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Abstract

Systems are constantly increasing in complexity. This poses challenges to managing and using
system knowledge. The Systems Modeling Language (SysML) is a modeling language specifically
for systems, while Machine Learning (ML) is a tool to tackle complex problems. Currently, no
bridge between systems modeled in SysML and ML regarding said systems has been proposed
in literature. This thesis presents an approach that uses Model-driven Software Engineering
(MDSE) and Template-based Code Generation (TBCG) to generate a ML IPython Notebook
(IPYNB) from a SysML model. A mapping configuration using JavaScript Object Notation
(JSON) allows the definition of mappings between SysML elements and template variables,
enabling configuration and user-supplied templates. To test the approach, a SysML model
describing ML to predict the weather based on data is created. Python ML templates are
supplied and template variables mapped with the JSON mapping configuration are proposed in
the thesis. The outcome is an executable IPYNB that contains all information from the SysML
model and follows the modeled workflow. The findings of the work show that model-driven ML
using SysML as a modeling language is beneficial due to the representation of ML knowledge in
a general-purpose modeling language and the reusability of SysML model elements. It further
shows that TBCG and a mapping configuration allow for more flexible code generation without
changing the source implementation.



Kurzreferat

Systeme nehmen konstant an Komplexität zu. Dies führt zu Herausforderungen bezüglich Ver-
waltung und Verwendung von System-Wissen. Die Systems Modeling Language (SysML) ist eine
Modellierungssprache speziell für Systeme, während Maschinelles Lernen (ML) ein Werkzeug
zum Angehen komplexer Probleme ist. Zurzeit wurde keine Brücke zwischen in SysML mod-
ellierten Systemen und ML für besagte Systeme in der Literatur vorgeschlagen. Diese Ar-
beit präsentiert einen Ansatz, der Modellgetriebene Softwareentwicklung (MDSE) und Vorla-
genbasierte Codegenerierung (TBCG) verwendet um ein ML IPython Notebook (IPYNB) aus
einem SysML Modell zu generieren. Eine Mapping-Konfiguration, welche JavaScript Object
Notation (JSON) verwendet, erlaubt die Definition von Mappings zwischen SysML Elementen
und Variablen von Vorlagen, was Konfiguration und von Benutzenden bereitgestellte Vorla-
gen ermöglicht. Um den Ansatz zu testen wird ein SysML Modell erstellt, welches ML zur
Vorhersage des Wetters basierend auf Daten beschreibt. Python ML Vorlagen werden bereit-
gestellt und Variablen der Vorlagen, abgebildet mit der JSON Mapping-Konfiguration, werden
in der Arbeit vorgeschlagen. Das Resultat is ein ausführbares IPYNB, welches alle Informatio-
nen aus dem SysML Modell enthält und dem modellierten Arbeitsablauf folgt. Die Ergebnisse
der Arbeit zeigen, dass modellgetriebenes ML mit SysML als Modellierungssprache vorteilhaft
ist wegen der Repräsentation von ML Wissen in einer Allzweck-Modellierungssprache und der
Wiederverwendbarkeit von Elementen des SysML Modells. Weiters zeigt die Arbeit, dass TBCG
und eine Mapping-Konfiguration eine flexiblere Codegenerierung ohne Änderung des Quellcodes
erlauben.
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1. Introduction

Systems are growing more complex, and the needs they must respond to grow increasingly more
diverse. This requires the systems of the future to make use of the evolving body of technology
and more sophisticated analysis tools. (Beihoff et al., 2014) One technology that is suited to
analyze complex problems is Machine Learning (ML) (Géron, 2019). However, to apply ML,
the relevant information about the system needs to be available in a structured way (Beyerer,
Maier, & Niggemann, 2021). Systems Modeling Language (SysML) is a general-purpose model-
ing language, specifically meant to deal with Systems Engineering (SE) problems, that provides
a formalized structure (Arnould et al., 2019). This thesis aims to bridge the gap between a
SysML model, providing structured knowledge, and ML, which uses this knowledge to draw
conclusions.
To this end, techniques from Model-driven Software Engineering (MDSE) are used. The ML
information is integrated into the SysML model, using its profile mechanism (Arnould et al.,
2019). Model transformations and a custom metamodel are used to condense the information
stored in the SysML model (Brambilla, Cabot, & Wimmer, 2017). Using this condensed in-
formation, Template-based Code Generation (TBCG) is used to generate executable ML code
in the form of an IPython Notebook (IPYNB). To allow configuration of how the information
from the SysML model is to be mapped to the template variables, a mapping configuration is
introduced. A concept to propagate knowledge back from the executed output to the SysML
model is proposed, to keep the knowledge gained through ML in the formalized structure that
is the SysML model.
The resulting Proof of Concept (PoC) therefore supports the analysis of systems knowledge with
ML and the management of systems knowledge with SysML.
In this chapter, concepts and terminology that are important to the understanding of the thesis
will be introduced first in section 1.1. Currently existing literature and research will be presented
and the research gaps identified in section 1.2. The research questions and limitations of this
thesis in section 1.3 will conclude the chapter.

1.1. Concepts

Models are simplified abstractions of systems. They were mainly used for documentation, but
have taken a more central role in software engineering in recent years (Rodrigues da Silva, 2015).

Unified Modeling Language (UML) is a graphical modeling language. It is primarily meant for
software development. UML allows the modeling of software-based systems. This helps devel-
opers design, understand and implement systems. Primitive types are data types without any
substructure. Primitive types in UML are Integer, Boolean, String, UnlimitedNatural and Real
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(Cook et al., 2017). While designed to describe software-based systems, UML can also model
other domains, like logistics processes (Czuchra, 2010), for example.

Sillitto et al. (2019, p. 3) define SE as “...a transdisciplinary and integrative approach to enable
the successful realization, use, and retirement of engineered systems, using systems principles
and concepts, and scientific, technological, and management methods.” The basic premise of SE
is that everything has the characteristics of a system and can be described (Winzer, 2016).

SysML, as specified in Arnould et al. (2019, p. 1), is “...a general-purpose modeling language for
systems engineering.” which also “...reuses a subset of UML 2.5 and provides additional exten-
sions...”. Meant as support for systems engineers, interest in SysML has also been on the rise in
the field of software engineering. While well suited to working with complex systems, SysML is
often customized with profiles to better fit the system domain (Wolny, Mazak, Carpella, Geist, &
Wimmer, 2020). Examples would be extensions for simulation modeling capabilities (Bock, Bar-
bau, Matei, & Dadfarnia, 2017) or for modeling a manifacturing system (Vogel-Heuser, Schütz,
Frank, & Legat, 2014). The profile mechanism is consistent with OMG (2016). The primary
mechanism for the creation of profiles is the stereotype. Stereotypes extend metaclasses and can
be applied to model elements that conform to said metaclass. To describe systems with SysML,
so called blocks are used. A block is a general-purpose modular unit, that can model the kinds
of components, connections between them, etc. SysML blocks are based on UML classes. The
standard state machines are imported from UML. They model states and the transitions be-
tween them, representing the behaviour of an object. Several new diagrams are also introduced,
including the block definition diagram, which is based on the UML class diagram. Said diagram
is used to capture features of and relationships between blocks (Arnould et al., 2019). Block
definition diagrams and state machine diagrams are the two types used in this thesis. A tool
for modeling SysML with a graphical framework is Eclipse Papyrus1, which will be used in this
thesis (Nyamsi, 2020).

Metamodels are models that describe models. They are an abstraction of models, just like
models are an abstraction of reality. Metamodels can be used to define new and extend existing
modeling languages (Jeusfeld, 2009). When all elements of a model can be expressed with
instances of the respective meta-elements, a model conforms to a meta-model. A metamodel of
a metamodel would be a meta-metamodel. This could be continued indefinitely, but it usually
does not make sense to go beyond meta-metamodels (Brambilla et al., 2017). This leads to a
four-layer architecture for metamodeling.

1. M0 layer: meta-metamodel

2. M1 layer: metamodel

3. M2 layer: model

4. M3 layer: semantic artifacts like code

1https://www.eclipse.org/papyrus/
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Layers M0 to M2 define the layers that follow them, while M2 abstracts M3 (Giese, Karsai, Lee,
Rumpe, & Schätz, 2010).

Model transformations take models as input and produce models as output according to specified
rules (Sendall & Kozaczynski, 2003). They are defined at the metamodel level. One metamodel
is the source of the transformation, one is the target. Rules on how to map elements of one
metamodel to elements of the other are defined. The model transformations can then be exe-
cuted on instances of said metamodels (Brambilla et al., 2017).

A template is a blueprint describing an output. It consists of a static and a dynamic part. The
static part will appear in the output unchanged. The dynamic part contains generation logic.
In TBCG, a template engine is used to execute templates and replace the dynamic part with
input provided at run-time (Syriani, Luhunu, & Sahraoui, 2018).

In MDSE, software is derived from models and their transformations. Everything is a model in
MDSE, with transformations being models of operations on models. A modeling language that
specifies the rules models must follow is needed. Such modeling languages can be designed to
be specific to a certain context (Domain-Specific Languages) or to be more general in nature
(General-Purpose Modeling Languages) (Brambilla et al., 2017). Code generation also plays a
part in MDSE. It allows the automatic generation of an implementation from a model, making
models primary artifacts of software development, thus “model-driven” (Jörges, 2013). Since
the process of solving a problem in software development is a form of modeling and program
code can also be considered as a model, the model-driven approach is well suited to software
development (France & Rumpe, 2014).

Regular expressions, often shortened to “regex”, are a tool to parse and manipulate text. They
have their own notation which allows the definition of patterns that the regular expression will
match. Matches in a text can then be found and processed further. Support for regular expres-
sions is built into many programming languages, like Java, for example (Friedl, 2006).

ML is a field of Artificial Intelligence (AI) that focuses on a system learning from data. ML
generally works by training a model on a set of data. Based on said trained model, future
scenarios are then predicted. It is already used in everyday applications, like web searches (Awad
& Khanna, 2015). It has also seen use in more complex fields, like geoscience (Bhattacharya,
2021) or Cyber Physical Systems (CPS) (Beyerer et al., 2021). It is well suited for tackling
complex problems and large amounts of data. According to Géron (2019), ML can be roughly
separated into:

• Supervised learning: the data is labeled (the desired solutions are known)

• Unsupervised learning: the data is not labeled

• Semi-supervised learning: the data is partially labeled
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• Reinforcement learning: the system can perform actions and learns the best strategy based
on rewards and penalties for said actions

Usually, the ML workflow follows the steps as described by Raschka and Mirjalili (2021):

• Preprocessing: raw data is made useable

• Learning: a model is selected and trained on training data

• Evaluation: the trained model is evaluated based on unseen test data

• Prediction: the trained and evaluated model is used to make predictions based on new
data

1.2. Literature study

Brambilla et al. (2017) provide a comprehensive guide to MDSE for readers of all skill levels.
This includes, but is not limited to, the basic principles behind MDSE, Model-driven Archi-
tecture (MDA), Model-to-Model (M2M) and Model-to-Text (M2T) transformations, how to
integrate MDSE into the development process, etc.

