
O�ine Speech To Text Engine For Delimited Context

In Combination With An O�ine Speech Assistant

Master Thesis for obtaining the academic degree

Master of Science in Engineering

Vorarlberg University of Applied Sciences

Computer Science MSc

Supervised by:

Dipl.-Ing. (FH) Walter Ritter

Submitted by:

BSc. Pia-Maria Weiÿ

Dornbirn, Thursday 7th July, 2022

Statuary Declaration

Statuary Declaration I declare that I have developed and written the enclosed work completely

by myself and have not used sources or means without declaration in the text. Any thoughts

from others or literal quotations are clearly marked. This Master Thesis was not used in the

same or in a similar version to achieve an academic degree, nor has it been published elsewhere.

2

Abstract

The inatura1 museum in Dornbirn had planned an interactive speech assistant-like exhibit. The

concept was that visitors could ask the exhibit several questions that they would like to ask a

�ower. Solution requirements regarding the functionalities were formulated, such as the capacity

to run o�ine because of privacy reasons. Due to the similarity of the exhibit, open-source o�ine

Speech To Text (STT) engines and speech assistants were examined. Proprietary cloud-based

STT engines associated with the corresponding speech assistants were also researched. The

aim behind this was to evaluate the hypothesis of whether an open-source o�ine STT engine

can compete with a proprietary cloud-based STT engine. Additionally, a suitable STT engine

or speech assistant would need to be evaluated. Furthermore, analysis regarding the adaption

possibilities of the STT models took place. After the technical analysis, the decision in favour of

the STT engines called "Vosk" was made. This analysis was followed by attempts to adapt the

model of Vosk. Vosk was compared to proprietary cloud-based Google Cloud Speech to Text to

evaluate the hypothesis. The comparison resulted in not much of a signi�cant di�erence between

Vosk and Google Cloud Speech to Text. Due to this result, a recommendation to use Vosk for

the exhibit was given. Due to the lack of intent parsing functionality, two algorithms called

"text matching algorithm" and "text and keyword matching algorithm" were implemented and

tested. This test proved that the text and keyword matching algorithm performed better, with

an average success rate of 83.93 %. Consequently, this algorithm was recommended for the intent

parsing of the exhibit. In the end, potential adaption possibilities for the algorithms were given,

such as using a di�erent string matching library. Some improvements regarding the exhibit were

also presented.

1https://www.inatura.at/

3

Kurzreferat

Das inatura Museum in Dornbirn hatte ein interaktives sprachassistentenähnliches Exponat ge-

plant. Das Konzept sah vor, dass die Benutzenden dem Exponat verschiedene Fragen stellen

können, die sie auch einer Blume stellen würden. Es wurden Lösungsanforderungen hinsichtlich

der Funktionalitäten formuliert, wie z.B. die Fähigkeit, aus Datenschutzgründen o�ine zu

laufen. Aufgrund der Ähnlichkeit des Exponats wurden Open-Source-O�ine-STT-Engines und

Sprachassistenten untersucht. Proprietäre Cloud-basierte STT-Engines in Verbindung mit den

entsprechenden Sprachassistenten wurden ebenfalls untersucht. Ziel war es, die Hypothese

zu evaluieren, ob eine Open-Source-O�ine-STT-Engine mit einer proprietären Cloud-basierten

STT-Engine konkurrieren kann. Zusätzlich sollte eine geeignete STT-Engine oder ein Sprachas-

sistent evaluiert werden. Darüber hinaus wurde eine Analyse der Anpassungsmöglichkeiten

der STT-Modelle durchgeführt. Nach der technischen Analyse �el die Entscheidung zugun-

sten der STT-Engine namens "Vosk". Auf diese Analyse folgten Versuche, das Modell von

Vosk anzupassen. Vosk wurde mit der proprietären Cloud-basierten Google Cloud Speech

to Text verglichen, um die Hypothese zu bewerten. Der Vergleich ergab, dass es keinen sig-

ni�kanten Unterschied zwischen Vosk und Google Cloud Speech to Text gibt. Aufgrund dieses

Ergebnisses wurde empfohlen, Vosk für das Exponat zu verwenden. Aufgrund der fehlenden

Intent-Parsing-Funktionalität wurden zwei Algorithmen namens "Text-Matching-Algorithmus"

und "Text-and-Keyword-Matching-Algorithmus" implementiert und getestet. Dieser Test ergab,

dass der Text-and-Keyword-Matching-Algorithmus mit einer durchschnittlichen Erfolgsquote

von 83,93 % besser abschnitt. Folglich wurde dieser Algorithmus für das Intent-Parsing des

Exponats empfohlen. Abschlieÿend wurden potenzielle Anpassungsmöglichkeiten für die Algo-

rithmen genannt, wie z.B. die Verwendung einer anderen String-Matching-Bibliothek. Es wurden

auch einige Verbesserungen bezüglich des Exponats vorgestellt.

