
FH Vorarlberg
University of Applied Sciences

Data-Driven Energy Modeling of a

Dynamical System
Energy Modeling with Neural Networks on the Example

of an Industrial Robot

Master Thesis

Submitted in partial fulfillment of the requirements for the Degree of
Master of Science in Engineering, MSc

Handed in by:

Philipp Steurer

Supervisor:

DI Dr.techn. Ralph Hoch

Course of study:

Mechatronics

Dornbirn, September 2021

Abstract

Data-Driven Energy Modeling of a Dynamical System

The purpose of an energy model is to predict the energy consumption of a
real system and to use this information to address challenges such as rising en-
ergy costs, emission reduction or variable energy availability. Industrial robots
account for an important share of electrical energy consumption in produc-
tion, which makes the creating of energy models for industrial robots desirable.
Currently, energy modeling methods for industrial robots are often based on
physical modeling methods. However, due to the increased availability of data
and improved computing capabilities, data-driven modeling methods are also
increasingly used in areas such as modeling and system identification of dy-
namic systems. This work investigates the use of current data-driven modeling
methods for the creation of energy models focusing on the energy consumption
of industrial robots.
For this purpose, a robotic system is excited with various trajectories to ob-
tain meaningful data about the system behavior. This data is used to train
different artificial neural network (ANN) structures, where the structures used
can be categorized into (i) Long Short Term Memory Neural Network (LSTM)
with manual feature engineering, where meaningful features are extracted using
deeper insights into the system under consideration, and (ii) LSTM with Convo-
lutional layers for automatic feature extraction. The results show that models
with automatic feature extraction are competitive with those using manually
extracted features. In addition to the performance comparison, the learned fil-
ter kernels were further investigated, whereby similarities between the manually
and automatically extracted features could be observed. Finally, to determine
the usefulness of the derived models, the best-performing model was selected
for demonstrating its performance on a real use case.

I

Kurzreferat

Datengetriebene Energiemodellierung eines Dynamischen

Systems

Der Zweck eines Energiemodells ist es, den Energieverbrauch eines realen Sy-
stems vorherzusagen und diese Informationen zu nutzen, um Herausforderungen
wie steigende Energiekosten, Emissionsreduzierung oder variable Energiever-
fügbarkeit zu bewältigen. Ein signifikanter Anteil des elektrischen Energiever-
brauchs in der Produktion entfällt dabei auf Industrieroboter, was die Erstel-
lung von Energiemodellen für diese Systeme erstrebenswert macht. Derzeit ba-
sieren die Energiemodellierungsmethoden für Industrieroboter häufig auf physi-
kalischen Modellierungsmethoden. Aufgrund der steigenden Verfügbarkeit von
Daten und verbesserter Rechenkapazitäten werden jedoch zunehmend auch da-
tengetriebene Modellierungsmethoden in Bereichen wie der Modellierung und
Systemidentifikation dynamischer Systeme eingesetzt. In dieser Arbeit wird der
Einsatz aktueller datengetriebener Modellierungsmethoden für die Erstellung
von Energiemodellen mit Fokus auf den Energieverbrauch von Industrierobo-
tern untersucht.
Zu diesem Zweck wird ein Robotersystem mit diversen Trajektorien angeregt,
um aussagekräftige Daten über das Systemverhalten zu erhalten. Diese Daten
werden dann verwendet, um verschiedene Strukturen künstlicher neuronaler
Netze (ANN) zu trainieren, wobei die verwendeten Strukturen in (i) Long Short
Term Memory Neural Network (LSTM) mit manuellem Feature-Engineering,
wobei aussagekräftige Features unter Verwendung tiefgehender Kenntnisse des
betrachteten Systems extrahiert werden, und (ii) LSTM mit Convolutional Lay-
ern zur automatischen Feature-Extraktion unterschieden werden können. Die
Ergebnisse zeigen, dass Modelle mit automatischer Feature-Extraktion kon-
kurrenzfähig mit jenen mit manuell extrahierten Features sind. Zusätzlich zum
Performancevergleich wurden die gelernten Filtermasken weiter untersucht, wo-
bei Ähnlichkeiten zwischen den manuell und automatisch extrahierten Features
festgestellt werden konnten. Abschließend wurde zur Bestimmung der Anwend-
barkeit der erstellten Modelle, das effektivste Modell ausgewählt, um seine Lei-
stung in einem realen Anwendungsfall zu demonstrieren.

III

Acknowledgments

First of all, I would like to thank Prof.(FH) DI Dr. Robert Merz for the op-
portunity to join the team of the Research Center Digital Factory Vorarlberg
and for providing the topic leading to this thesis.
Furthermore, a big thank you to my supervisor DI Dr.techn. Ralph Hoch for ex-
cellent support and the very valuable and profound feedback during this work.
I would also like to thank my colleagues at the research center for important and
inspiring discussions, here a special thanks to DI Dr.techn. Sebastian Hegen-
bart, who gave me important inputs with his technical expertise in machine
learning.

Moreover, I would like to thank my parents, whose support made my studies
possible in the first place.

Most of all, I would like to thank my girlfriend Bianca. Especially in the last
few months, you gave me tremendous support and made countless sacrifices to
help me get to this point. I couldn’t have done it without you.

Thanks!

This thesis was carried out as part of FFG project 87599 Digital Energy Twin
- Optimized Operation and Design of Industrial Energy Systems, funded by
the Austrian "Klima- und Energiefonds" within program "Energy Research
(e!MISSON)"

V

Contents

Contents

List of Figures X

1. Introduction 1

1.1. Motivation . 1
1.2. Thesis Objective . 1
1.3. Solution Approach . 2
1.4. Structure of the Thesis . 2

2. Boundary Conditions 5

2.1. Robot System . 6

3. Related Work 9

4. Data Acquisition 11

4.1. Electrical Data Acquisition . 12
4.1.1. Overview of Used Technologies 12
4.1.2. Technical Implementation 14

4.2. Mechanical Data Acquisition . 18

5. Trajectory Generation and Execution 19

5.1. Limited Space Random . 20
5.2. All Space Random . 21
5.3. Trajectory Execution . 23

6. Data Preparation and Analysis 27

6.1. Data Merging . 27
6.2. Time Shift Investigation . 28
6.3. Time Shift Compensation . 30

7. Data-Driven Modeling 33

7.1. Basics of used Technologies . 33
7.1.1. Feedforward Neural Network 33
7.1.2. LSTM . 35
7.1.3. Convolutional Layer . 36
7.1.4. Training Algorithm . 38

VII

Contents

7.2. Data Preprocessing and Feature Engineering 40
7.2.1. Feature Engineering . 40

7.3. LSTM with Manual Feature Extraction 41
7.3.1. Feature Extraction and Normalization 41
7.3.2. Network Structure Setup 43

7.4. LSTM with Convolutional-Layer for Feature Extraction 44
7.4.1. Sequence Transformation 45
7.4.2. Network Structures Setup 47

7.5. Model Training . 48

8. Model Comparison 51

8.1. Performance Metrics . 51
8.2. Investigation of Generalization Capabilities 52
8.3. Quality of Manually Engineered Features 54
8.4. Capabilities of Convolutional Layer for Feature Extraction . . . 56
8.5. Overall Comparison and Model Selection 63

9. Test on Real Use-Case 65

9.1. FMU Generation . 66
9.2. Integration and Test in twin Software 66
9.3. Simulation Results . 68

10.Discussion of Results 71

11.Conclusion 73

Bibliography 74

A. Power Measurement 79

A.1. List of Software Components . 79
A.2. Electrical Schematic Measurement Box 80
A.3. Class Diagram of PLC-Program 81

B. Network Structures 82

B.1. 7x1dim . 82
B.2. 14x1dim . 82
B.3. 21x1dim . 83
B.4. 7x3dim 2conv1x3 . 83
B.5. 7x3dim 3conv1x3 . 84
B.6. 7x5dim 3conv1x5 . 84
B.7. 7x11dim 3conv1x11 . 85
B.8. 7x21dim 5conv1x21 . 85

VIII

Contents

C. Additional Information for Test on Real Use-Cae 86

C.1. Workflow FMU Generation From MATLAB Neural Network . . 86
C.1.1. Requirements . 86
C.1.2. Code Generation Using Matlab Coder 86
C.1.3. Embed C-Code within Simulik and Export FMU 88
C.1.4. Prepare Simulink model for FMU export 90
C.1.5. Useful Links . 93

C.2. Simulation Result Without Initial Power Peak 94

Statement of Affirmation 95

IX

List of Figures

List of Figures

1.1. Basic modeling workflow . 2

2.1. Structure of Laboratory Setup of Digital Factory 5
2.2. Robotic system . 6

4.1. General structure of the measurement concept 11
4.2. Simplified circuit diagram of measurement box 14
4.3. Framework measurement box and PC 15
4.4. State chart PLC-program . 17

5.1. Limited Space Random: Cubic Space 20
5.2. Assembly line setup with- and without collision boundaries . . . 22
5.3. Effect of relative blending factor 24
5.4. Effect of random blending and velocity 26

6.1. Resampling of data . 28
6.2. Comparison of mechanical and electrical power 29
6.3. Crosscorrelation pmech and pelec 31
6.4. Comparison of shifted and non-shifted sequences 31

7.1. Single neuron . 34
7.2. Multi layer network . 35
7.3. LSTM layer . 36
7.4. Correlation 1-D . 37
7.5. 2-D convolutional layer with several filter kernels 38
7.6. Energy flow through the robot system 40
7.7. Manual feature extraction and normalization 42
7.8. Network structures with manually extracted features of varying

input dimensions . 43
7.9. Filter kernels for DoG and LoG 44
7.10. Filter kernels equivalent to centered finite difference 45
7.11. Sequence transformation and processing with convolutional layer 46
7.12. Network structures 2conv1x3, 3conv1x3 47
7.13. Network structures 3conv1x5, 3conv1x11, 5conv1x21 48
7.14. Effect of truncation to shortest in mini-batch 50

X

List of Figures

8.1. MAE for 7x1dim 14x1dim 21x1dim models trained on different
datasets . 52

8.2. Predictions of 21x1dim networks trained on different datasets . . 53
8.3. MAE for 7x1dim 14x1dim 21x1dim networks trained on same

dataset . 54
8.4. Visualization of |err| for models 7x1dim 14x1dim 21x1dim net-

works . 55
8.5. Instability observation of 14x1dim network 55
8.6. MAE comparison of 14x1dim 21x1dim with 2conv1x3 3conv1x3 56
8.7. Visualization of |err| for models 14x1dim 21x1dim and 2conv1x3

3conv1x3 . 56
8.8. Sample 1-D sequence input and manually extracted features . . 57
8.9. 1-D features extracted from 2conv1x3 CNN 58
8.10. 1-D features extracted with 3conv1x3 kernels 59
8.11. MAE comparison of 21x1dim with 3conv1x5 5conv1x21 3conv1x11 59
8.12. Visualization of |err| for models 21x1dim 3conv1x5 5conv1x21

3conv1x11 . 60
8.13. 1-D features extracted from 3conv1x5 kernels 61
8.14. 1-D features extracted from 3conv1x11 kernels 61
8.15. 1-D features extracted from 5conv1x21 kernels 62
8.16. MAE comparison all models . 63
8.17. Visualization of |err| for all models 63
8.18. Predictions of 21x1 3conv1x5 5conv1x21 nets on selected All

Space trajectory . 64

9.1. Fidget spinner assembly . 65
9.2. Simulation setup twin software 67
9.3. Comparison simulated and measured movement 68
9.4. Comparison of predicted and simulated with measured power . . 69

C.1. S-Function library include . 88
C.2. S-Function input variable declaration 88
C.3. S-Function Build . 89
C.4. Simulink feature extraction . 91
C.5. Simulink re-scale S-Function output 92
C.6. Simulink FMU template . 92
C.7. Simulink model settings . 93

XI

1. Introduction

1. Introduction

There is growing interest in reducing the energy consumption of production
processes as stricter guidelines for CO2 emissions are imposed and energy costs
are climbing [36]. Since modern production processes are highly automated
nowadays, robots are also used on a large scale. As a consequence, the share
of electric energy consumed by robots in production processes is rising and
becoming more impactful.

1.1. Motivation

It is therefore of great interest to reduce the energy consumption of industrial
robots (IR). Common methods to implement this are energy-efficient motion
planning, optimizing IR operating parameters or scheduling IR operations [31].
Most of these methods require the creation of a model of the robot on which
optimization can be performed. Different methods and tools are used for model
building of IRs concerning energy demand. The methods reviewed have in com-
mon, that they are mostly based on the creation of traditional physical mod-
els, which require the identification of physical parameters as well as expert
knowledge to create these models [22, 38, 31]. An alternative to traditional ap-
proaches for the modeling of physical systems is to use data-driven approaches,
such as artificial neural networks (ANN), and to utilize their approximation
capabilities [35, 8].

1.2. Thesis Objective

The aim of this work is to develop a methodology to model the behavior of a
dynamic system with respect to its energy consumption. This shall be done on
the example of an industrial robot. The focus will be on data-driven modeling
methods, where different techniques should be applied and their performance
evaluated. To aggregate the data needed for model creation, a suitable solution
for the measurement of relevant data shall be developed and implemented.

1

1. Introduction

1.3. Solution Approach

The basic modeling workflow that guides this thesis is shown in Figure 1.1.
The first step is to obtain data with relevant information about the system
behavior. This data is then preprocessed to be suitable for the chosen model
type and structure. The model is then trained and subsequently its performance
is evaluated. If performance is adequate, the model can be deployed and used
in production. However, modeling satisfactory models usually requires several
iterations because the initial model usually does not produce the desired results.