Morin, Fleurey, Husa, and Barais (2016) showcase a generative middleware. Their focus is on
abstracting away different programming languages, instead offering a custom language that can
be compiled into various goal languages. Their custom language is based on ports and messages,
which are used to define a model of the system to generate. This happens via a specific textual
representation.
A custom, textual language is used instead of a general-purpose modeling language like SysML.
The generation cannot be configured without changing the source code.

As presented by Harrand, Fleurey, Morin, and Husa (2016), ThingML is a Domain-Specific Mod-
eling Language (DSML) targeted at distributed systems. With said DSML, users can create a
model (also graphically) of Things (software components) and Configurations (their intercon-
nections). A family of compilers can then generate code from this model, with various target
languages available. ThingML is targeted at software developers and architects, who also have
the knowledge to extend the DSML.
A custom DSML is used instead of a modeling language standard like SysML. Furthermore, no
additional configuration options for the code generation are provided. The source code needs to
be changed to adapt it. The same applies if the user wants to supply their own templates for
code generation.

Based on ThingML, Moin, Badii, and Günnemann (2021) offer an extension that focuses on
MDSE for Data Analytics and Machine Learning (DAML). Besides things and messages, ML
can now also be modeled. The modeling happens via a DSML in textual form. Code can then be
generated based on the model. Any extensions for the ML capabilities would require extending
the DSML.
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As it is based on the work done by Harrand et al. (2016), the same weaknesses apply: a custom
DSML instead of a modeling language standard and no ways to configure the code generation
or for the user to supply their own code to generate without changing the source code.

Stratum, as presented by Bhattacharjee et al. (2019), offers a custom DSML to compose an ML
pipeline. It is built on top of WebGME2, thus offering a graphical interface. Stratum is geared
towards ML experts and focuses on supporting the building of ML models. Code generation
is also supported, and various ML frameworks are integrated. Further extensions can be pro-
grammed in.
As with Harrand et al. (2016) and Moin et al. (2021), a custom DSML instead of a modeling
language standard is used for modeling. No options to configure the code generation are pro-
vided, and user extensions require programming.

Hartmann, Moawad, Fouquet, and Le Traon (2017) propose an approach focused on micro
learning, meaning a focus on small learning units that compose ML. To this end, they introduce
a textual editor that allows the creation of models adhering to their own metamodel, an extension
of UML focusing on said small learning units. They further explicitly define the connection
between learning units and domain knowledge. It is intended to be used in Internet of Things
(IoT) environments where performance is of the essence.
The modeling is currently only textual, though the authors state their intention to propose an
additional graphical modeling language. It is also strictly targeted at ML experts.

1.3. Research questions and limitations

As shown in the literature study, the main research gaps are:

1. Not using a modeling language with a formalized specification and existing graphical tools
like SysML. This hampers reusability of models and knowledge transfer to other contexts.

2. No configuration of the output generation outside of changes to the model or the source
code. This reduces adaptability and extendability of the output generation.

3. No user supplied templates for code generation, which reduces extendability.

This thesis will close these gaps and answer the following research questions.

1. Is it possible to use MDSE to go from a SysML model to a ML IPYNB?

2. Can MDSE be combined with TBCG in such a way that the generation of output can be
adapted without changing the input model or the underlying code?

3. Can a user supply templates for TBCG with the approach mentioned above?

The following limitations apply to keep the scope reasonable.

1. The input model is fixed as a SysML model created in Papyrus.
2https://webgme.org/
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2. Allowing user supplied metamodels and transformations is out of scope.

3. The output will be fixed as an IPYNB.

4. The knowledge back-propagation will be conceptualized, but not implemented due to time
constraints.
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2. Methods

This chapter will first present the general architecture in section 2.1. It will then go into more
detail on the individual parts. Namely the SysML model in section 2.2, the model transforma-
tions in section 2.3, the mapping configuration in section 2.4, how templates and mappings are
handled in section 2.5, the output generation in section 2.6 and finally the concept for knowledge
back-propagation in section 2.7.

2.1. General architecture

Figure 2.1 shows the architecture for this thesis. The starting point of the approach is the SysML
model. In said model, an expert models the needed ML methods using stereotypes provided
by a custom profile. Then, a mapping configuration in JavaScript Object Notation (JSON)
format is created, with mappings for the stereotypes and individual blocks. Following that,
the information needed for the generation of the ML code is extracted from the model using
model transformations. The information gained from the model and the information provided
by the JSON mapping configuration are combined with templates and processed. The dynamic
parts of the templates are replaced with the extracted model information. From this, output is
generated. This can be seen in Figure 2.1, where, for example, “${varname}” is mapped to the
stereotype attribute “myString” and therefore replaced with “abcd”.

2.2. SysML Model

The information in the SysML model can be roughly separated into three categories relevant for
this thesis.

1. The modeled system

2. The modeled ML information for that system

3. State machine diagrams representing an ordered collection of ML information (e.g. an
IPYNB)

The general system is modeled with no regard to ML. Application of ML techniques can then
be done by someone with knowledge in the field, reusing information from the already modeled
system. An example could be reusing the information collected by a sensor as fields of a Comma
separated values (CSV) file. After the ML information is added to the model, one or several
state machine diagrams are created to combine modeled ML tasks into an ordered workflow.
Each state machine diagram represents a desired IPYNB output.
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Figure 2.1.: General architecture overview

Information in the model regarding ML tasks can be separated into four categories.

1. Information of stereotype attributes

2. Information of block properties

3. Information of connected blocks

4. Information stored in comments

After applying a stereotype to a block, the attributes of the stereotype for that block can be
set, with an example seen in Figure 2.2. The stereotype in question is the “CSV” stereotype,
applied to the block “CSV_1”. The shown attributes are:

• Delimiter: with which character the rows of the CSV are separated

• SkipNrOfLines: how many rows of the CSV are to be skipped

• GenerateTimestamp: whether a timestamp for entries is to be generated or not

• Encoding: the format the file is encoded in

• Path: the path to the CSV file

• VariableName: the name of the variable the loaded CSV is to be assigned to

Information can also be stored on properties of a block itself, as Figure 2.3 shows. Stored
information can be attributes or association ends. Attributes can have types and default values of
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Figure 2.2.: Stereotype attributes for a block

said type (Cook et al., 2017). In this case, the properties are attributes and show the fields saved
in the CSV file represented by this block. Connections between blocks also contain information
on how blocks relate to each other, a system hierarchy, for example (Arnould et al., 2019). In
Figure 2.4, such a connection is shown. The connection in question is a shared association,
meaning it has shared aggregration semantics. Aggregration refers to instances being grouped
together by another instance. What exactly a shared aggregration means can vary (Cook et al.,
2017). In this thesis, shared associations represent groupings of instances where the parts can
exist without the whole. The information contained in this connection is which date shall be
formatted as specified in the “DateConversion” stereotype applied to the “Format_Date” block.
The connected “CSV_1” block has a “date” property, and the connection signals that this “date”
property is to be converted.
Any desired markdown is added as a comment to a block, which will lead to a result as seen
in Figure 2.5. Comments are converted to markdown cells that are placed before the block
they belong to. In the example shown, the code cell for the date conversion is preceded by a
markdown cell with the content being the same as the shown comment.
Finally, state machine diagrams collect ML tasks into a workflow. To this end, a custom stereo-
type is offered, which allows a state in a state machine diagram to be connected to a ML block.
With this, the execution order of the generated python code is determined, with an example
shown in Figure 2.6. Beginning from the entry point labelled “Start”, the workflow follows a

Figure 2.3.: Properties of a block
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Figure 2.4.: A connection between blocks

Figure 2.5.: Weather comment example

single line of transitions, with the order of the states and their connected blocks representing
the desired execution order for the output IPYNB file. The exit point, labelled “Done”, marks
the end of the workflow.

2.3. Model transformation

To be able to process the information contained in the model further, the information needed
for the ML code generation is extracted. A M2M transformation is used for this. The source
metamodel is SysML, the target metamodel is a custom metamodel which will be described in
this section.

The goal of the transformation is to decompose the SysML structure into a simpler represen-
tation, seen in Figure 2.7. For each block linked to a state in a state machine diagram, a
BlockContext is created. Said BlockContext contains the qualified name of the underlying UML
class of the block as well as the class itself. It also contains an integer for sorting the Block-
Contexts called “executionOrder”. This will be based on the order of the connected states. The
BlockContext connected to the first state after the entry point will have executionOrder 0, the
one connected to the following state 1, etc. BlockContexts which are not connected to a state
themselves, but which are connected to one or more blocks that are connected to a state in
the state machine diagram, receive an execution order of -1. A BlockContext can also contain
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Figure 2.6.: State machine diagram as workflow

several markdown strings. It furthermore contains several maps.

1. A map between the qualified name of a stereotype and the qualified name of the attributes
of said stereotype

2. A map between the qualified name of a property and its value

3. A map between the qualified name of a class property and the BlockContexts said property
links to

Concrete instances of the source metamodel are SysML models, while concrete instances of
the target metamodel are Java classes. To get from the source to the target metamodel, the
transformation rules:

1. Decompose all properties of a primitive type to the mapping between the qualified name
of the property and its value

2. Create a new BlockContext (if it does not already exist) for any property of type class
and map the qualified name of the property to the newly created or already existing
BlockContext or BlockContexts

3. Perform the same decomposition for the attributes of all applied stereotypes while also
mapping the qualified name of the stereotype and the qualified names of its attributes

As the starting point of the transformation, a state machine diagram is used. Beginning from
the entry point, the transitions are followed and for each state, a BlockContext is created for
the connected block according to the laid out rules until the exit point is reached. This will
transform only the part of the model specifying the ML information. After the transformation
is finished, the BlockContexts are sorted by their execution order, so subsequent steps preserve
the order specified in the state machine diagram. BlockContexts with an executionOrder of −1

are not directly considered during code generation, although the information they provide to the
BlockContexts linked to them is. The end result of the M2M transformation is a map where the
key is the UML class from the source SysML model and the value is the BlockContext created
during the transformation. The map is sorted according to the execution order.
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Figure 2.7.: Target Metamodel

2.4. Mapping configuration

In order to allow the user to configure the provided templates and to add own templates, as
well as allowing extensions in modeling, a mapping configuration is introduced. Said mapping
configuration is in a JSON format and defines how attributes of stereotypes and other mod-
eled information is mapped to template variable names. The basic structure of the mapping
configuration can be seen in Code Fragment 2.1. “trimEmptyLines” is a boolean flag. If true,
lines in templates that are empty or consist only of whitespaces and/or newlines are trimmed
during code generation. The “blockedStereotypes” section is for configuring which stereotypes
not to generate code for. Information extraction will still happen, so the information in the
BlockContext will be available to other linked BlockContexts, but no code will be generated for
the specified stereotypes. This will affect all blocks with the specified stereotype applied. To
allow blocking the code generation for only specific blocks, the “blockedNames” section can be
used. The principle is the same as with the “blockedStereotypes” section, but specific blocks can
be targeted instead of stereotypes. The “constants” section allows the configuration of constants
that are available to all templates.

