protect them from unnoticed changes. Considering
the example again, the protection can be disabled when the specific function
needs to alter the information and enabled otherwise to protect the data from
unwanted changes.
The Memory Protection is implemented using the Memory Protection Unit
(MPU). A detailed explanation of the MPU and the associated registers is avail-
able in chapter 4.2.1. The Stackguard part of the Sheaperd library provides an
implementation that is using the Memory Protection to guard the stacks of dif-
ferent tasks. Embedded applications that use a RTOS can consist of multiple
tasks. Each of these tasks has its own stack. Stackguard uses the Memory
Protection and therefore the MPU to protect the stacks of individual tasks.

This chapter will give an overview of the Memory Protection and Stackguard
implementation. The Memory Protection Unit (MPU) is the central component
in regard to Memory Protection and is explained in Chapter 4.2.1. The current
implementation is explained in chapters 4.2.2 and 4.2.3.

33

4.2.1 Memory Protection Unit

The Memory Protection unit (MPU) is an optional component included in dif-
ferent Cortex-M microprocessors (M0+, M3, M4, M7, M23, M33, M35P). As
mentioned in the introduction, this thesis focuses on the Cortex-M3/4/7 micro-
processors and therefore on the ARMv7-M architecture. Newer MPU features,
introduced with the ARMv8-M architecture, are discussed in chapter 5.

MPU Registers

Using the MPU, one can define multiple memory regions. Each of these regions
can be configured individually. The MPU provides five registers to configure
the regions and their settings. Figure 17 shows the bit assignments of the MPU
Type Register (MPU TYPE).

MPU Type Register (MPU TYPE)

Figure 17: The MPU Type Register (MPU TYPE) provides information about
the number of available regions. The processor does not provide a MPU if the
DREGION field is zero. (Source: ARM 2010, p. 636 [5])

The DREGION field specifies how many MPU regions are available. The fields
IREGION and SEPARATE are not of significance, as the ARMv7-M architecture
only supports a unified MPU. A unified MPU means that there is no distinc-
tion between instruction regions (IREGION) and data regions (DREGION). The
MPU TYPE register is available even if the MPU is not implemented by the Cortex-
M device in use. The DREGION field holds the number of available memory re-
gions. The MPU is not implemented if this field reads zero. (ARM 2010, p. 636
[5])

MPU Control Register (MPU CTRL)

The activation of the MPU, the memory background region and the interrupt
MPU activation is configured using the MPU Control Register (MPU CTRL). Fig-
ure 18 shows bit assignments of the MPU Control Register. The ENABLE bit is
used to enable and disable the MPU. The HFNMIENA bit controls if the MPU

34

is active when handling interrupts with a priority less than zero. The Memory
Protection implementation sets this bit to zero to not restrict user implemented
fault handlers. The PRIVDEFENA bit controls if the default memory map is ac-
cessible when running in privileged mode. If this bit is not set, any memory
access which is not explicitly allowed in the MPU configuration will result in a
MEMFAULT. (ARM 2010, p. 637 f. [5])

Figure 18: The MPU Control Register (MPU CTRL) is used to enable and disable
the MPU, the memory background region and the hard fault behaviour. (Source:
ARM 2010, p. 637 [5])

MPU Region Number Register (MPU RNR)

The region selection can be performed using the MPU Region Number Register
(MPU RNR). Figure 19 shows bit assignments of the MPU Region Number Reg-
ister. The REGION field is used to select the currently active region. Settings
specified in the following registers(MPU RBAR and MPU RASR) will take effect upon
the selected region in the REGION field. The region selection can be performed
in an alternative way, which reduces the number of register accesses to configure
a region by one. (See MPU RBAR) (ARM 2010, p. 638 f. [5])

Figure 19: The MPU Region Number Register (MPU RNR) is used to select the
currently active region. Adjustments in the MPU RBAR and MPU RASR registers
will affect the region selected in the REGION field. (Source: ARM 2010, p. 638
[5])

MPU Region Base Address Register (MPU RBAR)

The MPU Region Base Address Register (MPU RBAR) is the first register to con-
figure settings for a specific region. Figure 20 shows the bit assignments of the

35

MPU Region Base Address Register. The base address of the current region is
defined using the ADDR field. The VALID bit can be used to select a region and
set the base address with a single register access. Alternatively, the region can
be specified with separate access to the MPU RNR register. If the VALID bit is set,
the REGION field in the MPU RNR register is updated to the value specified in the
REGION field automatically.
Figure 20 shows that the ADDR field consists of only 27 bits. This means that
not any address can be used as base address. The minimum supported align-
ment of the base address is implementation defined. The ST board used for
testing (STM32L476G-DISCO) has a minimum region alignment of 32 bytes.
Therefore, the smallest possible region size is 32 bytes. It is important to
note that the base address needs to be aligned to the size specified in
the MPU RASR register at all times. If a region size of 512 bytes is configured,
the ADDR field in the MPU RBAR register needs to be aligned to a multiple of 512
bytes, for example, 0x20002800 or 0x20002A00. The developer is responsible
to make sure that the region base address is properly aligned in regard to the
configured size. (ARM 2010, p. 639 [5])

Figure 20: The MPU Region Base Address Register (MPU RBAR) is used to specify
the base address of the selected region. The address can be specified in the
ADDR field. The REGION field can be used in combination with the VALID field
to update the region in the MPU RNR register. (Source: ARM 2010, p. 639 [5])

MPU Region Attribute and Size Register (MPU RASR)

The main part of the region configuration is done using the MPU Region At-
tribute and Size Register (MPU RASR). Figure 21 shows bit assignments of the
MPU Region Attribute and Size Register.

36

Figure 21: MPU Region Attribute and Size Register (MPU RASR) is used to
configure the size, the activation, the subregions and the attributes of the current
region. (Source: ARM 2010, p. 640 [5])

The ENABLE bit is used to enable and disable the current region. The current
region is identified using the MPU RNR register. Using the SIZE field, one can
specify the size of the current region. The SIZE field consists of five bits and is
interpreted as an exponent. The content of the SIZE field is increased by one
and interpreted as the exponent(power) of the base two (1).

regionSize[byte] := 2(SIZE+1) (1)

As the minimum supported region size is 32 bytes, the smallest valid value
for the SIZE field is four (2).

regionSize[byte] := 2(4+1) = 25 = 32 (2)

The SRD (Subregion Disable) field controls the activation of the subregions
of the current region. MPU regions with a size of at least 256 bytes are auto-
matically subdivided by the MPU into eight subregions of equal size. Each bit
in the SRD field controls if the associated subregion is enabled (0) or disabled
(1). The least significant bit in the SRD field represents the subregions with the
lowest address, and the most significant bit represents the highest address. If
the current region is smaller than 256 bytes and the bits of the SRD field are set,
the effect is unpredictable. (Source: ARM 2010, p. 640 f. [5])

