
Grading Erosion on Pelton Wheels from
Cavitation with Images

Master-Computer Science

Thesis submitted in partial fulfillment of the requirements for the Degree of
Master of Science in Computer Science, MSc.

Summer term, 2022

Submitted to
Sebastian Hegenbart

Submitted by
Thomas Kraxner

Abstract

Erosion due to cavitation is a common problem for any kind of water turbine.
Most of the currently used techniques to detect cavitation are using an Acoustic
Emission (AE) sensor and highspeed cameras during operation. For the pelton
wheel which is subject of this thesis it is impossible to take pictures during op-
eration, because of the splashing water and the mist. Therefore this thesis aims
to explore possibilities in detecting erosion on the buckets of the pelton wheel
on images taken during manual inspections. Since the provided images are snap-
shots taken with a mobile phone camera without a tripod, a lot of effort was
invested in the preprocessing of the images. For the main task, the classification
of the erosion, two methods were evaluated: Local Binary Patterns (LBP) + kN-
earest neighbor classification and the classification with a Convolutional Neural
Network (CNN). The given 2405 images, contained 4810 buckets on which the
erosion was graded from zero to four. This means the baseline for the classifi-
cation accuracy is 20%. LBP + kNearest neighbor classification scored 32.03%.
The chosen CNN model, a light version of the Xception architecture outperformed
the LBP + kNearest classification with 58,29%. The biggest issue found during
research is the variance of the erosion grading by the maintainance personnel.
Reasons for this are: no objective grading critera like the area of erosion in mm2,
classification by different employees, a shift in grading from overall bucket condi-
tion to erosion from cavitation and too many classes for grading. The mentioned
reasons were confirmed by the manual classification experiment were an Illw-
erkeVKW employee had to perform the grading on images of the dataset. The
contestants accuracy score was 36% for this task. The result of 58,29% classifi-
cation accuracy indicates that an automated grading of erosion by cavitation is
feasible.

Zusammenfassung

Erosion durch Kavitation tritt beim Betrieb jeder Bauart von Turbinen in Flüs-
sigkeiten auf. Die meisten Methoden zur Detektion von Kavitation benutzen
akustische Sensoren und Hochgeschwindigkeitskameras, um Kavitation während
des Betriebs festzustellen. Durch die Funktion des Pelton Rades ist es unmöglich
Bilder während des Betriebs zu erfassen. Gründe dafür sind spritzendes Wasser
und Nebel. Ziel dieser Thesis ist es daher Methoden zu finden welche den Ero-
sionsgrad auf den Bechern des Peltonrades auf Basis von Inspektionsfotos bestim-
men. Da sämtliche Inspektionsfotos Freihand mit einer Handy Kamera erzeugt
wurden, bestand ein großer Teil der Arbeit darin Methoden zur Vorverarbeitung
der Bilder zu finden. Für die eigentliche Erosionsklassifizierung wurden zwei
Methoden evaluiert: Local Binary Patterns (LBP) + kNearest neighbor Klassi-
fizierung sowie die Klassifizierung mittels Convolutional Neural Network (CNN).
Der Datensatz für die Klassifizierung bestand aus 2405 Bildern. Die daraus re-
sultierenden 4810 Becher wurden anhand des Erosionsgrades von null bis vier
bewertet. Aus den fünf Klassen ergibt sich eine Baseline von 20%. Die LBP +
kNearest neighbor Klassifizierung erreichte eine Klassifizierungsgenauigkeit von
32.03%. Das gewählte CNN Model, eine light Version der Xception Architek-
tur übertraf die LBP + kNearest neighbor Klassifizierung mit 58,29% Klassi-
fizierungsgenauigkeit bei weitem. Als größtes Problem wurde die Varianz in der
Bewertung der Erosion durch das Wartungspersonal identifiziert. Gründe dafür
sind: keine objektiven Bewertungskriterien wie etwa Erosionsfläche in mm2, die
Bewertung durch unterschiedliche Personen, der Wechsel von der Bewertung des
Allgemeinzustands des Bechers hin zur "reinen" Erosionklassifizierung, sowie zu
viele Klassen für die Bewertung. Die angesprochenen Punkte wurden durch die
Bewertung eines Wartungsmitarbeiters auf Basis von Inspektionsbildern unter-
mauert. Der IllwerkeVKW Mitarbeiter erreichte eine Klassifizierungsgenauigkeit
von 36%. Das Ergebnis einer Klassifizierungsgenauigkeit von 58,29% zeigt das
eine automatische Bewertung des Erosionsgrades möglich ist.

Sworn Declaration

I hereby declare that this thesis was in all parts exclusively prepared on my own,
without using other resources than those stated. The thoughts taken directly or
indirectly from external sources are properly marked as such. This thesis or parts
of it were not previously submitted to another academic institution and have also
not yet been published.

Dornbirn, June 16 2022

Thomas Kraxner

Contents

1 Introduction 1
1.1 What is Cavitation? . 1
1.2 Motivation and Goal . 3
1.3 State of the art . 3

2 Experiments 5
2.1 Data . 5

2.1.1 Initial data . 5
2.1.2 Extracted data . 6
2.1.3 Resulting data sets . 7

2.2 Preprocessing . 14
2.2.1 Initial Attempts . 14
2.2.2 Semantic Segmentation with a U-Net 17
2.2.3 ROI Extraction . 28
2.2.4 Adapted rubber sheet model 30

2.3 Erosion classification . 34
2.3.1 Local Binary Pattern - k-nearest neighbors classifier 34
2.3.2 CNN Xception - Light . 39
2.3.3 Manual Classification . 44

3 Results 45
3.1 LBP - k-nearest neighbors classifier 46
3.2 CNN Xception - Light . 48
3.3 Manual Classification . 50

4 Summary and Outlook 53
4.1 Conclusion . 53
4.2 Outlook . 55

i

Contents

Bibliography 57

List of acronyms 61

List of figures 64

List of tables 65

List of listenings 67

A Appendix 69
A.1 Anaconda Environment . 69
A.2 GPU-Server Hardware Spec . 70
A.3 Adapted U-net model (keras) . 71
A.4 Xception - light model (keras) . 73

ii

1 Introduction

IllwerkeVkw is using pumped-storage hydroelectricity to store generated electrical
energy and balance the power grid. To store the electrical energy as gravitational
potential energy, water is pumped to a reservoir on higher altitude. If there is de-
mand to use this energy, water gets released from the reservoir.1 This water then
runs through pelton wheels which are powering a generator. This process leads
to cavitation on the buckets of the pelton wheels manifesting in erosion. Initial
erosion caused through the cavitation effect will result in stronger cavitation and
therefore will accelerate the erosion of the metal (martensitic stainless steel).

1.1 What is Cavitation?

Cavitation is a phenomenon which occurs when liquids are under static pres-
sure, mostly caused through fast moving objects. There are two types of cavita-
tion: inertial cavitation and non-inertial cavitation. By referring to cavitation in
this thesis, inertial cavitation is meant. Inertial cavitation applies to propellars,
pumps and several other things including pelton wheels which are subject of this
thesis. The law of Bernoulli says that the static pressure of fluids getting lower
with increasing speed. If the static pressure reduces below the liquids vapour it
leads to vapor-filled cavities ("bubbles"). When these bubbles are dragged to ar-
eas with a higher pressure they implode. Each implosion generates a small shock
wave. The continuous implosions on the metal creates a cyclic stress which leads
to wear on the metal. An example of this wear on a bucket of a pelton wheel is
shown in Figure 1.2.2

1https://en.wikipedia.org/wiki/Pumped-storage_hydroelectricity
2see also https://en.wikipedia.org/w/index.php?title=Cavitation

1

https://en.wikipedia.org/wiki/Pumped-storage_hydroelectricity
https://en.wikipedia.org/w/index.php?title=Cavitation

1 Introduction

Figure 1.1: Open pelton wheel on inspection day

Figure 1.2: Erosion caused by cavitation on the backside of a bucket of a pelton
wheel

2

1.2 Motivation and Goal

1.2 Motivation and Goal

To deal with the problems caused by the cavitation the pelton wheels are in-
spected every three to six months. If small erosion is spotted the affected area
gets polished. If there is strong erosion, material has to be removed and the
geometry of the wheel must be corrected. To do so the wheel has to be removed
completley. If inspections are omitted a bucket or parts can break off, result-
ing in high damage and harming people in the power station. There are several
problems with this fixed inspection cycle. First the cavitation can increase un-
til inspection day. Each inspection means a downtime for approximately eight
hours. Because of the repetitive nature of these inspections they are error prone
and time consuming for the maintainance personnel. Another thing to mention is
that due to their size not all pelton turbines can be entered to take direct photos
of the buckets. IllwerkeVkw is currently in the evaluation phase of a mounted
camera installment inside the casing to take photos of the buckets during the
runout of the pelton wheel.
The Goal of this thesis is it to examine ways of automated grading of erosion

through cavitation with computer vision and machine learning methods, to out-
weight the previous mentioned problems. Creating a full industrial solution is
outside the scope of this thesis.

1.3 State of the art

Current methods in detecting and grading cavitation generally uses recordings of
high frequencies with a Acoustic Emission (AE) sensor of the testsubject during
operation, followed by signal processing methods. Most of the methods found dur-
ing research for this thesis also use high speed cameras to gather visual data. De-
spite the similarities, the methods differ in the test setup, mostly caused through
the different characteristics of the testsubject and how the data is processed.
Research is done with additional sensors to measure the water pressure, and

using the highspeed camera to detect cavitation clouds with shadow photographs
by subtracting the images during operation with images when the test subject
is idle (Li et al., 2021). There are methods where the highspeed camera is used
to detect changes in the vortex or bubbles in the liquid (Xu et al., 2021, Katz,

3

1 Introduction

2018a). The additional visual surveillance of the cavitation process is key to get
robust results in cavitation detection (Zhang, F. Lu, and L. Lu, 2019). There is
also research which shows that traditional signal processing of AE sensor data can
be achieved with a CNN (Katz, 2018b). The main thing the methods mentioned
above have in common, is that they all detect cavitation during operation.
The approach of this thesis is to detect erosion caused by cavitation, instead of

detecting the process of cavitation. Images are taken when the pelton wheel is idle
without any other sensors. The reason for this decision is how the pelton wheel
works (see Figure 1.3). Due to the fact that the pelton wheel is not completley
under water it is impossible to detect a vortex or bubbles. Getting a clear field of
view onto the buckets during operation is not possible, because of the splashing
water. This means detecting cavitation clouds via image substraction of the idle
pelton wheel is not applicable.

Figure 1.3: Pelton wheel component, source: https://www.airandhydraulic.
com/2020/09/components-of-pelton-turbine.html

4

https://www.airandhydraulic.com/2020/09/components-of-pelton-turbine.html
https://www.airandhydraulic.com/2020/09/components-of-pelton-turbine.html

2 Experiments

The description of the experiments is structured by various topics which are not
in chronological order. Section 2.1 is about the data provided by IllwerkeVKW
plus a description of the erosion classes used in the classification experiments. At
the end of Section 2.1 the datasets which were created through the preprocessing
(see Section 2.2) are explained. These datasets embodied the ground truth in the
erosion classification experiments. Since there were multiple objects on the raw
images, the classification would not have been possible on the raw images. The
preprocessing section outlines the way of finding methods to create usable images
from the initial provided ones. Section 2.3 describes the main topic of this thesis:
Classification of erosion.