4

Contents

I List of Acronyms III

1 Introduction 6

1.1 Conceptual Formulation . 6

1.2 De�nition of Objectives . 7

1.3 Solution Requirements . 8

2 Related Work 9

2.1 Speech to Text Engines . 9

2.1.1 Open-Source Software . 9

2.1.1.1 Mozilla Deepspeech . 10

2.1.1.2 Flashlight . 11

2.1.1.3 Kaldi . 13

2.1.1.4 Coqui STT . 15

2.1.1.5 CMUSphinx . 17

2.1.1.6 Vosk . 18

2.1.2 Proprietary Software . 21

2.1.2.1 Alexa Voice Service . 21

2.1.2.2 Apple Speech . 22

2.1.2.3 Microsoft Azure Cognitives Service Speech to Text 24

2.1.2.4 Google Cloud Speech-to-Text . 26

2.2 Speech Assistants . 28

2.2.1 Open-Source Tools . 28

2.2.1.1 Mycroft . 28

2.2.1.2 Jasper . 30

2.2.1.3 Rhasspy Voice Assistant . 33

2.2.2 Proprietary Tools . 35

2.2.2.1 Amazon Alexa . 35

2.2.2.2 Apple Siri . 37

2.2.2.3 Microsoft Cortana . 40

2.2.2.4 Google Assistant . 44

2.3 Technology Decision . 47

3 Model Adaption 49

3.1 Hardware . 49

I

3.2 Software Prerequisite . 49

3.2.1 Vosk . 49

3.2.2 SRILM . 50

3.2.3 Kaldi . 50

3.2.4 Phonetisaurus . 50

3.2.5 Docker for Windows . 50

3.3 Setup . 51

3.4 Conclusion . 51

4 Development 52

4.1 Solution Proposals . 52

4.1.1 Solution 1 - Speech Assistant . 52

4.1.2 Solution 2 - Individual Implementation . 52

4.2 Justi�cation of the Solutions . 54

4.3 Used Technologies . 55

4.3.1 Python . 55

4.3.2 Jelly�sh . 55

4.3.3 Vosk . 56

4.3.4 WSL 2 for Windows . 56

4.3.5 Hardware . 56

4.4 Implementation . 56

5 Evaluation 58

5.1 Google Cloud Speech to Text vs Vosk . 58

5.1.1 Method . 58

5.1.2 Results . 59

5.1.3 Interpretation . 62

5.2 Text Matching and Text and Keyword Matching Implementation 62

5.2.1 Method . 66

5.2.2 Results . 66

5.2.3 Interpretation . 68

6 Conclusion 69

6.1 Discussion . 69

6.2 Re�ection . 70

6.3 Outlook . 72

II List of Figures LXXIII

III List of Tables LXXIV

IV List of Source Codes LXXV

V Bibliography LXXVI

II

List of Acronyms

ADC Analogue to Digital Converter

APL Alexa Presentation Language

API Application Programming Interface

ARPA Advanced Research Projects Agency

ASG Auto Segmentation Criterion

ASK Alexa Skills Kit

ASR Automatic Speech Recognition

AVS Alexa Voice Service

AVX Advanced Vector Extension

AWS Amazon Web Services

BLSTM Bidirectional Long Short Term Memory

BSD Berkeley Software Distribution

CLI Command Line Interface

CNN Convolutional Neural Network

CPU Central Processing Unit

CTC Connectionist Temporal Classi�cation

CUDA Compute Uni�ed Device Architecture

CuDNN Nvidia CUDA Deep Neural Network

DNN Deep Neural Network

FAIR Facebook AI Research

FMA FlexCast Management Architecture

FST Finite State Transducer

GMM Gaussian Mixture Modelling

III

GPU Graphical Processing Unit

GRPC Google Remote Procedure Call

HITL Human-in-the-loop

HMM Hidden Markov Model

IDE integrated development environment

JSON JavaScript Object Notation

KenLM Kenneth Hea�eld Language Model

LACE Layer-wise Context Expansion

LAS Listen Attend Spell

LM Language Model

LSTM Long Short Term Memory

MFCC Mel Frequency Cepstral Coe�cients

MQTT Message Queuing Telemetry Transport

MS Microsoft

NLP Natural Language Processing

NPM Node Package Manager

ReLU Recti�ed Linear Unit

ResNet Residual Network

REST API Representational State Transfer Application Programming Interface

RNN Recurrent Neural Network

RNNLM Recurrent Neural Network Language Model

RNN-T Recurrent Neural Network Transducer

SDK Software Development Kit

SGMM Sparsi�ed Gaussian Mixture Model

SSH Secure Shell

SRILM Stanford Research Institute Language Modeling Toolkit

STFT Short Time Fourier Transformation

STT Speech To Text

IV

TCP Transmission Control Protocol

TDNN Time Delay Neural Network

TDNN-F Factorized Time Delay Neural Network

TDS Time Depth Separable

TTS Text To Speech

UI User Interface

WER Word Error Rate

WFST Weighted Finite State Transducer

WSL Windows Subsystem for Linux

WWDC World Wide Developers Conference

V

1 Introduction

The museum inatura - Erlebnis Naturschau in Dornbirn1 had planned an interactive exhibit

for children called "Sag's durch die Blume". The main idea of this exhibit was that children

are able to ask several questions that they would like to ask a �ower, via a button. These

questions should be matched with prede�ned answers. The recording of a question will be

processed with an speech to text (STT) engine that outputs a transcript. The resulting text

is then matched to an answer that triggers the playback of a corresponding video. Since it

is not possible to obtain consent from every user, in order to transmit the audio recording to

a server or third-party provider, an o�ine solution was selected. Focusing on the case study

from this interactive exhibit at inatura, the possibilities and limits of open-source o�ine speech

recognition for triggering actions have been examined and compared with cloud-based variants.

1.1 Conceptual Formulation

As previously mentioned, the idea of the exhibit was to mimic a �ower that could be asked ques-

tions by the visitors. Beforehand, a button triggers the recording of the question. To interpret

the recording, an STT engine would be used for transforming the audio into text. This text

results in the action of playing the answer video, as can be extracted from �gure 1.1 below.

Figure 1.1: Conceptual structure of the core components of the exhibit.

Source: Prepared by the author

1https://www.inatura.at/

6

The underlying technologies of the exhibit concept and those of a speech assistant are equal.

The two main components of a speech assistant are the wake word detector, the STT engine and

the speech assistant itself. The task of the wake word detector is to register if the wake word

has been said and to start the recording of the speech. Afterwards, the STT engine undertakes

the job of converting the speech into text. At this point, either a cloud-based or an o�ine STT

engine can be used depending on the used system. If a cloud-based STT engine is used, the

recording will be transmitted to the cloud, whereas an o�ine STT engine processes this locally.

From this point, only the text will be processed by the speech assistant. The text will be used

to �nd and perform the action or task, which was given by the user. (Amazon.com Inc. 2010a)

The aim is to develop an application comparable to a speech assistant. Therefore, a suitable Ger-

man STT engine must be researched. Furthermore, investigations regarding speech assistants

and their functionality will take place. Due to adaptability and privacy reasons, open-source

o�ine technologies are considered. The aim is to evaluate whether the open-source o�ine STT

engine can compete with a proprietary cloud-based STT in a delimited context.

1.2 De�nition of Objectives

The main objective was to examine if an o�ine STT engine and speech assistant can be a re-

liable alternative in comparison to a cloud-based solution. The plan was to test this with the

previously mentioned exhibit functionality. The main reason for research was to to examine

whether an o�ine open-source STT can keep up with the quality of a proprietary cloud-based

STT engine. Furthermore, it should be researched if an o�ine open-source STT can be �ne-

tuned for the purpose of this exhibit regarding the recognized vocabulary. In addition, it will be

examined whether an o�ine speech assistant with intent parsing or an individually implemented

solution is better suited for the intended project. Subsequently, the software that has proven to

be more reliable would then be recommended for the exhibit.

Another objective was that it should provide the ability to understand a spoken question with

an appropriate accuracy, so that the question can be matched and therefore answered. Since

the inatura2 is located in Dornbirn, Vorarlberg, it was be an advantage if the solution was able

to handle at least some input in dialect speech.

The target audience for the exhibit refers to children aged between 9-15 years. Because of this

target audience, it was be desirable for the system to have a low sensitivity to syntax. This

property allows the input of several sentence combinations and still be able to answer them.

The performance of an STT engine depends on the models used. The larger the model's vocab-

ulary, the more words the engine can transcribe. Not included in this work is the development

of an entirely new model. But changing the vocabulary will be covered in a separate chapter.

For this reason, basic knowledge of machine learning is a bene�t.

2https://www.inatura.at/

7

1.3 Solution Requirements

It was preferred that the system would be independent of internet usage, due to privacy con-

cerns. Due to further cost concerns, open-source technology was the main focus of interest.

Proprietary software, such as Amazon's "Alexa", transmits the audio records to an external

server (Amazon.com Inc. 2010b). With an exhibition in a museum, privacy is an important

point. For this reason, the audio recording is activated via push-to-talk and the speech pro-

cessing is processed locally. This makes it a reasonable solution in terms of data protection.

Regarding the language, it was important that it is able to understand standard German, with

di�erent syntax. A question asked in a German dialect that is not too complicated should also

be understood, if possible. The solution should recognise the vast majority of asked questions,

which are known by the software. In the case of a misunderstood question, there should also be

a strategy to handle this situation. An asked question will be matched with the corresponding

answer, which will then be given. In the example of the exhibit, a screen with videos of a �ower

should create an illusion that the �ower has answered the question.

Here is a summary of the functional demands:

� The recorded speech should be transcribed with an open-source o�ine STT engine.

� The transcript of the question should be matched with the correct audio/video recording.

� It should be possible to easily expand the questions- and answer-pools.

� The software should operate on a Raspberry Pi.

Here is a summary of the non-functional demands:

� The transcription and matching should be carried out within a reasonable time, in com-

parison to a cloud-based solution.

� The system should be able to transcribe the speech, as well as a cloud-based solution.