The ATTRS field is subdivided into multiple fields. We start of with the TEX

(type extension) field as well as the S (shareable), C (cacheable) and B (buffer-
able) bits. These settings are used to configure the type of memory respectively
the type of device (memory-mapped I/O) of the current region. Furthermore,
These settings are exported to the bus system together with each data access.
(Source: Yiu 2014, p. 361 [24]) Figure 22 shows how the system makes use
of the memory access attributes. This configuration in general depends on the
implementation and therefore one needs to check the vendor documentation
of the specific device in use. For example, STMicroelectronics states that the

37

Figure 22: The ARM Cortex-M3/M4 can use the MPU memory attributes in-
ternally and additionally propagates them to the external system. The external
system can make use of the attributes as well. For example, an external cache
can check the C (cacheable) flag to see if caching is permitted. (Source: Yiu
2014, p. 363 [24])

Figure 23: STMicroelectronics recommendation for the configuration of the
MPU region attributes for their Cortex-M4 implementation. (Source: STM
2020, p. 199 [17])

shareable and cacheable attributes do not affect the system behaviour of their
Cortex-M4 implementation. Nevertheless, they advise to properly configure the
register to keep the application code portable. STMicroelectronics also provides
a recommendation for the configuration of the memory region attributes, which
is depicted in figure 23. Note that in STM implementations, the memory access
using Direct memory access (DMA) is not affected by the MPU attributes.
To control DMA access, the MPU needs to control the DMA registers of the
Microcontroller unit (MCU). (STM 2020, p. 199 [17])

The AP (access permission) field defines in which way the current memory
region can be accessed. Figure 24 shows the possible values for the AP field.
The access permissions distinguish between privileged and unprivileged access.
The privileged and unprivileged mode are the two software execution levels in
the ARMv7-M architecture. (ARM 2010, p. 512 [5])

The XN (execute never) bit controls if it is possible to execute code from
the current region. A value of zero indicates that the execution of instructions

38

Figure 24: The possible AP field values of the MPU RASR register. The effectively
resulting permission can be obtained from the access and the note columns.
(Source: ARM 2010, p. 642 [5])

fetched from the current region is permitted. A value of one prevents the exe-
cution of an instruction fetched from the current region. Additionally, the read
access in the AP field needs to be configured for the current execution privi-
lege mode to be able to execute a fetched instruction. If the read access is not
granted, or the XN bit is set to one, the processor will generate a MemFault
when the instruction is issued for execution. (Source: ARM 2010, p. 642 [5])

To provide a complete description of the MPU registers, the MPU RBAR and
MPU RASR alias registers need to be mentioned. Using these register aliases along
with the alternative region selection, mentioned in MPU RBAR, software can
use a stream of word writes to efficiently update up to four MPU regions. The
registers are located at offsets of 8, 16, and 24 bytes from the MPU RBAR address
of 0xE000ED9C (Source: ARM 2010, p. 642 [5])

4.2.2 Memory Protection Module

The Memory Protection Module provides the base functionality to configure
MPU regions. It directly interacts with the MPU registers mentioned in MPU
Registers. The interface of the module provides an abstraction to the user
in the form of the mpu region t typedef available in listing 7. The members
size and ap are enumerations which only provide valid values for the associ-
ated register fields SIZE and AP. (See MPU Region Attribute and Size Register
(MPU RASR)) The module also provides function to enable or disable the MPU.
(memory protection enableMPU() and memory protection disableMPU()) The
module automatically disables the MPU when configuring a new region and
enables it afterwards. Moreover, the module makes sure that the necessary

39

memory barrier instructions, which are needed to make sure that the changes
to the MPU propagate properly (see STM 2020, p. 196 f. [17]), are performed.
Additionally, the Memory Protection Module checks if the provided region to
configure is valid. The base address of the region is verified to be at least aligned
to 32 bytes. The base address is furthermore checked if it aligns properly ac-
cording to the specified size of the region. The module also makes sure that the
provided region number is valid. If any invalid setting is found, an error will be
returned to the caller. The Memory Protection Module is furthermore used by
Stackguard to configure the regions according to the stacks of individual tasks.
The module has intentionally been developed independently of Stackguard, so
it can be reused for additional use cases for the MPU besides stack isolation.

1 typedef struct {

2 uint32_t address;

3 bool enabled;

4 uint8_t number;

5 uint8_t srd;

6 mpu_regionSize_t size;

7 mpu_access_permission_t ap;

8 bool cachable;

9 bool bufferable;

10 bool shareable;

11 uint8_t tex;

12 bool xn;

13 } mpu_region_t;

Listing 7: The mpu region t typedef, which used to configure MPU memory
regions using the Memory Protection Module.

4.2.3 Stackguard

The Stackguard part of the Sheaperd library is intended to be used to protect the
stacks of different tasks in an application using a RTOS. Embedded applications
that make use of a RTOS can consist of multiple tasks. Each of these tasks will
have its own stack. It depends on the RTOS in use, where in memory the stack
areas reside. In most cases, there is a designated area where the stacks of the
different tasks are stored. The stack is a private area of memory which should
only be accessed by the associated task. A task accessing the stack of another
task is usually the result of an error. Stackguard prevents such errors, using the
Memory Protection Module to set up MPU region for the stacks.

Stackguard Configuration

Stackguard is configured using four functions. The function stackguard init(

stackguard memFault cb memFaultCallback) initializes the internals and checks
if the MPU is available on the current device. The user can provide a callback

40

to Stackguard which is called if a MemFault with a data access violation oc-
curs. A task can be added using the function stackguard addTask(uint32 t

taskId, uint32 t* sp, mpu regionSize t stackSize). The stack pointer
(sp) is used as base address for a MPU region of size stackSize. As Stack-
guard is using the Memory Protection Module, the restrictions on the base
address alignment and the size also apply here. This complicates the creation of
tasks using a RTOS. The user needs to make sure that the stacks are properly
aligned. How to enforce the alignment depends on the RTOS in use. FreeR-
TOS 13, for example, enables the user to create a task with a user-provided
stack. The user can align the stack properly and create a task using the pre-
pared stack. There is also the possibility to use a define (portBYTE ALIGNMENT)
to influence the stack alignment. After adding a task, a corresponding MPU
region with access permission “no access” exists. Tasks can be removed from
using the function stackguard removeTask(uint32 t taskId). The function
stackguard guard() enables the MPU using the Memory Protection Module.

Stackguard Execution

Stackguard needs to know what task is currently executing. Depending on this
information, it can adjust the access permissions (see figure 24) for the MPU re-
gions accordingly. The RTOS in use is responsible for task switching and knows
which task is executing. How to obtain this information depends again on the
RTOS in use. FreeRTOS, for example, provides macros for the task life cycle.
The user can provide implementations for the macros traceTASK SWITCHED IN

and traceTASK SWITCHED OUT and FreeRTOS will call these macros when per-
forming a task switch. This information can be used to let Stackguard know
which task is executing. Therefore, Stackguard provides the function
stackguard taskSwitchIn(uint32 t taskId). When calling this function,
Stackguard will loop through all added regions and adjust the access permis-
sions. The region of the switched-in task will have full access and for all other
regions, the access will be denied.