“stereotypeMappings” is the section for defining how stereotypes should be mapped into tem-
plates. The name of the stereotype specifies which stereotype the mapping is for. The mapping
contains the template name, which defines which template to use. Currently, a stereotype can
only have one template assigned to it. How to map stereotype attributes to the variables of the
template based on their names is defined in the “properties” section. Here, the key (the value on
the left) is the original name, meaning the name the attribute of the stereotype has. The value
(the value on the right) is the name of the template variable the attribute is to be mapped to.
Mappings in the “properties” section are defined on the stereotype the attribute belongs to and
are inherited by specializations of said stereotype without having to be mapped again. An ex-
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ample would be a stereotype “Text_File” that has an attribute “path”. A stereotype “CSV” is a
specialization of “Text_File” and has the attribute “delimiter” and inherits “path”. The mapping
for “path” is defined in the “properties” section for the stereotype mapping of “Text_File”, while
the mapping for “delimiter” is defined in the “properties” section of the stereotype mapping of
“CSV”.

A special case is if the stereotype attribute is a list. In this case, elements of the list can be
accessed by using the name of the list, square brackets and the index of the desired element,
e.g. MergeOn[0]. Note that indices start with zero. Another special feature for properties is the
OWNER keyword. It allows the access of properties from the element that owns the property
the OWNER keyword is applied to. Keywords are separated by periods.
An example stereotype mapping can be seen in Code Fragment 2.2. The mapping is for a
stereotype called “DataFrame_Merge”. In the “properties” section, an example for both list
access and the use of the OWNER keyword can be seen. “MergeOn” is an attribute of the
“DataFrame_Merge” stereotype. It specifies on which attribute a merge between dataframes is
to take place. It holds a list of properties marked with a custom property stereotype.
Figure 2.8 shows how this information looks like in the model. From a list of properties, elements
can be accessed via indices, with the starting index being 0. In this example, “MergeOn[0]” refers
to the property named “date”, while “MergeOn[1]” refers to the property named “date_date”.
With the OWNER keyword, the blocks holding these properties can be gotten.
In Figure 2.9, the owners can be seen in the SysML model. “CSV_1” and “CSV_2” are the
respective owners.
The final part of the mapping example with the OWNER keyword from Code Fragment 2.2 is
the name of the attribute of the owner whose value is to be mapped to the new name. “Vari-
ableName” is an attribute of the stereotype “CSV”. The “VariableName” of “CSV_1” will be
mapped to the template variable named “one”, that of “CSV_2” to “two”.

The final part of a stereotype mapping is the “modelCommands” section. This section is for
mappings that do not directly concern attributes of the stereotype, but other model information.
Keywords are used to specify where in a model information is located. The available keywords
and their meanings are described on page 25.

Figure 2.8.: MergeOn Attribute Example
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{
"trimEmptyLines": <true||false >,
"blockedStereotypes": [

"<blockedStereotypeName >",
...

],
"blockedNames": [

"<blockedBlockName >",
...

],
"constants": {

"<TemplateVariableName >": "<ConstantValue >",
...

},
"stereotypeMappings": {

"<StereotypeName >": {
"template": "<TemplateName >",
"properties": {

"<stereotypeAttributeName >": "<TemplateVariableName >",
...

},
"modelCommands": {

"<ModelCommandKeywordCombination >": "<TemplateVariableName
↪→ >",

...
}

},
"nameMappings": {

"<BlockName >": {
"template": "<TemplateName >",
"properties": {

"<PropertyOrStereotypeAttributeName >": "<
↪→ TemplateVariableName >",

...
},
"modelCommands": {

"<ModelCommandKeywordCombination >": "<TemplateVariableName
↪→ >",

...
}

}
}

}

Code Fragment 2.1: Mapping Configuration Structure
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{
"DataFrame_Merge": {

"template": "dataframe_merge.vm",
"properties": {

"MergeOn [0]. OWNER.VariableName": "one",
"MergeOn [1]. OWNER.VariableName": "two",
"MergeOn [0]": "left",
"MergeOn [1]": "right",
"How": "how"

},
"modelCommands": {

"THIS.BLOCK.NAME": "new_name"
}

}
}

Code Fragment 2.2: Example mapping using OWNER keyword

Figure 2.9.: MergeOn owners in model
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• THIS: the information can be found on the block the stereotype is applied to

• CONNECTED: the information can be found on a block that is connected to the block
the stereotype is applied to

• BLOCK: the information is stored on the block directly (currently only the name of the
block is used)

• NAME: the information is the name of the block specified by the preceding keywords

• PROPNAME: the information is the name of the property specified by the preceding
keywords (only meant for properties with stereotypes applied to them)

THIS and CONNECTED come first, followed by either BLOCK or the name of a stereotype.
The last part of the key is the attribute which is to be mapped to the template variable name,
the NAME keyword or the PROPNAME keyword. In Code Fragment 2.2, a model command
can already be seen. The key consists of the three keywords THIS, BLOCK and NAME, sepa-
rated by a period. This means the value to be mapped is the name of the block the stereotype
“DataFrame_Merge” is applied to. It is to be mapped to the template variable “new_name”.

Finally, the configuration contains a section for name mappings. These are mappings that only
affect specific blocks, not whole stereotypes. The basic structure and available keywords follow
the same pattern as the stereotype mappings. Name mappings block stereotype mappings. This
means that if a block has a name mapping and a stereotype with a stereotype mapping defined,
only the name mapping applies. Code Fragment 2.3 shows a name mapping example for a block
called “CSV_1”. The structure is the same as a stereotype mapping. For the rest of this thesis,
the key of both “properties” and “modelCommands” mappings will be referred to as “original
name”, the value as “remapped name”. Using Code Fragment 2.3 as an example, “VariableName”
is the original name and “varname” is the remapped name.

2.5. Template and mapping handling

To generate code, the BlockContexts created via the M2M transformation and the mappings
provided with the mapping configuration JSON are combined with templates. The templates
used are Apache Velocity templates1. Custom functionality for default values was added, with
an example template using a default value seen in Code Fragment 2.4. The syntax for a template
variable with a default value is to use the formal reference notation2 of Apache Velocity, but put
the variable name and the desired default value in parentheses, separated by a comma. In Code
Fragment 2.4, the template variable “enc” has a default value string of “UTF-8”. Such default
values are only used if the value mapped from the BlockContext is null, otherwise the provided
value takes precedence over the default value. Note that default values need only be provided
once per template, even if a variable appears multiple times.

1https://velocity.apache.org/engine/devel/user-guide.html#velocity-template-language-vtl-an
-introduction

2https://velocity.apache.org/engine/devel/user-guide.html#formal-reference-notation
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{
"CSV_1": {

"template": "name_csv.vm",
"properties": {

"VariableName": "varname",
"Path": "p",
"Encoding": "e",
"Delimiter": "d",
"SkipNrOfLines": "s",
"GenerateTimestamp": "GenerateTimestamp"

},
"modelCommands": {}

}
}

Code Fragment 2.3: Name mapping example

import pandas as pd

${varname} = pd.read_csv ("${path}", sep="${delim}",
encoding ="${(enc ,"UTF -8")}", skiprows=${skip})

Code Fragment 2.4: Template with default value

Should one variable have multiple different default values defined, only the first default value
specified is taken into account. Default values will be used even if they are defined after the
variable in question has been used before. An example can be seen in Code Fragment 2.5. The
variable test is used twice before a default value is defined, and another default value is defined
later.
This will generate the output seen in Code Fragment 2.6. As can be seen, the first default value
specified was used for all occurrences of the template variable.
The Apache Velocity Engine3 is being used for TBCG. Variables for the templates are entered
into a Velocity context as key-value pairs. This is where the BlockContexts and the mapping
configurations are used. Template handling starts with a map of UML classes mapped to their
BlockContexts, and a Java representation of the JSON mapping configuration file called Map-
pingWrapper.

Pseudocode demonstrating the handling of the TBCG can be seen in Code Fragment 2.7. Each
BlockContext is first converted into a VelocityContext and then, based on the stereotypes applied

3https://velocity.apache.org/engine/

${test}
This is a test with default variable ${test}.
${(test ,12)}
Now , does the value change , ${(test ," abcdefg ")}?
${test}

Code Fragment 2.5: Default value order example template
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12
This is a test with default variable 12.
12
Now , does the value change , 12?
12

Code Fragment 2.6: Default value order example output

to the block in the SysML model, the stereotype mappings are applied. Following those, the
name mappings are applied. The result of each mapping is a cell in the notebook, with the final
result being a notebook consisting of said cells. Care is also taken to not execute templates
multiple times.
Creating a VelocityContext from a BlockContext is done as shown in Code Fragment 2.8. If the
BlockContext was not handled before, each property of the BlockContext is considered. First,
the stereotype mapping is retrieved based on the property. This is possible as the properties have
the qualified names, which contain the name of the stereotype if they are based on a stereotype
attribute. If a stereotype mapping exists, its properties are checked for one that matches the
BlockContext property. Should there be a match, it is checked whether the original name from
the stereotype mapping contains the keyword OWNER. If it does, it is handled as shown in Code
Fragment 2.9. Otherwise, the value of the BlockContext property is put into the VelocityContext
with the remapped name from the stereotype mapping as the key. The same process is performed
for a possible name mapping. Next, the model commands for both stereotype mappings and
name mappings are handled, which is described in Code Fragment 2.10. Afterwards, the whole
process is repeated recursively for all linked BlockContexts. The resulting VelocityContexts are
merged into the one created before. “Merge” means to put all key-value pairs for keys that do
not exist in the VelocityContext created at the start into said VelocityContext. This will result
in one VelocityContext for each BlockContext.
Handling the OWNER keyword is done as described in Code Fragment 2.9. First, an empty set
is created. The set is needed because it is theoretically possible that multiple owners are found.
Currently, all found owners are added to the set and the first one is returned. The OWNER
keyword combination also contains the name of the attribute to get. With the qualified name
of the property the OWNER keyword is applied to, the owner can be gotten. All BlockCon-
texts linked to the one being currently evaluated are then checked. Should the name of the
owner match the name of the class connected to the linked BlockContext, the properties of said
BlockContext are checked for a match with the attribute specified in the keyword combination.
Should there be a match, the value of that property is added to the set created in the beginning.
After checking each linked BlockContext, the first value from the set is returned. Note that
currently, the OWNER keyword is limited to directly connected blocks due to the handling not
being recursive.
The handling of model commands from Code Fragment 2.8 is shown in Code Fragment 2.10. All
applied stereotypes from the class connected to the BlockContext are iterated over. A stereotype
mapping is retrieved for each applied stereotype. Every model command from the mapping is
checked for the keywords THIS and CONNECTED. Based on which keyword is found, the
implementation handles the case and returns a value. This value is put into the VelocityContext
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for each (Class , BlockContext) do
create VelocityContext from BlockContext
if(markdown of BlockContext is not null OR empty) do