2.1 Data

2.1.1 Initial data

The data for the following experiments was extracted from inspection protocols
of the last five years from six specific pelton wheels. Each wheel has 21 shovels
with two buckets. An inspection protocol consists of a report (pdf) containing
erosion grades for every bucket, and a jpeg image of each shovel. If erosion
was spotted during the inspection the maintenance personnel marked each area
with permanent marker before taking the photo. These markings could lead to
problems in the later training of the erosion classification. Nearly all images were
taken with an iPhone 8 (see Table 2.1). All images were taken manually without
a tripod or anything comparable, so they all differ in angle, lighting and position.
The inspection protocols stated that five grades should be used to classify the
level of erosion (see Table 2.2).

5

2 Experiments

Spatial Dimension 4032×3024 px
Flash model off
Focal length 4mm
35mm focal length 28

Table 2.1: Specification of the iPhone8 images

Grade Description
0 no erosion
0.5 change in color
1 minor erosion
2 erosion
3 strong erosion

Table 2.2: Defined grading of cavitation erosion

2.1.2 Extracted data

For each inspection a digital inspection protocol (see also Section 2.1.1) was
created by the IllwerkeVKW maintenance personnel. To create a dataset which
can be used to implement an automatic erosion classification, all images were
extracted from the inspection protocols. During the extraction a csv file was
manually created to store the image filename and the corresponding erosion grades
for each bucket. During the five years of inspection several new grades were
introduced by the maintenance personnel (like 1.5, 3++, 2–). This led to the
decision of rounding these ratings to definite grades (see Table 2.3). To get a

Grade Description
0 no erosion
1 minor erosion (containing 0.5 and 1 of the original inspection protocols)
2 erosion (containing 1.5 and 2)
3 strong erosion (containing 2.5 and 3)
4 extreme erosion (containing 3.5, 4, 3++ and 3+++)

Table 2.3: Mapping of inspection protocol grades and used grades

grasp of the different classes in the dataset, some examples with labels are shown
in Figure 2.5.
The final numbers of this extraction process were 2405 images in total, which

means 4810 labeled buckets for training. These images are containing the buckets

6

2.1 Data

of interest and a lot of other things in the background which are not of interest for
the erosion classification. In order to remove this background, semantic segmen-
tation was used to separate the main shovel from the initial images (see Figure
2.1). After this first preprocessing step there were 2270 images left (see Limita-
tions in Section 2.2.2). The final numbers are indicating a slight class imbalance
in the provided data (see Table 2.4).

Figure 2.1: Segmented images where the background pixels are set to black, see
Section 2.2.2

Grade shovels left bucket right bucket Percentage of total
0 1016 599 417 22.32%
1 939 495 444 20.63%
2 647 292 355 14.21%
3 1136 570 566 24.96%
4 814 320 494 17.08%

Table 2.4: Numbers on initial dataset

2.1.3 Resulting data sets

The resulting datasets for erosion classification are described in this section.

Test dataset

To avoid any bias through markings or other attributes on the buckets in the final
scoring of the methods, a test dataset was created. Two buckets were randomly
selected from each of the six pelton wheels contained in the dataset. These
selected buckets were then removed from the training data in order to create a
test-dataset for the final evaluation of the used methods. To ensure that they will
not be used in any training this was done right after the initial extraction. This

7

2 Experiments

extraction led to a test dataset of 434 buckets in total for the final evaluation. In
order to use them in the different classification methods the needed preprocessing
steps were applied to use it as final evaluation dataset.

ROI segmented

This dataset is the result of the process described in Section 2.2.3, applied to all
images of the initial dataset. The total numbers of this extraction are shown in
Figure 2.3. Some sample Region of Interest (ROI) images are provided in Figure
2.2, already scaled to 360×360 px for later use with a CNN.

8

2.1 Data

Figure 2.2: Samples ROI extraction on segmented image, with classes

9

2 Experiments

To increase the number of samples for training, data augmentation was applied
to the dataset. The same augmentations (rotate, flip, zoom in) as described in
the U-Net Implementation (See Section 2.2.2) were used. Figure 2.4 shows the
numbers of samples per class after applying augmentation. Five augmentations
were created for each image, resulting in an sixfold increase of the images. The
distribution stays the same.

Figure 2.3: Numbers of samples per class in dataset

Figure 2.4: Numbers of samples per class in augmented dataset

10

2.1 Data

ROI without segmentation

This dataset was created with the enhanced version of ROI extraction where the
bounding boxes are cropped on the real images instead of the segmented ones.
The segmented images are just guiding the extraction described in Section 2.2.3.
The numbers are the same as in Section 2.1.3. Samples are shown in Figure 2.5.

Figure 2.5: Samples ROI extraction on real image, with classes

11

2 Experiments

Unwrappings

In order to get an even more precise ROI this dataset was created with the
adapted Rubber sheet model (RSM) (see Section 2.2.4). The unwrapping was
done with a initial offset of 20 pixels for each axis to avoid bucket background
pixels in the result caused by bad ellipse fitting. Thickness (or axis increasement,
y-axis in rectangular polarform) was set to 100 pixels and four samples per 1◦.
An example of the resulting images can be seen in Figure 2.6. Because of the
limitations of the method (see Limitations in Section 2.2.4), there was some data
loss in this processing step. The final numbers are presented in Figure 2.7.

Figure 2.6: Examples of source (left) and result of unwrapping (right), for class
zero and class four

12

2.1 Data

Figure 2.7: Numbers of samples per class in unwrappings dataset

As before augmentations were created. For this dataset just the flip augmenta-
tions were used. The zoomin and the rotate augmentation (containing a zoomin
operation) were skipped to not create augmentation with lesser textural informa-
tion. Figure 2.8 shows the numbers for each class after creating the three flipping
augmentations per image.

Figure 2.8: Numbers of samples per class in augmented unwrappings dataset

13

2 Experiments

2.2 Preprocessing
There are two tasks to fullfil during preprocessing:

• separate left and right bucket, since every bucket is graded individually

• get a precise ROI (see green and red area on Figure 2.9)

Figure 2.9: Area where erosion through cavitation manifests

Due to the reflections of the metal and other objects this process was not
straight forward. The used methods are explained in the following sections.

2.2.1 Initial Attempts

OpenCV

The initial attempts to detect the outer edges of the shovel on the images with
opencv1 were not successful. Several attempts with roughly the same procedure
were performed. This edge detection procedures consisted of:

1https://docs.opencv.org/4.x/index.html

14

https://docs.opencv.org/4.x/index.html

2.2 Preprocessing

1. use some built-in blur function (cv2.GaussianBlur, cv2.medianBlur, ...)

2. convert to grayscale (cv2.cvtColor(image, cv2.COLOR_BGR2GRAY))

3. apply a threshold (cv2.THRESH_BINARY, cv2.THRESH_OTSU)

4. try to find contours (cv2.findContours)

All attempts failed (see Figure 2.10), because the method always detects countless
contours on the threshold versions of the blurred images.

Figure 2.10: Initial tries with opencv

Generalized Hough Transformation

The Generalized Hough Transformation (GHT) is an improved version of the
Hough Transformation (see Duda and Hart, 1972). The main concept of the
Hough Transformation is to find the parameters of a shape. For instance in the

15

2 Experiments

case of a line the shape is defined by y = ax + b, so the Hough Transformation
finds the parameters a and b, via intersections in the parameter space also called
Hough Space, where a and b are the axis.
The Hough Transformation is limited to simple shapes with few parameters

like lines, circles and parabolas. The method tries to find mappings between the
image space and the Hough space. Every pixel vote for its corresponding reference
points in respect to the chosen shape (f.e.: pixels which will be on the same line).
The pixels with the most votes then are representing the shape found with the
Hough Transformation. The detection of complex shapes can be achieved by an
composition of the mappings from simpler shapes (D. H. Ballard, 1981). This
method is called Generalized Hough Transformation.
Currently there is no built-in feature for GHT in opencv (neither in python nor

in c++). However there is an implementation in c++ available on github2. At
the day of writing the repository featured four commits where the last one was
authored eight years ago. Since the current state is not fully compatible with
the current opencv version 4.5.1+dfsg-5, the repository was forked and adaptions
were made3. With this method it was possible to find the bucket shape on
another image with different scaling and different positioning, by rerunning GHT
with different scaling and rotation see Figure 2.11. It took 779 seconds for 360
rotations with 1◦ change and scaling from 0.5 to 2.0. To identify the shape
of a shovel in arbitrary images the tilt has to be compensated by perspective
transformations4. This approach could theoretically work. However, due to all
the possible alterations in rotation, scaling and perspective transformations this
solution would be hardly better than a brute-force approach to fit the contour of
the template. For this reason it was not pursued any further.

2https://github.com/jguillon/generalized-hough-tranform
3https://github.com/Kraego/generalized-hough-tranform
4https://stackoverflow.com/a/33502869/11473934

16

https://github.com/jguillon/generalized-hough-tranform
https://github.com/Kraego/generalized-hough-tranform
https://stackoverflow.com/a/33502869/11473934

2.2 Preprocessing

Figure 2.11: GHT on sample image with nearly same tilt

2.2.2 Semantic Segmentation with a U-Net

To counteract the problem of detecting edges or shapes with all the objects outside
the ROI, the decision was made to use semantic segmentation. This method
assigns a class to each pixel in the image (see also Ghosh et al., 2019 p. 1 and
2). In this case two classes are needed. Class one is foreground - in other words
the main shovel. Class two is background. Most pictures also showing the next
shovel, which is not of interest.
One implementation of solving semantic segmentation is the U-Net architec-

ture. U-Net is a fully convolutional network, which has the shape an "U" (see
Figure 2.12).

The main idea is to supplement a usual contracting network by suc-
cessive layers, where pooling operations are replaced by upsampling
operators. Hence these layers increase the resolution of the output.
A successive convolutional layer can then learn to assemble a precise
output based on this information. (Ronneberger, Fischer, and Brox,
2015)

In the contracting path each layer reduces the spatial dimension and increases

17

2 Experiments

Figure 2.12: U-net architecture from original paper (Ronneberger, Fischer, and
Brox, 2015)

the number of feature channels via a convolution plus a Rectified linear unit
(ReLU) and a max pooling operation. The expansion path performs the upsam-
pling with upconvolutions and concatenations of the corresponding layer from
the contracting path.5

Implementation

In search for a suitable U-Net model, the implementation of Peter Höngigschmid
was found on kaggle6. The implementation follows the model proposed in the
original U-Net paper. It uses keras7, a easy to use framework for deep learning
in python. In addition to improve the performance, dropout layers were added
after the pooling layers in the contracting path and after the concatenation in
the expansion path. Dropout is a regularization method. The dropout layers

5https://en.wikipedia.org/wiki/U-Net
6https://www.kaggle.com/code/phoenigs/u-net-dropout-augmentation-stratification/

notebook
7https://keras.io/

18

https://en.wikipedia.org/wiki/U-Net
https://www.kaggle.com/code/phoenigs/u-net-dropout-augmentation-stratification/notebook
https://www.kaggle.com/code/phoenigs/u-net-dropout-augmentation-stratification/notebook
https://keras.io/

2.2 Preprocessing

reduce co-adaptation of the neurons during training, which leads to overfitting, by
randomly setting the activations of a selected subset of neurons to zero (Srivastava
et al., 2014).
The following adaptions were made to the model from kaggle:

• Three color channels (RGB color model (rgb)) instead of one (grayscale),
initial experiments have shown slightly better results when training with
rgb images.