If access to a memory address which lies within an MPU region is per-
formed and the access permission of the region is not met, a MemFault will be
triggered. Stackguard can provide a handler for MemFault exceptions. If the
STACKGUARD USE MEMFAULT HANDLER define is set to one, the MemFault handler
will be available. The Stackguard MemFault handler will check if the fault oc-
curred because of a data access violation. If that is the case, the user-provided
callback will be called with the fault address as well as the exception stack
frame. Cortex-M devices using the ARMv7-M architecture automatically push
information onto the stack when entering an exception. Listing 8 depicts the
so-called basic frame. If a Floating Point Unit (FPU) is implemented, the ex-
ception entry behaviour may push an extended frame onto the stack. (ARM
2010, pp. 535-539 [5]) Howsoever, the extended frame enhances the basic frame

13FreeRTOS (accessed 23 June 2021): https://www.freertos.org/

41

and Stackguard does not need to distinguish between these two. When receiv-
ing the callback, the user has the information at which address the violation
happened (faultAddress). Furthermore, the user can make use of the basic
frame and, for example, can obtain the return address which indicates where
the data access violation occurred.

Information about occurring exceptions can generally be obtained from the
Configurable Fault Status Register (CFSR). The CFSR consist of the MemManage
Status Register (MMFSR), the BusFault Status Register (BFSR) and the Usage-
Fault Status Register (UFSR). Detailed information is available in the ARMv7-M
architecture reference manual. (ARM 2010, p. 609-612 [5])

1 #pragma pack (1)

2 typedef struct {

3 uint32_t r0;

4 uint32_t r1;

5 uint32_t r2;

6 uint32_t r3;

7 uint32_t r12;

8 uint32_t lr;

9 uint32_t return_address;

10 uint32_t xpsr;

11 } stackguard_stackFrame_t;

12 #pragma pack()

Listing 8: The stack frame typedef, which represents the basic stack frame which
is automatically pushed onto the stack as part of the exception entry behaviour
of a Cortex-M device using the ARMv7-M architecture. (ARM 2010, p. 536
[5])

42

4.3 Array Bound Asserter

To be able to create asserts for arrays in the C programming language, first
the source code needs to be parsed. Different C parsers are available, with one
of them being the Eclipse C/C++ Development Tooling (CDT) implementa-
tion. The CDT provides an AST of source code files which can be traversed
and augmented with additional statement, like assertions. Due to the fact that
the Eclipse IDE is freely available, widely used and provides tooling to develop
plugins which can access the available features like the CDT, the array bound
asserter was implemented as a Eclipse plugin. The array bound asserter is im-
plemented as part of the Sheaperd Eclipse plugin. The plugin has already been
mentioned in section 4.1.2 with reference to the executor view. The array bound
asserter is intended to support the developer during debugging and testing. The
C programming language contains no concept of boundary checks for arrays.
If a measure of this kind is desired, it needs to be performed manually. The
seriousness of this kind of errors is evident if you consider the CWE top 25 of
2020. Out of bound errors reside on place two (Out-of-bounds Write) respec-
tively place four (Out-of-bounds Read) in the ranking. (Mitre 2020, [13]) The
Sheaperd array asserter is part of the Sheaperd Eclipse plugin and provides
array assertions for the C programming language.

This chapter will give an overview of the array asserter implementation.
The Eclipse plugin based on Eclipse C/C++ Development Tooling (CDT) and
the available AST is described in chapter 4.3.1. Chapter 4.3.2 describes the
modification of the AST to generate the specific assertions.

4.3.1 Eclipse Plugin and CDT Integration

Eclipse provides a standalone IDE called Plugin Development Environment
(PDE). The PDE provides tools to develop, debug and deploy Eclipse plug-
ins. The Sheaperd Eclipse plugin has been created using this IDE. The PDE
provides basic building blocks to enhance the usual Eclipse UI with additional
view components. The executor view has already been mentioned in 4.1.2. The
array assertion is another part of the plugin. It is accessible through the context
menu on Eclipse C-Projects. The assertion can be performed on single files or
on folders/projects containing multiple files. The execution of the assertion is
logged using the console view and provides links to the inserted assertions. The
context menu also provides an entry to undo the assertions.

The C source code files are parsed using the Eclipse CDT. The CDT provides
APIs to obtain the translation units of the files. Using these translation units,
the associated AST can be created. The Sheaperd Eclipse plugin uses the AST
created from the CDT to insert the array assertions. The AST can be accessed
by creating an implementation of the abstract ASTVisitor class. As the name
suggests, the ASTVisitor follows the visitor pattern and provides a visit and
a leave method. These methods are overloaded several times for the different
kinds of nodes of the AST. Furthermore, the CDT provides a rewriter for the

43

AST. Changes to the AST can be accumulated during the traversal and executed
afterwards. The changes will be reflected in the C source code file.

4.3.2 Modifying the Abstract Syntax Tree (AST)

To create assertions for arrays in a C source file, the corresponding nodes in
the AST need to be found. Additionally, the size of the array is needed. The
array size is obtained using the overloaded leave method for array declaration.
This method is called when an array declaration statement has been traversed.
At this point, information about the array containing the name and the size
is stored. Local and global arrays have their own storage location. The local
storage is cleared when the AST traversal leaves a function.
To find an array access statement inside the AST the overloaded visit method
for statements is used. A statement in this context is generic and the plugin
checks if any of the different statements (if statement, while statement, for state-
ment, expression statement, etc.) contains an array subscript expression in any
form. If a subscript expression is found, the associated statement is used as a
reference point for the insertion of the assertion. To create a correct assertion,
the index of the array access needs to be obtained. In earlier versions of the
plugin, the index of the array access has directly been used for the assertion.
This turned out to be problematic if the subscript contained pre- or post incre-
ments/decrements. Listing 9 shows an assertion from an earlier version of the
plugin and demonstrates this problem. The array subscript ++i from line five is
directly used in the assertion in line four. As this statement changes, the value
of i the assertion will interfere with the program execution and the array access
in line five would be an out-of-bounds write.

1 void foo() {

2 int values [2] = { 0 };

3 int i = 0;

4 int j = values [++i];

5 }

6

7 void foo() {

8 int values [2] = { 0 };

9 int i = 0;

10 SHEAPERD_ASSERT("Plugin: Array bound check failed.", ++i < 2,

SHEAPERD_ARRAY_BOUND_CHECK);

11 int j = values [++i];

12 }

Listing 9: The original function as well as the erroneous assertion from earlier
versions of the Sheaperd Eclipse plugin resulting from directly using the array
subscript as assertion condition.