� A strategy for not answerable questions should be applied.

� The application should run entirely o�ine.

� The scope includes neither the implementation of the exhibit, nor the implementation of

the voice recording.

� The scope excludes the identi�cation of potential questions of the visitors.

8

2 Related Work

It might be reasonably assumed that progress in the area of speech assistants and STT engines

will further improve. To examine whether an o�ine STT engine and speech assistant can be a

reliable alternative to a cloud-based solution, related work will be compared. The comparison

will take place between proprietary and open-source STT engines. The proprietary STT engines

will be the ones embedded in the most popular speech assistants like in Amazon Alexa (Adobe

2019). The comparison of open-source STT engines focuses on some of the most popular ones

(Foster 2021) and (S. James 2020). Furthermore, some of the most popular proprietary and open-

source speech assistants will be researched (Adobe 2019) and (yourtechdietAdmin 2021). The

technologies will be compared regarding adaptability, costs, software and hardware requirements.

2.1 Speech to Text Engines

The STT engine is the essential component of the exhibit. It is needed to transcribe the spoken

language into text. To work with speech it is necessary to convert the spoken words into a

computer-understandable format. This is carried out via an Analogue to Digital Converter

(ADC). The ADC samples the waves of the spoken words in regular intervals, which can be

pictured in a histogram. The signal gets split into smaller sections and gets assigned to the

known phonemes (Grabianowski 2006). Phonemes are the tiniest components of a language.

In the case of German, there are about 40 phonemes (To²ovi¢ 2022). The following section

will begin with an overview of the STT engines. Further subjects of comparison will be the

documentation, the existing models of the engines and the possibility of creating or extending a

model. Additionally, technological requirements for usage and training and a brief insight into

how the engine works will be given.

2.1.1 Open-Source Software

The preference for using open-source engines is due to licensing, as the use of open-source STT

engines is usually unrestricted. Additionally, the cost factors are in favour of open-source STT

engines. For instance, the "Google Cloud Speech-To-Text" could be used, but it has added

costs (Google Cloud 2022). "Mozilla Deepspeech", "Wav2letter/Flashlight", "Kaldi", "Coqui",

"CMUSphinx" and "Vosk" are evaluated as representatives of the open-source STT engines

(S. James 2020) and (Foster 2021).

9

2.1.1.1 Mozilla Deepspeech

As can be seen from Mozilla Deepspeech's Github repository, the STT engine project was

launched in 2016. The vision of Mozilla Deepspeech is shaped by the goal of decreasing hardware

e�ort and being able to operate on any Linux, Windows, Android or macOS machine (Deep-

Speech 2020e). In August 2020, a reorganization at Mozilla was announced. At this point,

the future of the Deepspeech project was unknown (Morais 2020). Later, in April 2021, further

procedures were published and a recommendation for "Coqui" was given (Mlopatka 2021). They

had planned to publish a how-to-use handbook and a clean version of the documentation. More-

over, Mozilla planned to stop the maintenance of the code. About 46.9% of the code is written

in C++, therefore knowledge of this programming language is a perk. The current version of

Deepspeech is 0.9.3. (DeepSpeech 2020e)

The current documentation of version r0.9 of Mozilla Deepspeech contains a detailed guide

for installation, in combination with a pre-trained model. The installation can take place either

via pip3 or Node Package Manager (NPM) where the Graphical Processing Unit (GPU) �ag for

Compute Uni�ed Device Architecture (CUDA) can be provided. A Docker�le is also provided

to build it from scratch. Some preinstalled libraries are required (e.g. the deepspeech package

for TensorFlow and deepspeech-t�ite for TensorFlow Lite). Supported platforms are Windows,

Linux, macOS and Android. In the case of Windows and Linux the GPU is supported. It

is possible to use Deepspeech with programming languages like C, .NET, JavaScript, Java and

Python. Code examples are given for demonstration purposes. Further examples are contributed

by users in the documentation (DeepSpeech 2020d). A brief excursion regarding domain-speci�c

vocabulary is provided. As well as optimization for parallelism and error codes are subjects of

discussion (DeepSpeech 2020e).

There is already an existing German model o�ered on a GitHub repository that can be down-

loaded from a Google Drive. It provides a Word Error Rate (WER) of 21.5% (A. Agarwal 2022a).

The documentation commits a chapter on the training of a new and the modi�cation of an ex-

isting model. Other topics of the documentation are �ne-tuning and transfer learning. For some

languages, speech data is provided by the project Common Voice to train a new model. The

project aims to advance the technology and makes datasets available to everyone. (Mozilla 2019)

In the case of a Common Voice dataset, the documentation provides a script for the data prepa-

ration (DeepSpeech 2020c). To create a language model, 4 GB of audio samples is recommended

(DeepSpeech 2020b). For creating or modifying an existing model, a Unix-based environment

like Linux or iOS and Python 3.6 is required. A graphics card can be used to improve the learn-

ing speed of the model, otherwise a Central Processing Unit (CPU) is used. (DeepSpeech 2020c)

The engine's heart consists of a Recurrent Neural Network (RNN) with 55 hidden layer units.

All the layers are recurrent, except for the �rst three which can be seen in �gure 2.1. The

�rst layer uses Mel Frequency Cepstral Coe�cients (MFCC) frames for feature extraction. The

second and third layers work with separate data. The third layer feeds the data into an Long

Short Term Memory (LSTM). For the activation function, a Recti�ed Linear Unit (ReLU) was

10

utilized. The �rst recurrent layer uses an array of forwarding recurrent hidden units, which

are displayed as the nodes above the LSTM pictured in �gure 2.1. For the output layer, the

character probabilities were used for predicting the output. The �gure below represents the core

structure of Deepspeech. (DeepSpeech 2020a)

Figure 2.1: Structure of the Mozilla Deepspeech Model.

Source: Based on: https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html,
adapted by the author

Mozilla Deepspeech is licensed with Mozilla Public License 2.0.

The GitHub Repository for Deepspeech can be found at: https://github.com/mozilla/DeepSpeech

2.1.1.2 Flashlight

In April 2021, Meta AI presented "Flashlight" to create an open-source library for machine

learning. This library should provide an opportunity to be adaptable for own needs (Meta AI

2021). The development of Flashlight and Wav2letter started in 2018, as the insights from

GitHub suggest (wav2letter GitHub Repository 2022). Wav2letter focused on speech recogni-

tion and was merged into Flashlight. Further development of Wav2letter will take place in the

Flashlight repository which represents itself as a �exible independent machine learning library.

The current version of Flashlight is v0.3.1. (wav2letter GitHub Repository 2022)

11

https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html
https://github.com/mozilla/DeepSpeech

The guides for installation and training are distributed on the GitHub repository of Flashlight

and Wav2letter. To install Flashlight some system requirements need to be met. The machine

needs to be a Linux-based system with a version of CMake and make is necessary. Since Flash-

light and Wav2letter were implemented in C++, a corresponding compiler is mandatory. For

the installation pip or the package manager vcpkg can be used. As listed in the installation

guide on GitHub, CPU, as well as CUDA GPU, is supported. In addition, a brief manual on

how to use it with Docker is given. Docker does support CUDA backends too. The documen-

tation contains example usage of Flashlight in combination with C++. Likewise, there are also

connections to use Flashlight with Python with a comprehensive step-by-step guide. (Flashlight

GitHub Repository 2022a)

There are pre-trained models for eight languages including German (Flashlight GitHub Reposi-

tory 2022c). For the training audio with transcriptions, there are predictions on the distributions

of the words and a listing of the words in di�erent sequences (Flashlight GitHub Repository

2022b).