• Input layer size (image size) was increased from 128×128px to 512×512px,
since the used images have a higher resolution (4032×3024px).

• Deeper Network: six contracting/expansion blocks vs. four in the kaggle
implementation. This also means more parameters which results in a longer
training. Since there is enough data to train the model, there is no problem
with overfitting. The training and prediction with the trained model is also
not time critical.

The final model with these adaptions is shown in appendix A.3.
The groundtruth for the training consists of binary masks of the shovel and the

input images. To create these masks VoTT 8 was used. The result of the manual
labeling with VoTT was a json file containing lists of points of the labeled areas
similar to the datastructure of an opencv contour. In the need of binary masks,
a python script was introduced which creates these from the json file (see Figure
2.13). In total 512 images were label this way, 480 images were used for training
and 32 images were hold back as test dataset (see Section 2.1.3) for final scoring
of the trained model.
To evaluate if the U-Net is capable of performing a semantic segmentation on

the given dataset, 50 images were labeled. With the image-flip augmentation
of the used implementation, the dataset for training the model consists of 100
images. Figure 2.14 shows that the provided data allows the model to learn how
to perform the desired segmentation. Due to this promising results, 480 images
were labeled, to train the model.
After the evaluation the model was trained with 480 images, and the augmen-

tation from the kaggle template, which was flipping the images vertical along the
8https://github.com/Microsoft/VoTT

19

https://github.com/Microsoft/VoTT

2 Experiments

Figure 2.13: Left labeled shovel in VoTT, right created binary mask

Figure 2.14: U-Net evaluation, 200 images

y-axis. With this augmentation the size of the dataset was 960 images. The
plots in Figure 2.16 are showing a consistent learning with a reducing loss and no
overfitting. The training could have been stopped after epoch 40 because there
was nearly no improvements in loss or accuracy. But since the training is running
on a remote GPU Server (see A.2) the setting of the max epochs for the training
of 100 epochs was kept.

To achieve even better results more training data was needed. The first op-
tion was to label more images for training which is very time consuming. The
labeling of the initial 512 images took several hours. Another option was to
use heavy data augmentation. Because of the timeconsuming process of labeling,
data augmentation was chosen. Data augmentation is often used during the train-
ing of CNN’s to artificially create new samples from the given ones to increase

20

2.2 Preprocessing

the size of the dataset.9,10 There are several different augmentation techniques
to use on image data. Image augmentation can be separated into four distinct
groups which are geometric transformations (rotate, scale, ...), noise injection,
color space transformations like brightness adaption or inversion of colors and
mixing images (Shorten and Khoshgoftaar, 2019). Since the biggest differences
in the dataset are the positions of the shovels, only geometric transformations
were used. Due to the higher amount of training data obtained by augmentation
the training should result in a better model. keras has some built-in geometric
transformation augmentations11, which can be added as layer to the model to do
the augmentation in place during training. At the moment of writing this thesis,
the used tensorflow version on the GPU-Server (see appendix A.2) did not sup-
port these layers. Another reason why the augmentation is implemented explicit
outside of the training, was the knowledge that the training would be repeated
several times when tingeling with the hyperparameters (dropout rate, network
depth, ...) of the model. Moreover, each training would have done the augmen-
tations randomly, which leads to longer trainings, plus it would have introduced
some randomness. This randomness would have introduced some uncertainty in
comparing the results after tuning the hyperparameters. In this experiment the
hyperparameters are optimized manually, since this is just a feasibility study. But
there are approaches to optimize the hyperparameters automatically, for instance
with genetic algorithms (see Aszemi and Dominic, 2019). The augmentations for
the dataset were implemented in python with opencv. The implemented augmen-
tations are:

• Flipping the image horizontally (x-axis), with cv2.flip(img, 0).

• Flipping the image vertically (y-axis), with cv2.flip(img, 1).

• Flipping the image horizontally and vertically, with cv2.flip(img, -1).

• Random zoom in (remove a frame with random thickness (15 to 60 pixel),
and rescale back to original size). The frame cutaway was implemented with
python array slicing12 on the numpy array representation of the image. For

9Ronneberger, Fischer, and Brox, 2015
10Redmon et al., 2016
11https://keras.io/api/layers/preprocessing_layers/image_augmentation/
12https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html

21

https://keras.io/api/layers/preprocessing_layers/image_augmentation/
https://python-reference.readthedocs.io/en/latest/docs/brackets/slicing.html

2 Experiments

zoom in cv2.resize(crop, (w, h), interpolation=cv.INTER_LINEAR)
was used.

• Random rotation (from minus six degrees to plus six degrees), and zoom in
to avoid the black border resulting from the rotation. For this the function
cv2.warpAffine() was used.

The augmentations were performed on the images and their corresponding labels
which are binary masks. Figure 2.15 shows examples for each augmentation with
the augmented binary mask in green on the alpha channel. With augmentations
the new dataset size is 1920 images. The results of the training (loss, accuracy)
nearly show the same values as the initial run with lesser augmentations (see
Figure 2.17).

22

2.2 Preprocessing

Figure 2.15: Demo of the augmentations

Training and Results

The training was performed with a batch size of 32 images. 75% of the dataset
were used for training and 25% were used for loss and accuracy estimation at
the end of each epoch. As loss function binary cross entropy was used with the
adam optimizer (see Kingma and Ba, 2017). To avoid overfitting EarlyStopping
stops the training after ten epochs without improvement in the loss. The learning

23

2 Experiments

rate is reduced with a factor of 0.1 after five epochs without improvement. The
complete training setup is shown in Listing 2.1.

1 model.compile(loss="binary_crossentropy",
2 optimizer="adam",
3 metrics=["accuracy"])
4 early_stopping = EarlyStopping(patience=10, verbose=1)

5 model_checkpoint = ModelCheckpoint("./keras.model",
6 save_best_only=True,

7 verbose=1)

8 reduce_lr = ReduceLROnPlateau(factor=0.1,

9 patience=5,

10 min_lr=0.00001,

11 verbose=1)

12

13 history = model.fit(x_train, y_train,

14 validation_data=[x_valid, y_valid],

15 epochs=200,

16 batch_size=32,

17 callbacks=[early_stopping,

18 model_checkpoint,

19 reduce_lr])

Listing 2.1: Training configuration for U-Net in keras

To get a final scoring, Intersection over Union (IoU) or Jaccard index13 is
used as metric on the testdataset consisting of 32 images. The 32 images were
extracted with random.sample() from the initial 512 images, to have 480 images
for training (15 batches with 32 images).

IOU = Area of Intersection
Area of Union (2.1)

In the current scenario there are two classes: shovel and background. The IoU
is calculated for each class, then the mean IoU for all classes is returned. The
Area of Intersection counts the pixels were the groundtruth class and predicted
13https://en.wikipedia.org/wiki/Jaccard_index

24

https://en.wikipedia.org/wiki/Jaccard_index

2.2 Preprocessing

class are equal. Area of Union is the union of all pixels of the class for which
the IoU is calculated. An IoU was calculated for each image, after that the mean
and median for all images was determined. The used python implementation of
IoU can be found on github14. Since the predictions of the model are not in One
Hot Encoding the soft version of the metric is used (see listing 2.2). The default
(standard) metric type of the function expects a one hot encoded prediction.

1 iou = metrics_np(

2 validation_mask, # binary 0.0 or 1.0
3 prediction, # 0.0 to 1.0
4 ’iou’,
5 metric_type=’soft’,
6 drop_last = True,

7 mean_per_class=False,

8 verbose=False)

Listing 2.2: Calculation of IoU

The first training was done with a dataset consisting of 480 images which are
augmented by flipping vertically wich gives 960 training images. The training
history (see Figure 2.16) shows that there is no overfitting, training loss and
accuracy curve follow each other. The lowest validation loss was 0.025 and the
highest accuracy 0.965. IoU results are listed in Table 2.5.

Figure 2.16: U-Net training, 960 images

A second training performed on 1920 images showed nearly the same results.
14https://gist.github.com/ilmonteux/8340df952722f3a1030a7d937e701b5a

25

https://gist.github.com/ilmonteux/8340df952722f3a1030a7d937e701b5a

2 Experiments

The lowest achieved value for loss during training was 0.020 and the highest ac-
curacy 0.962. These numbers not showing any significant improvement compared
to the previous training (see Figure 2.17). Table 2.5 shows, that the IoU slightly
improved by 0.006. Some samples of the segmentation by the final model are
presented in Figure 2.1. A double check on the random selected test dataset
confirmed that there were no images with bad segmentation as shown in Figure
2.18 and Figure 2.19 used for the final scoring. This explains the high IoU score.

Figure 2.17: U-Net final training, 1920 images

Training Mean IoU Median IoU
U-Net 0.9815 0.9834
U-Net heavy augmentation 0.9874 0.9895

Table 2.5: IoU result of U-Net on 32 images

26

2.2 Preprocessing

Limitations

After removing the background on all 2405 images with the prediction of the
model (and a threshold of 0.5), the results were checked manually. On most of the
images the results of the background segmention were nearly perfect (see Figure
2.1). On some images the segmentation was less precise, but still acceptable (see
Figure 2.18).

Figure 2.18: Small inaccuracy on background segmentation

The background segmentation completely fails when there is another sharp
shovel below the shovel of interest (see Figure 2.19). From the training data the
model has learned that there is allways one complete shovel on the images to seg-
ment. This scenario applies to 135 images out of the 2405 images. These shovels
were removed from the dataset, and are not part of the further classification task.

Figure 2.19: Complete segmentation fail when multiple shovels are on the image

27

2 Experiments

2.2.3 ROI Extraction

Since the main shovel is segmented from the background, it is possible to success-
fully apply the initial approach of contour detection (described in Section 2.2.1).
The final solution which creates separate images for each bucket and crop the
ROI was implemented in python and uses numpy15 and opencv functions. The

Figure 2.20: Process of bucket separation

following sections will describe the process in detail, guided by Figure 2.20.

Step one: detecting the bucket contour

The first step was the detection of the main contour on the bucket (see neon
green line on Figure 2.20). For this the image undergoes a preprocessing which
consists of changing the image to grayscale16, applying a binary threshold17 and
15https://numpy.org/
16cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
17cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY)

28

https://numpy.org/

2.2 Preprocessing

blurring the image with a Gaussian blur (with a kernel size of three pixels)18.
After preprocessing the countours on the image were extracted with opencv19.
From the contours found, the one with the biggest bounding box is selected as
bucket contour.

Step two: crop the bounding box of the contour

In this step the bounding box (see blue rectangle on Figure 2.20) of the contour20

was cropped from the original image with python array slicing on the numpy
representation of the of the image. A margin of 200 pixels is added to the top of
the bounding box.

Step three: detecting the tip of the bucket

In order to detect the tip of the bucket, the countour points were searched for
the pixel with the highest y coordinate in the center area (the center 40% in x
direction). x refers to the pixel coordinate in width and y in height direction (see
green point in the center on Figure 2.20).

Step four: crop separate bounding boxes for the left and right bucket

With the centerpoint two separate bounding boxes were extracted within the
cropped bounding box from step two (see red rectangle Figure 2.20). These two
cropped bounding boxes are saved under filename_[L or R].jpg.