The current version of the plugin (V3.5.0) checks if the array subscript con-
tains any pre- or postfix increment/decrement operators and adjusts the asser-
tion condition accordingly. Listing 10 shows how the problem shown in listing 9

44

is handled in the current version. Besides inserting the assertions themself, the
plugin also makes sure that the needed header file (sheaperd.h) is included.

1 void foo() {

2 int values [2] = { 0 };

3 int i = 0;

4 SHEAPERD_ASSERT("Plugin: Array bound check failed.",

i + 1 < 2, SHEAPERD_ARRAY_BOUND_CHECK);

5 int j = values [++i];

6 }

Listing 10: The current Sheaperd Eclipse plugin (V3.5.0) checks the array
subscript for pre- or postfix increment/decrement operators (line five) and
adjusts the assertion condition accordingly (line four).

During the assertion process, the integrated Eclipse console is used to record
the progress. The plugin records which files have been found, which file is cur-
rently being traversed, and the inserted assertions. The assertions are recorded
as hyperlinks which can directly be used to open the specific insertion location.
To remove the assertions the plugin traverses the AST and checks if any plugin
created assertion statement can be found. If a node is found, it can directly
be removed from the AST. The removal is also recorded in the Eclipse console.
Figure 25 shows the console output from the assertion on a project folder.

Figure 25: The Eclipse console of the Sheaperd Eclipse plugin. The console is
used to record the inserted assertions. The hyperlinks can be used to directly
open the insertion location.

45

5 Results and Discussion

This chapter provides a conclusion about the implementation and concrete us-
age of the Sheaperd library. The initial chapter 5.1 describes the integration
of the Sheaperd library into existing commercial embedded software applica-
tions. The reader can develop understanding on how to approach the task of
implementing the library into existing applications. The chapter elaborates on
specific pitfalls and how to prevent or mitigate them. Chapter 5.2 discusses
the current implementation of the Sheaperd library, including specific design
decisions. Furthermore, it provides an outlook on how the Sheaperd library can
be further developed and extended. The final chapter 5.3 introduces features
of the ARMv8-M architecture and explains how these could be used in future
versions of the Sheaperd library.

5.1 Case Study - Integrating Sheaperd into Commercial
Applications

This chapter verifies that the Sheaperd library can be integrated into existing
embedded software applications. The integration is described from Stackguards
perspective in the chapters 5.1.1 and 5.1.2. The integration of the Sheap alloca-
tor and the array assertion is described in chapter 5.1.3. Chapter 5.1.4 describes
the execution of the applications, including the emerging faults and how they
are handled. The closing Chapter 5.1.5 provides a conclusion of the integration.

5.1.1 Stack Alignment

In this case study, the Stackguard part of the Sheaperd library is added to
commercial embedded software applications. The purpose of Stackguard is to
protect the stacks of different tasks executing in an RTOS. One application being
studied is using the Keil RTX RTOS together with the Common Microcontroller
Software Interface Standard (CMSIS) RTOS API v1. In this thesis, the term
task will be used synonymously to the term thread as used in the CMSIS API.
As mentioned in 4.2.3, the stack of a task needs to be properly aligned depending
on the size of the stack. The CMSIS v1 does not provide the possibility to create
a task with a manually allocated stack. It is possible to specify the size of the
stack, but it will be allocated automatically. Because of this limitation, the
task creation needed to be adjusted to guarantee that the stacks are properly
aligned according to their size. For reasons of simplicity, to keep the changes
to the application code at a minimum and to not alter the CMSIS v1 API this
adjustment was done manually. The task creation function of the Keil RTX was
altered to provide the correctly aligned stacks to the associated tasks. Other
RTOS APIs commonly provide possibilities to create tasks with user allocated
stacks. After the task has been created, the Keil RTX RTOS executes a notify
macro. This is used to realize when a new task has been created. Each newly
created task is added to Stackguard.

46

Another application under consideration uses the Texas Instruments (TI)
RTOS. The task stack can be provided manually to the task creation process
and therefore the alignment needed for the MPU (see 4.2.3) can be ensured. A
so-called HookSet provides callbacks for the task creation and switching process.

5.1.2 Context Switching

Once the correct stack alignment has been ensured, the next step is to no-
tice when a context switch occurs. The Keil RTX RTOS provides a notify
macro which is called when a task switch occurred. The notify macro was used
to call the stackguard taskSwitchIn(uint32 t taskId) function to inform
Stackguard that a task switch has occurred and the MPU regions need to be
adjusted. After building and starting the application, virtually immediately a
memory fault occurred. The reason for this fault is that the task-switch macro
is called before the task switch has been performed completely. The fault oc-
curred inside the SVC handler. Figure 26 shows the SVC handler of the Keil
RTX which is implemented in assembler. The memory fault occurred at line
194 (2.). The instruction in line 194 is the store multiple (STM) instruction.
This instruction takes a base address (R12) and, separated by a comma, multi-
ple registers (R0-R2) specified in curly brackets. The registers inside the curly
brackets are stored at the base address. In this specific case, the base address
(R12) represents the process stack pointer (PSP). Line 193 stores the PSP into
R12. The memory fault occurred on line 194 because of the branch to a C
function in line 191 (1.). During the execution of this function, eventually the
task-switch notify macro is called. This is the task switch macro that has been
used to update the MPU regions. Access to the stack of the switched in task
is enabled, and access to all other stacks is disabled. When the code execution
returns from the branch in line 191 (1.) it will subsequently reach line 194 and
tries to write to the stack of a task that has already been switched out from
Stackguard’s perspective. This results in a memory fault, as the access to the
stack has already been disabled in the respective MPU region.

To overcome this limitation, the notify macro needs to be executed after all
the necessary stack accesses have been performed. The SVC handler performs
additional code if a task switch should be performed. Line 199 exits if no task
switch is performed in this SVC. In this case, no notify macro must be called. If
a task switch is performed, the code execution continues as additional handling
is needed. In line 206 (3.), the handler branches to a C function that checks if
a stack overflow occurred. At the end of this function, an additional task notify
macro has been added manually, and the original macro has been deactivated.
As this macro is now executed after all necessary accesses to the switched-
out stack have been performed, the Stackguard protection is now configured
properly and will guard the individual task stacks.

The application using the TI RTOS behaved similarly. As mentioned, the
task switching callback can be defined using a HookSet. When this is called from

47

Figure 26: The Keil RTX SCV handler is implemented in assembler. Line 191
(1.) branches to C functions that handle the specific SVCs. Line 194 (2.) stores
return values to the current stack. In line 206 (3.) a stack overflow check is
performed if a task switch occurred during the SVC.

48

the RTOS and the MPU is configured and enabled, a memory fault occurs. As
in the case of the Keil RTX RTOS, the TI RTOS also needs to access the stack
of the switched out task after the callback. This problem was solved by not
directly enabling the MPU after the task switch, but delay the activation until
the Task enter function is called.