Flashlight consists exclusively of convolutional layers. Thus, it is the �rst fully convolutional

neural network speech recognition engine provided by theFacebook AI Research (FAIR) Team

(Meta 2018). The structure consists of three parts which can be referred to as front-end, acous-

tic model and language model, combined with a beam search. Those three components are

displayed in �gure 2.2. The �rst part receives the input sound waves. The soundwaves are

displayed above the �rst components of the front-end in �gure 2.2. After feature extraction,

mel-�lterbank, low-pass and other �lters are applied in the �rst processing section. The front-

end is followed by the acoustic model. The acoustic model uses a Time Depth Separable (TDS)

which causes a reduction of the parameters and therefore improves performance. The task of

this part is to forecast the characters with Auto Segmentation Criterion (ASG), which is com-

parable to the Connectionist Temporal Classi�cation (CTC). The last section of the structure is

supplied with the output of the second section. It is composed of 14 1-D convolutional residual

blocks. The applied gated linear units are used as activation functions. As a result, a transcript

of possible contenders is the output of the acoustic model. The beam search's role is to produce

word concatenations with the data received from the acoustic section. (Zeghidour et al. 2019)

The �gure below shows the sections of the Convolutional Neural Network (CNN) and their func-

tionality:

12

Figure 2.2: Components of the Flashlight STT engine.

Source: Based on: https://arxiv.org/pdf/1812.06864.pdfl, adapted by the author

Flashlight is under a MIT license.

The obsolete GitHub Repository for Flashlight can be found at: https://github.com/flashlight/

wav2letter

The GitHub Repository for Flashlight can be found at: https://github.com/flashlight/

flashlight

2.1.1.3 Kaldi

Kaldi was created in 2009 during a seminar at the John Hopkins University1. In 2011, the com-

plete code was published. The code is still maintained by some of the creators. (Povey 2011a)

There is a lot of code written in C++, although the majority are shell scripts. The current

version of Kaldi is 5.0.0. (Povey 2022)

Kaldi is characterised by �ne granular documentation. It covers topics such as the glossary

of terms, deep neural networks and parallelism in combination with Kaldi (Povey 2011b). For

the installation of Kaldi two di�erent guides are o�ered. Fundamental knowledge for working

with Kaldi is Git and Hidden Markov Model (HMM) - Gaussian Mixture Modelling (GMM).

The requirement for installation is the wget package for downloading resources. On UNIX-based

operating systems, which is also a prerequisite, wget2 is mostly already installed. Additionally,

experience with C++ or shell scripting is an advantage. (Povey 2011d) Furthermore, two Docker

Images are provided in the GitHub Repository: one with GPU and the other with CPU support.

Kaldi can be linked with Android by a Docker Image. Likewise, Kaldi can be used with a Python

wrapper or can be cross-compiled for Web Assembly. (Povey 2022) The process of installation

is separated into two sections based on the structure of the repository. In each sub-directory

there is an installation guide. (Povey 2011c)

1https://www.cmu.edu/
2https://www.gnu.org/software/wget/

13

https://arxiv.org/pdf/1812.06864.pdfl
https://github.com/flashlight/wav2letter
https://github.com/flashlight/wav2letter
https://github.com/flashlight/flashlight
https://github.com/flashlight/flashlight

The chapter Kaldi Tutorial covers the topic of model creation. There is a pre-trained German

model with a WER of 11.85 %. The model was created by the Technische Universität Darm-

stadt. After modifying a model, some retaining will be necessary to improve the accuracy. More

details about the data sets, models and the used hardware can be found in the paper of Milde

and Köhn (2018).

Kaldi is designed to be adaptable. This is noticeable in the documentation and description

of the creator's paper. The construction of Kaldi consists of the feature extraction, the acoustic

model, the phonetic decision tree and the language model. Not only the feature extraction o�ers

di�erent options to choose from, but the other parts are also �exible. As the default option for

feature extraction, MFCC is used. The acoustic model is designed to work with conventional

and Sparsi�ed Gaussian Mixture Model (SGMM) models. For future progress, Kaldi can be

altered to �t recent models. Afterwards, a phonetic decision tree is created using the HMM-

State. The HMM-State connects the phonemes. The current phoneme is considered with the

previous and the following phoneme. Thus, every phoneme has a decision tree. The language

model is described as an Finite State Transducer (FST). As to be expected from Kaldi, there

are tools for the customisation of the language model. For creating a decoding graph, Weighted

Finite State Transducer (WFST) is used. Currently, the transitions between the phoneme arrays

are handled. The �gure 2.3 displays the single adjustable parts and further dependencies of

Kaldi.(Povey et al. 2011)

Figure 2.3: Individually adjustable parts of Kaldi.

Source: Based on:
http://publications.idiap.ch/downloads/papers/2012/Povey_ASRU2011_2011.pdf,
adapted by the author

Kaldi is under an Apache License 2.0.

The GitHub Repository for Kaldi can be found at: https://github.com/kaldi-asr/kaldi

14

http://publications.idiap.ch/downloads/papers/2012/Povey_ASRU2011_2011.pdf
https://github.com/kaldi-asr/kaldi

2.1.1.4 Coqui STT

Coqui was founded in 2016 at Mozilla, due to a missing open-source technology for speech at

that time. Consequently, an STT and Text To Speech (TTS) engine were developed. Next to

the mentioned engines, a project for collecting voice data was launched. In the future, Coqui

plans to continue support for the STT, TTS and additional current projects. (Coqui GmbH

2021a) The main part of this technology is written in C++. The current version is 1.3.0. (Coqui

GitHub Repository 2022).

The documentation of Coqui includes introductory explanations for the basics. At the be-

ginning, there is a guide on how to install Coqui with Python with the associated package

manager. For demonstration purposes an English model was used. The models can be ex-

changed. Other ways to install Coqui are via Node.js, the Android AAR libstt package, which

o�ers a C interface. In addition, it is also possible to use Coqui with Docker. Depending on

the platform, some libraries are additionally necessary to install. Coqui is applicable under

some Linux distributions, macOS, Android and Windows. As a hardware requirement, a CPU

with Advanced Vector Extension (AVX) or FlexCast Management Architecture (FMA) archi-

tecture is supported. Application Programming Interface (API)s and code examples for Python,

JavaScript, C, .NET and Java are provided. (Coqui GmbH 2021b)

Currently, 84 models are available including two German models. Some models were revised

and released under a di�erent version (Coqui GmbH 2022). The German model of Coqui and

Mozilla Deepspeech are the same therefore, the WER is the same (A. Agarwal 2022b). How

the models can be trained is explained in the documentation. For the training section, CUDA

and Nvidia CUDA Deep Neural Network (CuDNN) are essential. The platforms supporting the

training are restricted to Linux environments and Mac. The scripts for the training are written

in Python. For this reason, a Python version of at least 3.6 is necessary. For training either a

Docker�le, Virtual Environment or a manual setup can be used. To train with new data audio

recordings and the corresponding transcripts are required. The recordings should dispose of a

sample rate of 16 kHz in a mono-channel Wav format with a length of at least �ve seconds.

(Coqui GmbH 2021c)

15

In more detail, Coqui uses an MFCC for feature extraction. After the feature extraction, the

data is fed into three fully connected non-recurrent layers. These are displayed as nodes h1, h2

and h3 in the �gure 2.4 below. The next component is a bidirectional RNN layer, which uses

LSTMs nodes and tanh as activation functions. The last component of the acoustic model is

a fully hidden connected layer with ReLU activations. This is the h5 node in the �gure 2.4.