create markdown cell and add to notebook
end if
put constants from MappingWrapper into VelocityContext
for each applied stereotype do

get stereotype mapping from MappingWrapper
if a stereotype mapping exists
AND the stereotype is not blocked
AND the name of the block is not blocked
AND the template has not been evaluated yet do

handle the template from the mapping
evaluate with the VelocityEngine and VelocityContext
add template to already evaluated templates
create python cell and add to notebook

end if
end for each
get name mapping based on class name
if a name mapping exists
AND the name is not blocked
AND the template has not been evaluated yet do

handle the template from the mapping
evaluate with the VelocityEngine and VelocityContext
add template to already evaluated templates
create python cell and add to notebook

end if
end for each
return the created Notebook

Code Fragment 2.7: Pseudocode for TBCG

Create an empty VelocityContext
if BlockContext was not already handled do

for each property of BlockContext do
get stereotype mapping from MappingWrapper
for each property of stereotype mapping do

if stereotype mapping property matches BlockContext property do
if orignal name contains keyword OWNER do

handle OWNER
put return value into VelocityContext with remapped name

else do
put value of BlockContext property into VelocityContext
with remapped name

end if
end if

end for
repeat process with name mapping instead of stereotype mapping

end for
handle model Commands
for each linkedBlockContext of BlockContext do

create VelocityContext from linkedBlockContext
merge into beginning VelocityContext

end for
end if
return VelocityContext

Code Fragment 2.8: Pseudocode for creating a VelocityContext from a BlockContext
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create empty set
get owner name from property via qualified name
for each linked BlockContext do

if owner name equals name of linked BlockContext do
for each property of the linked BlockContext do

if name of attribute to get equals property name
add property value to set

end if
end for

end if
end for
return first value in set

Code Fragment 2.9: Pseudocode for handling OWNER keyword

with the remapped name from the stereotype mapping. The name mapping is then retrieved
using the name of the connected class and the process is repeated with the name mapping.
Handling the THIS keyword is shown in Code Fragment 2.11. If the second keyword is BLOCK, a
method for handling the rest of the keyword combination is called, shown in Code Fragment 2.13.
This means that the THIS keyword can currently only be used together with the BLOCK
keyword.
How the CONNECTED keyword is handled is shown in Code Fragment 2.12. An empty set
is created, since it is theoretically possible for multiple connected elements fulfilling the key-
word combination to be found. Each property of each BlockContext linked to the one being
currently evaluated is compared via name to the name given in the keyword combination. If
there is a match, a handling method for the rest of the keyword combination, as seen in Code
Fragment 2.13, is called. The return value is then added to the set. Afterwards, the linked
BlockContext that was just evaluated is added to a list. All BlockContexts that are linked to
the linked BlockContext are then recursively handled the same way, unless they are in the list
and have therefore already been evaluated. At the end, the first element of the set is returned.
The “handle final keywords” method used before is shown in Code Fragment 2.13. If the final
keyword is NAME, the name of the class connected to the BlockContext is returned. Should the
keyword be PROPNAME, an empty set is created. Then, for each property of the BlockContext,

for each applied stereotype of connected class do
get stereotype mapping from MappingWrapper
for each model command in the stereotype mapping do

if model command contains keyword THIS do
handle THIS
put return value into VelocityContext with remapped name

else if model command contains keyword CONNECTED do
handle CONNECTED
put return value into VelocityContext with remapped name

end if
end for

end for
get name mapping via the name of the connected class
repeat process for name mapping

Code Fragment 2.10: Pseudocode for handling VelocityContext creation for model commands
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if second keyword equals BLOCK do
return handle final keywords

end if

Code Fragment 2.11: Pseudocode for handling THIS keyword

create empty set
for each linked BlockContext do

for each property of the linked BlockContext do
if the name equals the name of the connected element do

handle final keywords
add return value to set

end if
end for
add linked BlockContext to already checked list
for each linked BlockContext of the current linked BlockContext do

if linked BlockContext is not in already checked list do
handle connected element
add returned object to set

end if
end for

end for
return first object in set

Code Fragment 2.12: Pseudocode for handling CONNECTED keyword

a comparison is made between the name of the stereotype of the property, which can be retrieved
via the qualified name, and the name of the stereotype the PROPNAME keyword was applied
to. If there is a match, the name of the property is added to the set. After the iteration over
the properties of the BlockContext, the first element from the set is returned. The third option
is no keyword, but the name of the property to get. In this case, an empty set will be created
and each property of the BlockContext will be checked for a match. If there is one, the value
of the property is added to the set. After checking each property of the BlockContext, the first
element in the set is returned.
Next, what exactly “handle the template from the mapping” from Code Fragment 2.7 means
is elaborated on in Code Fragment 2.14. After loading the template from the file, each line is
processed. For each regex match, the value for the variable name from the template is retrieved
from the context. If the value is null, the default value is placed in the context. Since the
default values are not part of the Velocity syntax, the combination of variable name and default
value is replaced with only the variable name in formal reference notation. The processed string
can then directly be evaluated with the VelocityEngine and the VelocityContext with the added
default values.

2.6. Output generation

The template generation described in section 2.5 results in a notebook object, the structure of
which is described in Figure 2.10. A notebook consists of metadata, cells, and fields providing
further information. The cells can be divided into markdown and code cells. The difference
between them is that code cells have an additional execution count and outputs. Both cells have
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if keyword equals NAME do
return name of class connected to BlockContext

else if keyword equals PROPNAME do
create empty set
for each property of BlockContext do

if stereotype name of property equals stereotype name do
add propname to set

end if
end for
return first object in set

else do
create empty set
for each property of BlockContext do

if property name equals name to get
add property value to set

end if
end for
return first object in set

end if

Code Fragment 2.13: Pseudocode for handling final keywords

regex for default value = \$\{\(([a-zA -Z0 -9_.-]*) ,"?([a-zA -Z0 -9_.-]*) "?\)}
load the template from the file
for each line in the template do

while there are regex matches in the line do
parameter name = first group of match
default value = second group of match
get the value from the context with the parameter name
if the context value is null do

put the default value in the context
end if
replace default value in template with variable name

end while
end for each
return the template string after processing

Code Fragment 2.14: Pseudocode for handling templates and default values
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an id, a cell type and source strings. The fields “variables” and “connectedElementNames” are
for an eventual implementation of knowledge back-propagation as described in section 2.7 and
will not be transferred to the IPYNB file. With this structure, the Java object can be directly
written to a file with Jackson4. When given the “.ipynb” file ending, the file will be recognized
as an IPYNB.

2.7. Knowledge back-propagation

“Knowledge back-propagation” means to propagate information back from the output of the
executed IPYNB to the SysML model. Figure 2.11 shows Figure 2.1 updated to reflect this.
The added “ChangeListener” listens for changes in the output and propagates these changes
back to the model.
For this to happen, several criteria need to be met.

• The output needs to allow the observation of changes

• Said changes must be uniquely matched to elements of the intermediate model (the Block-
Context) or the original model (the SysML model)

• If the match happens on the intermediate model, the changes must be then uniquely
matched to elements of the original model from there

The used output for this thesis, IPYNB files, are run on servers, e.g. localhost. Variables of
cells can be observed. The order of cells matches the order of BlockContexts as provided by
the model transformation. As such, the variables can, in theory, be matched to their respective
BlockContext counterparts. The BlockContext is both connected to the original SysML block
and uses the qualified names of properties and stereotype attributes. If the SysML model has
been modeled correctly, the qualified name is always unique. Therefore, the matching from the
BlockContext to the SysML block is also possible. This leads to a possible workflow as seen in
Code Fragment 2.15. The workflow is specific to the thesis implementation, but as long as the
output is observable and changes can be matched to their original SysML elements, a similar
workflow should be applicable regardless of output format.

4https://github.com/FasterXML/jackson

observe variables in cells in notebook
if variable changes do

find BlockContext based on cell
find variable in BlockContext
get qualified name from BlockContext property
get element from SysML model based on qualified name
change value of element

end if

Code Fragment 2.15: Pseudocode for knowledge back-propagation concept
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Figure 2.10.: Output notebook structure

Figure 2.11.: General architecture with knowledge back-propagation
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3. Results

This chapter will list the results of the thesis by applying the framework to a use case. sec-
tion 3.1 will describe the use case, subsection 3.1.1 the SysML model created for the use case,
subsection 3.1.2 will describe the mapping configuration and subsection 3.1.3 the output IPYNB.

3.1. Use case weather

For this use case, the SysML model represents a weather station. The station consists of sensors
measuring various data. ML is modeled for this system using a custom metamodel. The goal of
the ML is to predict the weather condition.
The data used for this use case is taken from Kaggle1, licensed under CC BY-NC-SA 4.02.
Said dataset is split into two. The first dataset has the fields “date, precipitation, temp_max,
temp_min ”, with the format of “date” being changed from “YYYY-MM-DD” to “DD-MM-
YYYY”. For the second dataset, the fields are “date, wind, weather”, with the “date” field being
renamed to “date_date”. The delimiter is changed from “,” to “;”.

3.1.1. Weather SysML model

The first information modeled is the information regarding the data storage. Figure 3.1 shows
the diagram. Data is stored in two CSV files, with the fields modeled as properties of the
respective block with the fitting stereotype for their type applied.
Stereotype attributes for the block “CSV_1” are set as shown in Figure 3.2. The delimiter and
file encoding are set to correspond to the CSV file, no lines are to be skipped, no timestamp
generation happens, and the the name of the variable is to be “df_one”. “Path” needs to point
to the location of the CSV file. This information allows one to load the information from the
CSV file into a Pandas3 dataframe.
For the Block “CSV_2”, the same stereotype attributes need to be set, as seen in Figure 3.3. In
comparison to “CSV_1”, the delimiter and path have changed, and the variable name is set to
“df_two”.
How to preprocess the loaded data is modeled next. This can be seen in Figure 3.4. Both of
the CSV blocks from Figure 3.1 are reused in this diagram. For the “CSV_1” block, the date is
formatted so it has the same format as the date in the “CSV_2” block.
To this end, the stereotype attribute for “Format_Date” is set as shown in Figure 3.5. The only
attribute of this stereotype is the desired output format of the date conversion, “%Y-%m-%d”
in this case.