Figure 1.1.: Basic modeling workflow

1.4. Structure of the Thesis

In Chapter 2, the underlying boundary conditions to this thesis are outlined.
In doing so, the structure of the existing production line, in which the robot is
integrated, is shown. Furthermore the technical specifications of the robot are
presented. Chapter 3 gives an overview of related studies and relevant state of
the art techniques are revealed. Subsequently, in Chapter 4, the development
and implementation of a measurement concept for the acquisition of the relevant
data is described. The technical details for acquisition and storage are shown
and the underlying functionality principles are described. Chapter 5 shows,
how appropriate trajectories, which can be used for the excitation of the robotic
system, are generated and executed. In Chapter 6 the analysis and processing
of the measurements is shown and a method for compensation of invalid time
information is presented. Building upon this, in Chapter 7 the techniques used
for modeling are explained and the derivation of different model architectures

2

1. Introduction

is shown. The derived models are then evaluated in Chapter 8 with respect
to their performance based on appropriate metrics. After modeling and model
evaluation, a selected model is used in Chapter 9 to demonstrate the application
of this model to a real use case. Here the derived model is transformed to match
standardized exchange schemes and its functionality is demonstrated within a
selected simulation platform. Finally in Chapters 10 and 11 the found results
are reflected upon and summed up.

3

2. Boundary Conditions

2. Boundary Conditions

This thesis was carried out as a research project at the Digital Factory Vorarl-
berg Research Center. The Digital Factory develops and tests various digital
methods in cooperation with partners from industry and academia. Examples
of important research topics covered are: (i) production and control, (ii) au-
tomation, (iii) IT security, (iv) methods of digital twins. The research center
also has a laboratory where the developed methods can be applied and tested.
This laboratory includes a complete production line in model size and consists,
among other things, of a milling machine for processing raw materials, an auto-
matic material transport unit and several collaborative robots, which are used
for the assembly and handling of tools and workpieces. Figure 2.1 shows the
basic structure of the production line.

Figure 2.1.: Structure of Laboratory Setup of Digital Factory

A research topic currently being addressed at the research center is the creation
of models that can predict the energy consumption of production processes - so-
called digital energy twins. This thesis is intended to develop the methodology
for creating such digital energy twins and to evaluate it on the real example of
a industrial robot.

5

2. Boundary Conditions

2.1. Robot System

The system of which the energy consumption should be modeled is the seven
axis collaborative industrial robot LBR iiwa R800 from the company KUKA
Germany GmbH. The main components of the robotic system are shown in
Figure 2.2.

Figure 2.2.: Robotic system (source: [20], adapted by author)

The specifications relevant for this thesis are shown in Table 2.1.

6

2. Boundary Conditions

Table 2.1.: Specifications of KUKA iiwa R800 robot (source: [21, 20])

For the creation of robot applications and motion programming, the develop-
ment environment KUKA Sunrise.Workbench is used. Functionalities offered
by the software include the following:

• programming robot applications in Java

• managing projects and programs

• editing and managing runtime data

• project synchronization

• remote debugging

• creating I/O configurations

For programming robot applications, the KUKA RoboticsAPI is available within
the development environment. This API is an object-oriented Java interface
for controlling robots and provides the functionalities for motion planning, ex-
ecution and also for data recording.

7

3. Related Work

3. Related Work

Some efforts have been made to model the energy requirements of industrial pro-
cesses. The modeling approaches can thereby be categorized in: (i) Analytical
modeling where energy demand is simply modeled by analyzing different oper-
ation modes (e.g. on, off, idle ...) and taking the average energy consumption
over each mode, (ii) Empirical modeling that commonly uses multiple linear
regression to fit a predefined mathematical expression, which is linear in the
models parameters, (iii) physical modeling where fundamental physical relation-
ships are expressed in mathematical equations (iv) machine learning methods,
which utilizes data-driven algorithms to identify relationships between input
and output data [36].
According to Walther and Weigold [36], the most common methods for mod-
eling energy demand of manufacturing processes are Analytical and Empirical
modeling. For Analytical modeling, oversimplification can be considered as a
possible drawback, while for empirical modeling it can be difficult to find the
right mathematical expression that fits the collected data. Physics-based mod-
els can be very accurate, but are often difficult to implement and require a high
level of insight and expertise about the problem to be modeled. Methods based
on machine learning have recently become more important due to advances in
automation and sensor technology. One advantage of machine learning meth-
ods is that they can learn relationships of inputs and outputs purely from data
[36].
Concerning energy consumption modeling for IRs, the methods used in the re-
viewed works are mostly based on the development of a physical model, which
requires the identification of parameters for robot dynamics and parameters de-
scribing power losses due to, e.g. friction, copper losses in the motors or losses in
the control system. For dynamic parameter identification usually torque mea-
surements must be obtained [34, 37, 1]. However, for some industrial robots, it
is not trivial to determine the torque of the robot axis, which is addressed in
[22], where the dynamic robot parameters are identified based only on the total
electrical power consumption. In [31], modeling is performed using the Model-
ica language, while dynamic parameters are obtained from documentation and
related studies.
However, limited research has been done so far concerning data-driven energy
modeling for industrial robots. Zhang and Yang [40] use a feedforward neural

9

3. Related Work

network to determine the operating parameters of maximum velocity and accel-
eration with a focus on minimizing total energy consumption on a given path
and type of motion. Yin [39] et al. used a deep neural network for modeling
and optimizing the energy consumption of a robot on a simplified case study.
In general, energy modeling using machine learning techniques has provided
promising results and is increasingly applied in industrial manufacturing pro-
cesses. However, regarding energy modeling for IRs, more research needs to be
done in in terms of case studies on real applications and by applying different
machine learning algorithms in order to compare their performance. This work
is intended to address this problem and to contribute with the derivation of an
energy model for an IR.

10

4. Data Acquisition

4. Data Acquisition

To be able to derive data-driven models, it is necessary to first acquire mean-
ingful data that holds relevant information of our System behavior. Relevant
data concerning the problem statement of this thesis is:

• the robot axis angles as a function of time θ(t)

• the consumed electrical active power p(t)

The developed measurement concept for obtaining data from both the electrical
and mechanical domains is shown in Figure 4.1. The illustration shows the
general structure and working principle.

Figure 4.1.: General structure of the measurement concept

The flow of electrical energy is indicated by red arrows from left to right. It can
be seen that the electrical supply to the robot is routed through an additional
power measurement box, which measures the energy consumed by the robot.

11

4. Data Acquisition

For the measurement of mechanical data, functions of the KUKA RoboticsAPI
are used. With these functions it is possible to save motion data directly on
the robot controller in the form of a log-file. The data stream is marked by
blue arrows. The collected electrical data is distributed using a suitable net-
work protocol (MQTT) and written to a central storage (SQL database). The
collected data from the database and the controller are afterwards available
for further analysis. In the following sections a more detailed description of
the technical implementation for the measurement of electrical and mechanical
data is given.

4.1. Electrical Data Acquisition

For the purpose of power measurement, a device in form of a box was built.
This measurement box can determine the electrical power consumption of any
arbitrary device that is powered over a CEE 7/3 socket with mains voltage of
230VAC/50Hz and a maximum input current of Irms = 5A. In the following
subsection, the technologies used as well as the hardware and software compo-
nents utilized are briefly described and relevant specifications are listed.
After that, the technical implementation is described.

4.1.1. Overview of Used Technologies

Technologies:

• MQTT

The Message Queuing Telemetry Transport protocol (MQTT) is a lightweight
publish/subscribe transport protocol suitable for Machine to Machine
(M2M) and Internet of Things (IoT) applications. The protocol runs over
TCP/IP, or over other network protocols. It is an open standard main-
tained by the organization OASIS. The specifications of MQTT v3.1.1
were also adopted by joint Technical Committee ISO/IEC JTC1 into the
Standard ISO/IEC 20922:2016. [18, 29, 28]

• EtherCAT

EtherCAT is a real-time Industrial Ethernet technology. The EtherCAT
protocol is based on the Ethernet technology and is suitable for hard and
soft real-time requirements in automation technologys. The protocol is
standardized in IEC 61158. [11]

• SQL

SQL is a programming language designed for manipulate data in relational
databases. The language is standardized in ISO/IEC 9075. [33]

12

4. Data Acquisition

• JSON

The JavaScript Object Notation (JSON) is a language-independent data
format to express data objects as human readable lists of properties
(name/value pairs). [12]

Hardware components:

• EtherCAT Bus Coupler

Is a product by beckhoff automation to connect EtherCat Terminals to
EtherCat networks.
Specs:
Connectors: 2 x RJ45
Data transfer rate: 100 Mbit/s
power supply: 24VDC

Further technical specifications can be found in [2]

• power monitoring terminal

Is a product by beckhoff automation for power monitoring of a 3-phase
AC voltage system. It is capable to measure six channels (voltage and
current) simultaneously with a temporal resolution of 50µs.
Specs:
conversion time: 50µs
measured values: 3 x current, 3 x voltage
Measuring voltage: ULx-N: max. 400VAC
Measuring current: max. 5 AAC
resolution: 16 bit
measuring error: 0.2% relative to full scale value

Further technical specifications can be found in [3]

• Desktop PC

Standard desktop PC suitable to run required software components, e.g.
a Soft-PLC.
Specs:
Processor: Intel(R) Core(TM) i7-6700T CPU @ 2.8GHz
memory: 16GB
storage: 500GB
operating system: Windows 10 Education
Network Connection RJ45
Network Controller Intel Ethernet Controller suitable for EtherCAT (see [4])

Further technical specifications can be found in [17]

A list of the used Software Components can be found in Appendix A.1

13

4. Data Acquisition

4.1.2. Technical Implementation

In Figure 4.2 the simplified circuit diagram of the measurement box is shown.
The main electrical components are placed inside an enclosure to protect them

Figure 4.2.: Simplified circuit diagram of measurement box
(A detailed electrical schematic can be found in A.2)

from external influences and to shield potentially dangerous voltage-carrying
components from outside. The power supply with 230V/50Hz is provided by
a CEE 7/4 plug. Inside the box there is an 24VDC/2.5A power supply for
powering an EtherCAT bus-coupler and a special power monitoring terminal.
To the power monitoring terminal three CEE 7/3 sockets are connected, which
can be used to supply a device whose energy consumption should be monitored.
For the bus connection a CAT6 patch cable with RJ45 connectors is attached
to the EtherCAT bus-coupler.
The tasks for data-acquisition, communication and data-preparation are han-
dled by a Soft-PLC which is running on a Desktop-PC. On the Soft-PLC a
MQTT-Client is set up that publishes the acquired data to a MQTT-Broker
for distributing the acquired data to various applications. Figure 4.3 shows the
framework consisting of measurement box and Desktop-PC that can acquire
and distribute the desired data. Furthermore, two use cases are shown:

• general use case:

The energy consumption of up to three devices is measured simultaneously
and the data is distributed via a MQTT-Broker to any client that is
subscribed to the topic under which the data was published.

• robotic use case:

Only the industrial robot under investigation is connected for energy mea-
surement and the collected measurement data is saved directly in an SQL
database via a client application directly connected to the MQTT-Broker.

14

4. Data Acquisition

Figure 4.3.: Framework measurement box and PC

The used power monitoring terminal measures voltage v(t) and current i(t)
with a sampling frequency of 20000 samples

second
. This data is acquired and handle by

two PLC-tasks. A fast task "MAIN_FAST", which operates at an interval of
1ms and thereby takes the samples from the power monitoring terminal, scales
the collected data to represent physical units and saves the data to a buffer.
The cycle time of the second task "MAIN_SLOW" is chosen to be twice the
period of the mains power supply voltage which leads to ∆T = 40ms. In this

15

4. Data Acquisition

task the buffer values are taken to calculate the metrics listed in Table 4.1.
The metrics are calculated out of 800 measurement values, which is a result
of the 40ms cycle time and 20000 samples

second
sampling frequency. At the Start

of every "MAIN_SLOW" cycle, a timestamp is generated according to the
NTFS file system time format [10]. At the end of every "MAIN_SLOW"
cycle, the program "MQTT_CONNECTOR" is called. This program first
initializes a connection with an MQTT-Broker and, if connected, formats the
calculated values to a JSON message which is then published over MQTT and
subsequently saved to into a SQL-Database to be accessible for further use.

Description Symbol Unit

root-mean-square Voltage Vrms V
root-mean-square Current Irms A
active power P W
apparent power S V A
power factor PF −
frequency f Hz
consumed energy W kWh

Table 4.1.: Calculated electrical quantities

16

4. Data Acquisition

Figure 4.4 illustrates the program operation, the complete program structure
in form of a class diagram can be found in Appendix A.3.

Figure 4.4.: State chart PLC-program

17

4. Data Acquisition

4.2. Mechanical Data Acquisition

For mechanical data acquisition, the DataRecorder class form the API
"com.kuka.roboticsAPI.sensorModel" is used. This class enables the recording
of specific data at a given sampling interval. The recorded data is saved in a
file and stored on the robot controller. For data recording, first an object of
type DataRecorder must be created and parameterized. Parameters which can
be set are:

fileName File name under which the recorded data is saved
timeout max. Recording duration
timeUnit Time unit for the recording duration
sampleRate Recording rate (unit: ms)

A Unix timestamp with milliseconds resolution is generated for each data
sample. To add the data which should be recorded, several methods of the
DataRecorder class are available. Since we are interested in the joint angles
and joint torques, the following methods are used:

addInternalJointTorque(...) Recording of the measured axis torques
addCurrentJoinPosition(...) Recording of the axis actual positions

First, the DataRecorder object must be activated via the enable() method.
Recording is then started via the startRecording() method.
Listing 4.1 shows the code for setting up the data recording. For the measure-
ment setup the recording duration is restricted to 400sec and a sampleRate of
40ms is chosen.