The application of this procedure results in the ROI segmented dataset described
in Section 2.1.3. Because there were artifacts from the segmentation found dur-
ing implementing the unwrappings, this process was enhanced. All operations
gaining the needed parameters were done on the segmented image and the final
cropping, explained in step four above, was done on the original unsegmented
image. With this process the artifact free dataset: ROI without segmentation
was created.

18cv2.GaussianBlur(threshold, (3, 3), 0)
19cv2.findContours()
20cv2.boundingRect(contour)

29

2 Experiments

2.2.4 Adapted rubber sheet model

To create the unwrappings shown in Figure 2.6, the rubber sheet model proposed
by Daugman (Daugman, 2004) was altered to work on an ellipse instead of a
circle.

Figure 2.21: Iris Image Processing Process,
from https://github.com/YifengChen94/IrisReco

Rubber sheet model

The RSM was created to normalize/encode the segmented iris region (see Figure
2.21) on a image into a normalized polar form (see Figure 2.22). This normalized
polar form is rectangular and therefore well suited for the usage with CNNs. The
axis of this normalized polar representation are θ, which is the rotation angle
around the circle, and the radius r on the circle inside the iris region. Dougman’s
RSM tries the find the source pixels coordinates (x, y) for each coordinate (r,
θ) in the normalized polar form, with the mapping function (see Equation 2.2).
xp, yp refer to the point on the pupil (inner circle), xI , yI specify the corresponding
point on the outer iris circle in θ direction.

I(x(r, θ), y(r, θ))→ I(r, θ)

x(r, θ) = (1− r)xp(θ) + rxI(θ)
y(r, θ) = (1− r)yp(θ) + ryI(θ)

(2.2)

Adaptations to ellipse

On the extracted ROI it is possible to detect the outer contour of the bucket and
fit an ellipse21 with opencv on the contour (see Section 2.23). The parameters
21cv2.fitEllipse(contour)

30

https://github.com/YifengChen94/IrisReco

2.2 Preprocessing

Figure 2.22: Ramkumar, R.P. and Arumugam, S. (2013). Improved Iris Segmen-
tation Algorithm without normalization Phase. International Jour-
nal of Engineering and Technology. 5. 5107-5113.

(center, width, height and angle) gained from the fit function are used to perform
the adapted RSM described in the following.

Figure 2.23: Ellipse fitting on ROI

The RSM method increases the radius and the angle of θ to calculate the
source pixel (x, y) for this coordinate. An ellipse has no radius to increase.
To emulate the radius increasement, the two axes of the ellipse are incremented
simultaneously with the same value (one pixel) instead. Since there is no explicit
outer boundary as in the iris, the axes were increased with a fixed margin. This
method lacks the normalization proposed by Dougman and will lead to some
variance through different scaling of the input images. After increasement the

31

2 Experiments

radius is calculated for each rotation angle θ via the Polar form relative to center22

formula
r(θ) = ab√

(a sin θ)2 + (b cos θ)2
. (2.3)

As next step the x and y offset is calculated from r and θ with the following
formulas.

xr(r, θ) = cos(θ) · r
yr(r, θ) = sin(θ) · r

(2.4)

To take in account the rotation of the ellipse, the values x and y are adapted with
the rotation matrix shown below (be aware that this θ is not the rotation angle
of the normalized polar form representation used above).

x′r
y′r

 =
cos θ − sin θ

sin θ cos θ

 xr

yr

 (2.5)

With x′r and y′r and the center coordinates (xc, yc) of the ellipse, the final pixel
coordinate on the given image is calculated.

x(xc, x
′
r) = xc + x′r

y(yc, y
′
r) = yc + y′r

(2.6)

The final step is to get the color of the pixel at position (x, y) in the input
image. In the rectangular result image the corresponding coordinate defined by
(r, θ) is then set to this color.

The implementation was performed in python and was inspired by a github
repo23 containing the implementation of the original RSM. The final application
of this method finds the bucket contour similar to step one of the ROI extraction
(see Section 2.2.3) on the image. In order to get the needed parameters of the
ellipse an ellipse was fitted on the contour24. This was done on the ROI segmented
dataset. The actual unwrapping is done on the ROI without segmentation dataset
to avoid segmentation artifacts in the final result. The source code of the adapted

22https://en.wikipedia.org/wiki/Ellipse - Polar form relative to center
23https://github.com/YifengChen94/IrisReco
24cv2.fitEllipse(contour)

32

https://en.wikipedia.org/wiki/Ellipse
https://github.com/YifengChen94/IrisReco

2.2 Preprocessing

RSM can be found on github25. The method was enhanced to find the biggest
continuous part of the matched ellipse within the image space. Unwrappings
where the θ range is less than 50◦ are dropped to keep some uniformity in the
spatial dimension of the samples.

Limitations

This approach works for most of the images. There was some data loss in the
removal of images with less than a 50◦ - θ range. On some input images opencv
could not fit any ellipse on the provided contour which also led to some data loss.
In numbers, 4069 unwrappings were created, with a loss of 634 images due to the
points mentioned before.

25https://github.com/Kraego/Ellipse_RSM

33

https://github.com/Kraego/Ellipse_RSM

2 Experiments

2.3 Erosion classification

For erosion classification three different methods are evaluated. Texture classi-
fication with LBP and a CNN. To benchmark the first two methods, images
were manually classified by an amateur and an expert. Erosion classification is
the main task of this thesis. All preprocessing experiments aim to support this
classification through the best ROI extraction possible. The following sections
will describe the erosion classification methods in detail.

2.3.1 Local Binary Pattern - k-nearest neighbors classifier

This approach consists of two parts, the feature extraction by LBP (see Ojala,
Pietikainen, and Harwood, 1994) and the classification via k-nearest neighbors
algorithm26. LBP was chosen because it is a simple but powerful feature extrac-
tion method. This experiment aims for simplicity and will act as baseline for
comparison with the CNN Xception classification (see Chollet, 2017).

Local Binary Pattern in detail

This method was initially introduced by Wang and D.-C. He, 1990, and later
refined by Ojala, Pietikainen, and Harwood, 1994 with a two-level version called
pure local binary patterns. The initial version had 38 = 6561 possible values
for describing the relation between the center pixel and the pixels in a 3 x 3
neighborhood. In the refined method the possible values are reduced to 28 =
256. LBP is therefore a mapping from Rm×n → R256, with Rm×n representing
the center pixel and it’s neighbors, and R256 representing the extracted feature
vector for the center pixel. As first step the values of the surrounding pixels are
thresholded with the center pixel value (see Figure 2.24 (a),(b)). Each neighbor
pixel has a binary positional value (clockwise or counterclockwise) 2n, n ∈ [0, 7]
(1,2,4,...). In the second step the result of the threshold from step one is multiplied
with the binary positional value of the pixel (see Figure 2.24 (c),(d)). These two
steps are then repeated for each pixel in the image. For the edge pixels of the
image, different strategies can be applied for instance zero padding. There are

26https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

34

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

2.3 Erosion classification

several extensions to LBP (tLBP27, OCLBP28, ...), due to it’s simplicity this thesis
uses the base version from Ojala, Pietikainen, and Harwood, 1994, with a fixed
radius of one pixel and eight neighbors (see Figure 2.24). LBP computes the local

Figure 2.24: LBP proccess29

features for every pixel in the image isolated. There are five possible patterns to
detect (see Figure 2.25). These occurring patterns are then counted, and stored
in a histogram, representing the probability distribution of these patterns (see
Figure 2.26). Black dots represent a higher intensity (value) than the center pixel,

Figure 2.25: Possible LBP patterns, source: https://scikit-image.org/docs/
dev/auto_examples/features_detection/plot_local_binary_
pattern.html

white dots stand for lower intensity. Flat regions can be considered featureless.
Continuous groups of black and white dots are called uniform patterns, including
the edge and corner pattern. Patterns with alternating black and white dots are
called non-uniform. The histogram is the feature vector for the whole image.
27Trefný and Matas, n.d.
28Barkan et al., 2013.

35

https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html

2 Experiments

Figure 2.26: Histogram created with LBP on a bucket image

To calculate the LBP of the images the implementation from scikit-image30

was used. For this purpose the images are converted to grayscale before calling
local_binary_pattern. As initially mentioned the parameters of the original
paper (Wang and D.-C. He, 1990) were used, a radius of one and eight neighbors.
Scikit-image offers different methods to determine the patterns, with different
capabilities and limitations. The chosen method is uniform meaning the result
only includes patterns where all black dots are adjacent and all white dots are
adjacent (compare to Figure 2.25), this method is also rotation invariant. The
resulting LBP is then stored as histogram (see Listing 2.3).

30see: https://scikit-image.org/docs/dev/api/skimage.feature.html

36

https://scikit-image.org/docs/dev/api/skimage.feature.html

2.3 Erosion classification

1 from skimage.feature import local_binary_pattern

2

3 lbp = local_binary_pattern(image, 8, 1, ’uniform’)
4 n_bins = int(lbp.max() + 1)

5 hist, _ = np.histogram(lbp, density=True,

6 bins=n_bins, range=(0, n_bins))

Listing 2.3: Call of skimage.feature.local_binary_pattern

k-nearest neighbors classification in detail

As in the pure local binary patterns paper proposed, the k-nearest neighbors
algorithm is used for classification (see Ojala, Pietikainen, and Harwood, 1994). It
is a non-parametric supervised learning method based on instance learning. First
the distance of the input to all training samples is calculated (instance learning).
The input is then classified by it’s k nearest neighbors. On the example shown
in Figure 2.27, the voted class would be triangle for the inner circle (k = 3) and
square for the outer one (k = 5). To avoid tie situations in the class membership
voting k should be an odd number.

Figure 2.27: k-NN classification, source: https://en.wikipedia.org/wiki/
K-nearest_neighbors_algorithm

37

https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

2 Experiments

The original proposal of Ojala, Pietikainen, and Harwood, 1994 uses Kullback-
Leibler divergence31 to define the distance between the input to predict and the
training samples. For simplicity this experiment uses histogram intersection pro-
posed by Swain and Dana H. Ballard, 1991 to calculate this distances. The
implementation is shown in listing 2.4.

1 def histogram_intersection(h1, h2):

2 minima = np.minimum(h1, h2)

3 intersection = np.true_divide(np.sum(minima), np.sum(h2))

4 return intersection

Listing 2.4: Histogram Intersection

The chosen number of neighbors to vote for the class is three (k=3).

31https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

38

https://en.wikipedia.org/wiki/Kullback-Leibler_divergence

2.3 Erosion classification

2.3.2 CNN Xception - Light

The second experiment used a CNN to classify the images. In contrast to the
LBP-k-nearest neighbor experiment, the feature extraction was learned by the
convolutional layers of the model, during training, instead of the hand-crafted
feature extraction by LBP. Keras ships with some prominent deep learning mod-
els32 for instance VGG1633 and InceptionV334 for image classification. There are
also the weights from trainings with different datasets (f.e.: imagenet) available,
for instant usage, retraining or transfer learning of these models. The downside
of these models is that they are very deep which results in an enormous number
of trainable parameters (f.e.: Inception ResNet V2: 54,283,877 trainable param-
eters). However, a tutorial on the keras homepage35 features a simpler model
with way less trainable parameters than the built in models (2778013). Due to
the limited amount of available training data (about 4000 pictures) this model
is better suited and results in reduced time needed for training the model. An
initial comparison of the keras tutorial and Inception ResNet V2 on the ROI
without segmentation dataset (see ROI without segmentation in Section 2.1.3)
showed nearly the same outcome on unseen data after training (see Table 2.6).
Therefore the model proposed in keras image classification tutorial was used for
this experiment.