1https://www.kaggle.com/datasets/ananthr1/weather-prediction
2https://creativecommons.org/licenses/by-nc-sa/4.0/
3https://pandas.pydata.org/
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Figure 3.1.: Weather data storage model

Figure 3.2.: Weather data storage “CSV_1” stereotype attributes

Figure 3.3.: Weather data storage “CSV_2” stereotype attributes
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Figure 3.4.: Weather preprocessing model

Figure 3.5.: Weather preprocessing “Format_Date” stereotype attributes

Note that the information for the original format of the date is stored in the “Datetime” stereo-
type on the “date” property itself, as seen in Figure 3.6. The original format is “%d-%m-%Y”.
The MappedToName attribute is an empty string and will not be used.
Next, “CSV_1” and “CSV_2” are merged into one dataframe. This is accomplished by connect-
ing them to the “Merge_DF” block, which has the stereotype for merging dataframes applied
with the attributes as shown in Figure 3.7. The “MergeOn” attribute specifies that the merge
is to take place on the properties “date” and “date_date”, which are references to the actual
properties. “How” determines the type of merge, “inner” in this case.
The final step of the preprocessing is the encoding applied to the merged dataframe. For “En-
coded_Values”, the stereotype attributes are set as seen in Figure 3.8. The property to encode is
“weather”, which is again a reference to the actual property that is to be encoded. The encoding
is necessary to turn the string values of “weather” into numeric values that ML can work with.
Following the preprocessing, the algorithms used are defined. This is shown in Figure 3.9. The
merged dataframe, reused from Figure 3.4, is split into training and test data. Algorithms which

Figure 3.6.: Weather preprocessing “date” stereotype attributes
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Figure 3.7.: Weather preprocessing “Merge_DF” stereotype attributes

Figure 3.8.: Weather preprocessing “Encoded_Values” stereotype attributes

use the split data are defined. To model the train-test-split using the merged dataframe, the
block “Merge_DF” is connected to the block “TrainSplit”.
The stereotype attributes for “TrainSplit” are set as shown in Figure 3.10. “TrainTestSplitSize”
determines the split between training and test data, with 0.7 representing a split into 70 percent
training data and 30 percent test data. The X and Y features are references to the properties.
“ML_1”, representing an algorithm to use, has stereotype attributes as seen in Figure 3.11. The
chosen algorithm is a Random Forest Regressor, to be applied on the training and test data as
split on the connected “TrainSplit” Block.
For “ML_2”, the algorithm is set as seen in Figure 3.12. It operates on the same training and
test data as “ML_1”, but uses a Decision Tree Regressor instead.
After determining the algorithm to use for the ML model, it can be used to predict and measure
the accuracy of said prediction. Figure 3.13 shows how this is modeled. Once again, already
defined blocks are reused, “ML_1” and “ML_2”. They are then connected to “Predict_ML1”
and “Predict_ML2” respectively. These blocks have the “Predict” stereotype, which has no
attributes. Necessary information is gained from the connections. Each prediction is connected
to a block for measuring the mean absolute error, “MAE1” and “MAE2”.
Stereotype attributes for “MAE1” can be seen in Figure 3.14. “Text”, the only attribute, is set
to “First mean absolute error”. This will be the text that accompanies the mean absolute error.

For “MAE2”, the stereotype attributes are shown in Figure 3.15. The value of “Text” is “Second
mean absolute error”.
To define the order in which these steps are to be executed in the output IPYNB, a state machine
diagram is created, as seen in Figure 2.6 on page 20. It models the order described on page 40.
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Figure 3.9.: Weather algorithms model

Figure 3.10.: Weather algorithms “TrainSplit” stereotype attributes

Figure 3.11.: Weather algorithms “ML_1” stereotype attributes

Figure 3.12.: Weather algorithms “ML_2” stereotype attributes
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Figure 3.13.: Weather prediction and metrics model

Figure 3.14.: Weather metrics “MAE1” stereotype attributes

Figure 3.15.: Weather metrics “MAE2” stereotype attributes
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• Load the first CSV file

• Load the second CSV file

• Convert the date of the first CSV file

• Merge the dataframes CSV files are loaded into

• Encode the “weather” attribute on the merged dataframe

• Split the merged dataframe into training and test data

• Use a Decision Tree Regressor algorithm on the split data

• Use a Random Forest Regressor algorithm on the split data

• Predict with the Random Forest Regressor

• Predict with the Decision Tree Regressor

• Calculate the mean absolute error for the prediction of the Random Forest Regressor

• Calculate the mean absolute error for the prediction of the Decision Tree Regressor

3.1.2. Mapping configuration file and templates

The mapping between model elements and template variables is specified in a JSON file. The
complete mapping file can be seen in Appendix A. The mapping file follows the specification
from section 2.4, applied to the SysML model described in subsection 3.1.1. The templates said
mapping refers to can be be found in Appendix B. Said templates are for Python ML code,
with the dynamic part being replaced with information extracted from the model based on the
mapping configuration. Stereotype mappings are used for the shown stereotypes. For the Block
“CSV_1”, a name mapping is used.

3.1.3. Output

The output is an IPYNB based on the SysML model, the mapping configuration and the tem-
plates. With the given input, the notebook will:

• Import the needed libraries

• Load the CSV files into dataframes

• Convert the date of one dataframe to fit the format of the other

• Merge both dataframes into one

• Encode the “weather” field of the merge dataframe

• Split the merged dataframe into training and test data

• Train a Decision Tree Regressor on the split data
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• Train a Random Forest Regressor on the split data

• Predict and show the mean absolute error with both algorithms

All comments from the SysML blocks are placed as markdown cells before the code cell that is
generated from the respective BlockContext. The order of the cells follows the order defined in
the state machine diagram seen in Figure 2.6 on page 20.
The output for the mean absolute error can be seen in Figure 3.16. Both algorithms have been
trained and reach a similar mean absolute error. An example for a full output IPYNB file can be
found in Appendix C. Keep in mind that the paths for the CSV files might need to be changed
if the notebook is to be executed. Figures showing how the notebook looks like when displayed
using Anaconda4 can be found in Appendix D.

4https://www.anaconda.com/
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Figure 3.16.: Weather notebook output mean absolute error
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4. Discussion

As seen in subsection 3.1.1, many blocks can be used for multiple steps, “Merge_DF”, for ex-
ample. This would allow quick changes, like using another algorithm, while preserving the
knowledge in the SysML model. Different state machine diagrams can be used to represent dif-
ferent workflows and will output different notebooks. Furthermore, the graphical representation
makes the connections between steps clear. SysML is therefore a fitting way of modeling systems
and can be extended via custom profiles to add functionality like ML modeling.

Due to the fact that the model transformation from SysML to the BlockContext metamodel is
decoupled from the further steps, this part of the implementation can be switched out if desired.
The only prerequisite is that the model transformation outputs a Map of UML class elements
mapped to BlockContexts. If the order from the state machine diagram from the SysML model
is to be preserved, this map needs to ordered. This transformation output can then be put into
the template handling step. Possible options would be to use transformation frameworks like
Eclipse Epsilon1 or ATL2.

The mapping configuration presented in concept in section 2.4 and in an example in Appendix A
has many advantages. It:

• Allows for easy configuration of how information extracted from the SysML model is to
be transferred to templates, including for information that is only linked indirectly (like
names of connected blocks)

• Allows the combination of models with different templates and vice versa, without having
to change the templates, models or the implementation at all

• Has a format that is human readable in JSON

• Will make custom solutions for handling the mapping configuration (e.g. automatically
generating it from another source) easy, as modern programming languages usually support
reading and writing of JSON files

A possible step to make the mapping configuration easier for the user would be to implement
tools to support the creation of the configuration file. An example would be automatic comple-
tion and suggestions for the keywords or marking errors, such as wrong keyword order.

The keywords made available in the mapping configuration are already useful, but could be
improved further. Currently, only a limited variety of three-word-combinations is possible. This

1https://www.eclipse.org/epsilon/
2https://www.eclipse.org/atl/
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could be extended to allow any number of keywords chained together. Keywords are also sep-
arated between the “properties” and “modelCommands” sections of the mappings. It might be
possible to eliminate that restriction, so that keywords are universal. However, whether that
makes sense needs to be evaluated first. Further keywords can also be added to provide more
functionality.

The Velocity templates with the added default value functionality allow for a wide variety of
templates. Relatively simple templates can be used to reach good results, as demonstrated in
the templates used for the weather use case, which can be seen in Appendix B. A possible step
for the future is to replace Apache Velocity with a custom solution. This would allow more flex-
ibility and more seamless integration of the TBCG part of the solution. If a different premade
TBCG solution is desired, this, too, could be implemented.
The way the templates themselves are created could also be optimized. Currently, templates are
created manually by an expert. Possatto and Lucrédio (2015) proposed an approach were they
semi-automatically create and update templates from reference implementations, leading to less
effort in maintenance. This could also be suitable for the approach proposed in this thesis.
The limit of one template per mapping could also be improved. Ways to provide multiple tem-
plates with conditions when which template is to be used could be added.

In general, the implementation has been kept as generic as possible. All stereotypes and proper-
ties from the SysML model are considered, not just the ones used in the custom ML metamodel.
The BlockContext metamodel is tailored for use with SysML, but does not make any assump-
tions about custom profiles or the like. The only part that strictly adheres to the used ML use
case is the output in the form of an IPYNB. Currently, the template handling and generation
of the output notebook are intertwined. This can be changed to decouple the template handling
and the generation of output completely. Following that, changing the output part of the im-
plementation to become more generic and allowing users to provide their own implementations
via Application Programming Interface (API) is certainly possible.

The implementation of the “knowledge back-propagation” that was conceptualized in section 2.7
would be a step forward. It would allow a bidirectional flow of information. The SysML model
influences the output, the output influences the SysML model. Knowledge management would
be eased further, since ML experts could directly write back any worthwhile changes in variable
values. Going a step further, it would be interesting to make the implementation completely
bidirectional. This would mean that the starting point could also be an IPYNB file, which would
then lead to the generation of a SysML model. Or to the addition of elements generated from
the IPYNB to an existing SysML model.
Since both source (SysML) and target (IPYNB) models can be modified, bidirectional syn-
chronization for the models and/or their transformations, as described in Czarnecki et al. (2008)
would be the next step. When a change happens, synchronization triggers. This could be further
improved with the possibility to configure synchronization, i.e. only triggering synchronization
when multiple changes have happened or blocking synchronization for certain elements. In the-
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ory, this would allow automatic knowledge management, if the involved metamodels, model
transformations and TBCG are properly implemented and the synchronization is correctly con-
figured.
This could then be even further enhanced with a versioning system that automatically keeps
older versions of the SysML model elements and the outputs. The idea would be to not save
multiple versions of the model, but to have the versioned elements in the same model, in specific
version packages, for example. This would allow for a graphical representation of the evolution
of a model. By analyzing said evolution, insights into both the SysML modeling, as well as
the ML process could be gained, since they would be synchronized. ML could be used in this
analysis, meaning ML methods could be used to enhance ML. To support ML experts in making
the right choices for the data, automated ML, as described in Hutter, Kotthoff, and Vanschoren
(2019), could be used.
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5. Threats to Validity

This chapter details possible threats to the validity of this thesis.
Since the thesis falls under the umbrella “Applied research”, the validity types from most to least
important are internal, external, construct and conclusion validity (Wohlin et al., 2012).