Listing 4.1: Setup DataRecorder object

1 /*

2 instantiate data recorder with max recording time of 400s

3 and sampling time 40ms

4 */

5 DataRecorder rec_1 = new DataRecorder(

6 "13 _07_21_randSigCollCheck01.csv",

7 400, TimeUnit.SECONDS ,

8 40);

9 // log joint torques

10 rec_1.addInternalJointTorque(lbr_iiwa_7_R800_1);

11 // log joint angles

12 rec_1.addCurrentJointPosition(lbr_iiwa_7_R800_1 ,

13 AngleUnit.Radian);

14 rec_1.enable (); // enable recording

15 rec_1.startRecording (); // start recording

18

5. Trajectory Generation and Execution

5. Trajectory Generation and

Execution

Sufficient excitation is necessary to obtain an accurate model. In this chapter,
two distinct methods are presented to generate trajectories suitable for excita-
tion purposes, and it is shown how these trajectories can be executed on the
real system. Methods chosen for trajectory generation are:

• Limited Space Random

• All Space Random

For limited space trajectories, the generated positions on which the robot is
supposed to move are restricted to a subspace of all reachable manipulator
poses. Advantages on using just a subspace of all possible poses are (i) that
it is easier to realize robot movements without the concern of possible colli-
sions and (ii) the reduced complexity of the data leads to easier realization of
models representing the system behavior. But models obtained from limited
space data are likely to not perform well outside the provided training data by
extrapolation. To develop models that generalize well over all possible robot
movements and to test the limitations of the models obtained by limited space
data, the All Space Data is generated as well. For generation of this data it
is important to consider physical constrains of the robot and its environment
to prevent demolitions. The following sections show the generation of different
trajectories and how they can be executed on the real system.

19

5. Trajectory Generation and Execution

5.1. Limited Space Random

For the Limited Space Random trajectories, a volume in the manipulators
workspace is defined. The chosen volume has cubic shape and is parameterized
with the center point cP = (cPx = 0.6m, cPy = 0m, cPz = 0.34m) and the edge
length L = 0.3m. Figure 5.1 schematically shows the defined volume within
the robots workspace.

Figure 5.1.: Limited Space Random: Cubic Space

Within the cubic volume, N random and uniform distributed positions (Px, Py, Pz)
are generated. Where the number of points N is chosen as uniform distributed
integer within the interval [minN = 40,maxN = 60]. The orientation of the
end-effector is chosen to stay constant with the Z-Axis pointing down which can
be represented with the rotation-matrix Ree =

−1 0 0

0 1 0

0 0 −1

 . The desired robot

configurations, which are the seven axis angles of the robot q = (q1, . . . , q7),
can be obtained by solving the inverse kinematics problem. This is done by
utilizing the inverse kinematic solver within the MATLAB extension Robotics
System Toolbox. The process of generating one trajectory is shown in Algorithm
1.

20

5. Trajectory Generation and Execution

Algorithm 1 generate random poses in limited space

1: minN ← 40 : min. No. of points
2: maxN ← 60 : max. No. of points
3: [cPx, cPy, cPz]← [0.6m, 0m, 0.34m] : cube center point
4: L← 0.3m : cube edge length

5: Ree←

−1 0 0
0 1 0
0 0 −1

 : end-effector orientation (z down)

6: N ← random int with N ∈ [minN,maxN]
7: Px ← N random double values with Px ∈ [cPx − L/2, cPx + L/2]
8: Py ← N random double values with Py ∈ [cPy − L/2, cPy + L/2]
9: Pz ← N random double values with Pz ∈ [cPz − L/2, cPz + L/2]

10: for i← 1 to N do

11: q[i]← invKin(Ree, Px[i], Py[i], Pz[i]) : solve inverse kinematics
12: end for

Using this method, 46 different trajectories were generated and saved as csv-
files, which serve for execution of the robot motion.

5.2. All Space Random

The method chosen to generate robot configurations in All Space is to generate
random points in the robot’s configuration space represented by the seven axis
angles q = (q1, . . . , q7). To obtain positions that the robot can reach without
damaging itself or surrounding objects, several constraints must be considered.
First, all generated axis angles must lie within the limits specified by the robot
manufacturer. In addition to this simple condition, it must be checked if there
are collisions at the generated positions or on the path between them. Col-
lisions must be checked between the robot and the environment as well as
with the robot itself. For collision checking, the functionalities of MATLAB
Robotics System Toolbox are used, which allows checking for collisions between
predefined geometry meshes. It supports defining simple collision objects such
as boxes and cylinders or to create convex mesh geometries from a list of 3D
vertices. A model of the robot LBR iiwa R800 used in this thesis, including
collision meshes, is already included in the used toolbox and can be applied for
collision avoidance. To model the regions where collisions can potentially oc-
cur, simple collision boxes are created. The real areas that are delimited by the
virtual collision boxes are: the assembly table, various installations mounted
on the table and a neighboring robot.

21

5. Trajectory Generation and Execution

In Figure 5.2 the real installation is shown on the left and on the right the
generated collision boxes as well as the collision meshes of the used robot shown
in some random poses.

(a) assembly line setup (b) assembly line setup with virtual collision
boudaries

Figure 5.2.: Assembly line setup with- and without collision boundaries

Algorithm 2 shows the procedure for generating the axis positions in All Space.
The number of points to be generated is chosen as uniformly distributed ran-
dom integer in the interval [minN = 10,maxN = 20]. The smaller number of
points is due to the longer execution time of one movement, since the distances
between two points in All Space are wider. A starting position qStart is chosen
with all axis angles set to zero. All points are now created one after the other.
First, a new axis position is randomly generated, taking into account the spec-
ified limitations. A temporary trajectory is now created with Ntemp positions
between the newly generated point and the previous point. The generation
of the temporary trajectory is simply done by a linear interpolation between
the axis angles of the two positions. This results in a so-called PTP (point-to-
point) movement. Now, it is checked if there are collisions at any point on the
temporary trajectory. If a collision occurs, the point is discarded and a new
one is generated. If the movement between the two points is collision-free, the
next point can be generated.

22

5. Trajectory Generation and Execution

Algorithm 2 generate random poses in all space

1: minN ← 10 : min. No. of points
2: maxN ← 20 : max. No. of points
3: qmin ← (q1min, . . . , q7min) : axis min. limits
4: qmax ← (q1max, . . . , q7max) : axis max. limits
5: qStart ← (0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦) : start position
6: N ← random int with N ∈ [minN,maxN]
7: Ntemp ← 10 : No. of temporary points
8: q[1]← qStart
9: for i← 1 to N do

10: hasCollision← True : flag indicating collision
11: while hasCollision do

12: q[i+ 1]← random double values with q ∈ [qmin, qmax]
13: qtemp ← Ntemp evenly spaced points from q[i] to q[i+ 1]
14: hasCollision← check for any collisions at positions qtemp

15: end while

16: end for

With this method, 30 different trajectories were generated and saved as csv-
files, which serve for execution of the robot motion.

5.3. Trajectory Execution

For executing the created trajectories on real hardware, a robot application is
written that can be executed by the robot controller. The application loads
one predefined trajectory form a csv-file into the controller and executes a ptp-
motion between the given positions. To get additional variability in the data,
each motion is executed with random blending factor and random velocity.
Blending is set as a relative value in "%". A Relative Blending factor of 20%
means that blending starts when 80% of the distance in cartesian space be-
tween two positions is reached. A Relative Blending factor of 0% has no effect.
Relative Blending is chosen to be uniformly distributed between 0% and 50%.
In Figure 5.3 the effect of blending is shown.

23

5. Trajectory Generation and Execution

(a) (b)

(c)

Figure 5.3.: Effect of relative blending factor: (a): example of Limited Space
Random points indicated with circles and the ptp-motion between points as
solid line; (b): recordings when trajectory (a) is executed with blending; (c):
example of All Space Random points indicated as circles, ptp-motion as solid

line, recorded motion as dotted fat line

Relative Velocity is set to be between 20% and 50% of the maximum Angular
velocities of each axis. Velocity is also randomly chosen for every motion.
Axis acceleration is chosen to be constant at 20% of the maximum possible

24

5. Trajectory Generation and Execution

acceleration. A code sample from the robot application for executing a ptp-
motion with random motion parameters is shown in Listing 5.1.

Listing 5.1: Code sample for random motion

1 // instantiate random number generator

2 Random randomNum = new Random ();

3 double minBlend = 0; // lower limit of random blending

4 double maxBlend = 0.5; // upper limit of random blending

5 double minVel = 0.2; // lower limit of random rel velocity

6 double maxVel = 0.5; // upper limit of random rel velocity

7 double relAcc = 0.2; // set maximum rel acceleration

8

9 // instantiate Joint Positions for async movement

10 JointPosition [] J = new JointPosition [3];

11 J[0] = new JointPosition (7);

12 J[1] = new JointPosition (7);

13 J[2] = new JointPosition (7);

14

15 // ptp -movement

16 // get random blending factor

17 randRelBlend =

18 minBlend + (maxBlend -minBlend)*randomNum.nextDouble ();

19 // get random relative velocity

20 randRelVel =

21 minVel + (maxVel -minVel)*randomNum.nextDouble ();

22 // set Joint Positions to desired values

23 J[0]. set(Math.toRadians(jointPositions.get(pointIdx)[0]),

24 Math.toRadians(jointPositions.get(pointIdx)[1]),

25 Math.toRadians(jointPositions.get(pointIdx)[2]),

26 Math.toRadians(jointPositions.get(pointIdx)[3]),

27 Math.toRadians(jointPositions.get(pointIdx)[4]),

28 Math.toRadians(jointPositions.get(pointIdx)[5]),

29 Math.toRadians(jointPositions.get(pointIdx)[6]));

30 // move to position

31 lbr_iiwa_7_R800_1.moveAsync(

32 ptp(

33 lbr_iiwa_7_R800_1.getForwardKinematic(J[0])

34).setBlendingRel(randRelBlend)

35 .setJointVelocityRel(randRelVel)

36 .setJointAccelerationRel(relAcc)

37);

38 // get random blending factor

39 // get random relative velocity

40 // set Joint Positions to desired values

41 // move to position

42 //

25

5. Trajectory Generation and Execution

The effect of random blending factor and velocity are visualized in Figure 5.4,
which shows two recordings of the same trajectory. It can be seen that the
underlying shape of the curves appears similar but with noticeable variations.

Figure 5.4.: Effect of random blending and velocity

The variation of execution parameters makes it possible to produce more data
out of the same source trajectories. With this method, 202 recordings were
made with Limited Space Data, which corresponds to a total recording time of
2.8hours. For All Space, 135 recordings were made with a total recording time
of 2.7hours. In parallel to the execution of trajectories, the power consumption
was recorded as well. The obtained data is the basis for deriving models through
further analysis and processing.

26

6. Data Preparation and Analysis

6. Data Preparation and

Analysis

This chapter describes the procedures for data preparation for the purpose of
making the collected measurements accessible for model building. The data
was recorded by two different systems. The electrical data is measured by the
measurement box (Section 4.1) and the mechanical data is aggregated by the
robot controller. Each of these systems operates independently, resulting in
both systems generating their own time stamps for a recorded data point. It is
therefore very unlikely that the time information of the measurements of both
systems will match, so that an electrical measurement value can be precisely
assigned to one motion measurement at a given instance. For this reason, a
method is required for merging the measured values of both systems to a com-
mon time vector. Furthermore, it is to be investigated whether and to what
extent the temporal information of the measured values deviates from each
other and how a possible deviation can be corrected.
In the next sections, first the merging of the measurement series will be shown,
then the processed data will be further analyzed to determine possible de-
viations in the temporal information between the electrical and mechanical
measurement series and, if necessary, how to compensate them.

6.1. Data Merging

For each executed trajectory, one log file is stored on the robot controller, while
power measurements of the measurement box are taken in parallel and spanning
multiple executions. In order to merge the measurement series, the time stamps
of the two systems are first converted to a common format. Afterwards, the
start and end time is extracted from each recording form the robot controller.
With this information, the measurement values of the measurement box can be
split into measurement series, which are located within the time span of one
recording from the controller.
The resulting data sets are merged using the Matlab function synchronize(),
which allows synchronizing time tables to a common time vector and resample
the data in the given data sets. With this function, the collected data is sampled

27

6. Data Preparation and Analysis

to a new time vector with a sampling interval of 40ms. For times in the time
vector that do not match row times from the input data, the data is linearly
interpolated. In Figure 6.1 the effect of data merging is illustrated.

Figure 6.1.: Resampling of data: upper plot shows electrical and mechanical
data recordings, timestamps are indicated by diamonds and squares; lower

plot shows the same data resampled to a common time vector

The processed data is the basis for the time shift investigation presented in the
next section.

6.2. Time Shift Investigation

In this section, we investigate how the time series fit together by observing
distinctive patterns in the data. The aim is to find out whether the data series
are shifted in time to each other or differ in their duration. A time offset
could be caused by unsynchronized clocks whereas a different duration could
be caused by varying clock frequencies.
A successful approach for comparing the timing of electrical and mechanical
data is to calculate the mechanical power and compare it with the electrical
power. The mechanical power pmech is calculated by multiplying the angular
velocity θ̇ of the axes with the torque τ acting on the motor shaft of the axes
Equation 6.1.

pmech = τ · θ̇ (6.1)

The torque needed to calculate pmech is measured directly during execution, this
is possible as the robot used has integrated torque sensors. Angular velocity

28

6. Data Preparation and Analysis

can be calculated out of the measured axis angles by calculating the first order
centered finite difference Equation 6.2.

θ̇(t) ≈ θ(t+∆T)− θ(t−∆T)

2∆T
(6.2)

The total mechanical power ptotmech is calculated by determining the mechanical
power of each axis and summing up over all results.

ptotmech(t) =
7

∑

i=1

τi(t) · θ̇i(t) (6.3)

In Figure 6.2 the calculated mechanical power of a selected measurement is
compared with the corresponding measured electrical power. It can be seen,
that in the electrical power measurement there is a high initial peak. This can
be attributed to the inrush currents of the axes motors when the breaks of the
axes are released. Furthermore, it can be seen that apart from the initial peak,
the mechanical power is indeed similar in amplitude and course. However, it
also indicates a considerable shift in time between mechanical and electrical
power.