5.1.3 Sheap and Array Assertion

The first application under consideration does not use a lot of dynamic memory
allocation. The three tasks use three allocations in total, which have been rewrit-
ten manually to use the Sheap allocation, respectively deallocation macros. (See
4.1.2) The heap itself was initialized using information from the linker script.
The linker script defines the symbol end, which is used to obtain the start
address of the heap. For the heap size, the minimum defined heap size of 0x400
(102410) bytes is used. The array assertion has been performed on all source
code files of the custom application code. The assertion callback is used to ob-
serve if any assertion or dynamic memory allocation/deallocation failed. The
array assertions as well as the Sheap allocator did not report any unmet asser-
tions. The library code of the MCU manufacturer has not been edited in regard
to array assertion or dynamic memory allocation.

The second application under consideration contains more dynamic memory
allocations. Furthermore, the first approach to perform allocations with au-
tomatically obtained identification using macros failed for this application. A
new approach was implemented in the form of functions implemented in plain
assembler, which can also automatically obtain identification for the allocations.
(See chapter 4.1.2 for detailed information) As this application used significantly
more dynamic memory allocations as the first application, the manual replace-
ment of the allocations was tedious. An automatic replacement could be an
additional feature of the Sheaperd Eclipse plugin (see 5.2). The Sheap allocator
reported free attempts of NULL values, which is generally not an error itself if
the pointer has not been freed unintentionally.

5.1.4 Executing the Application

As that Stackguard is properly integrated into the Keil RTX RTOS of the first
application (See 5.1.2), it can be launched and the stacks will be guarded against
access from other tasks except the stack owner. A first stack related memory
fault occurred after creating the application task from within the main task.
The Keil RTX RTOS can be configured to wrap the main function inside a
task. This feature is used for the application in consideration. From the main
task, two additional tasks are created. One of them, the application task, is
initialized with arguments (void* arguments). The passed argument’s pointer
is obtained from a local variable of the main task. The arguments’ pointer is
passed through the Keil RTX task creation and ends up as a parameter to the
application task function. The application task casts the void* to the actual

49

data type and updates its value. This results in a memory fault. As mentioned,
the arguments’ pointer is obtained from a local variable of the main task. The
local variables are stored on the stack. This means that the passed pointer
references a variable which is allocated on the main stack. Write access to this
variable from another task as the main task, like the application task in this
case, is not allowed and correctly results in a memory fault. This problem can
be solved by moving the arguments variable of the main thread from the local
scope into the global scope. In C global variables are not stored on the stack,
but depending on their initialization in the data segment or the bss segment. If
a global variable has a value other than zero, it will reside in the data segment,
otherwise they reside in the bss segment. The whole bss segment is initialized
with zero. (Erickson 2008, p. 75 [8]) After moving the arguments variable to
global scope, the application task could access it without any memory access
violation.

Another stack-related memory fault occurred inside the Keil RTX RTOS.
Some functions of the RTOS perform direct access to the stack of a task not
currently running. For example, the function rt mbx send(OS ID mailbox,

void* p msg, U16 timeout) proofed to be problematic. As the name suggests,
the function tries to send a message to a specific mailbox. A special case in the
message delivery occurs when a task is already waiting for a message to be
delivered. In this case, the RTOS will not put the message into a mailbox,
but it will directly deliver it to the waiting task. This delivery is performed
by writing the message directly to the stack of the waiting task. As this task
is currently not executing, the stack is protected by Stackguard and the access
results in a memory fault. Similar problems arose in the application using
the TI RTOS. Specific functions like for example Queue put(Queue Object*

obj, Queue Elem* elem) will possibly store data onto the stack of a task not
currently executing, which will result in a memory fault.

There are two ways to solve such a memory access violation. The first way
to resolve this problem would be to make use of the privilege levels defined in
the ARMv7-M architecture. The two available privileged levels are unprivileged
(user mode) and privileged. (ARM 2010, p. 512 [5]) The usage of the privilege
levels can help when configuring the MPU access permissions for the individual
regions. If the tasks are executing unprivileged and the RTOS is executing
privileged, the MPU regions can be configured to allow access from the RTOS
and deny access from other tasks. In the applications under consideration,
the tasks are executing privileged. It is possible to configure Keil RTX to
execute tasks unprivileged. The TI RTOS kernel (SYS/BIOS) does not support
unprivileged task, respectively user mode in general, for performance reasons.
(Texas Instruments Inc. 2020, [19]) However, although possible to configure
Keil RTX for unprivileged tasks, this is no suitable solution for this applications
because of the needed adjustments that are accompanied by such a change. In
the current implementations, the tasks are directly accessing system resources
like for example the Nested Vectored Interrupt Controller (NVIC). This access

50

would not be possible if the tasks would be executing unprivileged. To keep the
needed adjustments at a minimum, the second way to resolve this problem has
been used. In this approach, the Stackguard is explicitly disabled for the specific
RTOS functions that need to access the task stacks and immediately enabled
afterwards. This is a pragmatic solution which needs minimal adjustments and
can be performed if the RTOS is available as source code.

5.1.5 Conclusion of the Integration

The integration of the Sheaperd library into commercial software applications
was successful. The encountered challenges regarding Stackguard resulted from
the missing possibility to provided user-created stacks to the task creation pro-
cess. The newer CMSIS v2 API, as well as other RTOS implementations like TI
RTOS or FreeRTOS, provide this functionality. Nevertheless, due to the fact
that the used operating systems were available as source code, the necessary
stack alignment adjustments could be implemented. (See 5.1.1) Another chal-
lenge resulted from the notification of task switches. The notify macro for task
switches of the Keil RTX RTOS is called when the task switch is requested. At
this point, Stackguard can not adjust the MPU region, as the RTOS still needs
to access the stack after the macro has been executed. A custom macro that is
called, after all stack accesses have been performed, has been inserted to solve
this problem. (See 5.1.2) The same problem occurred with the task-switch call-
back of the TI RTOS. The stack of the switched out task was accessed after the
callback. The MPU activation has been delayed until the Task enter function
is called. A similar problem arose when data was directly stored onto the stack
of another task and the MPU was still active for the associated region. This
has been solved by manually enabling and disabling the MPU. (See 5.1.4) An
alternative and more secure approach is to use the unprivileged execution level
for tasks and the privileged execution level for the RTOS. With this approach,
the MPU configuration can be more granular and the RTOS can have access
to the stacks during task switches and data delivery, but the other tasks are
still isolated. Making use of the available execution levels can help to secure an
application in general, and should be considered as an option when creating new
applications or during the refactoring of existing ones. The Sheap allocator was
added manually by replacing the existing allocations. The automation of this
process can be an additional feature of the Sheaperd Eclipse plugin (see 5.2).
The array assertion has been done automatically using the Sheaperd Eclipse
plugin. No unmet assertions have been reported by the Sheaperd library. (See
5.1.3)

5.2 Sheaperd Design Decisions and Outlook

The Sheaperd library consists of the Sheap allocator, the memory protection
module, the Stackguard, which makes use of the memory protection module
and the Sheaperd Eclipse plugin. This section takes a look at the different
parts of the library, provides information about specific design decisions, and

51

gives an outlook about further improvements.