5.1. Internal validity

Threats to internal validity threaten the conclusions about the causal relationship between treat-
ment and outcome (Wohlin et al., 2012). This thesis proposes a PoC implementation based on
established technologies and concepts from literature. The causal relationship is based on the
implementation logic. However, since the PoC was only used by the author, bias can not be
ruled out.

5.2. External validity

External validity threats limit how well the conclusions can be generalized outside the context
of the study (Wohlin et al., 2012). SysML is a standardized and widely used modeling language.
The ML example used to test the implementation followed usual ML procedures and used a real-
life dataset. The mapping configuration mechanism handles stereotypes and model elements in
a general manner and is not context-dependent. However, only this one use case was tested, and
only by the author. As such, generalizations regarding MDSE might not hold.

5.3. Construct validity

Construct validity threats concern how well the study represents the concept that is to be studied
(Wohlin et al., 2012). The PoC was based on concepts from literature and used established
technologies from the fields of MDSE and TBCG. The use case study evaluates whether the
proposed PoC bridges the gap between SysML and ML. The fact that only one use case was
tested might pose a threat to construct validity.

5.4. Conclusion validity

Threats to conclusion validity affect the ability to draw correct or reasonable conclusions from
the relations between treatment and outcome (Wohlin et al., 2012). Since only one use case was
evaluated by one person, conclusion validity can not be given.
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6. Conclusion

In this thesis, a research gap concerning the use of standardized modeling languages like SysML
in MDSE, specifically in the context of ML, was identified. Furthermore, the generation of out-
put is rigid, not allowing the user to configure it without changing the source code. Users also
cannot supply their own templates.
The proposed implementation uses SysML and its profile mechanism as the modeling language
of choice. By defining the BlockContext metamodel and a model transformation between it
and SysML, information is condensed. Said information is combined with templates and TBCG
to generate an output IPYNB. To achieve the desired configuration, this thesis proposed a
mechanism that takes a JSON mapping configuration with a defined structure and maps the
information extracted from the model to templates as specified in said mapping. This also al-
lows users to supply their own templates by adjusting the mapping configuration accordingly.
By preserving unique identifiers during the model transformation, knowledge back-propagation
from the output notebook to the SysML model can be conceptualized.

Regarding the research question “Is it possible to use MDSE to go from a SysML model to a ML
IPYNB?”, this implementation does that. A custom SysML profile is used to model ML elements
and a state machine diagram specifies the desired ML workflow. Using a model transformation
and TBCG, an IPYNB is generated. Said IPYNB follows the elements and workflow specified
in the SysML model.
The second research question, “Can MDSE be combined with TBCG in such a way that the gen-
eration of output can be adapted without changing the input model or the underlying code?”,
led to the proposal of the mapping configuration. Said mapping configuration is a structured
JSON file and allows the mapping of SysML stereotype attributes to template variables. Key-
words can be used to map elements of the SysML model to template variables as well. TBCG
is extended to allow the usage of default values in templates. This allows configuration of the
output generation without having to change the underlying code.
“Can a user supply templates for TBCG with the approach mentioned above?” can be answered
with “yes, but...”. Using the mapping configuration, stereotype attributes and elements of the
model can be mapped to any template variable, including those in user templates. However,
with the current PoC, templates that do not represent Python ML code can be supplied, but
the output IPYNB will not be functional.

The next step would be to have the implementation be used by engineers in real-life environments
and refining the implementation based on received feedback. Several iterations of this process
leveraging on industrial use cases could improve the applicability as well as the benefits of the
approach. In parallel, the knowledge back-propagation, as proposed in section 2.7, should be
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implemented. With this improved implementation as a basis, further steps into the future of
MDSE, as outlined in chapter 4, can then be taken.

48



References

Arnould, V., Balmelli, L., Bailey, I., Baker, J., Bialowas, C., Bock, C., . . . Willard, B. (2019,
November). OMG System Modeling Language, v 1.6 (Standard No. formal/19-11-01).
Object Management Group (OMG). Retrieved 2022-06-13, from https://www.omg.org/

spec/SysML/1.6/

Awad, M., & Khanna, R. (2015). Efficient Learning Machines: Theories, Concepts, and Ap-
plications for Engineers and System Designers. Berkeley, CA: Apress. Retrieved 2022-
07-04, from http://link.springer.com/10.1007/978-1-4302-5990-9 doi: 10.1007/
978-1-4302-5990-9

Beihoff, B., Oster, C., Friedenthal, S., Paredis, C., Kemp, D., Stoewer, H., . . . Wade, J.
(2014). A World in Motion – Systems Engineering Vision 2025. Retrieved 2022-06-23,
from https://www.researchgate.net/publication/277019221_A_World_in_Motion_-

_Systems_Engineering_Vision_2025

Beyerer, J., Maier, A., & Niggemann, O. (Eds.). (2021). Machine Learning for Cyber Physi-
cal Systems: Selected papers from the International Conference ML4CPS 2020 (Vol. 13).
Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved 2022-06-26, from http://

link.springer.com/10.1007/978-3-662-62746-4 doi: 10.1007/978-3-662-62746-4
Bhattacharjee, A., Barve, Y., Khare, S., Bao, S., Kang, Z., Gokhale, A., & Damiano, T. (2019,

December). STRATUM: A BigData-as-a-Service for Lifecycle Management of IoT An-
alytics Applications. In 2019 IEEE International Conference on Big Data (Big Data)
(pp. 1607–1612). Los Angeles, CA, USA: IEEE. Retrieved 2021-09-29, from https://

ieeexplore.ieee.org/document/9006518/ doi: 10.1109/BigData47090.2019.9006518
Bhattacharya, S. (2021). A Primer on Machine Learning in Subsurface Geosciences. Cham:

Springer International Publishing. Retrieved 2022-07-04, from https://link.springer

.com/10.1007/978-3-030-71768-1 doi: 10.1007/978-3-030-71768-1
Bock, C., Barbau, R., Matei, I., & Dadfarnia, M. (2017, September). An Extension of the

Systems Modeling Language for Physical Interaction and Signal Flow Simulation. Systems
Engineering , 20 (5), 395–431. Retrieved 2022-06-23, from https://onlinelibrary.wiley

.com/doi/10.1002/sys.21380 doi: 10.1002/sys.21380
Brambilla, M., Cabot, J., & Wimmer, M. (2017). Model-driven software engineering in practice

(Second edition ed.) (No. 4). San Rafael, Calif.: Morgan & Claypool Publishers.
Cook, S., Bock, C., Rivett, P., Rutt, T., Seidewitz, E., Selic, B., & Tolbert, D. (2017, Decem-

ber). Unified Modeling Language, v2.5.1 (Standard). Object Management Group (OMG).
Retrieved 2022-06-13, from https://www.omg.org/spec/UML/

Czarnecki, K., et al. (Eds.). (2008). Model Driven Engineering Languages and Systems: 11th
International Conference, MoDELS 2008, Toulouse, France, September 28 - October 3,
2008. Proceedings (Vol. 5301). Berlin, Heidelberg: Springer Berlin Heidelberg. Re-

49

https://www.omg.org/spec/SysML/1.6/
https://www.omg.org/spec/SysML/1.6/
http://link.springer.com/10.1007/978-1-4302-5990-9
https://www.researchgate.net/publication/277019221_A_World_in_Motion_-_Systems_Engineering_Vision_2025
https://www.researchgate.net/publication/277019221_A_World_in_Motion_-_Systems_Engineering_Vision_2025
http://link.springer.com/10.1007/978-3-662-62746-4
http://link.springer.com/10.1007/978-3-662-62746-4
https://ieeexplore.ieee.org/document/9006518/
https://ieeexplore.ieee.org/document/9006518/
https://link.springer.com/10.1007/978-3-030-71768-1
https://link.springer.com/10.1007/978-3-030-71768-1
https://onlinelibrary.wiley.com/doi/10.1002/sys.21380
https://onlinelibrary.wiley.com/doi/10.1002/sys.21380
https://www.omg.org/spec/UML/


trieved 2022-06-23, from http://link.springer.com/10.1007/978-3-540-87875-9 doi:
10.1007/978-3-540-87875-9

Czuchra, W. (2010). UML in logistischen Prozessen. Wiesbaden: Vieweg+Teubner. Re-
trieved 2022-06-24, from http://link.springer.com/10.1007/978-3-8348-9698-8 doi:
10.1007/978-3-8348-9698-8

France, R., & Rumpe, B. (2014). Model-Driven Development of Complex Software: A Re-
search Roadmap. , 18. Retrieved 2022-06-23, from https://arxiv.org/abs/1409.6620

(Publisher: arXiv Version Number: 1) doi: 10.48550/ARXIV.1409.6620
Friedl, J. E. F. (2006). Mastering regular expressions (3rd ed ed.). Sebastapol, CA: O’Reilly.

(OCLC: ocm76945355)
Giese, H., Karsai, G., Lee, E., Rumpe, B., & Schätz, B. (Eds.). (2010). Model-Based Engineer-

ing of Embedded Real-Time Systems: International Dagstuhl Workshop, Dagstuhl Castle,
Germany, November 4-9, 2007. Revised Selected Papers (Vol. 6100). Berlin, Heidelberg:
Springer Berlin Heidelberg. Retrieved 2022-06-23, from http://link.springer.com/

10.1007/978-3-642-16277-0 doi: 10.1007/978-3-642-16277-0
Géron, A. (2019). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: con-

cepts, tools, and techniques to build intelligent systems (Second edition ed.). Beijing Boston
Farnham Sebastopol Tokyo: O’Reilly.