Figure 6.2.: Comparison of mechanical and electrical power

To estimate how much the data is shifted and if the data is also stretched, two
time points are extracted from each time series at prominent points that seem
to correspond to each other. The calculated time spans between the measured
points are:
32.12s− 10.28s = 21.84s
30.84s− 9.04s = 21.80s
which shows a difference by only 40ms, which corresponds to one tick at the
sampling rate used. This difference suggests that time stretching is unlikely

29

6. Data Preparation and Analysis

to be a concern. In contrast, the difference between corresponding data points
leads to:
10.28− 9.04 = 1.24
32.12− 30.84 = 1.28
That is, the two sequences seem to be shifted to each other by over one second.
Some delay in the course of the sequences can be expected due to the internal
dynamics, but the shift observed here is to large in magnitude. Hence, the time
difference in the acquired data is likely to be due to the non-synchronized clocks
of the systems. A proper procedure would be to synchronize the clocks using a
suitable method (e.g. precision time protocol ptp). Actually, there are plans to
perform a synchronization by connecting the measuring box and the robot via
EtherCat and synchronizing the clocks via the ptp protocol. Unfortunately, we
were not able to perform this synchronization within the scope of this work.
All in all, sampling seems reliable and equidistant for both systems, but time in-
formation has overall offset. This overall offset makes a time shift compensation
(see Section 6.3) necessary for fully aligning the two time series.

6.3. Time Shift Compensation

To determine the time shift, also referred to as lag, the cross-correlation of the
two time series was calculated within a suitable range using the Matlab function
xcorr(). The result of this function can be interpreted as measure of similarity
between a vector x and shifted (lagged) copies of a vector y as a function of
the lag. Cross-Correlation at lag m is calculated with [26]:

R̂xy(m) =

{

∑N−m−1

n=0
xn+my

∗

n, m ≥ 0

R̂∗

xy(−m), m < 0
(6.4)

The time difference to compensate for was determined as the value at which
the cross-correlation becomes maximal. Figure 6.3 shows exemplary a cross
correlation plot. The range chosen to shift one time series over the other is
±2.4s. With a sampling interval of ∆T = 40ms, this corresponds to ±60 time
samples, as indicated on the x-axis in the figure.
The obtained shift is used to adjust the data so that the sequences match in
their temporal domain. Figure 6.4 shows an example of the original and the
shifted data. The sequences are shown in the time domain as well as a scatter
plot for visualizing the correlation.

30

6. Data Preparation and Analysis

Figure 6.3.: Crosscorrelation pmech and pelec

Figure 6.4.: Comparison of shifted and non-shifted sequences

This method allows for compensating the observed timeshift. However, syn-
chronizing clocks would eliminate the need for this procedure. Moreover, this
method is only feasible since torque measurements are available.

31

7. Data-Driven Modeling

7. Data-Driven Modeling

In this chapter, we present the development of different data-driven models
based on the collected and preprocessed data. The used modeling approaches
are based on machine learning techniques as well as neural networks and we
specifically investigated model structures which can be categorized in:

• Long Short Term Memory Neural Network (LSTM) with manual feature
engineering

• LSTM with Convolutional-Layers for feature extraction

Several variations are trained and tested for each of these structures, where the
implementation of the models is realized using the MATLAB Deep Learning
Toolbox. In the next sections, first a brief introduction to the machine learning
techniques used is given. After that, the preprocessing and feature engineering
of the data is described. This is followed by a description of the creation of the
selected network structures and finally the chapter concludes with the necessary
procedure for the training of the models.

7.1. Basics of used Technologies

This section presents the basic principles of the methods used for data-driven
model building.

7.1.1. Feedforward Neural Network

The feedforward (FF) neural network (NN) is a so-called static network, which
means that the output depends only on the current inputs and not on previous
ones. Although FF-Networks are not able to represent temporal behavior, they
can still be used to model simple dynamical systems [35, 5]. The basic building
block of a neural network is a neuron that takes an input vector x, multiplies
it by weights w, and passes the result to a summer which is also fed by a
bias b. This weighting and summing of the inputs can also be written as a
matrix multiplication of the input vector x with the weight matrix W . The
output of the summer z goes into a nonlinear activation function f , which

33

7. Data-Driven Modeling

generates the neuron output y. Without the activation function the network
could only learn affine transformations, but by introducing this non-linearity it
is possible to learn more complex behavior [9]. Common activation functions
are, the sigmoid function, σ(x) = 1

1+e−x
, and the hyperbolic tangent function,

tanh(x) = 1−e−2x

1+e−2x [32]. Figure 7.1 shows a single neuron with an R dimensional
input vector. In general, a single neuron is not sufficient to mimic complex

Figure 7.1.: Single neuron (adapted from [15] and [32])

behavior. Hence, in a typical feedforward NN, multiple neurons are stacked
in parallel to form a layer, and multiple layers may be connected in such a
way that information is passed from one layer to another. Figure 7.2 shows
a feedforward NN with three layers. Each layer consists of S neurons having
their own weights, biases, and activation functions. To distinguish between
layers, the variables are labeled with superscripts indicating the layer number.
Different layers can have different numbers of neurons. In the example shown,

34

7. Data-Driven Modeling

Figure 7.2.: Multi layer network (adapted from [15])

there are S1 neurons in the first layer, S2 neurons in the second layer, and so on.
The last layer, whose output is the output of the network, is called output layer,
and the layers between the input and output layer are called hidden layers.

7.1.2. LSTM

The long-short term memory (LSTM) neural network is a special type of re-
current neural network (RNN). RNNs have recurrent states, which makes it
possible to learn time-dependent dynamical behavior. RNNs have widely been
used in areas of dynamic system identification and control of nonlinear systems
[30, 35, 5]. The advantage of LSTMs over conventional RNNs is that they avoid
the problem of vanishing or exploding gradients during the training process by
using gated units. Figure 7.3 shows the structure of one LSTM layer. The
recurrent states are the hidden states h and the cell states c. The output y of
the LSTM layer at a certain time step t is equal to the hidden state at this time
step (yt = ht). The states contain information from previous time steps. In
every step, information is added or removed from the states which is controlled
by so-called gates [24].

35

7. Data-Driven Modeling

The learnable parameters of the LSTM are the input wights W , the recurrent
weights R and the biases b. The computation of the states is given by Equations

Figure 7.3.: LSTM layer (adapted from [32] and [24])

7.1 to 7.7 where ⊙ denotes the Hadamard product, which is the element-wise
multiplication of vectors.

it = σ(Wixt +Riht−1 + bi) input gate (7.1)

ft = σ(Wfxt +Rfht−1 + bf) forget gate (7.2)

gt = tanh(Wgxt +Rght−1 + bg) cell candidate (7.3)

ot = σ(Woxt +Roht−1 + bo) output gate (7.4)

ct = ft ⊙ ct−1 + it ⊙ gt cell state (7.5)

ht = ot ⊙ tanh(ct) hidden state (7.6)

yt = ht output (7.7)

7.1.3. Convolutional Layer

The convolutional layer is the core layer of Convolutional Neural Networks
(CNNs), which are widely used for image-related tasks, such as object detec-
tion or image recognition [32], but they are also highly relevant for sequence
processing tasks were they can be competitive with RNNs on certain sequence-
processing problems [9].
Convolutional layers are based on the mathematical operation of convolution,
which can be viewed as the spatial filtering of an input matrix f with a filter
matrix w, also referred to as kernel. The computation with a one-dimensional
signal is given by Equation 7.8, where the kernel has size 1×n, with n assumed
to be odd. Variable b is a non-negative integer defined by n = 2b + 1, the
input f has size 1 × N , and t denotes the index of the input elements. The

36

7. Data-Driven Modeling

convolution is usually denoted by the asterisk operator ∗. The filtered output
g is also called feature map.

g(t) =
b

∑

s=−b

w(s)f(t− s) = w ∗ f (7.8)

In machine learning, correlation is often used instead of convolution, but it is
also referred to as convolution [14]. This is also the case with the MATLAB
machine learning toolbox in this work. However, in this thesis, convolution and
correlation are treated separately, whereas a correlation is denoted with the op-
erator ⊛. The calculation of the correlation is very similar to convolution where
its one-dimensional calculation is given by Equation 7.9. The only difference in
computation is a plus instead of a minus-sign, which can also be interpreted as
rotating a convolutional filter kernel by 180◦ about its center.

g(t) =
b

∑

s=−b

w(s)f(t+ s) = w ⊛ f (7.9)

Figure 7.4 shows the operating principle of applying a kernel of size 1× 5 to a
one-dimensional input by correlation, thereby the kernel slides over the input
and at each position an element-wise multiplication of the kernel elements, or
weights, is performed and the results are summed to produce the output g.
The size of the kernel is also called receptive field and the number of spatial
increments by which a receptive field is moved is called stride [13]. The output

Figure 7.4.: Correlation 1-D (adapted from [9])

shown in Figure 7.4 is 4 = n− 1-steps smaller than the input. This is because
filtering cannot be performed on the edges of the input, since the receptive field
would exceed the input length. This can be overcome by applying zero padding,
where zeros are appended to the ends of the input to match the kernel size.
In convolutional layers for image processing, the two-dimensional correlation
given by Equation 7.10 is applied. Here, (i, t) are the indices of the input

37

7. Data-Driven Modeling

matrix of size M ×N , the kernel size is m× n, and r is a non-negative integer
with m = 2r + 1.

g(i, t) =
a

∑

r=−a

b
∑

s=−b

w(r, s)f(i+ r, t+ s) = w ⊛ f (7.10)

Within a convolutional layer often more than one filter kernel is applied to
the input, which also results in multiple feature maps as output. Figure 7.5
schematically shows the operation of a convolutional layer with a two-dimensional
input and multiple filter kernels.

Figure 7.5.: 2-D convolutional layer with several filter kernels
(adapted from [13])

The learnable parameters of a convolutional layer are the filter kernel weights.

7.1.4. Training Algorithm

The goal of network training is to minimize a loss function E(θ) that provides
information about how well the network is performing. θ is a vector of network
parameters containing weights and biases. A widely used loss function is the
mean squared error (MSE) calculated between the actual output ŷ and the
predicted output y [32]. Equation 7.11 shows the calculation of the MSE for a
one dimensional network output over N training samples.

MSE =
1

N

N
∑

i=1

(yi − ŷi)
2 (7.11)

The loss function is minimized by updating the network parameters θ in an
appropriate way. One of the most popular algorithms to accomplish this are

38

7. Data-Driven Modeling

gradient descent algorithms, e.g. the standard gradient descent algorithm up-
dates the network parameters by taking small steps in the direction of the
negative gradient of the loss function (Equation 7.12).

θt+1 = θt − α∇E(θt) (7.12)

where t is the iteration number and α > 0 the learning rate. For standard
gradient descent, all training samples are used to compute the gradient of the
loss function, which can lead to slow training progress on a large dataset [32].
Therefore, a commonly used variant is the stochastic gradient descent (SGD)
algorithm, where gradient evaluation and parameter updating is performed on
a subset of the training data referred to as a mini-batch. A complete run over
the entire training data using mini-batches is called one epoch.
A more advanced variant of the SGD algorithm is the adaptive moment estima-
tion (Adam) introduced in [19]. The computation of one update step is given in
Equation 7.13, here mt is the exponential moving average of the gradients and
vt is the exponential moving average of the element-wise squares of the gradi-
ents. Division by

√
vt is also performed element-wise and ǫ is a small constant

to prevent division by zero. Parameters β1, β2 ∈ [0, 1) are the gradient- and
squared gradient decay factors.

θt+1 = θt −
αmt√
vt + ǫ

mt = β1mt−1 + (1− β1)∇E(θt)

vt = β2vt−1 + (1− β2) [∇E(θt)]
2

(7.13)

The element-wise division by
√
vt normalizes the update step for each param-

eter individually, which means that learning rates of parameters with large
gradients are decreased and those with small gradients are increased. By using
the moving average mt, the gradients are accelerated in the direction that leads
to convergence [32].

39

7. Data-Driven Modeling

7.2. Data Preprocessing and Feature

Engineering

The purpose of preprocessing is to make the existing raw data more usable
for machine learning algorithms. For example, one important aspect is the
normalization of the data. Machine learning algorithms should not be fed with
large numbers, also non homogeneous data should be avoided. The reason
being that this can prevent the chosen algorithm from converging. In general,
the data should have the following characteristics [9]:

• take small values (e.g. range 0-1, mean of 0, standard deviation of 1)

• be homogeneous (all the data should take values in the same range)

Feature engineering is the process of utilizing the understanding of the problem
to be solved and the machine learning algorithm to be used to improve the
performance of the algorithm by applying transformations to the data before
it is fed into the model [9].

7.2.1. Feature Engineering

To select suitable features, we will first take a closer look at the system shown
in Figure 7.6. Our input to the system is the desired trajectory θref (t), and the
system response we are interested in is the electrical power supplied pelec(t).
The desired trajectory goes as reference input to the robot controller, which
ensures that the angles θ(t) of the manipulator axis follow the reference as
closely as possible.

Figure 7.6.: Energy flow through the robot system

Portions of the total power supplied are lost due to losses in the control system,
losses in the motors as well as through friction. What remains is the mechanical

40

7. Data-Driven Modeling

power that can be used for performing various tasks.
As already shown in Section 6.2, the mechanical power is closely related to
the electrical power and can be calculated by (pmech = τ · θ̇). In robotics, the
torque acting on a robot axis can be calculated by solving the so called inverse
dynamics problem, which is given as a set of nonlinear differential equations
in the variables angle θ, angular velocity θ̇ and angular acceleration θ̈ [23].The
calculation is shown in Equation 7.14

τ = M(θ)θ̈ + h(θ, θ̇) (7.14)

where M(θ) is a symmetric, positively defined mass matrix, and h(θ, θ̇) are
forces that combine centripetal, coriolis, gravitational, and frictional terms. By
multiplying Equation 7.14 with θ̇, the mechanical power of the system under
consideration is given by:

pmech =
(

M(θ)θ̈ + h(θ, θ̇)
)

θ̇ (7.15)

Hence, the mechanical power corresponds to a nonlinear function with the
variables angle θ, angular velocity θ̇ and angular acceleration θ̈. Since the
electrical power is closely related to the mechanical power, and the mechanical
power depends substantially on the three variables θ, θ̇, θ̈, these variables can
be considered as suitable features to model the system behavior via machine
learning algorithms. It should be noted that θ, θ̇, θ̈ refer to the actual motion
of the manipulator and thus are characterized by the output trajectory of the
system. However, the goal here is to predict the power consumption by means
of the input trajectory. But the active control ensures that the output follows
the input with small deviations. Therefore, the first and second derivatives of
the input trajectory are also assumed to be suitable features. The following
sections describe how to extract the desired features both manually and by
using learned convolutional filter kernels.