Sheap Allocator

The goal of the Sheap allocator implementation was to provide a simple im-
plementation which is not necessarily trimmed to minimal memory usage. The
main purpose of the allocator is to assist in the debugging process. The imple-
mentation emphasizes this with the extended memory layout. (See 4.1.2) The
layout comes with additional memory usage, but also provides the developer
with additional information when debugging. The same argument can be made
for the alignment offset in the memory block layout. (See figure 7) The align-
ment offset occupies additional memory, but helps to some out of bound writes
when freeing a memory block. The extended memory layout has the benefit
that it stores the program counters of the callers during allocations and deal-
locations. This does not necessarily mean that any allocation and deallocation
can be traced. Consider a function allocMyStruct, which is used to allocate
memory for a specific structure and is called by different other functions to
obtain that structure. The extended memory layout would always record the
program counter inside the allocMyStruct function and could not determine
where the call originated. A future version of the Sheap allocator could contain
an even wider extended memory layout, which also stores a specific, maybe con-
figurable, number of bytes of the stack trace when performing allocations and
deallocations. With that additional information, it is more likely to exactly de-
termine the source of the allocation. As already mentioned in 4.1.1, additional
memory allocation strategies can be implemented in future version of the Sheap
allocator. The best strategy can then be selected depending on the use case at
hand.

Stackguard and Memory Protection

Stackguard makes use of the memory protection module. The memory protec-
tion module is used to configure the MPU. (See 4.2.1) The MPU implementation
follows the ARMv7-M architecture. This comes with the already mentioned lim-
itations regarding the base address and the MPU region size. (See 4.2.1) The
ARMv8-M architecture has, besides other new features, also refined the MPU.
Chapter 5.3 discusses some of these new features and changes, as well as their
implications regarding the Sheaperd library.

Sheaperd Eclipse Plugin

The Sheaperd Eclipse plugin provides commands in the context menu of C
projects to automatically insert and remove array assertions. The integration
into existing applications showed that a similar feature to automatically ex-
change existing allocation and deallocation calls (malloc, calloc and free)
with the associated sheap functions (sheap malloc lr, sheap calloc lr and
sheap free lr) would be a useful extension. Furthermore, the Sheaperd ex-
ecutor view can be used with the Addr2Line executable to find the associated

52

file location of memory addresses. The array assertion has the potential for im-
provement. In the current version (3.5.0), the assertion fails on shadowed array
variables.

5.3 ARMv8-M Architecture Outlook

This thesis mainly focuses on Cortex-M models: M3, M4 and M7 and therefore
on the ARMv7-M architecture. The ARMv7-M architecture comes with some
limitation, especially regarding the MPU. (See 4.2.1) Arm recognized this prob-
lem and, among other things, adjusted the MPU implementation in the ARMv8-
M architecture. Figure 27 shows the differences in creating a memory region
for the example address range of 0x3BC00-0x80400. While in the ARMv7-M
architecture multiple regions are needed to cover the mentioned memory area, in
the ARMv8-M architecture a single region can cover the complete area. In the
ARMv8-M architecture, an MPU region can be of arbitrary size with a granu-
larity of 32 bytes. Due to this additional flexibility, the ARMv8-M architecture
removed subregions and does not allow MPU regions to overlap. (ARM 2016,
p. 15 [6])

Another features of the ARMv8-M architecture that could be of interest for
the Sheaperd library is the TrustZone technology. The TrustZone technology is
an additional feature that partitions the complete memory into secure and non-
secure sections. Only secure software is allowed to access the secure memory
sections. The processor is in secure state when it is executing code from secure
memory. Otherwise, the processor is in the non-secure state. Processors that
support the TrustZone technology are accompanied by additional hardware to
configure the secure and non-secure memory sections. Changing from the non-
secure to the secure stat is only possible via explicitly defined entry points.
The intention of this feature is to isolate specific, security critical, parts of the
software from common application code. For example, a secured firmware, a
licensed RTOS, device driver libraries or a certified communication stack can be
isolated from the running application code. Figure 28 shows an example use case
of the TrustZone technology. The execution starts with the secured firmware and
will hand the control to the RTOS at some point. During execution, the non-
secure software can use specific entry points to access the GUI or the protocol
stack library. This can help to protect the software against intentional and
unintentional corruption or manipulation. This feature does not replace the
MPU but can be used additionally. (ARM 2018, p. 6 ff. [11]; Yiu 2016, p. 3 ff.
[25])

53

Figure 27: Comparison of the creation of memory regions in ARMv7-M and
ARMv8-M architecture. A region of size 274 KB at the base address 0x3BC00

should be created. In the ARMv7-M architecture, multiple regions need to be
allocated to cover the mentioned region. (PMSAv7) The ARMv8-M architecture
allows MPU regions of any size at a granularity of 32 bytes and can simply create
a single region. (PMSAv8) (Source: ARM 2016, p. 15 [6])

Figure 28: An example segmentation of the secure and non-secure memory
sections using the TrustZone technology. The secure section contains security
critical components that need to stay unaltered. The non-secure memory sec-
tions contain the common application code, which does not need to be secured.
(Source: Yiu 2016, p. 3 [25])

54

Glossary

Abstract syntax tree is a tree used to represent the hierarchical structure of
a source code file. Figure 29 shows a simple example of an AST describing
a single function which obtains the length of a C -style string.

Figure 29: An example AST describing a C function which obtains the length
of a provided string.

9, 43–45

Advanced RISC Machines (ARM) develops processor architectures and de-
signs cores following the architectures and licenses it to other companies.
1–5, 53

Coalescing means to combine into a single group or thing. In the context of
computer science it is usually used to describe the action of merging/com-
bining of free adjacent memory blocks into one big block. Figure 30 shows
an example borrowed from [18] where process memory is freed. In the
scenarios b, c and d the freed memory has been coalesced with the free
adjacent memory.

55

Figure 30: Different scenarios where a process is terminated and the associ-
ated memory is freed. The dashed area represents the free memory. (Source:
Tanenbaum and Bos 2015, p. 192 [18]

i, 17, 18, 21, 22

Common Microcontroller Software Interface Standard provides interfaces
for processor and peripherals, real-time operating systems, and middle-
ware components. The goal is to simply reuse of software and reduce the
time to market for new devices. 46, 51

Common Weakness Enumeration (CWE) is a community-developed list
of software and hardware weakness types. The project is backed and
supported from the MITRE Corporation, US-CERT and the National
Cyber Security Division of the U.S. Department of Homeland Security. 1,
25, 43

Constant folding describes a compiler technique. During compile time, the
compiler recognises that the value of an expression is constant and replaces
the expression with the identified constant. (Aho et al. 2014, p. 536/591
[1]) i, 11

Copy propagation describes a compiler technique. After a copy statement
a = b, b should be used wherever possible instead of a. One advantage
of the copy propagation is that after it has been performed, the copy
statement may be dead code. (Aho et al. 2014, p. 591 [1])
Figure 31 provides an example.