Model trainable parameters accuracy on testdataset
Inception Resnet V2 54,283,877 60.83%
keras tutorial 2,778,013 59.22%

Table 2.6: Inception Resnet V2 vs. keras image classification tutorial

The Xception network

The Keras image classification tutorial uses a stripped down version of the Xcep-
tion network proposed by Chollet, 2017.

We propose a convolutional neural network architecture based entirely
32https://keras.io/api/applications/
33Simonyan and Zisserman, 2015.
34Szegedy, Vanhoucke, et al., 2015.
35https://keras.io/examples/vision/image_classification_from_scratch/

39

https://keras.io/api/applications/
https://keras.io/examples/vision/image_classification_from_scratch/

2 Experiments

on depthwise separable convolution layers. In effect, we make the
following hypothesis: that the mapping of cross-channels correlations
and spatial correlations in the feature maps of convolutional neural
networks can be entirely decoupled. (Chollet, 2017)

The Xception architecture can be seen as evolution of the inception architecture
described by Szegedy, Vanhoucke, et al., 2015. To understand how the Xception
architecture works it is usesfull to take a closer look at his predecessor.
First CNN architectures used stacks of convolution layers followed by max-

pooling layers (see Krizhevsky, Sutskever, and Hinton, 2012), later approaches
consisted of stacks with multiple convolutions followed by a single pooling layer
(see Simonyan and Zisserman, 2015). After that Szegedy, Vanhoucke, et al., 2015
proposed the inception architecture which consists of stacks of inception modules
(see Figure 2.28). This architecture has several offsprings like Inception V236, In-
ception V337 or Inception-ResNet V238. The basic idea of the inception modules is

Figure 2.28: Inception module, (source: Simonyan and Zisserman, 2015)

to create deep feature maps, by stacking different filters of different convolutions
and spatial reductions with max pooling by filter concatenation, to extract richer
features of the input (see naive version in Figure 2.28). This means that the con-
volutions and pooling are not done sequentially as in previous architectures, they
are done simulationsly on the same input. Deep feature maps will result in a huge
number of parameters to learn in the next inception module for the convolutions.
36Ioffe and Szegedy, 2015.
37Szegedy, Vanhoucke, et al., 2015.
38Szegedy, Ioffe, et al., 2016.

40

2.3 Erosion classification

To counteract that a 1×1 convolution is added before these convolution layers.
A 1×1 convolution is also used to increase the feature channels after the pooling
operation to match with the depth of the filters learned in the convolution paths
(see Inception module with dimension reductions in Figure 2.28).

To get a better understanding of these 1×1 convolutions they are explained in
detail in the following. They can be used in three different ways: dimension re-
duction, dimension increasement and projections without spatial transformation
(see below, with w as width, h as height, n is the initial number of channels and
k presents the resulting channel depth).

Input Convolution Result
(w, h, n) →(1× 1× k) →(w, h, k)

(2.7)

reduction:n > k; projection:n = k; increasement:n < k

Inception modules use a 1×1 convolution for dimension reduction with n > k

before the convolutions. This is often referred as feature map pooling, pointwise
convolution, or in case of the Xception architecture: a mapping of cross-channels
correlations. For example a 1×1×1 (k = 1) convolution can be seen as single
neuron learning to produce a single output with the value of every pixel posi-
tion on all feature maps in depth direction (see Figure 2.29). In other words it
summarizes the given n feature maps into one single feature map. To match the
depth of the feature map learned in the 3×3 maxpooling a 1x1 convolution is
used to increase the dimension. This is done with repeated projections.

The Xception architecture uses stacks of depthwise separable convolution layers
instead of inception modules to perform the convolution.

A depthwise separable convolution, commonly called “separable con-
volution” in deep learning frameworks such as TensorFlow and Keras,
consists in a depthwise convolution, i.e. a spatial convolution per-
formed independently over each channel of an input, followed by a
pointwise convolution, i.e. a 1×1 convolution, projecting the chan-
nels output by the depthwise convolution onto a new channel space.
(Chollet, 2017)

41

2 Experiments

Figure 2.29: Feature pooling described as neuron

Each of the 14 modules has a linear residual connection39 around them to allow
skipping of the surrounded module, except of the first and last modules (see
Figure 2.30). This shortcut connection also transforms the input to match with
the dimension of the next module. For spatial transformation padding and for a
matching depth a 1×1 convolution is used.

Implementation

As stated, the tutorial on keras includes a small version of the Xception network.
The differences to proposed architecture (see Figure 2.30) are explained in this
section. The entry flow is implemented according to the proposal of the original
paper, except the additional module with a filter size of 512. Middle flow and exit
flow are replaced by a simpler implementation (see Listing 2.5). The inputsize
of 180×180 pixels from the tutorial was changed to 360×360 pixels, because the
samples in the created datasets have a higher spatial resolution than the images
used in the tutorial. For the unwrapped datasets which had at least a width of
200 pixels (50deg with four samples per degree) and a fixed height of 100 pixels,
the inputsize was set to 200×100 pixels.

39K. He et al., 2015.

42

2.3 Erosion classification

Figure 2.30: Xception architecture, source: Chollet, 2017

1 ...

2 # x is the last layer of the entry flow
3 x = layers.SeparableConv2D(1024, 3, padding="same")(x)
4 x = layers.BatchNormalization()(x)

5 x = layers.Activation("relu")(x)
6 x = layers.GlobalAveragePooling2D()(x)

7 x = layers.Dropout(0.5)(x)

8

9 if classes == 2:

10 outputs = layers.Dense(1, activation="sigmoid")(x)
11 else:

12 outputs = layers.Dense(classes, activation="softmax")(x)

Listing 2.5: Replacement for middle and exit flow

For the complete model implementation with keras see appendix A.4.

43

2 Experiments

2.3.3 Manual Classification

To get an idea how a human participant performs on doing the classification
based on images, a subset of ten images per class was excluded from the two
datasets ROI without segmentation and Unwrappings (described in Subsection
2.1.3). So each participant has 50 images per dataset (100 in total) to classify.
The first human classifier is an amateur who had never seen a real pelton wheel,
the second person is the employee who coordinates the inspections of pelton
wheels at IllwerkeVKW. To make things fair the amateur got 20 demo images of
each class, before doing the grading.

44

3 Results

This chapter covers the results of applying the three classification methods: LBP
+ k-nearest neighbors classifier, CNN Xception light and manual classification on
the three datasets ROI segmented, ROI without segmentation and Unwrappings
explained in Section 2.1.3. The following sections are ordered by method. Each
section contains the results gained by an applicable metric and a short interpreta-
tion of the results. To get a fair comparison between the performance of the LBP
+ kNearest neighbors classifier and Xception light network approach, different
alterations regarding the training and test datasets were made. These alterations
are:

• Binary classification with a dataset containing only class zero and class
four

• Second binary classification with class one versus class four

• Dataset without class imbalance via downsampling

For binary classification class zero and class four were selected initially because
they should have the greatest difference which means the classification should
be easier. The good results of LBP + k-nearest neighbors classifier and CNN
Xception light in this binary classification lead to some doubt, especially in the
deep learning method. The mistrust in the result arose from the markers on the
buckets, where the maintainance personnel has marked each erosion region. Is
the trained network just a marker detector similar to the glorified snow detector1,
where some students had tried to built an husky/wolf classifier? This classifier
has learned that when there is snow on the ground it must be a wolf. To avoid this
a second binary classification was done with class one versus class four, because
class one images also contain the cavitation markings where most of the class zero

1https://innovation.uci.edu/2017/08/husky%2Dor%2Dwolf%2Dusing%2Da%2Dblack%
2Dbox%2Dlearning%2Dmodel%2Dto%2Davoid%2Dadoption%2Derrors/

45

https://innovation.uci.edu/2017/08/husky%2Dor%2Dwolf%2Dusing%2Da%2Dblack%2Dbox%2Dlearning%2Dmodel%2Dto%2Davoid%2Dadoption%2Derrors/
https://innovation.uci.edu/2017/08/husky%2Dor%2Dwolf%2Dusing%2Da%2Dblack%2Dbox%2Dlearning%2Dmodel%2Dto%2Davoid%2Dadoption%2Derrors/

3 Results

images did not. The results showed nearly the same outcome. For the unwrapped
dataset the mean accuracy was 2.49% lower and for the ROI segmented dataset it
was even 1.17% higher (see Table 3.2). This strongend the belief that no marker
detector was created. There is also a new research branch dealing with this kind
of problems called Explainable AI (XAI).

However, the use of complex AI algorithms like Deep Learning, Ran-
dom Forests, etc., could result in a lack of transparency to users which
is termed black/opaque box models. Thus, For AI to be confidently
rolled out by industries and governments, there is a need for greater
transparency in explaining the AI decision making process to users to
generate “White /Transparent Box” models which can also be termed
Explainable AI (XAI). (Hagras, 2018,)

The last dataset alteration is a downsampling of all classes to the least present
class in the dataset to avoid a bias introduced through class imbalance in the
datasets. This was done for the full dataset (class zero to four), and the two
binary classifications (class zero vs. four, class one vs. four). The samples were
picked randomly with random.sample, from each class.

3.1 LBP - k-nearest neighbors classifier
For scoring the LBP - k-nearest neighbors classifier method, the accuracy on
the test dataset was calculated (see Section 2.1.3). Because LBP extracts micro
features in a rotation invariant way, no augmentations were applied in the process.
Table 3.1 contains the results of the LBP + k-nearest neighbors classifier

method. The columns are the dataset used, the alteration on the dataset, the
number of training samples and test samples (samples which are not used during
training) and the accuracy on the test dataset (see 2.1.3). All experiments with
the full class set (one to four) gained a accuracy between 24% and 36%. This is
not very high, regarding a baseline of 20% with guessing one out of five classes.
The main reason for this could be that the manual classification was subjective.
There was no objective criteria like eroded area inmm2 or length inmm (compare
to Table 2.2). The result shows a high accuracy in the classification between class
zero and class four. This supports the thesis that there was a fluctuation in the

46

3.1 LBP - k-nearest neighbors classifier

Dataset Alteration train/test Accuracy
ROI unsegmented - 3324/434 24.65%
ROI segmented - 3324/434 32.03%
ROI segmented 0 vs. 4 1645/165 82.42%
ROI segmented 1 vs. 4 3324/162 77.78%
Unwrapped - 2571/331 29.31%
Unwrapped 0 vs. 4 1206/124 83.87%
Unwrapped 1 vs. 4 1204/122 77.05%
ROI unsegmented downsampled 2674/434 30.41%
ROI segmented downsampled 2674/434 36.05%
Unwrapped downsampled 2571/331 29.31%

Table 3.1: Results LBP + k-nearest neighbors classifier

classification during the inspections over the five years. Another reason, learned
during discussing the results with the person who is in charge for the inspections,
is that the grading not entirely consists of erosion through cavitation, it also con-
tains other damages on the bucket like rock chips which were not in the ROI.
This could also explain why there was no performance gain on the unwrappings,
since the extracted region on these images were even smaller. The result also
shows that there is a slight performance loss in the binary classification between
class one vs. class four in comparison to class zero vs. class one. Remember most
samples of class zero did not contain any markings. For this reason class one vs.
class four experiments are considered to be the most representative binary clas-
sification. Confusion matrices of the experiments with all classes underpin these

Figure 3.1: Confusion matrices on experiments with all classes (LBP + k-nearest
neighbors classifier)

allegations (see Figure 3.1). They also show problems in classifying between class

47

3 Results

zero vs. class one, and class three vs. class four. Benefits of the unwrapped data
are a smaller memory footprint storing these representations (approximately 300
- 600 kB vs. 5 - 20 kB) and faster training plus classification through the reduced
spatial dimensions (approximately 1500×1500 pixel vs. 500×100 pixel).