7.3. LSTM with Manual Feature Extraction

In this section, first the necessary steps to extract the engineered features are
described followed by the introduction of the selected network structures with
the manually extracted features as input.

7.3.1. Feature Extraction and Normalization

To extract the features obtained in Subsection 7.2.1, the first and second order
finite difference method is applied to the recorded data. Equations 7.16 and
7.17 show the calculation of the first respectively second order finite difference.

41

7. Data-Driven Modeling

θ̇(t) ≈ θ(t+∆T)− θ(t−∆T)

2∆T
(7.16)

θ̈(t) ≈ θ(t+∆T)− 2θ(t) + θ(t−∆T)

(∆T)2
(7.17)

Before the collected data is handed over to the selected modeling algorithms,
normalization is performed. For the electrical power, normalization is chosen
with pnorm = (pelec−poffset)/pscale. Where power normalization parameters are
chosen with poffset = 155 and pscale = 166. Angle, angular velocity and angular
acceleration are just scaled by the factors: θscale = 3, θ̇scale = 1.6, θ̈scale = 13.
Figure 7.7 shows the effect of normalization, where the original data is shown
on the left and the normalized values on the right.

Figure 7.7.: Manual feature extraction and normalization: left recorded axis
angles, calculated derivatives and measured power consumption, right the

corresponding values

42

7. Data-Driven Modeling

7.3.2. Network Structure Setup

The chosen base structure consists of a sequence input layer, followed by an
LSTM layer with 10 hidden units, succeeded by a 4 layered FF-Network without
activation functions. The last layer is a one-dimensional output layer. With
this base structure, three networks were set up that differ only in their input
dimension. One network has only the normalized seven axis angles as input,
the second has additionally the normalized angular velocities as input, which
leads to a 14-dimensional input, and the third network has all 21 constructed
features as input. The base structure with its variations of input dimensions is
shown in Figure 7.8, a more detailed description of the network structures can
be found in Appendices B.1, B.2, B.3.

Figure 7.8.: Network structures with manually extracted features of varying
input dimensions; from left to right: 7x1dim, 14x1dim, 21x1dim

43

7. Data-Driven Modeling

7.4. LSTM with Convolutional-Layer for

Feature Extraction

For the networks in the previous section, the input features were extracted
manually, which requires a deeper insight into the system we want to model.
In this section, we will build a model structure that is capable of automatically
extracting features from the data without requiring any prior knowledge of the
system. A commonly used layer type for feature extraction in image processing
is the convolutional layer, which can also be applied for the networks built in
this section.
It is interesting to note, that the derivative of a signal can be computed by con-
volution of the signal with an appropriate filter kernel. Common filter kernels
in the field of image processing are thereby the Difference of Gaussian (DoG)
for the computation of the first derivative (Equation 7.18) and the Laplacian
of Gaussian (LoG) for the second derivative (Equation 7.19) [6].

d

dt
f(t) ≈ DoG ∗ f (7.18)

d2

dt2
f(t) ≈ LoG ∗ f (7.19)

Figure 7.9 shows an example of one dimensional DoG and LoG kernels with a
receptive field of L = 13.

(a) DoG 1-D (b) LoG 1-D

Figure 7.9.: Filter kernels for Difference of Gaussian (a) and Laplacian of
Gaussian (b) with receptive field of L = 13

When the receptive field of the kernels is reduced to L=3 (Figure 7.10), then the
convolution of the resulting kernels with a signal is the same as the calculation of

44

7. Data-Driven Modeling

the first and second finite differences given by Equation 7.16 and Equation 7.17
when ∆T = 1.

Figure 7.10.: Filter kernels equivalent to centered finite difference when
∆T = 1: left DoG; right LoG

Hence, a convolutional layer with multiple filter kernels of length 3 prior to
the LSTM layer can in principle provide the same performance as the networks
with manually extracted features.

7.4.1. Sequence Transformation

Before using a convolutional layer in combination with an LSTM layer, the
sequential input data must first be converted into a sequence of frames suitable
for the receptive field of the applied filter kernels. This must be done so that
the convolutional layer can take a frame at each time step to compute the
correlation and form feature maps. These feature maps are then flattened into
a vector so that the LSTM can process them.

45

7. Data-Driven Modeling

Figure 7.11 shows this process on the example of a sequence of seven axes angles.
Here, the receptive field is chosen to be 1 × L, where L is an odd integer and
also the width of the frames. When applying correlation with Q filter kernels
to one frame, with no zero padding, Q feature maps are extracted with size
7 × 1. After flattening the feature maps this leads to a 7Q × 1 feature vector
which can then be fed into the LSTM layer.

Figure 7.11.: Sequence transformation and processing with convolutional layer

46

7. Data-Driven Modeling

7.4.2. Network Structures Setup

The first structure chosen is a convolution layer with filters of size 1x3. The
number of filters is chosen as 2x and 3x. The defined base structures with
its variation is shown in Figure 7.12. For a more detailed description of the
network structures, see B.4, B.5. In contrast to the networks with manual

Figure 7.12.: Network structures 2conv1x3, 3conv1x3

feature extraction, the inputs for these networks are only the 7 axis angles.
With the number of filters chosen to be 2 and 3, it is intended that the results
are comparable to the models with manually extracted features.

47

7. Data-Driven Modeling

In addition to the 1x3 networks, 3 further networks were built with a wider
receptive field. One with 3x 1x5 kernels, one with 3x 1x11 and one with 5x
1x21. The setups are shown in Figure 7.13, a more detailed description of the
network structures can be found in Appendices B.6, B.7, B.8.

Figure 7.13.: Network structures 3conv1x5, 3conv1x11, 5conv1x21

7.5. Model Training

In the Sections 7.3 and 7.4, 8 different network structures were defined. Fur-
thermore, data from two different types of trajectories were recorded, namely
the Limited Space and the All Space data defined in Chapter 5. This enables
comparing the generalization capabilities of the networks trained with those
data sets. In addition, another training dataset is produced by combining the
recordings of the two trajectory types mentioned above. This dataset is used to
train models that are provided with as much information as possible to achieve
the best overall performance.
Hence, there are in total 24 combinations of different training datasets with dif-
ferent model structures. In order to reduce the evaluation effort, not all of these
combinations are obtained. In doing so, only the network types with manually
extracted features are trained on each combination of the available datasets to
investigate the generalization behavior. The rest of the set up network struc-
tures are trained using only the combination of data from all space and the

48

7. Data-Driven Modeling

limited space. Thus, the performance comparison between models with man-
ual feature extraction and those using convolutional layers is done with models
trained on all available data. Table 7.1 shows the used combinations of net-
work architectures and training datasets. For model training and evaluation,

Table 7.1.: Considered combinations of network structures and data sets

the collected datasets are split into training, testing, and validation datasets.
The splitting ratios used are shown in Table 7.2. When splitting, we ensured
that no recordings based on the same source trajectory were found in the same
split. All models were trained using Adam training algorithm. The used train-

Table 7.2.: Split training testing and validation data

ing parameters are listed in Table 7.3. The parameters chosen are the same
for all networks, except for the gradient and quadratic gradient decay factors
β1 and β2, which were adjusted for the 7x1dim networks in order to achieve
stable training results. Further information about used training parameters
can be found in [25]. During training, the gradient for updating the network
parameters is calculated from one mini-batch, which holds several sequences
(in this case 11). Within one mini-Batch the sequences must have the same

49

7. Data-Driven Modeling

Table 7.3.: Used training parameters

length. The chosen method to achieve same sequence length is to truncate all
sequences within a mini-Batch to the shortest sequence within it. To mini-
mize the truncation, it is desirable to sort the sequences by their length before
handing them over to the training algorithm. Figure 7.14 shows the effect of
truncation within one mini-batch and the advantage of sorting the data can be
seen. The result shows that sorting the data significantly reduces the loss of
data due to truncation.

Figure 7.14.: Effect of truncation to shortest sequence within mini-batch

The sorted training data is then passed to the training algorithm, where a total
of 14 networks defined with Table 7.1 were trained.

50

8. Model Comparison

8. Model Comparison

In this chapter, the trained models are evaluated in terms of their generalization
capabilities as well as prediction accuracy and a comparison between the model
structures is performed using appropriate metrics. In the following sections,
first the selected performance metrics are described, followed by a comparison
of the models trained on different datasets. Then follows an investigation of
the quality of the manually extracted features. Subsequently, the capabilities
of models with convolutional layers for feature extraction are explored. Finally,
a summary of the results is given, and the best performing model is selected by
presenting an overall comparison.

8.1. Performance Metrics

A performance metric can be defined as a mathematical construct that measures
how close the actual results are to the predictions. According to Botchkarev
[7], the most common performance metrics in machine learning regression are
Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE). For both
metrics, the difference err between the predicted values y and the measured
values ŷ is calculated for each sample in the test dataset with N samples (Equa-
tion 8.1). The MAE is then calculated by taking the mean of the absolute values
of the errors (Equation 8.2). The RMSE is given by Equation 8.3 and, as the
name implies, is the square root of the MSE defined by Equation 7.11.

err = y − ŷ (8.1)

MAE =
1

N

N
∑

i=1

|erri| (8.2)

RMSE =

√

√

√

√

1

N

N
∑

i=1

err2i (8.3)

In this thesis, both MAE and RMSE are computed for model evaluation, with
focus on MAE since this measure is more commonly used in machine learning
regression [7].

51

8. Model Comparison

8.2. Investigation of Generalization Capabilities

This section investigates how the used training dataset affects the model per-
formance. To this end, the models 7x1dim, 14x1dim and 21x1dim trained on
different datasets are compared to each other. The heatmaps depicted in Fig-
ure 8.1 show the MAE of the various networks for predictions made on different
test datasets. The x-axis indicates the test dataset on which the predictions
were made and the y-axis denotes the train dataset that was applied for the
network architecture indicated above each plot.

Figure 8.1.: MAE in Watt for 7x1dim 14x1dim 21x1dim models trained on
different datasets

The models trained on the limited space data (bottom row) are only able to
make predictions with little deviation when the predictions are also made in
the limited space. When attempting to make predictions for the data of the
entire space, these models perform poorly. The networks in the second row were
trained on the all space dataset, and these models are able to make predictions
with small errors on the limited space data, as well as on the All Space dataset
on which they were trained. The models trained on both the limited and all
space datasets show the best performance.
For better interpretation of these results we show some predictions of the models
with input feature dimension 21x1 in Figure 8.2. The figure shows predicted
and measured values in time domain and as a scatter plot, where the correlation
coefficient, MAE, and RMSE are also given. The upper three plots show the
predictions made with the same limited space trajectory as input whereas the
lower plots show the predictions made on a selected all space trajectory. The
selected trajectories are those where the model trained on the Lim.+AllSp.
dataset showed the largest MAE. It indicates that the predictions for the limited
space data generally agree well with the measured values. However, for all space
data, the performance can still be improved.

52

8. Model Comparison

Figure 8.2.: Sample predictions of 21x1dim networks trained on different
datasets

53

8. Model Comparison

8.3. Quality of Manually Engineered Features

In this section, we evaluate the quality of the manually engineered and extracted
features by comparing the models that were trained with different features as
inputs. Since the models trained with all data performed the best, we selected
them for further investigation and for presenting our results. Figure 8.3 shows
the MAE of models trained on all data and with different features as input.
It appears that the selected features are of good design as the MAE decreases
with the inclusion of additional features. The performance of 14x1 and 21x1 is
similar, but the 21x1 network is slightly better with regard to all data.

Figure 8.3.: MAE for 7x1dim 14x1dim 21x1dim networks trained combined
Lim.- and All Space dataset

Figure 8.4 visualizes the absolute errors for Lim.+AllSp.-dataset as violin plots
represented with blue circles. A violin plot adds additional information to the
structure of boxplots by graphically representing the distribution characteristics
of data batches [16]. In the figure this distribution characteristics are visualized
by the symmetric scattering of the data points along the x-dimension. Also
indicated are median (MED), MAE, and RMSE. The black box indicates the
interquartile range. On the right side the complete data is shown, on the left
side an enlarged view.

The plot shows that the network fed with only the 7 axis angles has the poorest
performance. Both, 14x1 and 21x1 seem to perform similarly well, with 21x1
being slightly better. In addition to the comparison of the metrics and the
distribution of the absolute residuals, the actual predicted sequences were also
inspected. This revealed instability issues for the 14x1dim network, which is
shown in Figure 8.5.

This undesirable oscillatory behavior was also observed to a lower extent in the
predictions of the 7x1dim network, but not with the 21x1dim model.

54

8. Model Comparison

Figure 8.4.: Visualization of |err| for models 7x1dim 14x1dim 21x1dim nets
trained on combined Lim.- and All Space dataset

Figure 8.5.: Instability observation of 14x1dim network

55

8. Model Comparison

8.4. Capabilities of Convolutional Layer for

Feature Extraction

In this section, the models with convolutional layers as feature extractors are
examined. First, models with two and three filters with receptive field of 1x3
are compared with the models using manually extracted features. Figure 8.6
shows the MAE on different datasets. The MAE of the convolutional models
is higher than the models with manually extracted features, but values are in a
comparable range. Furthermore, the network with three filter kernels performs
better than the one with just two. The poorer performance of the 2conv1x3

Figure 8.6.: MAE comparison of 14x1dim 21x1dim with 2conv1x3 3conv1x3

network compared to the 3conv1x3 network is also evident in the stretched
distribution of absolute error values for the 2conv1x3 network, as shown in
Figure 8.7.

Figure 8.7.: Visualization of |err| for models 14x1dim 21x1dim and 2conv1x3
3conv1x3

56

8. Model Comparison

The predicted sequences for 2conv1x3 and 3conv1x3 were also checked for pos-
sible instability problems. However, no unusual deviations similar to those in
Figure 8.5 were found.