Figure 31: Copy propagation: the copy statement ’int i = argc;’ turns into
dead code after the copy propagation.

56

i, 11

Dangling pointer is a pointer which does not point to a valid address in
memory. A pointer that is used after it has been free is a kind of dangling
pointer. A pointer to a variable which ran out of scope is another example
for a dangling pointer. See figures 32 and 33 for examples.

Figure 32: Dangling pointer: A pointer being used after it has been freed

Figure 33: Dangling pointer: A pointer being used after the variable it points
to ran out of scope

1

Dead code elimination describes a compiler technique. During compile time,
the compiler recognises that parts of the code are not reachable and omits
them when generating code. (Aho et al. 2014, p. 591 [1])
Figure 34 provides an example.

Figure 34: Dead code example: the body of the if condition will never be
executed. Therefore the compiler can omit it when generating code.

i, 11

57

Direct memory access is a feature that enables hardware to directly access
memory. Due to the direct access the CPU is not needed for this operation
and can perform other tasks. If no DMA is used, the CPU would be
occupied during the memory access operation. 38

Dynamic binary analysis (DBA) is the process of analyzing a possibly in-
strumented binary at runtime. The main advantage of this technique is
that no source code is required. (Nethercote 2004, p. 2f [15]) 6

Dynamic binary instrumentation (DBI) is the process of additional state-
ments to the binary representation of a software dynamically with the in-
tent to gather information during the execution. (Huang 2009, p. 163 [9])
6–8

Integrated development environment (IDE) is a software application in-
tended for software development. It usually contains a source editor, build
and debugging tools. It is often extensible using plugins. 4, 5, 43

Intermediate representation (IR) is a lossless representation of a source
language. It is mostly used by compilers and virtual machines and sup-
ports optimisation as well as the modularisation of the compilation process
into front end and back end. (Aho et al. 2014, p. 4f [1])(See figure 35)

58

Figure 35: Phases of compilation with intermediate representation.
(Source: Aho et al. 2014, p. 4f [1])

i, 7–10

Line of code (LOC) is a metric used to compare software by counting the
number of lines of source code needed to create it. 1

Microcontroller unit describes an integrated circuit that consists, alongside
one or multiple CPUs, of memory and programmable I/O peripherals.
Figure 36 shows the differences to a CPU. 38, 49

Real-time operating system (RTOS) is used for the development of real
time applications. Real time is often misinterpreted in this context. It

59

Figure 36: Distinction between a CPU and a MCU.

simply means that a task is completed in a predetermined time frame. 3,
4, 12, 14, 33, 40, 41, 46, 47, 49–51, 53

TIOBE Index is an monthly updated index which ranks the most used pro-
gramming languages. Multiple search engines and other sources are uti-
lized to keep the index updated. See https://www.tiobe.com/tiobe-index/
for more information. (accessed 23 March 2021) i, 1, 2

60

https://www.tiobe.com/tiobe-index/

References

[1] Alfred V. Aho et al. Compilers: principles, techniques, and tools. en. 2. ed,
Pearson new intern. ed. OCLC: 858019306. Harlow: Pearson, 2014. isbn:
978-1-292-02434-9.

[2] Pansy Arafa et al. “Debugging Behaviour of Embedded-Software Devel-
opers: An Exploratory Study”. en. In: arXiv:1704.03397 [cs] (Apr. 2017).
arXiv: 1704.03397, p. 5. url: http://arxiv.org/abs/1704.03397

(visited on 07/06/2021).

[3] ARM Limited. “ARM Compiler armcc User Guide”. en. In: (2014),
p. 1008. url: https://documentation- service.arm.com/static/

5eb946b50f1c1e0dae6ee21e?token= (visited on 06/15/2021).

[4] ARM Limited. “ARM Compiler toolchain Assembler Reference”. en. In:
(2013), p. 643. url: https : / / documentation - service . arm . com /

static/5ea68b849931941038ded96e?token= (visited on 06/18/2021).

[5] ARM Limited. “Armv7-M Architecture Reference Manual”. en. In: (2010),
p. 858. url: https : / / documentation - service . arm . com / static /

606dc36485368c4c2b1bf62f?token= (visited on 06/15/2021).

[6] ARM Limited. “Armv8-M Memory Protection Unit (MPU)”. en. In:
(2016), p. 39. url: https://documentation-service.arm.com/static/
5ef61f08dbdee951c1ccdd48?token= (visited on 07/04/2021).

[7] Pavan Kumar Chittimalli and Vipul Shah. “GEMS: A Generic Model
Based Source Code Instrumentation Framework”. en. In: 2012 IEEE Fifth
International Conference on Software Testing, Verification and Valida-
tion. Montreal, QC: IEEE, Apr. 2012, pp. 909–914. isbn: 978-1-4577-
1906-6 978-0-7695-4670-4. doi: 10.1109/ICST.2012.195. url: https:
//ieeexplore.ieee.org/document/6200109/ (visited on 07/07/2021).

[8] Jon Erickson. Hacking: the art of exploitation. 2nd ed. OCLC:
ocn175218338. San Francisco, CA: No Starch Press, 2008. isbn: 978-1-
59327-144-2.

[9] J. C. Huang. Software error detection through testing and analysis. OCLC:
ocn263498238. Hoboken, N.J: John Wiley & Sons, 2009. isbn: 978-0-470-
40444-7.

[10] Sang Moo Huh and Woo-Je Kim. “The Derivation of Defect Priorities and
Core Defects through Impact Relationship Analysis between Embedded
Software Defects”. en. In: Applied Sciences 10.19 (Oct. 2020), p. 18. issn:
2076-3417. doi: 10.3390/app10196946. url: https://www.mdpi.com/
2076-3417/10/19/6946 (visited on 05/01/2021).

[11] ARM Limited. “Arm TrustZone Technology for the Armv8-M Architec-
ture”. en. In: (2018), p. 26. url: https://documentation- service.

arm . com / static / 5f873034f86e16515cdb6d3e ? token= (visited on
07/04/2021).