3.2 CNN Xception - Light

The datasets and the alterations on them are the same ones as in Section 3.1,
except the downsampling per dataset. This experiment uses the classification
accuracy on the hold back test dataset (see Section 2.1.3) as metric. In addition
to compare the results from the different datasets, a global downsampling to
the least presented class (1792 images per class) in all three augmented datasets
was performed (see Section 3.3). The results outperformed the LBP + kNearest

Dataset Alteration train/test Accuracy
ROI unsegmented - 24636/434 59.22%
ROI segmented - 24636/434 60.14%
ROI segmented 0 vs. 4 9954/165 96.97%
ROI segmented 1 vs. 4 9534/162 98.14%
Unwrapped - 12416/331 54.98%
Unwrapped 0 vs. 4 5180/124 98.39%
Unwrapped 1 vs. 4 4921/122 95.90%

Table 3.2: Results Xception light model

neighbors classifier approach on all created datasets. An average accuracy of
approximately 60% on the data sets with all classes underpin this, especially when
minding that the model used was extracted from a starter tutorial to classify cats
and dogs. The assumptions regarding the variance in the manual classification
in Section 3.1 are confirmed again by the margin between the multi and binary
classification results (see also the confusion matrices in Figure 3.2). Since it is
impossible to know what the model has learned during training only assumptions
can be made (see also XAI in chapter 3). One assumption for the better results is
that the model had learned the variance of the manual classification in the dataset.
The model trained on the unwrappings falsely classified class one to three as class
zero 37 times (see Figure 3.2). This could be explained with the ROI extraction

48

3.2 CNN Xception - Light

(from the adapted RSM, that also could just be done in a limited θ-range in some
cases), which leads to an information loss regarding that stone chips and other
things contribute to the classification. If the classification would just consist of
erosion damage from cavitation this would not be such a disadvantage.

Figure 3.2: Confusion matrices on experiments with all classes (Xception light)

To compare the influence of the different representation of the groundtruth,
the experiments were repeated with the reduced datasets (1792 images per class
for every dataset). The results in Figure 3.3 show that the unwrappings had
nearly the same accuracies in comparison to the ROI’s in all experiments. This
is remarkable despite the drawbacks: of the information loss mentioned before
and being squeezed horizontal during the rescaling from up to 758×100 pixels to
200×100 pixels. The ROI’s in comparison were rescaled in a more proportional
manner from approximately 1500×1500 pixels to 360×360 pixels. If the images
would have been taken with a mounted camera the width of all unwrappings
would have been the same. This width could have been used as dimension for
the input layer of the model, meaning no rescaling at all.

Dataset Alteration train/test Accuracy
ROI unsegmented - 8960/434 58.29%
ROI segmented - 8960/434 55.07%
ROI segmented 0 vs. 4 3584/165 97.58%
ROI segmented 1 vs. 4 3584/434 97.53%
Unwrapped - 8960/331 53.58%
Unwrapped 0 vs. 4 3584/124 95.97%
Unwrapped 1 vs. 4 3584/122 97.54%

Table 3.3: Results Xception light model, with global downsampling

49

3 Results

Due to the benefits of the unwrapped representation (see Section 3.1), the
training and classification needed lesser time (see also Table 3.4).

Dataset train/test epoch duration predict duration
ROI segmented (1 vs. 4) 9534/162 57s 21s
Unwrapped (1 vs. 4) 4921/122 9s 551ms

Table 3.4: Comparison of training duration and duration for predicting the whole
test data set of ROI segmented against Unwrapped data

3.3 Manual Classification

This experiment gained some interesting results. The first thing was that the
expert achieved a lower result than the amateur on both datasets. The confusion
matrix of the expert in Figure 3.3 shows that most of the false classified samples
were graded to low, meaning predicting a lesser erosion grade. One reason for
this could be that one of the original grading criteras was the roughness on the
bucket surface. This was also the impression during labeling of the data. On
some images the missing focus of the images make the erosion completley invisible
or at least less visible. So the assumption is that with haptic feedback on the
real object the grading especially from the expert would have been different.
Therefore the training of the amateur which exclusively consisted of seeing 20
images per class could be seen as advantage in comparison to the expert. Both
of the contestants did not classify any class zero sample with four and vice versa.
This matches with the good result of the binary classification (class zero and class
four) of the automated classification with LBP + kNearest neighbor classifier and
the Xception light model. This can be seen as confirmation that there are too
many erosion grades in between zero to four, in order to perform a accurate
classification.

Participant train/test Mean-Accuracy
Expert 0/50 36%
Amateur 100/50 48%

Table 3.5: Results of manual classification on ROI without segmentation dataset

50

3.3 Manual Classification

Figure 3.3: Confusion matrices on ROI without segmentation dataset for manual
classification

The results on the Unwrappings dataset (see Unwrappings in Section 2.1.3),
were lower for both contestants (see Table 3.6). They both mentioned that the
process was more guessing than classifying the samples, which is reflected by
the confusion matrices of their classification in Figure 3.4. One reason for this
could be that because of the unwrapping the absolute position where most erosion
appears is variable in contrast to the uniformity of the ROI’s. All samples also
differed in width, which was a result of the unwrapping process trying to unwrap
the most continuous part of the ellipse inside the image space. These added
variance on the unwrapped images make a manual classification harder. The
confusion matrices in Figure 3.4 show that similar to the manual classification
on the ROI without segmentation dataset none of the edge classes (class one and
four) were classified opposite to their true label. The automated methods in
contrast predicted the opposite class in some cases (see Figures 3.2, 3.1).

Participant train/test Mean-Accuracy
Expert 0/50 28%
Amateur 0/50 30%

Table 3.6: Results of manual classification on unwrapping dataset

51

3 Results

Figure 3.4: Confusion matrices on unwrapping dataset for manual classification

52

4 Summary and Outlook

4.1 Conclusion

The experiments in Chapter 2 had shown that an automated grading of ero-
sion from cavitation with computer vision and machine learning is possible. The
needed separation of the right and left bucket, due to the fact that they were
graded individually, would have been impossible without the semantic segmenta-
tion by a U-Net (see Section 2.2.2). Since all experiments were done on images
taken by hand the results can be seen as baseline for the industrial grade im-
plementation with a mounted camera which takes photos at a defined shutter
speed, exposure time and a constant lighting. At first glance the best accuracy of
approximately 60% in erosion grade classification from zero to four did not seem
impressive. But with the limitations in size and quality of the dataset, the results
imply that the chosen approach works. The deep learning method (CNN) will
benefit from more and better labeled data. The previous mentioned fact and the
superior results in the erosion classification show how powerfull these deep learn-
ing techniques are (see Section 2.3). Results in the erosion classification of the
CNN approach in comparison to the LBP approach show that the CNN learned
a better/stronger feature representation as the handcrafted feature extraction by
the LBP method. The CNN even outperformed the human cavitation expert by a
margin of approximately 22%. Results of all methods on the full class set (zero to
four) are shown in Table 4.1. One of the lessons learned is the importance of the
quality of the ground truth (inspection images and inspection protocols). This
starts with the metrics for the manual scoring. They were to subjective, which
made it impossible for the maintainance personnel to do a consistent grading over
time. There was also a shift in the grading from overall bucket condition to level
of erosion. The format of the ground truth (pdf inspection protocols, inconsistent
folder layouts with images) made the preperation of the data a time consuming

53

4 Summary and Outlook

Method train/test Accuracy
LBP + k-nearest neighbors 3324/434 32.03%
Xception Light (CNN) 8960/434 58.29%
Human Amateur 100/50 48%
Human Expert 0/50 36%

Table 4.1: Erosion classification results of all methods (on unsegmented ROI’s,
all classes)

process. This leads to the conclusion that in future inspections (not just limited
to pelton wheel inspections), the data should be stored in a consistent folder
layout, which allows an easier extraction and labeling of the data. For example
folders for each class containing the images could be used (see Figure 4.1, fol-
lowing the keras dataset layout1). Experiments with reduced class sets (binary

Figure 4.1: Folderlayout proposed by keras

classification) and the confusion matrices have shown that five classes are too
much, even for the maintainance personnel. This is amplified by the subjective
grading due to the missing objective class specification. Table 4.2 shows the re-
sults of the automated methods performing a binary classification (class one and
four) on the unwrapped data set (see Unwrappings). The unwrapping method

Method train/test Accuracy
LBP + k-nearest neighbors 1204/122 77.05%
Xception Light (CNN) 3584/122 97.54%

Table 4.2: Erosion classification results of all methods (on unwrapped images,
class one vs. four)

1https://keras.io/api/preprocessing/

54

https://keras.io/api/preprocessing/

4.2 Outlook

proposed in this thesis creates a good ROI extraction of the area where the cavi-
tation manifests in erosion (see Section 2.2.4). Other benefits of the application of
this method are that less storage is needed to store the data and the training plus
classification will be faster (see Table 3.4). With a better ground truth (images
from a mounted camera, less classes, objective classification just for cavitation),
the results of the unwrappings could lead to better results compared to images
without unwrapping. This has to be examined in the later implementation of the
industrial grade automatic classification of erosion.

4.2 Outlook

At the time of writing this the new mounted camera system is installed and starts
collecting images. The techniques and methods discussed in this thesis can not
be used direct on the new data gathered by the new camera system, especially
the trained deep learning models. But they are providing a good starting point
for implementing a industrial grade classification of the erosion. The next step is
to collect the data in a way so that it can be used with Machine learning (ML)
methods (class folders). As mentioned previously the proposal is made to use
lesser classes with objective specification of the grades, for instance erosion area
in mm2. Since all erosion was polished away when installing the camera system,
all samples will show flawless buckets. It will take approximately one to two
years until the first erosion due to cavitation will be seen. Therefore this time
can be used to create a preprocessing pipeline which stores the collected images
appropriately. If just a binary classification for the bucket health is required,
using a Generative Adversarial Network (GAN), for anomaly detection should be
considered (see Akcay, Atapour-Abarghouei, and Breckon, 2018 and Di Mattia
et al., 2021). The approach could also detect stone chips and other anomalies on
the bucket.

We propose anomaly detection based on deep generative adversarial
networks. By concurrently training a generative model and a discrim-
inator, we enable the identification of anomalies on unseen data based
on unsupervised training of a model on healthy data. (Schlegl et al.,
2017)

55

4 Summary and Outlook

This means that the training of a GAN-model like AnoGAN or GANomaly could
start after collecting many healthy samples. After collecting an sufficient amount
of data (with erosion due to cavitation), the classification of the erosion should
then be repeated with a better suited and optimized CNN model as the one used
in this thesis, which is a rather simple one based on a keras tutorial.