Harrand, N., Fleurey, F., Morin, B., & Husa, K. E. (2016, October). ThingML: a language and
code generation framework for heterogeneous targets. In Proceedings of the ACM/IEEE
19th International Conference on Model Driven Engineering Languages and Systems (pp.
125–135). Saint-malo France: ACM. Retrieved 2021-09-29, from https://dl.acm.org/

doi/10.1145/2976767.2976812 doi: 10.1145/2976767.2976812
Hartmann, T., Moawad, A., Fouquet, F., & Le Traon, Y. (2017, September). The Next Evolution

of MDE: A Seamless Integration of Machine Learning into Domain Modeling. In 2017
ACM/IEEE 20th International Conference on Model Driven Engineering Languages and
Systems (MODELS) (pp. 180–180). Austin, TX, USA: IEEE. Retrieved 2021-09-29, from
http://ieeexplore.ieee.org/document/8101263/ doi: 10.1109/MODELS.2017.32

Hutter, F., Kotthoff, L., & Vanschoren, J. (Eds.). (2019). Automated Machine Learn-
ing: Methods, Systems, Challenges. Cham: Springer International Publishing. Re-
trieved 2022-07-04, from http://link.springer.com/10.1007/978-3-030-05318-5 doi:
10.1007/978-3-030-05318-5

Jeusfeld, M. A. (2009). Metamodel. In L. LIU & M. T. ÖZSU (Eds.), Encyclopedia of Database
Systems (pp. 1727–1730). Boston, MA: Springer US. Retrieved from https://doi.org/

10.1007/978-0-387-39940-9_898 doi: 10.1007/978-0-387-39940-9_898
Jörges, S. (2013). Construction and Evolution of Code Generators (Vol. 7747; D. Hutchison et al.,

Eds.). Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved 2022-06-23, from http://

link.springer.com/10.1007/978-3-642-36127-2 doi: 10.1007/978-3-642-36127-2
Moin, A., Badii, A., & Günnemann, S. (2021, July). A Model-Driven Engineering Approach to

Machine Learning and Software Modeling. arXiv:2107.02689 [cs] . Retrieved 2021-09-29,
from http://arxiv.org/abs/2107.02689 (arXiv: 2107.02689)

Morin, B., Fleurey, F., Husa, K.-E., & Barais, O. (2016, April). A Generative Middleware for

50

http://link.springer.com/10.1007/978-3-540-87875-9
http://link.springer.com/10.1007/978-3-8348-9698-8
https://arxiv.org/abs/1409.6620
http://link.springer.com/10.1007/978-3-642-16277-0
http://link.springer.com/10.1007/978-3-642-16277-0
https://dl.acm.org/doi/10.1145/2976767.2976812
https://dl.acm.org/doi/10.1145/2976767.2976812
http://ieeexplore.ieee.org/document/8101263/
http://link.springer.com/10.1007/978-3-030-05318-5
https://doi.org/10.1007/978-0-387-39940-9_898
https://doi.org/10.1007/978-0-387-39940-9_898
http://link.springer.com/10.1007/978-3-642-36127-2
http://link.springer.com/10.1007/978-3-642-36127-2
http://arxiv.org/abs/2107.02689


Heterogeneous and Distributed Services. In 2016 19th International ACM SIGSOFT Sym-
posium on Component-Based Software Engineering (CBSE) (pp. 107–116). Venice, Italy:
IEEE. Retrieved 2021-09-29, from http://ieeexplore.ieee.org/document/7497437/

doi: 10.1109/CBSE.2016.12
Nyamsi, E. A. (2020). IT-Lösungen auf Basis von SysML und UML: Anwendungsentwicklung mit

Eclipse UML Designer und Eclipse Papyrus. Wiesbaden: Springer Fachmedien Wiesbaden.
Retrieved 2022-06-23, from http://link.springer.com/10.1007/978-3-658-29057-3

doi: 10.1007/978-3-658-29057-3
OMG. (2016, October). Meta Object Facility, v2.5.1 (Standard). Object Management Group

(OMG). Retrieved 2022-06-26, from https://www.omg.org/spec/MOF/

Possatto, M. A., & Lucrédio, D. (2015, November). Automatically propagating changes
from reference implementations to code generation templates. Information and Software
Technology , 67 , 65–78. Retrieved 2022-07-09, from https://linkinghub.elsevier.com/

retrieve/pii/S0950584915001226 doi: 10.1016/j.infsof.2015.06.009
Raschka, S., & Mirjalili, V. (2021). Machine learning mit Python und Keras, TensorFlow 2

und Scikit-learn: das umfassende Praxis-Handbuch für data science, deep learning und
predictive analytics (3., aktualisierte und erweiterte Auflage ed.; K. Lorenzen, Trans.).
Frechen: mitp.

Rodrigues da Silva, A. (2015, October). Model-driven engineering: A survey supported by
the unified conceptual model. Computer Languages, Systems & Structures, 43 , 139–
155. Retrieved 2022-06-23, from https://linkinghub.elsevier.com/retrieve/pii/

S1477842415000408 doi: 10.1016/j.cl.2015.06.001
Sendall, S., & Kozaczynski, W. (2003, September). Model transformation: the heart and soul

of model-driven software development. IEEE Software, 20 (5), 42–45. Retrieved 2022-
06-16, from http://ieeexplore.ieee.org/document/1231150/ doi: 10.1109/MS.2003
.1231150

Sillitto, H., Martin, J., McKinney, D., Griego, R., Dori, D., Krob, D., . . . Jackson, S. (2019,
January). Systems Engineering and System Definitions, Version 1.0 (Tech. Rep.).
INCOSE. Retrieved 2022-06-13, from https://www.incose.org/docs/default-source/

default-document-library/incose-se-definitions-tp-2020-002-06.pdf?sfvrsn=

b1049bc6_0

Syriani, E., Luhunu, L., & Sahraoui, H. (2018, June). Systematic mapping study of
template-based code generation. Computer Languages, Systems & Structures, 52 , 43–
62. Retrieved 2022-06-16, from https://linkinghub.elsevier.com/retrieve/pii/

S1477842417301239 doi: 10.1016/j.cl.2017.11.003
Vogel-Heuser, B., Schütz, D., Frank, T., & Legat, C. (2014, October). Model-driven engineering

of Manufacturing Automation Software Projects – A SysML-based approach. Mechatron-
ics, 24 (7), 883–897. Retrieved 2022-06-23, from https://linkinghub.elsevier.com/

retrieve/pii/S0957415814000853 doi: 10.1016/j.mechatronics.2014.05.003
Winzer, P. (2016). Generic Systems Engineering: Ein methodischer Ansatz zur Komplex-

itätsbewältigung. Berlin, Heidelberg: Springer Berlin Heidelberg. Retrieved 2022-06-
23, from https://link.springer.com/10.1007/978-3-662-52893-8 doi: 10.1007/

51

http://ieeexplore.ieee.org/document/7497437/
http://link.springer.com/10.1007/978-3-658-29057-3
https://www.omg.org/spec/MOF/
https://linkinghub.elsevier.com/retrieve/pii/S0950584915001226
https://linkinghub.elsevier.com/retrieve/pii/S0950584915001226
https://linkinghub.elsevier.com/retrieve/pii/S1477842415000408
https://linkinghub.elsevier.com/retrieve/pii/S1477842415000408
http://ieeexplore.ieee.org/document/1231150/
https://www.incose.org/docs/default-source/default-document-library/incose-se-definitions-tp-2020-002-06.pdf?sfvrsn=b1049bc6_0
https://www.incose.org/docs/default-source/default-document-library/incose-se-definitions-tp-2020-002-06.pdf?sfvrsn=b1049bc6_0
https://www.incose.org/docs/default-source/default-document-library/incose-se-definitions-tp-2020-002-06.pdf?sfvrsn=b1049bc6_0
https://linkinghub.elsevier.com/retrieve/pii/S1477842417301239
https://linkinghub.elsevier.com/retrieve/pii/S1477842417301239
https://linkinghub.elsevier.com/retrieve/pii/S0957415814000853
https://linkinghub.elsevier.com/retrieve/pii/S0957415814000853
https://link.springer.com/10.1007/978-3-662-52893-8


978-3-662-52893-8
Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Exper-

imentation in Software Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg. Re-
trieved 2022-06-19, from http://link.springer.com/10.1007/978-3-642-29044-2 doi:
10.1007/978-3-642-29044-2

Wolny, S., Mazak, A., Carpella, C., Geist, V., & Wimmer, M. (2020, January). Thirteen years
of SysML: a systematic mapping study. Software and Systems Modeling , 19 (1), 111–169.
Retrieved 2022-06-23, from http://link.springer.com/10.1007/s10270-019-00735-y

doi: 10.1007/s10270-019-00735-y

52

http://link.springer.com/10.1007/978-3-642-29044-2
http://link.springer.com/10.1007/s10270-019-00735-y


A. Appendix A

Default mapping configuration

{

"trimEmptyLines": true ,

"blockedStereotypes": [

"BlackBox_Storage",

"Text_File"

],

"blockedNames": [

"TestStorage"

],

"constants": {

"TRAIN": "train",

"TEST": "test",

"PREDICT": "pre",

"MODEL": "mod",

"X": "X",

"Y": "y"

},

"stereotypeMappings": {

"ML_Attribute_Input": {

"template": "attribute_input.vm",

"properties": {

"MappedToName": "mapName"

},

"modelCommands": {}

},

"Datetime": {

"template": "datetime.vm",

"properties": {

"DatetimeFormat": "old_format"

},

"modelCommands": {}

},

"BlackBox_Storage": {

"template": "blackbox_storage.vm",
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"properties": {

"VariableName": "varname"

},

"modelCommands": {}

},

"Text_File": {

"template": "text_file.vm",

"properties": {

"Path": "path",

"Encoding": "enc"

},

"modelCommands": {}

},

"CSV": {

"template": "csv_load.vm",

"properties": {

"Delimiter": "delim",

"SkipNrOfLines": "skip",

"GenerateTimestamp": "GenerateTimestamp"

},

"modelCommands": {}

},

"DateConversion": {

"template": "date_conversion.vm",

"properties": {

"Output_Format": "new_format"

},

"modelCommands": {

"CONNECTED.Datetime.PROPNAME": "d"

}

},

"Encoding": {

"template": "label_encode.vm",

"properties": {

"ToEncode": "feature"

},

"modelCommands": {

"CONNECTED.DataFrame_Merge.NAME": "df"

}

},

"DataFrame_Merge": {

"template": "dataframe_merge.vm",
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"properties": {

"MergeOn [0]. OWNER.VariableName": "one",

"MergeOn [1]. OWNER.VariableName": "two",

"MergeOn [0]": "left",

"MergeOn [1]": "right",

"How": "how"

},

"modelCommands": {

"THIS.BLOCK.NAME": "new_name"

}

},

"Train_Test_Split": {

"template": "train_test_split.vm",

"properties": {

"Features_X": "feat_x",

"Prediction_Y": "pred_y",

"TrainTestSplitSize": "split"

},

"modelCommands": {

"THIS.BLOCK.NAME": "split_name"

}

},

"Regression": {

"template": "regression.vm",

"properties": {

"Algorithm": "algo"

},

"modelCommands": {

"THIS.BLOCK.NAME": "model_name",

"CONNECTED.Train_Test_Split.NAME": "split"

}

},

"Predict": {

"template": "predict.vm",

"properties": {},

"modelCommands": {

"CONNECTED.Regression.NAME": "pred_name",

"CONNECTED.Train_Test_Split.NAME": "train_test"

}

},

"Metrics": {

"template": "metrics.vm",
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"properties": {

"Text": "txt"

},

"modelCommands": {}

},

"MeanAbsoluteError": {

"template": "mae.vm",

"properties": {},

"modelCommands": {

"CONNECTED.Predict.NAME": "pred_name"

}

}

},

"nameMappings": {

"CSV_1": {

"template": "name_csv.vm",

"properties": {

"VariableName": "varname",

"Path": "p",

"Encoding": "e",

"Delimiter": "d",

"SkipNrOfLines": "s",

"GenerateTimestamp": "GenerateTimestamp"

},

"modelCommands": {}

}

}

}

Code Fragment A.1: Default configuration mapping JSON file
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B. Appendix B