The output of the acoustic model is the probabilities of each letter. Afterwards, a CTC loss

function predicts the arrangement of the letters. The language model called scorer recognises

the probability of the words combined with their sequence. The Kenneth Hea�eld Language

Model (KenLM) is in usage, but it is exchangeable. Coqui provides the functionality of changing

the output mechanism. Some mechanisms are the alphabet base one, which is the default, and

the bytes output. The last-mentioned output mode is experimental. The �gure 2.4 below shows

the structure of the acoustic model of Coqui and how the interaction takes place. (Coqui 2022)

Figure 2.4: Structure and data �ow of Coqui's acoustic model.

Source: Based on: https://coqui.ai/blog/stt/a-journey-to-10-word-error-rate,
adapted by the author

Coqui is under a Mozilla Public License Version 2.0.

The GitHub Repository for Coqui STT can be found at: https://github.com/coqui-ai/STT

16

https://coqui.ai/blog/stt/a-journey-to-10-word-error-rate
https://github.com/coqui-ai/STT

2.1.1.5 CMUSphinx

The �rst activities on the CMUSphinx Pocketsphinx's GitHub repository were in 2013. How-

ever, that was not exactly the start. CMUSphinx has gathered over 20 years of knowledge

at Carnegie Mellon University3. This knowledge targets limited systems. In the same way,

CMUSphinx provides various tools for speech recognition. (Shmyrev 2019a) On the website,

CMUSphinx references their new library called "Vosk". This library o�ers seven languages

(Shmyrev 2019f). Vosk is introduced in more detail later.

The documentation contains introductory information about CMUSphinx. The basic knowl-

edge of the recognition procedure and its required components is discussed. The components of

the CMUSphinx model are the acoustic, language model and phonetic dictionary. The acoustic

model is used for the probabilities of the words (Shmyrev 2019i). In contrast to the acous-

tic model, the language model is used for the knowledge of potential word concatenations

(Shmyrev 2019c). The phonetic dictionary contains the phonetic transcription of the known

words (Shmyrev 2019e).

CMUSphinx consists of four di�erent segments called Pocketsphinx, Sphinxbase, Sphinx4 and

Sphinxtrain. The task of Pocketsphinx is to recognise speech and is written in the program-

ming language C. Pocketsphinx depends on the library Sphinxtrain and Sphinxbase. The last

segment is comparable to the one of Pocketsphinx except that it is written in Java and is called

Sphinx4. (Shmyrev 2019h) For the usage of Sphinx4, tools such as Gradle or Apache Maven

are recommended. All these segments are included in the latest release - 5prealpha. There

are practical examples for integrations of sphinx4 and Pocketsphinx in applications and on how

to use Pocketspinx with Android. Pocketsphinx is recommended for applications with low la-

tency. For adaptability, Sphinx4 is suggested (Shmyrev 2019b). For the usage of Pocketsphinx,

a UNIX-based or Windows system is a requirement. Additional installation dependencies are

Python, gcc4 and autoconf5, for example. The guide contains helpful code with explanations.

For the usage of Android devices, the dependencies di�er. (Shmyrev 2019d).

There is a German model, amongst 15 other languages, and acoustic models are o�ered by

CMUSphinx. To enhance the phonetic dictionary, a phonetic transcription of the words must be

created with the library g2p-seq2seq6 (Shmyrev 2019e). Alternatively, an existing dictionary can

be used. The language model requires prepared text and training with an Advanced Research

Projects Agency (ARPA) model and the toolkit Stanford Research Institute Language Model-

ing Toolkit (SRILM) (Shmyrev 2019c). The expansion of the acoustic model presumes a listing

of the sentences, the phonetic dictionary and audio recordings of the new words. (Shmyrev 2018)

3https://www.cmu.edu/
4https://gcc.gnu.org/
5https://www.gnu.org/software/autoconf/
6https://github.com/cmusphinx/g2p-seq2seq

17

Sphinx4 consists of three main components stated as FrontEnd, Decoder and Linguist. The

FrontEnd component employs MFCC as feature extraction by default. The feature extraction

component is exchangeable. The task of the Linguist is to combine the information from the

phonetic dictionary and acoustic model into a search graph. HMM is used for the implementation

of the acoustic model which is arranged in the Linguist. To change the language, a phonetic

dictionary, an acoustic and a language model of the desired language are necessary. The Decoder

consults the search graph and the extracted features for the decoding process. Viterbi search7

in the Decoder enables it to move forward or backwards in the features. This is comparable to

a depth-�rst search. In �gure 2.5 below the interaction between the individual components is

visualised. (Walker et al. 2004)

Figure 2.5: Interaction of the di�erent components of Sphinx4.

Source: Based on: https://www.researchgate.net/publication/
228770826_Sphinx-4_A_flexible_open_source_framework_for_speech_recognition,
adapted by the author

A license comparable to Berkeley Software Distribution (BSD) is used (Shmyrev 2019a). Further

details about the license are not mentioned.

The GitHub Repository for CMUSphinx can be found at: https://github.com/cmusphinx

2.1.1.6 Vosk

This STT engine is the new library of CMUSphinx and it is called Vosk (Shmyrev 2019f). It is an

open-source o�ine STT engine with further functionalities. According to the GitHub repository,

Vosk has been and is continually under development since 2019. The current version of the API

is 0.3.32. It can be used for speech recognition, as an STT engine for smart home devices and

as virtual assistance. (Alphacep GitHub Repository 2022)

7https://en.wikipedia.org/wiki/Viterbi_algorithm

18

https://www.researchgate.net/publication/228770826_Sphinx-4_A_flexible_open_source_framework_for_speech_recognition
https://www.researchgate.net/publication/228770826_Sphinx-4_A_flexible_open_source_framework_for_speech_recognition
https://github.com/cmusphinx

The website promotes the positive aspects of using Vosk, which are the easy installation and use

(Alpha Cephei Inc. 2016d). Moreover, connections for C, C#, Go, Java, Node.js and Python are

given (Alphacep GitHub Repository 2022). The support of many languages is in favour of Vosk.

It is possible to customize the vocabulary fast. Another bene�t of Vosk is speaker identi�cation.

(Alpha Cephei Inc. 2016d) Vosk is supported on Linux, Raspbian, macOS, iOS, Android and

Windows. For installation, the Python version 3.5-3.9 and a corresponding pip version of 20.3 or

later are required. Additionally, a video with the installation and usage with Python is provided.

Vosk can be used with a WebSocket server and Google Remote Procedure Call (GRPC) Server.

(Alpha Cephei Inc. 2016a) The documentation gives a clear overview of the interesting topics.

Currently, the documentation has been revised and improved a few times since the beginning of

this thesis.

Vosk supports more than 20 languages, including German. For lightweight devices such as

Android, iOS and Raspberry Pi di�erent models are provided. The small model was specially

made for Android or Raspberry Pis. The size of the large model-0.21 is about 1.9 GB, whereas

the small one has the size of approximately 45 MB. (Alpha Cephei Inc. 2016c) The large model

takes about 1 minute and 20 seconds for the initial loading. In contrast to the big model, the

small one takes less than two seconds for the initial loading. Then, both models transcribe

the audio in real-time. It is possible to change the vocabulary of this STT engine. To add

new words to the vocabulary, the section Language Model (LM) adaption will be helpful. It

explains the di�erence between the models of Vosk. The acoustic model provides the knowledge

of the sounds of a language. The language model provides the �ow of the words. The Phonetic

dictionary includes the phonetic representation of the words known by Vosk. Depending on

the language model, there are di�erent representations. One representation is a graph that got

statically compiled like Recurrent Neural Network Language Model (RNNLM). The other one

is a dynamic language model. To build a language model, 100 Mb of text and their respective

transcripts are recommended. For the acoustic model, 2000 hours of recordings are proposed.