Next, we will investigate what filter kernel weights were learned in the con-
volutional layers and explore the effect of convolution of these filters on a se-
lected input signal For this purpose, a 1-D sequence is selected, representing
the normalized angle of one axis as an exemplary input signal. For comparison
purposes, the first and second derivatives are also formed, which exemplarily
represent the manually extracted features. Figure 8.8 shows the normalized
sequence along with the manually extracted first and second derivatives.

Figure 8.8.: Sample 1-D sequence input and manually extracted features

57

8. Model Comparison

Figure 8.9 shows the two filter kernels of the 2conv1x3 network, as well as the
result of convolving the normalized input signal (θnorm) with these filters. It
turns out that by applying filter w1, the original shape of the selected input
signal is well preserved, but negated and scaled in value. Applying filter w2
to the input signal reveals that the resulting sequence compares very well with
the manually extracted first derivative. Also notable is, that the kernel w2
has considerable similarity to the DoG-kernel with receptive field of L = 3, as
shown in Figure 7.10.

Figure 8.9.: 1-D features extracted from 2conv1x3 CNN

Let us also inspect the result when convolving the example signal with the
filter kernels of the 3conv1x3 network. The kernels along with their convolution
results are shown in Figure 8.10. When looking at the weights, similarities with
the DoG kernel are noticeable as well. However, when these filters are applied
to the selected input signal, no clear match can be found with the manually
extracted first or second derivative. The result of w1 seems to be, to some
extent, similar to the first derivative, while the results of w2 and w3 are similar
to each other, but cannot be unambiguously assigned to any of the manually
extracted features.

58

8. Model Comparison

Figure 8.10.: 1-D features extracted with 3conv1x3 kernels

In addition to the 2conv1x3 and 3conv1x3 networks, also experiments with
wider and more filter kernels were carried out. For this purpose the networks
3conv1x5, 3conv1x11 and 5conv1x21 were trained. The MAE and error plots
for the three additional networks are shown in Figure 8.11 and Figure 8.12.
The 21x1dim network is included for comparison.

Figure 8.11.: MAE comparison of 21x1dim with 3conv1x5 5conv1x21
3conv1x11

59

8. Model Comparison

Figure 8.12.: Visualization of |err| for models 21x1dim 3conv1x5 5conv1x21
3conv1x11

The performances of the networks 3conv1x5, 5conv1x21, 3conv1x11 are quite
similar with no model standing out. It is also evident that the MAE of the
convolutional models is higher than that of the 21x1dim network, but the values
are of little difference.
The learned kernels of network 3conv1x5 along with the convolution results
are depicted in Figure 8.13. The effect of applying w1 is similar to that of
kernel w1 from 2conv1x3 (Figure 8.9). Although the appearance of those filter
weights is very different, both kernels have the effect of scaling and negating the
example input signal. The convolution results of kernels w2 and w3 of network
3conv1x5 appear similar to each other, with the resulting sequences having
characteristics of the first derivative. The results from 3conv1x11 kernels are
shown in Figure 8.14. Again, the effect of negating the input signal can be
observed with kernel w2. Interestingly, the kernels w1 and w3 appear similar
to the LoG and DoG in Figure 7.9, where the convolution result of w1 has the
properties of a superposition of the first and second derivatives, and the result
of w3 has the properties of the second derivative.

60

8. Model Comparison

Figure 8.13.: 1-D features extracted from 3conv1x5 kernels

Figure 8.14.: 1-D features extracted from 3conv1x11 kernels

61

8. Model Comparison

Finally, the kernels of the 5conv1x21 network are shown in Figure 8.15 along
with the convolution results. The results of filtering with kernels w3 and w5
show similarities with the second derivative, while the result of kernel w4 again
indicates a kind of superposition of the first and second derivative. With the
learned weights of the kernel w1, the extracted sequences again seem to re-
semble the first derivative to some extent, whereas the result form w2 is not
unambiguously interpretable.

Figure 8.15.: 1-D features extracted from 5conv1x21 kernels

62

8. Model Comparison

8.5. Overall Comparison and Model Selection

Based on the results described in the previous sections, let us now present an
overall comparison of the evaluated models. Figure 8.16 shows the MAE in
tabular form and Figure 8.17 shows the violin plots of the absolute errors. The
performance of the networks with manually extracted features and those with
learned convolutional feature extractors are within a narrow range. However,
the best overall performance in terms of MAE along with a narrow interquartile
range of the absolute errors is shown by the 21x1dim network.

Figure 8.16.: MAE comparison all models

Figure 8.17.: Visualization of |err| for all models

To further illustrate the performance of the networks, Figure 8.18 shows an
example of the predictions from three selected models. As input trajectory an
All Space trajectory was chosen for which the model 21x1dim has the lowest

63

8. Model Comparison

MAE.
Since the 21x1dim network appears to have the best overall performance, this
model is chosen to conduct additional experiments in the course of this thesis.

Figure 8.18.: Predictions of 21x1 3conv1x5 5conv1x21 nets on selected All
Space trajectory

64

9. Test on Real Use-Case

9. Test on Real Use-Case

This chapter presents an evaluation of the previously selected model on the
basis of a real use case. Since predictive models are often used in simulation
environments, the evaluation will also include the typical steps required to
utilize the created model within such an environment. In doing so, several
aspects will be addressed, namely:

• convert the derived model to a platform independent exchange format

• model the real use-case in an simulation environment

• utilize the energy model within the simulation environment

• evaluating simulation results

The use case is the assembly of a Fidget Spinner, which is part of a overall
manufacturing process in the laboratory of the Digital Factory and consists of
the steps shown in Figure 9.1.

Figure 9.1.: Fidget spinner assembly

The simulation software used for testing the energy model is called twin and is
developed and maintained by the company digifai1. Within the twin environ-
ment it is possible to simulate and control the kinematic motions of a robotic
system. twin also offers the possibility to integrate 3rd party models by means
of so-called Functional Mockup Units (FMUs).

1www.digifai.com

65

https://www.digifai.com/en/

9. Test on Real Use-Case

The next section briefly explains the process of converting the model into an
FMU. This is followed by the description of implementing the assembly process,
including the energy model, within the simulation environment. Subsequently,
the simulation results are compared with the real system behavior.

9.1. FMU Generation

An FMU is an executable file that implements the Functional Mock-up In-
terface (FMI). The FMU is essentially a ZIP-file whose main components are
an XML-formatted model description and C-code source files including the re-
quired runtime libraries used in the model. A FMU can be formatted for model
exchange or co-simulation [27]. In this work, we use co-simulation formatted
FMUs, since the simulation environment used is only capable to process this
type. The procedure worked out for converting a MATLAB neural network to
an FMU consists of the following steps:

1. embed the network within a matlab function

2. generate executable C-code out of the function by utilizing matlab coder

3. embed the C-code within a s-function within simulink

4. export the simulink model as FMU for co-simulation

A more detailed explanation of this procedure can be found in Appendix C.1.

9.2. Integration and Test in twin Software

In order to test the energy model, the assembly process was simulated using
the twin software. A 3D model was created consisting of the assembly table
and the industrial robots. The control logic to implement the robot motion was
implemented based on the real use case. The created energy model was also
integrated as a FMU and the simulated axis angles of one robot were used as
inputs.
Figure 9.2 shows the 3D model of the assembly structure with the underlying
logical layer where the movements of the rigid bodies are controlled and energy
prediction by the FMU is performed.

66

9. Test on Real Use-Case

Figure 9.2.: Simulation setup twin software: top the 3D rigid body
representation; bottom movement control and energy simulation

67

9. Test on Real Use-Case

9.3. Simulation Results

This section presents the simulation results based on the generated FMU and
the simulated robot motion. Figure 9.3 shows the motion information of the
simulation as well as the measurements from the real system when the assem-
bly is performed. On the left side, the measured and simulated axis angles
are shown. The right side represents the Cartesian position of the end-effector,
which was determined by forward kinematics using the axis angles. The com-
parison shows, that the simulated positions of axes 3 and 5 differ significantly
from the measured values. However, it is apparent that although the axis an-
gles of the virtual robot controller differ from the real system, the calculated
positions of the end-effector are close to the real counterpart.

Figure 9.3.: Comparison simulated and measured movement: left the axis
angles; right end-effector position

Finally, with the confirmation that the simulated robot motion performs similar
to the real system, we can present the results of the simulated power consump-
tion. For comparison purposes, the power consumption was also predicted
based on the measured axis angles of the real system, referred to as predicted
power in the following, whereas the results of the simulation using the imi-
tated robot motion are referred to as simulated power. Figure 9.4 shows the

68

9. Test on Real Use-Case

respective comparison of predicted power and simulated power with the real
power consumption measured. The results show a high initial peak in the mea-
surements which can be attributed to the inrush currents of the axes motors
when the breaks of the axes are released. This peak in current consumption
can unfortunately not be replicated by the derived models because no infor-
mation about the state of the brakes was provided during training. Therefore,
for additional reference, the performance metrics were also calculated without
the initial peak. This leads to the values MAEpred = 4.15, RMSEpred = 7.98,
MAEsim = 6.60, RMSEsim = 13.14. The corresponding plots to these results
can be found in the Appendix C.2.

Figure 9.4.: Comparison of predicted and simulated with measured power:
top: power predicted with measured axis angles, bottom: power from

simulation

Apart from the deviation at the beginning, the created energy model is able
to represent the real energy consumption well. Furthermore, the simulated
power and predicted power are very similar except for larger deviation peaks at
times 4.7, 11.8, 16.5 and 23.6. These peaks can be attributed to the differences
between simulated and measured movement shown in Figure 9.3.

69

10. Discussion of Results

10. Discussion of Results

In this thesis, the complete procedure for the creation of a data-driven en-
ergy model was presented and all necessary steps from data acquisition to the
implementation of the created model within a simulation environment were
demonstrated. As a result we were able to create a model with, in the au-
thor’s opinion, satisfactory accuracy. However, the limitations of the created
model should not be ignored. Thus, no external forces acting on the manip-
ulator or a change in mass, e.g. due to the gripping of an object, were taken
into account for model building. This limits the field of applications to robotic
tasks having limited interaction with the environment and no significant mass
changes on the manipulator. Furthermore, it should be noted that for energy
simulation a sequence of axis data has to be provided. In practice, this requires
path planning and calculation of the inverse kinematics by a suitable tool. In
terms of modeling, a very interesting aspect is the demonstrated ability of the
convolutional layers to automatically extract meaningful features from the raw
data, resulting in models with a performance almost on the same level as those
created with manually engineered features whose creation requires a certain
level of expertise. We also investigated the learned filter kernels and tried to
evaluate their properties by comparing them with known filter kernels and by
applying them to a selected signal. Interestingly, similarities were detected be-
tween the manually and automatically extracted features, and also the shape
of the filter masks could partially be related to the known kernels like DoG and
LoG. It must be mentioned that these observations are based on a first purely
qualitative judgment by the author and that the analysis on the basis of only
one selected signal cannot be considered as sufficient to comprehensively assess
the properties of the observed filters. This would require further investigations,
e.g. by means of digital signal processing methods such as frequency analysis,
which unfortunately could not be carried out within the scope of this thesis.
Besides further evaluations of the filter kernels, it would be desirable to test
other structures and technologies of different neural networks in future studies
to achieve a reduction of the prediction error. However, a possible improvement
in model performance could also be achieved by appropriate time synchroniza-
tion of the measurement systems or possibly by applying different trajectories
for the system excitation.
Despite the limitations of the created model and the possibilities for improve-

71

10. Discussion of Results

ment in methodology and evaluation, this work shows a comprehensive elabora-
tion of a complete procedure for the creation of a data-driven energy model by
applying interdisciplinary methods from mechatronics, robotics and machine
learning.

72

11. Conclusion

11. Conclusion

This thesis presented a data-driven method for creating energy models pre-
dicting the energy consumption of dynamic systems. To accomplish this, a
measurement concept was developed and implemented to aggregate data from
the real system. Furthermore, different excitation trajectories were designed
and executed. Analyzing the recorded data revealed an error, which was no-
ticeable by a shift in the temporal information of the time series of the electrical
and mechanical data. A solution based on cross-correlation calculations was de-
vised for compensating this error in order ot make the data accessible for the
modeling process. Different ANN architectures were set up for model building.
In addition, both manually engineered features as well as automatic feature
extraction were investigated. An interesting aspect of the comparison of the
models was, that th automatic feature extraction using convolutional layers
performed very closely to the manually extracted features. Furthermore, the
engineered features proved to be of good quality, as the prediction accuracy
could be improved using them as input. For the networks with convolutional
layers the properties of the learned filter masks were examined more closely. In-
terestingly, the learned filter masks extracted similar features as the manually
created ones. Although the performance of the automatic feature extraction
networks is not quite as good as that of the manually extracted models, this
architecture is very attractive because models can be created with sufficient
accuracy even without deeper knowledge of the system to be modeled.
Finally, a possibility of using such a model in the case of a real application was
presented. For this purpose, a selected model was converted into a suitable
exchange format (FMU) and integrated into a simulation environment. The
results showed that the created model is able to make satisfying predictions.

73

Bibliography

Bibliography

[1] V. Bargsten, P. Zometa, and R. Findeisen. “Modeling, parameter iden-
tification and model-based control of a lightweight robotic manipulator”.
In: 2013 IEEE International Conference on Control Applications (CCA).
ISSN: 1085-1992. Aug. 2013, pp. 134–139. doi: 10.1109/CCA.2013.

6662756.

[2] Beckhoff Automation GmbH & Co. KG. Documentation EtherCAT Bus
Coupler, EK110x-00xx, EK15xx. url: https://download.beckhoff.
com/download/Document/io/ethercat-terminals/ek110x_ek15xxen.

pdf (visited on 05/06/2020).

[3] Beckhoff Automation GmbH & Co. KG. Documentation: Power monitor-
ing oversampling terminal for 690V, EL3783. url: https://download.
beckhoff.com/download/Document/io/ethercat-terminals/el3783en.

pdf (visited on 05/06/2020).

[4] Beckhoff Information System - English: Supported network controllers.
url: https://infosys.beckhoff.com/content/1033/tc3_overview/
9309844363.html?id=1489698440745036069 (visited on 06/08/2021).