Velocity templates

THIS SHOULD NOT BE CALLED

Code Fragment B.1: Velocity template “attribute_input.vm”

old_format = ${old_format}

Code Fragment B.2: Velocity template “datetime.vm”

${(varname ,"ABCD")}

Code Fragment B.3: Velocity template “blackbox_storage.vm”

${(varname ," myTest ")} = ("${(path ," PLACEHOLDER ")}", "${(enc ,"UTF -8")}")

Code Fragment B.4: Velocity template “text_file.vm”

import pandas as pd

${varname} = pd.read_csv ("${path}", sep="${delim}", encoding ="${(enc ,"UTF -8")}
↪→ ", skiprows=${skip})

Code Fragment B.5: Velocity template “csv_load.vm”

import pandas as pd
path = "${p}"
separator = "${d}"
enc = "${e}"
${varname} = pd.read_csv(path , sep=separator , encoding=enc , skiprows=${s})

Code Fragment B.6: Velocity template “name_csv.vm”

import datetime

${varname}["${d}"] = ${varname}["${d}"]. apply(lambda old_date , old_format ,
↪→ new_format: datetime.datetime.strptime(old_date , old_format).strftime(
↪→ new_format), args =("${old_format}", "${new_format}"))

Code Fragment B.7: Velocity template “date_conversion.vm”

import from sklearn.preprocessing import LabelEncoder

${df}["${feature}"]= LabelEncoder ().fit_transform(${df}["${feature}"])

Code Fragment B.8: Velocity template “label_encode.vm”

57



import pandas as pd

${new_name} = pd.merge(left=${one}, right=${two}, left_on ="${left}", right_on ="
↪→ ${right}", how="${how}")

Code Fragment B.9: Velocity template “dataframe_merge.vm”

from sklearn.model_selection import train_test_split
X=${new_name}[${feat_x}]
y=${new_name}.${pred_y}
${split_name}_${TRAIN}_${X}, ${split_name}_${TEST}_${X}, ${split_name}_${TRAIN}

↪→ _${Y}, ${split_name}_${TEST}_${Y} = train_test_split(X, y,random_state =
↪→ 0, train_size=${split})

Code Fragment B.10: Velocity template “train_test_split.vm”

from #if (${algo} == "RandomForestRegressor ")
from sklearn.ensemble import RandomForestRegressor
#else
from sklearn.tree import DecisionTreeRegressor
#end

${MODEL}_${model_name}=${algo}(random_state =1)
${MODEL}_${model_name}.fit(${split}_${TRAIN}_${X}, ${split}_${TRAIN}_${Y})

Code Fragment B.11: Velocity template “regression.vm”

${PREDICT}_${pred_name} = ${MODEL}_${pred_name}.predict(${train_test}_${TEST}_$
↪→ {X})

Code Fragment B.12: Velocity template “predict.vm”

print("${txt}")

Code Fragment B.13: Velocity template “metrics.vm”

from sklearn.metrics import mean_absolute_error

mae = mean_absolute_error(${split_name}_${TEST}_${Y}, ${PREDICT}_${pred_name})
print("Mean Absolute Error: %f" % mae)
print("${txt}")

Code Fragment B.14: Velocity template “mae.vm”
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C. Appendix C

Output IPYNB file

{

"cells": [

{

"id": "af34b8e8 -f60d -4028-a800 -7 c4522a5337b",

"cell_type": "markdown",

"metadata": {},

"source": [

"# Import section\nImports for notebook"

]

},

{

"id": "3497b42f -0793 -4a17 -9373- bd1f0dcdf2ae",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"from sklearn.ensemble import

↪→ RandomForestRegressor\nfrom sklearn.metrics import

↪→ mean_absolute_error\nimport pandas as pd\nfrom sklearn.

↪→ preprocessing import LabelEncoder\nfrom sklearn.tree import

↪→ DecisionTreeRegressor\nfrom sklearn.model_selection import

↪→ train_test_split\nimport datetime"

],

"outputs": []

},

{

"id": "49eea9eb -e0e1 -4ae0 -a182 -71429 fe17f5e",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Dataset load </h1 >\n\n<p>Load the

↪→ dataset(s)</p>\n</div >\n"

]

},
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{

"id": "96aebc81 -4f72 -44bc -8f43 -6 c5426084cb7",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"path = \"weather_split_complex_one.csv\"\

↪→ nseparator = \",\"\nenc = \"UTF -8\"\ndf_one = pd.read_csv(

↪→ path , sep=separator , encoding=enc , skiprows =0)",

"\n"

],

"outputs": []

},

{

"id": "2fc30982 -2654 -4761 -95fc-a1f0fb978fb6",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"df_two = pd.read_csv (\"weather_split_complex_two.

↪→ csv\", sep=\";\", encoding =\"UTF -8\", skiprows =0)"

],

"outputs": []

},

{

"id": "52f49204 -734c-4de0 -9f25 -d770e05672ac",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Data Preprocessing: Date Conversion&

↪→ nbsp;</h1 >\n</div >\n\n<p>&nbsp;</p>\n"

]

},

{

"id": "c59bd8ee -a07b -4d3a -aff4 -bf0baa029b15",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"df_one [\"date\"] = df_one [\"date\"].apply(lambda

↪→ old_date , old_format , new_format: datetime.datetime.strptime

↪→ (old_date , old_format).strftime(new_format), args =(\"%d-%m-%
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↪→ Y\", \"%Y-%m-%d\"))"

],

"outputs": []

},

{

"id": "18f3286a -214f -4893 -9451 -84226 e77a491",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Dataframe Merge </h1 >\n\n<p>Merge

↪→ dataframes </p>\n</div >\n"

]

},

{

"id": "4be890a1 -b15f -4c83 -b755 -9647 afd7b813",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"Merge_DF = pd.merge(left=df_one , right=df_two ,

↪→ left_on =\"date\", right_on =\"date_date\", how=\"inner\")"

],

"outputs": []

},

{

"id": "034b1a4f -75c7 -4e80 -ba41 -8766 caeaa4ea",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Data Pre -Processing: Label Encoding </

↪→ h1 >\n</div >\n"

]

},

{

"id": "4756bcdc -7400 -4031 -a824 -fd211ab053a8",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"Merge_DF [\"weather\"]= LabelEncoder ().

↪→ fit_transform(Merge_DF [\"weather\"])"

],
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"outputs": []

},

{

"id": "0a1be93a -7088 -45a8-ad8b -2211 db710739",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"X=Merge_DF [[\"precipitation\", \"temp_max\", \"

↪→ temp_min\", \"wind\"]]\ny=Merge_DF.weather\

↪→ nTrainSplit_train_X , TrainSplit_test_X , TrainSplit_train_y ,

↪→ TrainSplit_test_y = train_test_split(X, y,random_state = 0,

↪→ train_size =0.7)"

],

"outputs": []

},

{

"id": "d6206ebf -4c77 -41ad -8639 -19 f801c0f468",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h2>Decision Tree Regressor </h2 >\n\n<p>

↪→ Creation of decision tree regressor </p>\n</div >\n"

]

},

{

"id": "821449ed-c40d -4d2e -b18a -c8d6a4794a9f",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"mod_ML_2=DecisionTreeRegressor(random_state =1)\

↪→ nmod_ML_2.fit(TrainSplit_train_X , TrainSplit_train_y)"

],

"outputs": []

},

{

"id": "1f4fc5bd -c199 -4309 -908d-baa0d6a64e35",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<div >\n<h1>Create Model </h1 >\n\n<p>Section
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↪→ where models are created </p>\n</div >\n\n<h2>Random Forest

↪→ Regressor </h2 >\n</div >\n"

]

},

{

"id": "016f4fde -523d-4bd4 -af67 -df85ed0e9491",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"mod_ML_1=RandomForestRegressor(random_state =1)\

↪→ nmod_ML_1.fit(TrainSplit_train_X , TrainSplit_train_y)"

],

"outputs": []

},

{

"id": "523794e6-faa9 -4669 -9ece -f5e077cd3bf9",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Prediction </h1 >\n\n<p>Section where

↪→ models are used to predict </p>\n</div >\n\n<div >\n<h2>Random&

↪→ nbsp;Forest Regressor </h2 >\n</div >\n\n<p>&nbsp;</p>\n"

]

},

{

"id": "7195d57f -c2c0 -4be4 -84ca -2 ac4108f13ac",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"pre_ML_1 = mod_ML_1.predict(TrainSplit_test_X)"

],

"outputs": []

},

{

"id": "0bcb7847 -bbe5 -4f6d -921d-643 c732df961",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h2>Decision Tree Regressor </h2 >\n</div >\n

↪→ "
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]

},

{

"id": "810a9ccf -2f3a -40cd -8ee7 -5 b79cddc6ad1",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"pre_ML_2 = mod_ML_2.predict(TrainSplit_test_X)"

],

"outputs": []

},

{

"id": "e2ade2ed -6871 -4941 -b13b -e15e276a4ea8",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h1>Metrics </h1 >\n\n<p>Section for metrics

↪→ for the used model(s)</p>\n</div >\n\n<div >\n<h2>Random

↪→ Forest Regressor </h2 >\n</div >\n\n<p>&nbsp;</p>\n"

]

},

{

"id": "f0ffb298 -dfa5 -48ec -9ee6 -931 fc9c3ee41",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"mae = mean_absolute_error(TrainSplit_test_y ,

↪→ pre_ML_1)\nprint (\"Mean Absolute Error: %f\" % mae)\nprint (\

↪→ "First mean absolute error\")"

],

"outputs": []

},

{

"id": "c7df0e22 -c1dd -4037-b109 -40 e523ca51f4",

"cell_type": "markdown",

"metadata": {},

"source": [

"<div >\n<h2>Decision Tree Regressor </h2 >\n</div >\n

↪→ "

]
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},

{

"id": "ca56a028 -2f1e -46d3-a0e3 -0 aced97ec893",

"cell_type": "code",

"execution_count": null ,

"metadata": {},

"source": [

"mae = mean_absolute_error(TrainSplit_test_y ,

↪→ pre_ML_2)\nprint (\"Mean Absolute Error: %f\" % mae)\nprint (\

↪→ "Second mean absolute error\")"

],

"outputs": []

}

],

"nbformat": 4,

"nbformat_minor": 5,

"metadata": {

"kernelspec": {

"name": "python3",

"language": "python",

"display_name": "Python 3"

},

"language_info": {

"pygments_lexer": "ipython3",

"nbconvert_exporter": "python",

"codemirror_mode": {

"name": "ipython",

"version": 3

},

"name": "python",

"mimetype": "text/x-python",

"file_extension": ".py",

"version": "3.7.12"

}

}

}

Code Fragment C.1: Output IPYNB file
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D. Appendix D

Output IPYNB in figures

Figure D.1.: Output IPYNB import and CSV load

Figure D.2.: Output IPYNB data preprocessing and dataframe merge
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Figure D.3.: Output IPYNB creation of ML model

Figure D.4.: Output IPYNB prediction
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Figure D.5.: Output IPYNB metrics
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