Hardware prerequisites to compile a new graph after adding new words are a 32 GB RAM and

100 GB of disk space on a Linux server. Kaldi, SRILM and Phonetisaurus are the software

requirements. For adaptation, a special model is necessary. Currently, these can be downloaded

in four languages, including German. (Alpha Cephei Inc. 2016b)

As can be extracted from the article by Nickolay Shmyrev, the idea of Multistream Time Delay

Neural Network (TDNN) can be applied to the new Vosk models (Shmyrev 2021). In detail, a

Multistream Factorized Time Delay Neural Network (TDNN-F) is used for the acoustic mod-

elling presented in �gure 2.6. The feature extraction utilises MFCC. Subsequently, �ve (not

three, as shown in �gure 2.6) layers of TDNN-F in a line without multistreaming are employed.

These �ve layers receive the features as input. Afterwards, the features are split into the multi-

stream. To be precise, these are split into a 23-pieced network. Each multistream line consists of

a ReLU, batch normalization and a dropout tracked by 17 TDNN-F layers. (Han, Pan, Tadala,

Ma, & Povey 2020)

19

For the language model, either SRILM or OpenGRM8 can be used (Alpha Cephei Inc. 2016b).

SRILM utilizes an RNNLM language model (Shmyrev 2019g). This structure is used to train

the model for the German language (Shmyrev 2020).

Figure 2.6: Data �ow from feature input to Single Stream TDNN-F into multistream TDNN-F
into the ReLU Dropout Layer.

Source: Based on: http://danielpovey.com/files/2020_interspeech_multistream.pdf,
adapted by the author

Vosk is under an Apache-2.0 License.

The GitHub Repository for Vosk can be found at: https://github.com/alphacep/vosk-api

8https://www.opengrm.org/twiki/bin/view/GRM/WebHome

20

http://danielpovey.com/files/2020_interspeech_multistream.pdf
https://github.com/alphacep/vosk-api

2.1.2 Proprietary Software

For a comparison between the performance and structure of open-source STT engines, a bench-

mark is necessary. For this reason, proprietary STT engines of proprietary speech assistants

were researched. As a member of proprietary STT engines Alexa Voice Service respectively

Alexa Voice Service Device Software Development Kit (SDK), Apple Speech, Microsoft Azure

Cognitive Services - Speech to Text and Google Cloud Speech to Text will be examined. Due to

the �nancial aspect and privacy concerns, the proprietary technologies were omitted from the

exhibit.

2.1.2.1 Alexa Voice Service

The hidden tool in the Amazon Alexa is the Alexa Voice Service (AVS) (Marr 2021). This ser-

vice allows access to the Alexa Voice Service Device SDK, or in short SDK to use the speech to

text translation and further functionality provided by Alexa. The SDK is presently in version is

1.26.0 and was released in November 2021 (Amazon.com Inc. 2010b). As can be seen on GitHub,

the SDK is written in the programming language C++. (Alexa AVS Device GitHub Repository

2022) AVS cloud-based service can be accessed for free. Consequently, if the internet connection

should be lost, AVS will not work until the connection is re-established. (Amazon.com Inc.

2010b)

The extensive documentation disposes of tutorials for the usage of the SDK with devices that

are not the default ones. A short outline of the terminology for better distinction between the

terms AVS and AVS Device SDK is given. To summarise in short, AVS provides the Alexa

functionality and AVS Device SDK is the library behind it (Amazon.com Inc. 2010d). For ac-

cessing AVS, an account should to be created and the device needs to be registered. The whole

process is documented with comprehensive instructions. Topics like AVS Features or Concepts,

Products Guidelines, and SDK and their Extensions are described with useful examples. Re-

ferring to the commissioning of a device with the SDK step-by-step guides are provided. The

SDK runs on Android, iOS, Ubuntu, macOS, Raspberry Pi and Windows 64. (Amazon.com

Inc. 2022e) The basic hardware requisites are a microphone, an audio source and an internet

connection. (Amazon.com Inc. 2022h) Equally important are the software requirements for the

SDK are Ubuntu 18.04 LTS, GCC or Clang compiler, the build tool CMake and other libraries

which are presumed for the skills of AVS. Not all libraries are mandatory, as it depends on the

device (Amazon.com Inc. 2010c).

In respect of the accuracy of the AVS, approximately 19 of 20 words are correctly detected

by the current state-of-the-art leading proprietary tools. That is the result of successive learn-

ing. As a result of a misunderstood word, the input is used to improve the knowledge level, and

therefore re�ne the performance. (Marr 2021)

The crucial component of the SDK is Automatic Speech Recognition (ASR). On the acous-

tic features, a Short Time Fourier Transformation (STFT) is applied. Additional components

of the English acoustic model are two bidirectional LSTM layers and further �ve unidirectional

21

LSTM layers. The LSTMs contain the probabilities. The outcomes are the posteriors linked to

the successive HMM results. These are mapped to words with the aid of a glossary and language

model. (Swarup, Maas, Garimella, Mallidi, & Ho�meister 2019)

Alexa Voice Service Device SDK is under an Apache-2.0 License.

The GitHub Repository for Alexa Voice Service Device SDK can be found at: https://github

.com/alexa/avs-device-sdk

2.1.2.2 Apple Speech

With the announcement of iOS 10 in June 2016, the new API for speech recognition was intro-

duced (Carman, Dzieza, & Zelenko 2016). This API can perform speech recognition from a �le

or in live scenarios. This technology is not entirely new, as Siri has already been using it since

iOS 5. The release of iOS 10 is not just about the functionality used by Siri, it is a complete

framework. For the task of speech recognition, access to the Apple servers are required and

therefore an internet connection must be provided. This was state of the art in 2016. (Manson

2016) After the World Wide Developers Conference (WWDC) in 2019, the data is not sent to

the servers and is therefore no longer dependent on the internet. The API is open for usage,

despite a request restriction to keep the service accessible. In the case of an Apple device, the

restriction is 1000 requests per hour. Otherwise, the restrictions relate to requests per day.

(Apple Inc. 2017)

The documentation of Apple presents itself as organised and contains all the essential pieces

of information, without being too overloaded. In this case, the relevant APIs are Speech, Core

ML and Create ML. All three APIs are in the Xcode 13.0 respectively Xcode 13.3 release. Xcode

is an integrated development environment (IDE) to develop apps and programs for iOS and other

Apple products. Additionally, an Apple ID is required. (Apple Inc. 2022l)

Core ML, as well as the Speech APIs, are o�ered in Swift and Objective-C, while Create ML is

only o�ered in Swift. For practical use cases, code examples of the APIs are available. (Apple

Inc. 2022j) and (Apple Inc. 2022d) The Speech service is available from the major version and

upwards iOS 10, iPadOS 10 and macOS 10 coupled with the hardware requirement of a micro-

phone. Bene�ts of the framework apart from speech recognition are con�dence levels and time

information of the recording. To use Apple Speech the consent of the user must be given. The

consent allows the transfer of the audio over the internet. Since 2019, the great majority of the

process has taken place on the device. The consequence is lacking progress in improving the

learning of Siri. (N. Agarwal 2019) To request permission, the documentation provides useful

code in Swift or Objective-C (Apple Inc. 2022b).