[5] S. A. Billings. Nonlinear system identification: NARMAX methods in the
time, frequency, and spatio-temporal domains. Chichester, West Sussex,
United Kingdom: John Wiley & Sons, Inc, 2013. isbn: 978-1-118-53555-4.

[6] Stan Birchfield. Image Processing and Analysis. 1st edition. Mason, OH:
Cengage Learning, 2016. isbn: 978-1-285-17952-0.

[7] Alexei Botchkarev. “A New Typology Design of Performance Metrics to
Measure Errors in Machine Learning Regression Algorithms”. en. In: In-
terdisciplinary Journal of Information, Knowledge, and Management 14
(Jan. 2019), pp. 045–076. doi: 10.28945/4184.

[8] Steven L. Brunton and Jose Nathan Kutz. Data-driven science and en-
gineering: machine learning, dynamical systems, and control. Cambridge:
Cambridge University Press, 2019. isbn: 978-1-108-42209-3.

[9] François Chollet. Deep learning with Python. OCLC: ocn982650571. Shel-
ter Island, New York: Manning Publications Co, 2018. isbn: 978-1-61729-
443-3.

74

https://doi.org/10.1109/CCA.2013.6662756
https://doi.org/10.1109/CCA.2013.6662756
https://download.beckhoff.com/download/Document/io/ethercat-terminals/ek110x_ek15xxen.pdf
https://download.beckhoff.com/download/Document/io/ethercat-terminals/ek110x_ek15xxen.pdf
https://download.beckhoff.com/download/Document/io/ethercat-terminals/ek110x_ek15xxen.pdf
https://download.beckhoff.com/download/Document/io/ethercat-terminals/el3783en.pdf
https://download.beckhoff.com/download/Document/io/ethercat-terminals/el3783en.pdf
https://download.beckhoff.com/download/Document/io/ethercat-terminals/el3783en.pdf
https://infosys.beckhoff.com/content/1033/tc3_overview/9309844363.html?id=1489698440745036069
https://infosys.beckhoff.com/content/1033/tc3_overview/9309844363.html?id=1489698440745036069
https://doi.org/10.28945/4184

Bibliography

[10] Microsoft Documentation. File Times - Win32 apps. en-us. url: https:
//docs.microsoft.com/en-us/windows/win32/sysinfo/file-times

(visited on 07/23/2021).

[11] EtherCAT Technology Group | EtherCAT. url: https://www.ethercat.
org/en/technology.html (visited on 06/07/2021).

[12] Jeff Friesen. Java XML and JSON: Document Processing for Java SE.
2nd ed. 2019. Berkeley, CA: Apress : Imprint: Apress, 2019. isbn: 978-1-
4842-4330-5. doi: 10.1007/978-1-4842-4330-5.

[13] Rafael C. Gonzalez and Richard E. Woods. Digital image processing. eng.
Fourth edition, global edition. New York, NY: Pearson, 2018. isbn: 978-
1-292-22304-9.

[14] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
Adaptive computation and machine learning. Cambridge, Massachusetts:
The MIT Press, 2016. isbn: 978-0-262-03561-3.

[15] Martin T. Hagan et al. Neural network design. eng. 2nd edition. Wrocław:
Amazon Fulfillment Poland Sp. z o.o, 2014. isbn: 978-0-9717321-1-7.

[16] Jerry L. Hintze and Ray D. Nelson. “Violin Plots: A Box Plot-Density
Trace Synergism”. In: The American Statistician 52.2 (May 1998), pp. 181–
184. issn: 0003-1305. doi: 10.1080/00031305.1998.10480559.

[17] HP ProDesk 600 G2 Desktop-Mini-PC - Technische Daten | HP® Kun-
densupport. url: https://support.hp.com/at- de/product/hp-

prodesk-600-g2-desktop-mini-pc/8376393/document/c04850252#

AbT5 (visited on 06/08/2021).

[18] ISO/IEC 20922: Information technology - Message Queuing Telemetry
Transport (MQTT) v3.1.1. 2016. url: https://www.iso.org/standard/
69466.html.

[19] Diederik P. Kingma and Jimmy Ba. “Adam: A Method for Stochastic
Optimization”. In: 3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings. Ed. by Yoshua Bengio and Yann LeCun. 2015. url:
http://arxiv.org/abs/1412.6980.

[20] KUKA Deutschland GmbH. BA KUKA Sunrise Cabinet V10; Controller
KUKA Sunrise Cabinet Operating instructions.

[21] KUKA Deutschland GmbH. BA LBR iiwa V8; LBR iiwa 7 R800, LBR
iiwa 14 R820 Operating instructions.

75

https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times
https://docs.microsoft.com/en-us/windows/win32/sysinfo/file-times
https://www.ethercat.org/en/technology.html
https://www.ethercat.org/en/technology.html
https://doi.org/10.1007/978-1-4842-4330-5
https://doi.org/10.1080/00031305.1998.10480559
https://support.hp.com/at-de/product/hp-prodesk-600-g2-desktop-mini-pc/8376393/document/c04850252#AbT5
https://support.hp.com/at-de/product/hp-prodesk-600-g2-desktop-mini-pc/8376393/document/c04850252#AbT5
https://support.hp.com/at-de/product/hp-prodesk-600-g2-desktop-mini-pc/8376393/document/c04850252#AbT5
https://www.iso.org/standard/69466.html
https://www.iso.org/standard/69466.html
http://arxiv.org/abs/1412.6980

Bibliography

[22] Aiming Liu et al. “Energy consumption modeling of industrial robot based
on simulated power data and parameter identification”. en. In: Advances
in Mechanical Engineering 10.5 (May 2018). Publisher: SAGE Publica-
tions, p. 1687814018773852. issn: 1687-8140. doi: 10.1177/1687814018773852.

[23] Kevin M. Lynch and Frank C. Park. Modern robotics: mechanics, plan-
ning, and control. OCLC: ocn983881868. Cambridge, UK: Cambridge
University Press, 2017. isbn: 978-1-107-15630-2.

[24] MATLAB Documentation: Long short-term memory (LSTM) layer. url:
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.

layer.lstmlayer.html (visited on 08/24/2021).

[25] MATLAB Documentation: Options for training deep learning neural net-
work trainingOptions. url: https://www.mathworks.com/help/deeplearning/
ref/trainingoptions.html (visited on 08/26/2021).

[26] MATLAB Documentatoin: Cross-correlation xcorr. url: https://www.
mathworks.com/help/matlab/ref/xcorr.html (visited on 08/26/2021).

[27] Modelica Association. FMI-Specification-2.0.2; Functional Mock-up In-
terface for Model Exchange and Co-Simulation. 2020. url: https://

github.com/modelica/fmi-standard/releases/download/v2.0.2/

FMI-Specification-2.0.2.pdf.

[28] MQTT - The Standard for IoT Messaging. url: https://mqtt.org/
(visited on 06/06/2021).

[29] MQTT Version 5.0. Edited by Andrew Banks, Ed Briggs, Ken Borgendale,
and Rahul Gupta. 15 May 2018. OASIS Committee Specification 02. url:
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-

cs02.html.%20Latest%20version:%20http://docs.oasis-open.org/

mqtt/mqtt/v5.0/mqtt-v5.0.html.

[30] Olalekan Ogunmolu et al. “Nonlinear Systems Identification Using Deep
Dynamic Neural Networks”. en. In: arXiv:1610.01439 [cs] (Oct. 2016).
arXiv: 1610.01439. url: http://arxiv.org/abs/1610.01439 (visited
on 09/13/2020).

[31] Paryanto et al. “Reducing the energy consumption of industrial robots
in manufacturing systems”. In: The International Journal of Advanced
Manufacturing Technology 78.5 (May 2015), pp. 1315–1328. issn: 1433-
3015. doi: 10.1007/s00170-014-6737-z. url: https://doi.org/10.
1007/s00170-014-6737-z.

76

https://doi.org/10.1177/1687814018773852
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/deeplearning/ref/nnet.cnn.layer.lstmlayer.html
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/deeplearning/ref/trainingoptions.html
https://www.mathworks.com/help/matlab/ref/xcorr.html
https://www.mathworks.com/help/matlab/ref/xcorr.html
https://github.com/modelica/fmi-standard/releases/download/v2.0.2/FMI-Specification-2.0.2.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.2/FMI-Specification-2.0.2.pdf
https://github.com/modelica/fmi-standard/releases/download/v2.0.2/FMI-Specification-2.0.2.pdf
https://mqtt.org/
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html.%20Latest%20version:%20http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html.%20Latest%20version:%20http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://docs.oasis-open.org/mqtt/mqtt/v5.0/cs02/mqtt-v5.0-cs02.html.%20Latest%20version:%20http://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
http://arxiv.org/abs/1610.01439
https://doi.org/10.1007/s00170-014-6737-z
https://doi.org/10.1007/s00170-014-6737-z
https://doi.org/10.1007/s00170-014-6737-z

Bibliography

[32] Sudharsan Ravichandiran. Hands-on deep learning algorithms with Python:
master deep learning algorithms with extensive math by implementing
them using TensorFlow. English. OCLC: 1083564019. 2019. isbn: 978-
1-78934-415-8.

[33] Edwin Schicker. Datenbanken und SQL: eine praxisorientierte Einführung
mit Anwendungen in Oracle, SQL Server und MySQL. ger. 5., aktual-
isierte und erweiterte Auflage. Informatik & Praxis. OCLC: 964674055.
Wiesbaden: Springer Vieweg, 2017. isbn: 978-3-658-16128-6.

[34] Jan Swevers, Walter Verdonck, and Joris De Schutter. “Dynamic Model
Identification for Industrial Robots”. In: IEEE Control Systems Magazine
27.5 (Oct. 2007). Conference Name: IEEE Control Systems Magazine,
pp. 58–71. issn: 1941-000X. doi: 10.1109/MCS.2007.904659.

[35] Yury Tiumentsev. Neural network modeling and identification of dynam-
ical systems. 1st edition. Cambridge, MA: Elsevier, 2019. isbn: 978-0-12-
815254-6.

[36] Jessica Walther and Matthias Weigold. “A Systematic Review on Predict-
ing and Forecasting the Electrical Energy Consumption in the Manufac-
turing Industry”. en. In: Energies 14.4 (Jan. 2021). Number: 4 Publisher:
Multidisciplinary Digital Publishing Institute, p. 968. doi: 10.3390/

en14040968.

[37] Jun Wu, Jinsong Wang, and Zheng You. “An overview of dynamic param-
eter identification of robots”. en. In: Robotics and Computer-Integrated
Manufacturing 26.5 (Oct. 2010), pp. 414–419. issn: 0736-5845. doi: 10.
1016/j.rcim.2010.03.013. url: http://www.sciencedirect.com/
science/article/pii/S0736584510000232 (visited on 05/27/2020).

[38] Ke Yan et al. “Digital Twin-Based Energy Modeling of Industrial Robots”.
en. In: Methods and Applications for Modeling and Simulation of Complex
Systems. Ed. by Liang Li, Kyoko Hasegawa, and Satoshi Tanaka. Com-
munications in Computer and Information Science. Singapore: Springer,
2018, pp. 333–348. isbn: 9789811328534. doi: 10.1007/978-981-13-
2853-4_26.

[39] Shubin Yin, Wei Ji, and Lihui Wang. “A machine learning based energy
efficient trajectory planning approach for industrial robots”. en. In: Pro-
cedia CIRP. 52nd CIRP Conference on Manufacturing Systems (CMS),
Ljubljana, Slovenia, June 12-14, 2019 81 (Jan. 2019), pp. 429–434. issn:
2212-8271. doi: 10.1016/j.procir.2019.03.074.

77

https://doi.org/10.1109/MCS.2007.904659
https://doi.org/10.3390/en14040968
https://doi.org/10.3390/en14040968
https://doi.org/10.1016/j.rcim.2010.03.013
https://doi.org/10.1016/j.rcim.2010.03.013
http://www.sciencedirect.com/science/article/pii/S0736584510000232
http://www.sciencedirect.com/science/article/pii/S0736584510000232
https://doi.org/10.1007/978-981-13-2853-4_26
https://doi.org/10.1007/978-981-13-2853-4_26
https://doi.org/10.1016/j.procir.2019.03.074

Bibliography

[40] Mingyang Zhang and Jihong Yan. “A data-driven method for optimizing
the energy consumption of industrial robots”. en. In: Journal of Cleaner
Production 285 (Feb. 2021), p. 124862. issn: 0959-6526. doi: 10.1016/
j.jclepro.2020.124862.

78

https://doi.org/10.1016/j.jclepro.2020.124862
https://doi.org/10.1016/j.jclepro.2020.124862

A. Power Measurement

A. Power Measurement

A.1. List of Software Components

• TwinCAT 3 Engineering

Development environment for PLC programming.
Link to product homepage

• TwinCAT 3 Runtime

Real-time runtime system/environment

• Utilized TwinCAT libraries
PLC Lib: Tc2_Standard
PLC Lib: Tc2_System
PLC API: Tc3_IotBase
PLC Lib: Tc3_JsonXml
PLC Api: Tc3_PowerMonitoring

• HiveMQ

MQTT-Broker
Link to product homepage

79

https://www.beckhoff.com/en-en/products/automation/twincat/te1xxx-twincat-3-engineering/te1000.html
https://download.beckhoff.com/download/document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc2_Standard_EN.pdf
https://download.beckhoff.com/download/document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc2_System_EN.pdf
https://download.beckhoff.com/download/document/automation/twincat3/TF6760_TC3_IoT_https_rest_en.pdf
https://download.beckhoff.com/download/document/automation/twincat3/TwinCAT_3_PLC_Lib_Tc3_JsonXml_EN.pdf
https://download.beckhoff.com/download/document/automation/twincat3/TF3650_TC3_Power_Monitoring_EN.pdf
https://www.hivemq.com/hivemq/mqtt-broker/

A. Power Measurement

A.2. Electrical Schematic Measurement Box

P
a
g
e

P
a
g
e

P
o
w

e
r

M
e
a
su

re
m

e
n
t

B
o
x

E
d
.