56

Bibliography

Akcay, Samet, Amir Atapour-Abarghouei, and Toby P. Breckon (Nov. 2018).
GANomaly: Semi-Supervised Anomaly Detection via Adversarial Training. en.
Number: arXiv:1805.06725 arXiv:1805.06725 [cs].

Aszemi, Nurshazlyn Mohd and P.D.D Dominic (2019). “Hyperparameter Opti-
mization in Convolutional Neural Network using Genetic Algorithms”. en. In:
International Journal of Advanced Computer Science and Applications 10.6.
issn: 21565570, 2158107X. doi: 10.14569/IJACSA.2019.0100638.

Ballard, D. H. (Jan. 1981). “Generalizing the Hough transform to detect arbitrary
shapes”. en. In: Pattern Recognition 13.2, pp. 111–122. issn: 0031-3203. doi:
10.1016/0031-3203(81)90009-1.

Barkan, Oren et al. (Dec. 2013). “Fast High Dimensional Vector Multiplication
Face Recognition”. In: Proceedings of the 2013 IEEE International Conference
on Computer Vision. ICCV ’13. USA: IEEE Computer Society, pp. 1960–1967.
isbn: 978-1-4799-2840-8. doi: 10.1109/ICCV.2013.246.

Chollet, Francois (July 2017). “Xception: Deep Learning with Depthwise Sepa-
rable Convolutions”. en. In: 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Honolulu, HI: IEEE, pp. 1800–1807. isbn: 978-
1-5386-0457-1. doi: 10.1109/CVPR.2017.195.

Daugman, J. (Jan. 2004). “How iris recognition works”. In: IEEE Transactions
on Circuits and Systems for Video Technology 14.1. Conference Name: IEEE
Transactions on Circuits and Systems for Video Technology, pp. 21–30. issn:
1558-2205. doi: 10.1109/TCSVT.2003.818350.

Di Mattia, Federico et al. (Sept. 2021). A Survey on GANs for Anomaly Detection.
en. Number: arXiv:1906.11632 arXiv:1906.11632 [cs, stat].

57

https://doi.org/10.14569/IJACSA.2019.0100638
https://doi.org/10.1016/0031-3203(81)90009-1
https://doi.org/10.1109/ICCV.2013.246
https://doi.org/10.1109/CVPR.2017.195
https://doi.org/10.1109/TCSVT.2003.818350

Bibliography

Duda, R. and P. Hart (1972). “Use of the Hough transformation to detect lines
and curves in pictures”. In: CACM. doi: 10.1145/361237.361242.

Ghosh, Swarnendu et al. (July 2019). “Understanding Deep Learning Techniques
for Image Segmentation”. en. In: arXiv:1907.06119 [cs]. arXiv: 1907.06119.

Hagras, Hani (Sept. 2018). “Toward Human-Understandable, Explainable AI”.
In: Computer 51.9. Conference Name: Computer, pp. 28–36. issn: 1558-0814.
doi: 10.1109/MC.2018.3620965.

He, Kaiming et al. (Dec. 2015). “Deep Residual Learning for Image Recognition”.
In: arXiv:1512.03385 [cs]. arXiv: 1512.03385.

Ioffe, Sergey and Christian Szegedy (Mar. 2015). “Batch Normalization: Accel-
erating Deep Network Training by Reducing Internal Covariate Shift”. In:
arXiv:1502.03167 [cs]. arXiv: 1502.03167.

“Assessment of Remote Cavitation Detection Methods with Flow Visualization
in a Full Scale Francis Turbine” (2018a). en. In: Proceedings of the 10th In-
ternational Symposium on Cavitation (CAV2018). Ed. by Joseph Katz. ASME
Press, pp. 119–124. isbn: 978-0-7918-6185-1. doi: 10.1115/1.861851_ch24.

“Detection and Level Estimation of Cavitation in Hydraulic Turbines with Con-
volutional Neural Networks” (2018b). en. In: Proceedings of the 10th Inter-
national Symposium on Cavitation (CAV2018). Ed. by Joseph Katz. ASME
Press, pp. 293–296. isbn: 978-0-7918-6185-1. doi: 10.1115/1.861851_ch56.

Kingma, Diederik P. and Jimmy Ba (Jan. 2017). Adam: A Method for Stochastic
Optimization. Number: arXiv:1412.6980 arXiv:1412.6980 [cs]. doi: 10.48550/
arXiv.1412.6980.

Krizhevsky, A., Ilya Sutskever, and Geoffrey E. Hinton (2012). “ImageNet clas-
sification with deep convolutional neural networks”. en. In: undefined.

Li, Beibei et al. (Feb. 2021). “Analysis method of the cavitation vibration signals
in poppet valve based on EEMD”. en. In: Advances in Mechanical Engineering
13.2. Publisher: SAGE Publications, p. 1687814021998114. issn: 1687-8132.
doi: 10.1177/1687814021998114.

58

https://doi.org/10.1145/361237.361242
https://doi.org/10.1109/MC.2018.3620965
https://doi.org/10.1115/1.861851_ch24
https://doi.org/10.1115/1.861851_ch56
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1177/1687814021998114

Bibliography

Ojala, T., M. Pietikainen, and D. Harwood (Oct. 1994). “Performance evalua-
tion of texture measures with classification based on Kullback discrimination
of distributions”. In: Proceedings of 12th International Conference on Pattern
Recognition. Vol. 1, 582–585 vol.1. doi: 10.1109/ICPR.1994.576366.

Redmon, Joseph et al. (May 2016). “You Only Look Once: Unified, Real-Time
Object Detection”. In: arXiv:1506.02640 [cs]. arXiv: 1506.02640.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox (May 2015). “U-Net: Con-
volutional Networks for Biomedical Image Segmentation”. en. In: arXiv:1505.04597
[cs]. arXiv: 1505.04597.

Schlegl, Thomas et al. (Mar. 2017). Unsupervised Anomaly Detection with Gener-
ative Adversarial Networks to Guide Marker Discovery. Tech. rep. arXiv:1703.05921.
arXiv:1703.05921 [cs] type: article. arXiv. doi: 10.48550/arXiv.1703.05921.

Shorten, Connor and Taghi M. Khoshgoftaar (July 2019). “A survey on Image
Data Augmentation for Deep Learning”. In: Journal of Big Data 6.1, p. 60.
issn: 2196-1115. doi: 10.1186/s40537-019-0197-0.

Simonyan, Karen and Andrew Zisserman (Apr. 2015). “Very Deep Convolutional
Networks for Large-Scale Image Recognition”. In: arXiv:1409.1556 [cs]. arXiv:
1409.1556.

Srivastava, Nitish et al. (2014). “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research 15.56,
pp. 1929–1958. issn: 1533-7928.

Swain, Michael J. and Dana H. Ballard (Nov. 1991). “Color indexing”. en. In:
International Journal of Computer Vision 7.1, pp. 11–32. issn: 1573-1405. doi:
10.1007/BF00130487.

Szegedy, Christian, Sergey Ioffe, et al. (Aug. 2016). “Inception-v4, Inception-
ResNet and the Impact of Residual Connections on Learning”. In: arXiv:1602.07261
[cs]. arXiv: 1602.07261 version: 2.

59

https://doi.org/10.1109/ICPR.1994.576366
https://doi.org/10.48550/arXiv.1703.05921
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1007/BF00130487

Bibliography

Szegedy, Christian, Vincent Vanhoucke, et al. (Dec. 2015). “Rethinking the In-
ception Architecture for Computer Vision”. en. In: doi: 10.48550/arXiv.
1512.00567.

Trefný, Jiˇrí and Jiˇrí Matas (n.d.). “Extended Set of Local Binary Patterns for
Rapid Object Detection”. en. In: (), p. 7.

Wang, Li and Dong-Chen He (Jan. 1990). “Texture classification using texture
spectrum”. en. In: Pattern Recognition 23.8, pp. 905–910. issn: 0031-3203. doi:
10.1016/0031-3203(90)90135-8.

Xu, Zhenfa et al. (Nov. 2021). “Research on Visualization of Inducer Cavitation
of High-Speed Centrifugal Pump in Low Flow Conditions”. en. In: Journal
of Marine Science and Engineering 9.11. Number: 11 Publisher: Multidisci-
plinary Digital Publishing Institute, p. 1240. issn: 2077-1312. doi: 10.3390/
jmse9111240.

Zhang, Chuanhong, Fang Lu, and Linzhang Lu (Apr. 2019). “High-speed visual-
ization of cavitation evolution around a marine propeller”. en. In: Journal of
Visualization 22.2, pp. 273–281. issn: 1875-8975. doi: 10.1007/s12650-018-
00540-7.

60

https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.48550/arXiv.1512.00567
https://doi.org/10.1016/0031-3203(90)90135-8
https://doi.org/10.3390/jmse9111240
https://doi.org/10.3390/jmse9111240
https://doi.org/10.1007/s12650-018-00540-7
https://doi.org/10.1007/s12650-018-00540-7

List of Acronyms

AE Acoustic Emission
CNN Convolutional Neural Network
GAN Generative Adversarial Network
GHT Generalized Hough Transformation
IoU Intersection over Union
LBP Local Binary Patterns
ML Machine learning
ReLU Rectified linear unit
rgb RGB color model
ROI Region of Interest
RSM Rubber sheet model
XAI Explainable AI

61

List of Figures

1.1 Open pelton wheel on inspection day 2
1.2 Erosion caused by cavitation on the backside of a bucket of a pelton

wheel . 2
1.3 Pelton wheel component, source: https://www.airandhydraulic.

com/2020/09/components-of-pelton-turbine.html 4

2.1 Segmented images where the background pixels are set to black,
see Section 2.2.2 . 7

2.2 Samples ROI extraction on segmented image, with classes 9
2.3 Numbers of samples per class in dataset 10
2.4 Numbers of samples per class in augmented dataset 10
2.5 Samples ROI extraction on real image, with classes 11
2.6 Examples of source (left) and result of unwrapping (right), for class

zero and class four . 12
2.7 Numbers of samples per class in unwrappings dataset 13
2.8 Numbers of samples per class in augmented unwrappings dataset . 13
2.9 Area where erosion through cavitation manifests 14
2.10 Initial tries with opencv . 15
2.11 GHT on sample image with nearly same tilt 17
2.12 U-net architecture from original paper (Ronneberger, Fischer, and

Brox, 2015) . 18
2.13 Left labeled shovel in VoTT, right created binary mask 20
2.14 U-Net evaluation, 200 images . 20
2.15 Demo of the augmentations . 23
2.16 U-Net training, 960 images . 25
2.17 U-Net final training, 1920 images 26
2.18 Small inaccuracy on background segmentation 27
2.19 Complete segmentation fail when multiple shovels are on the image 27

63

https://www.airandhydraulic.com/2020/09/components-of-pelton-turbine.html
https://www.airandhydraulic.com/2020/09/components-of-pelton-turbine.html

List of Figures

2.20 Process of bucket separation . 28
2.21 Iris Image Processing Process,

from https://github.com/YifengChen94/IrisReco 30
2.22 Ramkumar, R.P. and Arumugam, S. (2013). Improved Iris Seg-

mentation Algorithm without normalization Phase. International
Journal of Engineering and Technology. 5. 5107-5113. 31

2.23 Ellipse fitting on ROI . 31
2.24 LBP proccess1 . 35
2.25 Possible LBP patterns, source: https://scikit-image.org/docs/

dev/auto_examples/features_detection/plot_local_binary_
pattern.html . 35

2.26 Histogram created with LBP on a bucket image 36
2.27 k-NN classification, source: https://en.wikipedia.org/wiki/

K-nearest_neighbors_algorithm 37
2.28 Inception module, (source: Simonyan and Zisserman, 2015) 40
2.29 Feature pooling described as neuron 42
2.30 Xception architecture, source: Chollet, 2017 43

3.1 Confusion matrices on experiments with all classes (LBP + k-
nearest neighbors classifier) . 47

3.2 Confusion matrices on experiments with all classes (Xception light) 49
3.3 Confusion matrices on ROI without segmentation dataset for man-

ual classification . 51
3.4 Confusion matrices on unwrapping dataset for manual classification 52

4.1 Folderlayout proposed by keras 54

A.1 GPU Server - CPU . 70
A.2 GPU Server - GPU . 70
A.3 GPU Server - RAM in GB . 70

1Ojala, Pietikainen, and Harwood, 1994.