The languages o�ered by Apple Speech will work properly. In contrast, to not provided lan-

guages. In the announcement of 2019, over 50 languages were promoted. The already mentioned

Core ML provides machine learning and the ability to apply pre-trained models in an app. To

create a new model, the framework Create ML can be utilised. As by Speech, there is a detailed

22

https://github.com/alexa/avs-device-sdk
https://github.com/alexa/avs-device-sdk

API description for creating a new model. With this API all di�erent kinds of models can be

developed, as can be seen in the documentation. The model does not rely on the internet, thus

the model can be used on an o�ine device. For training CPU and GPU can be utilised. (Apple

Inc. 2022c)

The core of Apple Speech is formed by a Deep Neural Network (DNN) displayed in �gure

2.7. For feature extraction, MFCC is used. The extracted features are displayed as �lled blue

rectangles in the DNN. This DNN consists of �ve layers, in which each containing 192 hidden

units. As a result, the phonetic probability scores are transferred from the acoustic model. The

probability score, which is comparable to a language model, combined with HMM is used to

determine the word. Figure 2.7 describes the small DNN used for the wake word detection. Re-

garding the article of Apple Machine Learning Research, the large DNN uses a similar structure,

except for the size of the layer and hidden units as previously mentioned. The Trigger Score of

the �gure is in this case the HMM. (Apple Machine Learning Research 2017)

Figure 2.7: Structure of the DNN behind Apple Speech.

Source: Based on: https://machinelearning.apple.com/research/hey-siri, adapted by
the author

Apple Speech is under an Apple Inc. License.

The GitHub Repository for Apple Speech can be found at: https://github.com/apple

23

https://machinelearning.apple.com/research/hey-siri
https://github.com/apple

2.1.2.3 Microsoft Azure Cognitives Service Speech to Text

The present version of Microsoft Azure Cognitive Services Speech SDK is 1.20.0. The beginning

of the productivity at the SDK repository was in April 2018. Since then, a greater part of the

code is in C#. (Microsoft Azure GitHub Repository 2022) This Speech SDK is used for the STT

task for Microsoft Cortana (Perez 2017). The price for STT is based on packages. The basic

package is available for free. It contains one Web Container with one concurrent request of �ve

audio hours per month. The improvement of a standard package is a standard Web Container

that allows 100 concurrent requests. This container costs ¿ 0.900/h of audio. These costs only

apply if the resources are used. These costs depend on the chosen region, respective of the

currency. (Microsoft 2022)

Hands-on examples are provided on GitHub with either a �le or a stream as possible inputs.

These were tested on Windows 10 and on some Linux distributions, Android equipment equally

or above to Android 6.0, Mac x64 with OS equal or higher version than 10.14 and Mac M1

arm64 with OS version 11.0 or above and lastly on iOS 11.4 gadgets. There are tutorials for each

supported programming language combined in each case with the corresponding platform. Sup-

ported programming languages are C++, C#, Java, JavaScript, Python, Swift and Objective-C.

(Microsoft Azure GitHub Repository 2022) The documentation itself gives a brief overview of

the functionality. Additionally, the Speech Command Line Interface (CLI) is presented which

does not require writing code. Generally, there are two di�erent ways to achieve STT conversion:

either via Representational State Transfer Application Programming Interface (REST API) or

the Speech SDK (Urban 2022g). For common languages, the baseline model of Microsoft will

satisfy (Urban 2022d). An account is required to access the STT functionality and to obtain

a subscription token (Urban 2022e). For simplicity reasons, the focus lies on the Speech SDK.

Practical code examples for the use of a microphone in combination with the API are given in

C#. The same applies to the example with an audio �le. (Urban 2022a) At the moment, there

are twelve di�erent locales o�ered (Urban 2022b).

It is feasible to create a new model, also called a custom model. It requires prepared sam-

ple data. The GitHub repository of the SDK provides speech samples ready to use. Various

audio samples with transcripts are required for the development of a new model. (Urban 2022c)

An important fact is that the custom model, as well as the baseline model, has an expiration

date (Rahmel 2022). The baseline model is accessible for for the duration of a year. The custom

model can be used for two years from the point of creation. The deployment and all instructions

are explained under practical circumstances (Urban 2022f).

24

The core of the Microsoft Azure STT functionality consists of acoustic and language mod-

els. Firstly, the acoustic model contains a Residual Network (ResNet) and Layer-wise Context

Expansion (LACE). Both are CNN models. Figure 2.8 below pictures the structure and com-

ponents of LACE. LACE is not just a CNN. It is a more accurate version of a TDNN. A further

element of the acoustic model is a Bidirectional Long Short Term Memory (BLSTM), with 512

hidden units for each layer and for inputs and outputs, which are deployed. The last element

of the acoustic model is a CNN-BLSTM with three convolutional layers plus six BLSTM layers.

Secondly, every acoustic model processes a language model and develops a small matrix, which

is subsequently rescored with the top-500-table. Further details are provided in the paper by

Xiong et al. (2018).

Figure 2.8: Componentes of a LACE CNN.

Source: Based on: https://arxiv.org/pdf/1708.06073.pdf, adapted by the author

Azure Cognitive Services Speech SDK is under an MIT License.

The GitHub Repository for Microsoft Azure Cognitives Service-Speech to Text can be found

at: https://github.com/Azure-Samples/cognitive-services-speech-sdk

25

https://arxiv.org/pdf/1708.06073.pdf
https://github.com/Azure-Samples/cognitive-services-speech-sdk

2.1.2.4 Google Cloud Speech-to-Text

The �rst initial movement in the Cloud Speech API for a Node.js Client GitHub Repository was

in 2016. There is a still continual activity in the repository. The present stable version of the

Google STT API for Node.js is v4.10.0. Almost the whole repository consists of TypeScript,

JavaScript and Python code. The name Cloud Speech is indicating that to access the API an

internet connection is required (Google Cloud 2018b). The Google Cloud STT o�ers a wide

range of supported languages (Google Cloud 2018d). New customers receive 0-60 minutes of

free access and after the duration of one-hour, payment is required (Google Cloud 2022).

The documentation on the Google website advertises itself with a listing of the bene�ts for

using this API. The state-of-the-art, easy model adaption and customizable deployment is

emphasized. The API can be tested with an audio �le uploaded to the website (Google Cloud

2018e). The documentation provides examples in the programming languages, such as Go, Java,

Node.js, PHP, Python, C++ and Ruby (Google Cloud 2018a). Each mentioned programming

language has a repository. The repository contains references to the Google documentation and

the API reference for the Node.js client. To use the API in a Cloud Platform project, an acti-

vated speech API and authenti�cation are necessary. The installation of the library can be done

via NPM. A practical example is given in JavaScript (Google Cloud Repository 2022).

To improve the results of Google STT, it is possible to name the origin of the audio. Thus,

Google can use a better �tting model to transcribe the audio. Audio origins such as phone

calls, medical dictation or conversations are prede�ned. Additional JavaScript Object Nota-

tion (JSON) example con�gurations for the model adaption are given (Google Cloud 2018f). An

API request with the corresponding word in audio format and a booster value are utilised to

�ne-tune a model (Google Cloud 2018c).