&
A
A
A
1
/1

O
ri
g
in

a
l

E
P
L
A
N

st
p
h

D
a
te

D
a
te

R
e
p
la

ce
d
 b

y

+
A
1

E
n
cl

o
su

re
 1

1

M
o
d
if
ic

a
ti
o
n

0
7

6

A
p
p
r.

R
e
p
la

ce
m

e
n
t

o
f

8
9

3

+
A
1
/4

4

0
9
.0

6
.2

0
2
0

F
a
ch

h
o
ch

sc
h
u
le

 V
o
ra

rl
b
e
rg

G
m

b
H

3

2

N
a
m

e

5

2
/

3

S
IE

M
E
N

S

1
+

2
+

1
-

2
-

L
1

N
-T

2
IN

:
A
C
 1

0
0
-2

4
0
V

D
C
 1

1
0
-3

0
0
V

O
U

T
:

D
C
2
4
V
 /

2
,5

A

L
O

G
O

!P
O

W
E
R

2
4
 V

 /
 2

.5
 A

6
E
P
3
3
3
2
-6

S
B
0
0
-0

A
Y
0

A
D

JU
S
T

2
2
,2

..
.2

6
,4

V
D

E
F
A
U

LT
 V

A
LU

E
2
4
V

-A
I1

E
L3

7
8
3

P
o
w

e
r

m
o
n
it
o
ri
n
g
 o

v
e
rs

a
m

p
lin

g
te

rm
in

a
l,
 m

a
x
.
6
9
0
 V

 A
C
 3

~
,
m

a
x.

5
 A

,
g
a
lv

a
n
ic

a
lly

 i
so

la
te

d
 c

u
rr

e
n
t

in
p
u
ts

1 IL
1

5 IL
1
'

2 IL
2

6 IL
2
'

3 IL
3

7 IL
3
'

4 N
C

8 N

1
'

L
1

5
'

N
C

2
'

N
C

6
'

L
2

3
'

L
3

7
'

N
C

4
'

N

8
'

N

1
2

P
E

-X
1

1
2

P
E

-X
2

1
2

P
E

-X
3

P
E

L
N

-X
0

-B
C
1

E
K
1
1
0
0

E
th

e
rC

A
T
 C

o
u
p
le

r
fo

r
E
-b

u
s

te
rm

in
a
ls

 (
E
Lx

xx
x)

1 2
4
V

2 +

3 -

4 P
E

5 0
V

6 +

7 -

8 P
E

X
1

IN

X
2

O
U

T

1
P
E

1

P
E

1
P
E

1
P
E

1
P
E

1

1
-E

T
H

_
IN

3
x
1
0
5
m

m
²

-W
0

1
2

G
N

Y
E

3
x
1
0
5
m

m
²

-W
1

G
N

Y
E

2
1

3
x
1
0
5
m

m
²

-W
2

G
N

Y
E

2
1

3
x
1
0
5
m

m
²

-W
3

G
N

Y
E

2
1

-X
0
.1

P
E

N
L

80

A. Power Measurement

A.3. Class Diagram of PLC-Program

81

B. Network Structures

B. Network Structures

B.1. 7x1dim

B.2. 14x1dim

82

B. Network Structures

B.3. 21x1dim

B.4. 7x3dim 2conv1x3

83

B. Network Structures

B.5. 7x3dim 3conv1x3

B.6. 7x5dim 3conv1x5

84

B. Network Structures

B.7. 7x11dim 3conv1x11

B.8. 7x21dim 5conv1x21

85

C. Additional Information for Test on Real Use-Cae

C. Additional Information for

Test on Real Use-Cae

C.1. Workflow FMU Generation From

MATLAB Neural Network

C.1.1. Requirements

• On Windows, code generation for deep learning networks with the code-
gen function requires Microsoft Visual Studio or the MinGW compiler

• MATLAB Coder Interface for Deep Learning Libraries

• MATLAB Deep Learning Toolbox

• Trained Neural Network

C.1.2. Code Generation Using Matlab Coder

To generate executable C-Code out of a MATLAB recurrent network the first
step is to write an enty-point function that

• uses the coder.loadDeepLearningNetwork function to construct and set up
a network object

• calls predictAndUpdateState method on network with a given input, re-
turns the predicted values and saves the updated network in the persistent
variable

• resets the network state and sets the output to zero if reset condition is
true

86

C. Additional Information for Test on Real Use-Cae

Listing C.1 shows the entry-point function used in this thesis.

Listing C.1: Entry-point function

1 function out = lstm_predictAndUpdate(input ,reset)

2 % A persistent object NET is used to load the series network.

3 % At the first call to this function ,

4 % the persistent object is constructed and setup.

5 % When the function is called subsequent times ,

6 % the same object is reused to predict on inputs.

7

8 persistent NET; % instantiate presistent variable

9

10 % at the fist call , load the series network into the presistent

variable

11 if isempty(NET)

12 NET = coder.loadDeepLearningNetwork(’Trained_Network.mat’);

13 end

14

15 % at reset: reset inner states of network and return 0

16 % else predict on the current input data and

17 % update network states

18 if(reset)

19 NET = resetState(NET);

20 out = single (0);

21 else

22 [NET , out] = predictAndUpdateState(NET ,input);

23 end

24 end

Next, MATLAB coder is utilized to convert the entry-point function into a
static library and subsequently save the source files into a package (archive as
zip-file) for convenient relocation of the code to another development environ-
ment. Listing C.2 shows the script to accomplish this. Note that for correct
execution of this code, the Matlab source-file for the entry function must be
located in the same directory.

Listing C.2: Matlab script converting entry-point function to C-Code

1 % NET_TO_CODE_SCRIPT

2 % Generate static library from lstm_predictAndUpdate

3

4 %% Create configuration object of class ’coder.

EmbeddedCodeConfig ’.

5 cfg = coder.config(’lib’,’ecoder ’,true);

6 cfg.GenerateReport = true;

7 cfg.ReportPotentialDifferences = false;

8

9 % Create a configuration object of class ’coder.

DeepLearningConfigBase ’.

87

C. Additional Information for Test on Real Use-Cae

10 cfg.DeepLearningConfig = coder.DeepLearningConfig(’

TargetLibrary ’, ’none’);

11

12 %% Define argument types for entry -point ’lstm_predictAndUpdate

’.

13 ARGS = cell (1,1);

14 ARGS {1} = cell (2,1);

15 ARGS {1}{1} = coder.typeof (0 ,[21 1]);

16 ARGS {1}{2} = coder.typeof(false);

17

18 %% Invoke MATLAB Coder.

19 codegen -config cfg lstm_predictAndUpdate -args ARGS {1}

20

21 %% Load the buildInfo object

22 load(’codegen\lib\lstm_predictAndUpdate\buildInfo.mat’);

23

24 %% Create the zip file

25 packNGo(buildInfo , ’fileName ’, ’lstm_predictAndUpdate.zip’);

C.1.3. Embed C-Code within Simulik and Export FMU

To use the generated code in Simulink, the function block S-Function Builder
is used. To do this, first create a new Simulink model and insert an S-Function
Builder block from the library browser. Then place and extract the source files
in the same path as the Simulink model. Open the S-Function block and insert
an S-Function Name and set Language to C. On the Libraries tab, link the
source files by adding a new INC_PATH and ENTRY as shown in Figure C.1.

Figure C.1.: S-Function library include

In Ports And Parameters tab, declare inputs variables as shown in Figure C.2.

Figure C.2.: S-Function input variable declaration

88

C. Additional Information for Test on Real Use-Cae

Include the source h-file within the S-Function Builder and place the updated
function within wrapper as shown in Listing C.3

Listing C.3: Code for S-Function Builder

1 /* Includes_BEGIN */

2 #include <math.h>

3 #include "lstm_predictAndUpdate.h"

4 /* Includes_END */

5

6 void s_LSTM_Start_wrapper(void)

7 {

8 /* Start_BEGIN */

9 /* Start_END */

10 }

11

12 void s_LSTM_Outputs_wrapper(const real_T *u0,

13 const boolean_T *res ,

14 real_T *y0)

15 {

16 /* Output_BEGIN */

17 y0[0] = lstm_predictAndUpdate(u0 ,res [0]);

18 /* Output_END */

19 }

20

21 void s_LSTM_Terminate_wrapper(void)

22 {

23 /* Terminate_BEGIN */

24 /* Terminate_END */

25 }

In the last step, set build options according to Figure C.3, click Build and close
S-Function Builder after successful build.

Figure C.3.: S-Function Build

89

C. Additional Information for Test on Real Use-Cae

C.1.4. Prepare Simulink model for FMU export

First, setup a matlab script given with Listing C.4 in the same path as the
simulink model to generate model parameters.

Listing C.4: Matlab script for parameter setup

1 %% tidy up

2 clc

3 clear all

4 close all

5

6 %% generate parameters

7 Tsamp = 0.04; % simulation timestetp

8

9 angleScaling = 3; % angle scale factor

10 angleDotScaling = 1.6; % angular velocity scale factor

11 angleDDotScaling = 13; % angular acceleration scale factor

12 pOffset = 155; % power offset

13 pScale= 166; % power scale factor

14

15 WsTokWh = 1/(3.6 e6); % Ws to kWh factor

Next, setup a subsystem within the simulink model for feature extraction, as
shown in Figure C.4, and place it in front of the S- Function.

90

C. Additional Information for Test on Real Use-Cae

Figure C.4.: Simulink feature extraction

Transform the output of the S-function into unit Watts and handle the reset
condition with the blocks shown in Figure C.5. Optionally, add an integrator
to obtain the accumulated energy.

91

C. Additional Information for Test on Real Use-Cae

Figure C.5.: Simulink re-scale S-Function output

After adding in- and output ports the model should appear as shown in Fig-
ure C.6. Before the model can be exported to an FMU, some additional model

Figure C.6.: Simulink FMU template

settings must be made (Figure C.7). In Settings, set the solver to a fixed-step
type and specify the step size. In the Code Generation section, ensure that the
language is set to C and add the folder with the source files as Additional build
information.

92

C. Additional Information for Test on Real Use-Cae

Figure C.7.: Simulink model settings

To generate a co-simulation FMU from the Simulink model, click "Save model
as standalone FMU". In the dialog box, uncheck the "Create model after
generating standalone FMU" option, specify the path where the FMU should
be saved, and click Create.

C.1.5. Useful Links

The following Resources were helpful to set up this workflow.
Prequesites for Deep Learning with MATLAB Coder
Generate Generic C/C++ Code for Deep Learning Networks
Workflow for Deep Learning Code Generation with MATLAB Coder

93

https://www.mathworks.com/help/coder/ug/prerequisites-for-deep-learning-with-matlab-coder.html
https://www.mathworks.com/help/coder/ug/generate-generic-cc-code-for-deep-learning-networks.html
https://www.mathworks.com/help/coder/ug/workflow-for-deep-learning-code-generation-with-matlab-coder.html

C. Additional Information for Test on Real Use-Cae

C.2. Simulation Result Without Initial Power

Peak

94

Statement of Affirmation

I hereby declare that all parts of this thesis were exclusively prepared by me,
without using resources other than those stated above. The thoughts taken
directly or indirectly from external sources are appropriately annotated. This
thesis or parts of it were not previously submitted to any other academic insti-
tution and have not yet been published.

Dornbirn, 1.September 2021 Philipp Steurer

	List of Figures
	1 Introduction
	1.1 Motivation
	1.2 Thesis Objective
	1.3 Solution Approach
	1.4 Structure of the Thesis

	2 Boundary Conditions
	2.1 Robot System

	3 Related Work
	4 Data Acquisition
	4.1 Electrical Data Acquisition
	4.1.1 Overview of Used Technologies
	4.1.2 Technical Implementation

	4.2 Mechanical Data Acquisition

	5 Trajectory Generation and Execution
	5.1 Limited Space Random
	5.2 All Space Random
	5.3 Trajectory Execution

	6 Data Preparation and Analysis
	6.1 Data Merging
	6.2 Time Shift Investigation
	6.3 Time Shift Compensation

	7 Data-Driven Modeling
	7.1 Basics of used Technologies
	7.1.1 Feedforward Neural Network
	7.1.2 LSTM
	7.1.3 Convolutional Layer
	7.1.4 Training Algorithm

	7.2 Data Preprocessing and Feature Engineering
	7.2.1 Feature Engineering

	7.3 LSTM with Manual Feature Extraction
	7.3.1 Feature Extraction and Normalization
	7.3.2 Network Structure Setup

	7.4 LSTM with Convolutional-Layer for Feature Extraction
	7.4.1 Sequence Transformation
	7.4.2 Network Structures Setup

	7.5 Model Training

	8 Model Comparison
	8.1 Performance Metrics
	8.2 Investigation of Generalization Capabilities
	8.3 Quality of Manually Engineered Features
	8.4 Capabilities of Convolutional Layer for Feature Extraction
	8.5 Overall Comparison and Model Selection

	9 Test on Real Use-Case
	9.1 FMU Generation
	9.2 Integration and Test in twin Software
	9.3 Simulation Results

	10 Discussion of Results
	11 Conclusion
	Bibliography
	A Power Measurement
	A.1 List of Software Components
	A.2 Electrical Schematic Measurement Box
	A.3 Class Diagram of PLC-Program

	B Network Structures
	B.1 7x1dim
	B.2 14x1dim
	B.3 21x1dim
	B.4 7x3dim 2conv1x3
	B.5 7x3dim 3conv1x3
	B.6 7x5dim 3conv1x5
	B.7 7x11dim 3conv1x11
	B.8 7x21dim 5conv1x21

	C Additional Information for Test on Real Use-Cae
	C.1 Workflow FMU Generation From MATLAB Neural Network
	C.1.1 Requirements
	C.1.2 Code Generation Using Matlab Coder
	C.1.3 Embed C-Code within Simulik and Export FMU
	C.1.4 Prepare Simulink model for FMU export
	C.1.5 Useful Links

	C.2 Simulation Result Without Initial Power Peak

	Statement of Affirmation