64

https://github.com/YifengChen94/IrisReco
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://scikit-image.org/docs/dev/auto_examples/features_detection/plot_local_binary_pattern.html
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm

List of Tables

2.1 Specification of the iPhone8 images 6
2.2 Defined grading of cavitation erosion 6
2.3 Mapping of inspection protocol grades and used grades 6
2.4 Numbers on initial dataset . 7
2.5 IoU result of U-Net on 32 images 26
2.6 Inception Resnet V2 vs. keras image classification tutorial 39

3.1 Results LBP + k-nearest neighbors classifier 47
3.2 Results Xception light model . 48
3.3 Results Xception light model, with global downsampling 49
3.4 Comparison of training duration and duration for predicting the

whole test data set of ROI segmented against Unwrapped data . . 50
3.5 Results of manual classification on ROI without segmentation dataset 50
3.6 Results of manual classification on unwrapping dataset 51

4.1 Erosion classification results of all methods (on unsegmented ROI’s,
all classes) . 54

4.2 Erosion classification results of all methods (on unwrapped images,
class one vs. four) . 54

65

Listings

2.1 Training configuration for U-Net in keras 24
2.2 Calculation of IoU . 25
2.3 Call of skimage.feature.local_binary_pattern 37
2.4 Histogram Intersection . 38
2.5 Replacement for middle and exit flow 43

67

A Appendix

A.1 Anaconda Environment
Below is a listening of all relevant packages installed in conda 4.10.3.

python 3.7.11

tensorboard 2.4.0

tensorboard−plugin−wit 1.6.0

tensorflow 2.4.1

tensorflow−base 2.4.1

tensorflow−estimator 2.6.0

tensorflow−gpu 2.4.1

....

69

A Appendix

A.2 GPU-Server Hardware Spec

Figure A.1: GPU Server - CPU

Figure A.2: GPU Server - GPU

Figure A.3: GPU Server - RAM in GB

70

A.3 Adapted U-net model (keras)

A.3 Adapted U-net model (keras)

The final tensorflow keras model used for bucket segmentation.
def build_model (input_layer) :

f i l t e r s = 16
5 1 2 - > 2 5 6
conv 0 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (input_layer)
conv 0 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 0)
pool 0 = MaxPooling2D((2 , 2)) (conv 0)
pool 0 = Dropout (0 .2 5) (pool 0)
2 5 6 - > 1 2 8
conv 1 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 0)
conv 1 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 1)
pool 1 = MaxPooling2D((2 , 2)) (conv 1)
pool 1 = Dropout (0 .5) (pool 1)
1 2 8 - > 6 4
conv 2 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 1)
conv 2 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 2)
pool 2 = MaxPooling2D((2 , 2)) (conv 2)
pool 2 = Dropout (0 .5) (pool 2)
6 4 - > 3 2
conv 3 = Conv2D(f i l t e r s ∗ 2 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 2)
conv 3 = Conv2D(f i l t e r s ∗ 2 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 3)
pool 3 = MaxPooling2D((2 , 2)) (conv 3)
pool 3 = Dropout (0 .5) (pool 3)
3 2 - > 1 6
conv 4 = Conv2D(f i l t e r s ∗ 4 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 3)
conv 4 = Conv2D(f i l t e r s ∗ 4 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 4)
pool 4 = MaxPooling2D((2 , 2)) (conv 4)
pool 4 = Dropout (0 .5) (pool 4)
1 6 - > 8
conv 5 = Conv2D(f i l t e r s ∗ 8 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 4)
conv 5 = Conv2D(f i l t e r s ∗ 8 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (conv 5)
pool 5 = MaxPooling2D((2 , 2)) (conv 5)
pool 5 = Dropout (0 .5) (pool 5)
M i d d l e
convm = Conv2D(f i l t e r s ∗ 16 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (pool 5)
convm = Conv2D(f i l t e r s ∗ 16 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (convm)
8 - > 1 6
deconv 5 = Conv2DTranspose (f i l t e r s ∗ 8 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (convm)
uconv 5 = c o n c a t e n a t e ([deconv 5 , conv 5])
uconv 5 = Dropout (0 .5) (uconv 5)
uconv 5 = Conv2D(f i l t e r s ∗ 8 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 5)
uconv 5 = Conv2D(f i l t e r s ∗ 8 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 5)
1 6 - > 3 2
deconv 4 = Conv2DTranspose (f i l t e r s ∗ 4 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (uconv 5)
uconv 4 = c o n c a t e n a t e ([deconv 4 , conv 4])
uconv 4 = Dropout (0 .5) (uconv 4)
uconv 4 = Conv2D(f i l t e r s ∗ 4 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 4)
uconv 4 = Conv2D(f i l t e r s ∗ 4 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 4)
3 2 - > 6 4
deconv 3 = Conv2DTranspose (f i l t e r s ∗ 2 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (uconv 4)
uconv 3 = c o n c a t e n a t e ([deconv 3 , conv 3])
uconv 3 = Dropout (0 .5) (uconv 3)
uconv 3 = Conv2D(f i l t e r s ∗ 2 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 3)
uconv 3 = Conv2D(f i l t e r s ∗ 2 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 3)
6 4 - > 1 2 8
deconv 2 = Conv2DTranspose (f i l t e r s ∗ 1 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (uconv 3)
uconv 2 = c o n c a t e n a t e ([deconv 2 , conv 2])
uconv 2 = Dropout (0 .5) (uconv 2)
uconv 2 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 2)
uconv 2 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 2)
1 2 8 - > 2 5 6
deconv 1 = Conv2DTranspose (f i l t e r s ∗ 1 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (uconv 2)
uconv 1 = c o n c a t e n a t e ([deconv 1 , conv 1])
uconv 1 = Dropout (0 .5) (uconv 1)
uconv 1 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 1)

71

A Appendix

uconv 1 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 1)
2 5 6 - > 5 1 2
deconv 0 = Conv2DTranspose (f i l t e r s ∗ 1 , (3 , 3) , s t r i d e s =(2 , 2) , padding=" s a m e ") (uconv 1)
uconv 0 = c o n c a t e n a t e ([deconv 0 , conv 0])
uconv 0 = Dropout (0 .5) (uconv 0)
uconv 0 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 0)
uconv 0 = Conv2D(f i l t e r s ∗ 1 , (3 , 3) , a c t i v a t i o n=" r e l u " , padding=" s a m e ") (uconv 0)
output_layer = Conv2D(1 , (1 , 1) , padding=" s a m e " , a c t i v a t i o n=" s i g m o i d ") (uconv 0)
return output_layer

72

A.4 Xception - light model (keras)

A.4 Xception - light model (keras)
This is the implementation to create the model.

• input shape for ROIs: 360x360x3

• input shape for unwrappings: 200x100x3

def make_model (input_shape , num_classes) :
i n p u t s = k e r a s . Input (shape=input_shape)

E n t r y b l o c k
x = i n p u t s
x = l a y e r s . Conv2D(32 , 3 , s t r i d e s=2 , padding=" s a m e ") (x)
x = l a y e r s . BatchNormalization () (x)
x = l a y e r s . A c t i v a t i o n (" r e l u ") (x)

x = l a y e r s . Conv2D(64 , 3 , padding=" s a m e ") (x)
x = l a y e r s . BatchNormalization () (x)
x = l a y e r s . A c t i v a t i o n (" r e l u ") (x)

p r e v i o u s _ b l o c k _ a c t i v a t i o n = x # S e t a s i d e r e s i d u a l

f o r s i z e in [128 , 256 , 512 , 728] :
x = l a y e r s . A c t i v a t i o n (" r e l u ") (x)
x = l a y e r s . SeparableConv2D(s i z e , 3 , padding=" s a m e ") (x)
x = l a y e r s . BatchNormalization () (x)

x = l a y e r s . A c t i v a t i o n (" r e l u ") (x)
x = l a y e r s . SeparableConv2D(s i z e , 3 , padding=" s a m e ") (x)
x = l a y e r s . BatchNormalization () (x)

x = l a y e r s . MaxPooling2D(3 , s t r i d e s=2 , padding=" s a m e ") (x)

P r o j e c t r e s i d u a l
r e s i d u a l = l a y e r s . Conv2D(s i z e , 1 , s t r i d e s=2 , padding=" s a m e ") (

p r e v i o u s _ b l o c k _ a c t i v a t i o n
)
x = l a y e r s . add ([x , r e s i d u a l]) # A d d b a c k r e s i d u a l
p r e v i o u s _ b l o c k _ a c t i v a t i o n = x # S e t a s i d e n e x t r e s i d u a l

x = l a y e r s . SeparableConv2D(1024 , 3 , padding=" s a m e ") (x)
x = l a y e r s . BatchNormalization () (x)
x = l a y e r s . A c t i v a t i o n (" r e l u ") (x)

x = l a y e r s . GlobalAveragePool ing2D() (x)
i f num_classes == 2 :

a c t i v a t i o n = " s i g m o i d "
u n i t s = 1

e l s e :
a c t i v a t i o n = " s o f t m a x "
u n i t s = num_classes

x = l a y e r s . Dropout (0 .5) (x)
outputs = l a y e r s . Dense (u n i t s , a c t i v a t i o n=a c t i v a t i o n) (x)
return k e r a s . Model (inputs , outputs)

73

	Contents
	1 Introduction
	1.1 What is Cavitation?
	1.2 Motivation and Goal
	1.3 State of the art

	2 Experiments
	2.1 Data
	2.1.1 Initial data
	2.1.2 Extracted data
	2.1.3 Resulting data sets

	2.2 Preprocessing
	2.2.1 Initial Attempts
	2.2.2 Semantic Segmentation with a U-Net
	2.2.3 ROI Extraction
	2.2.4 Adapted rubber sheet model

	2.3 Erosion classification
	2.3.1 Local Binary Pattern - k-nearest neighbors classifier
	2.3.2 CNN Xception - Light
	2.3.3 Manual Classification

	3 Results
	3.1 LBP - k-nearest neighbors classifier
	3.2 CNN Xception - Light
	3.3 Manual Classification

	4 Summary and Outlook
	4.1 Conclusion
	4.2 Outlook

	Bibliography
	List of acronyms
	List of figures
	List of tables
	List of listenings
	A Appendix
	A.1 Anaconda Environment
	A.2 GPU-Server Hardware Spec
	A.3 Adapted U-net model (keras)
	A.4 Xception - light model (keras)