61

http://arxiv.org/abs/1704.03397
https://documentation-service.arm.com/static/5eb946b50f1c1e0dae6ee21e?token=
https://documentation-service.arm.com/static/5eb946b50f1c1e0dae6ee21e?token=
https://documentation-service.arm.com/static/5ea68b849931941038ded96e?token=
https://documentation-service.arm.com/static/5ea68b849931941038ded96e?token=
https://documentation-service.arm.com/static/606dc36485368c4c2b1bf62f?token=
https://documentation-service.arm.com/static/606dc36485368c4c2b1bf62f?token=
https://documentation-service.arm.com/static/5ef61f08dbdee951c1ccdd48?token=
https://documentation-service.arm.com/static/5ef61f08dbdee951c1ccdd48?token=
https://doi.org/10.1109/ICST.2012.195
https://ieeexplore.ieee.org/document/6200109/
https://ieeexplore.ieee.org/document/6200109/
https://doi.org/10.3390/app10196946
https://www.mdpi.com/2076-3417/10/19/6946
https://www.mdpi.com/2076-3417/10/19/6946
https://documentation-service.arm.com/static/5f873034f86e16515cdb6d3e?token=
https://documentation-service.arm.com/static/5f873034f86e16515cdb6d3e?token=

[12] Steve McConnell. Code complete. en. 2nd ed. Redmond, Wash: Microsoft
Press, 2004. isbn: 978-0-7356-1967-8.

[13] MITRE. CWE - 2020 CWE Top 25 Most Dangerous Software Weaknesses.
url: https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.
html (visited on 05/30/2021).

[14] Jan Mußler. “A Generic Binary Instrumenter and Heuristics to Select
Relevant Instrumentation Points”. In: (2010), p. 91. url: https://core.
ac.uk/download/pdf/34893191.pdf (visited on 04/13/2021).

[15] Nicholas Nethercote. “Dynamic Binary Analysis and Instrumentation or
Building Tools is Easy”. PhD thesis. Trinity College, University of Cam-
bridge, 2004.

[16] Nicholas Nethercote and Julian Seward. “Valgrind: A Framework for
Heavyweight Dynamic Binary Instrumentation”. en. In: Proceedings of
ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation (PLDI 2007) (2007), p. 12. url: https://valgrind.
org/docs/valgrind2007.pdf (visited on 04/28/2021).

[17] STMicroelectronics. “STM32 Cortex-M4 MCUs and MPUs programming
manual”. en. In: (2020), p. 262. url: https://www.st.com/resource/
en / programming _ manual / dm00046982 - stm32 - cortex - m4 - mcus -

and-mpus-programming-manual-stmicroelectronics.pdf (visited on
06/19/2021).

[18] Andrew S. Tanenbaum and Herbert Bos. Modern operating systems.
Fourth edition. Boston: Pearson, 2015. isbn: 978-0-13-359162-0.

[19] Texas Instruments Inc. TI-RTOS Kernel (SYS/BIOS) User’s Guide: De-
vice Addendum. 2020. url: https://software-dl.ti.com/simplelink/
esd/simplelink_cc13x2_26x2_sdk/5.20.00.52/exports/docs/

tirtos/sysbios/docs/Device_Addendum.html#cortexm-operating-

modes-and-stack-usage (visited on 08/21/2021).

[20] Valgrind Developers. Valgrind - Memcheck: a memory error detector. url:
https://valgrind.org/docs/manual/mc- manual.html (visited on
04/13/2021).

[21] Valgrind Developers. Valgrind - The Valgrind Quick Start Guide. url:
https://valgrind.org/docs/manual/quick- start.html#quick-

start.mcrun (visited on 04/13/2021).

[22] Valgrind Developers. Valgrind - Using and understanding the Valgrind
core. url: https://www.valgrind.org/docs/manual/manual-core.
html (visited on 04/28/2021).

62

https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
https://core.ac.uk/download/pdf/34893191.pdf
https://core.ac.uk/download/pdf/34893191.pdf
https://valgrind.org/docs/valgrind2007.pdf
https://valgrind.org/docs/valgrind2007.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/dm00046982-stm32-cortex-m4-mcus-and-mpus-programming-manual-stmicroelectronics.pdf
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.20.00.52/exports/docs/tirtos/sysbios/docs/Device_Addendum.html#cortexm-operating-modes-and-stack-usage
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.20.00.52/exports/docs/tirtos/sysbios/docs/Device_Addendum.html#cortexm-operating-modes-and-stack-usage
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.20.00.52/exports/docs/tirtos/sysbios/docs/Device_Addendum.html#cortexm-operating-modes-and-stack-usage
https://software-dl.ti.com/simplelink/esd/simplelink_cc13x2_26x2_sdk/5.20.00.52/exports/docs/tirtos/sysbios/docs/Device_Addendum.html#cortexm-operating-modes-and-stack-usage
https://valgrind.org/docs/manual/mc-manual.html
https://valgrind.org/docs/manual/quick-start.html#quick-start.mcrun
https://valgrind.org/docs/manual/quick-start.html#quick-start.mcrun
https://www.valgrind.org/docs/manual/manual-core.html
https://www.valgrind.org/docs/manual/manual-core.html

[23] Paul R. Wilson et al. “Dynamic storage allocation: A survey and criti-
cal review”. en. In: Memory Management. Ed. by Gerhard Goos et al.
Vol. 986. Series Title: Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1995, pp. 1–116. isbn: 978-3-540-
60368-9 978-3-540-45511-0. doi: 10.1007/3- 540- 60368- 9_19. url:
http://link.springer.com/10.1007/3-540-60368-9_19 (visited on
05/25/2021).

[24] Joseph Yiu. The definitive guide to ARM® Cortex®-M3 and Cortex-M4
processors. Third edition. OCLC: ocn859555920. Amsterdam: Elsevier,
Newnes, 2014. isbn: 978-0-12-408082-9.

[25] Joseph Yiu. “The Next Steps in the Evoluation of Embedded Proces-
sors for the Smart Connected Era”. en. In: (2016), p. 10. (Visited on
07/04/2021).

63

https://doi.org/10.1007/3-540-60368-9_19
http://link.springer.com/10.1007/3-540-60368-9_19

	List of Figures
	List of Listings
	Introduction
	Motivation
	Objective

	State of the Art
	Static Analysis
	Dynamic Analysis
	Instrumentation
	Example: Valgrind
	Code Instrumentation
	Execution
	Code Translation
	Event System & Function Replacement/Wrapping

	Example: Generic Model-Based Source Code Instrumentation (GEMS)

	Errors in Embedded Software Development
	Classification of Errors in Embedded Software Development
	Errors Discussed in This Thesis

	Sheaperd - A Library to Support Debugging and Testing of ARM Cortex-M Devices
	Secure Heap (Sheap) - A Custom Memory Allocator
	Memory Allocation and Block Layout
	Error Detection

	Memory Protection Module & Stackguard
	Memory Protection Unit
	Memory Protection Module
	Stackguard

	Array Bound Asserter
	Eclipse Plugin and CDT Integration
	Modifying the Abstract Syntax Tree (AST)

	Results and Discussion
	Case Study - Integrating Sheaperd into Commercial Applications
	Stack Alignment
	Context Switching
	Sheap and Array Assertion
	Executing the Application
	Conclusion of the Integration

	Sheaperd Design Decisions and Outlook
	ARMv8-M Architecture Outlook

	Glossary
	References