In 2014, the tendency of speech recognition was directed towards a singular neural network. As

a result, Google uses an "attention-based" and "listen-attend-spell" Listen Attend Spell (LAS)

model, as can be seen from the Google AI Blog from 2019. An attention-based model contin-

uously extracts relevant content (Chorowski, Bahdanau, Serdyuk, Cho, & Bengio 2015). Typi-

cally, LAS performs the same task except for the di�erence that it transcribes words beginning

with every single character (Chan, Jaitly, Le, & Vinyals 2015). An Recurrent Neural Network

Transducer (RNN-T) does not follow an attention-based approach directly, But it uses a sort of

sequence-to-sequence procedure. It is fed the characters of the alphabet as inputs whilst speak-

ing (Schalkwyk, Fellow, & Team 2019). Figure 2.9 below shows the structure of the RNN-T.

The features of the audio wave are extracted via a log-mel �lterbank. The prediction network

consists of two LSTM layers and 2048 hidden nodes, displayed in purple in the �gure below.

Furthermore, each layer contains 640-dimensional projections. Afterwards, eight layers of uni-

directional LSTM nodes are used as the encoder part. Every LSTM layer contains 2048 hidden

nodes and a 640-dimensional projection layer. To improve the consistency of the hidden states

a normalisation layer is applied per LSTM. Additionally, a time-reducer layer is integrated to

reduce time e�ort. Next, the result of the encoder combined with the result of the prediction

26

network is fed to a feed-forward joint network with 640 hidden nodes, pictured in yellow. The

encoder is the red rectangle in �gure 2.9. This output is fed to the softmax layer to calculate

the probability distribution. The softmax layer is illustrated as a blue rectangle. (He et al. 2018).

Figure 2.9: Componentes of a RNN-T with a sequence-to-sequence process.

Source: Based on: https://opensource.com/article/20/6/mycroft, adapted by the author

Nodejs Speech from Google is under an Apache-2.0 License.

The GitHub Repository for Nodejs Speech can be found at: https://github.com/googleapis/

nodejs-speech

27

https://opensource.com/article/20/6/mycroft
https://github.com/googleapis/nodejs-speech
https://github.com/googleapis/nodejs-speech

2.2 Speech Assistants

STT engines can be applied for transforming speech into text or for transcribing some audio

recordings and other audio. Another use case for an SST engine is the integration into a speech

assistant. In the case of a speech assistant, the STT engine forms the foundation for a speech

assistant. Depending on the speech assistant, the STT engine is exchangeable. However, each

assistant o�ers di�erent skills to a user. Some of these skills are extendable with individually

developed abilities. Each assistant was researched regarding o�ine usage, extendability of pro-

vided functionalities and hardware resources. Before the comparison, a brief overview of the

used technologies will be given.

2.2.1 Open-Source Tools

Due to privacy concerns and the �nancial aspect, open-source speech assistants are prefered

for the exhibit. The selected representatives of the open-source speech assistants are Mycroft,

Jasper and Rhasspy Voice Assistant. This choice is based on the top seven open-source speech

assistants (yourtechdietAdmin 2021).

2.2.1.1 Mycroft

In May 2016, the development of Mycroft began. Almost all of the code is in Python. The latest

version of Mycroft is v21.2.2 (Mycroft AI GitHub Repository 2022). To use Mycroft, registra-

tion on the so-called Mycroft Homesite is necessary. This Homesite eases the con�guration of

Mycroft. On the mentioned site, all devices need to be registered to use and manage their skills

and to con�gure personal preferences, regarding the accent and voice of the assistant (Mycroft

AI Inc. 2021b). To execute a skill, Mycroft requires an internet connection. Consequently, it

cannot be used o�ine. To use Mycroft o�ine the complete selene-backend9 needs to be hosted

on a server. This requires that the server and network are maintained and con�gured. For a

low amount of connected devices, a server with 4 CPUs, 8 GB RAM and 100 GB of disk space

is suggested (Mycroft Selene GitHub Repository 2022).

Mycroft is advertised with open-source, privacy, community-driven and a variety of hard-

ware support (Mycroft AI Inc. 2020). The documentation provides all relevant information

regarding special vocabulary and customisations for Mycroft, such as language settings and

other criteria. Mycroft is designed with skill extendable stacks. Several practical examples of

skill development are provided in the documentation (Mycroft AI Inc. 2021e). Concerning the

hardware, there is a the possibility to buy a gadget that is plug-and-play. Without buying

a gadget, Mycroft can be installed on Raspberry Pi, called Picroft, on Linux, on Windows,

on Mac, on Docker via Image and Android. For the setup on Windows or Mac, a virtual

environment is required (Mycroft AI Inc. 2021a). In the case of the Picroft Image, earlier

versions of Raspberry Pis as model 2 are not supported. A Micro SD card with at least 8

GB is suggested, power supply, ethernet cable, speakers and a USB microphone are assumed.

9https://github.com/MycroftAI/selene-backend

28

Optional purchases are a monitor or a USB keyboard. This depends on how the interaction

with Picroft will take place, for example via Secure Shell (SSH). (Mycroft AI Inc. 2021c)

Apart from the hardware costs, Mycroft is free to use and download. Concerning privacy,

Mycroft can convert speech to text locally, if an o�ine STT engine is integrated. Only the

text gets forwarded and processed by the Mycroft servers. To exchange the STT engine,

practical examples are given. Currently, Google's STT engine is used as the STT engine,

but as soon as Mozilla's Deepspeech is applicable this will be exchanged (Mycroft AI Inc. 2021d).

As mentioned before, Mycroft's skills can be enhanced with individually developed skills.

For installation, either a voice command or the command line can be used. The same applies

for the uninstallation of a skill. To develop a skill, the programming language Python, a

GitHub account and an instance of Mycroft are necessary. The process of creating a skill

is demonstrated using an example. A skill can be input via speech or by typing it into the

command line (Mycroft AI Inc. 2021c). The main part of the skill displayed in �gure 2.10 looks

like the code fragment 2.1. To demonstrate how Mycroft works, the example of a timer skill10

is used. A small extract of the timer skill delegates the timer function to the timer class.

def get_timers_matching_utterance(

utterance: str, timers: List[Countdown], regex_path: str

) -> List[Countdown]:

"""Match timers to an utterance that matched a timer intent."""

matcher = TimerMatcher(utterance, timers, regex_path)

matcher.match()

return matcher.matches

Code Fragment 2.1: A fraction of the Timer Skill of Mycroft, Based on: https://github.com/
MycroftAI/mycroft-timer/blob/21.02/skill/match.py, adapted by the
author

To address a skill, either the command line or the language can be used. To communicate with

Mycroft via speech, the wake-word engine must be triggered, followed by the skill which should

be carried out by Mycroft. For the wake-word functionality, either Pocket Sphinx or Precise can

be used. The voice command, which is in this case "set a timer for 10 minutes.", is recorded

by the microphone of the device. Afterwards, an STT engine converts it into text. Currently,

Google's STT engine is used due to accuracy reasons. Then, keywords are extracted from the

transcribed voice command. Keywords are then extracted from the transcripted voice command.

The keywords, in combination with the intent parser, map to the �tting mycroft-timer skill. As

an intent parser either Adapt11 or Padatious12 can be used. To transport the information ver-

bally to the user, a TTS engine is deployed. Currently, Mimic13 is used as a TTS engine. (Ovens

2020) Figure 2.10 pictures the process described above. (Ovens 2020)

10https://github.com/MycroftAI/mycroft-timer/blob/21.02/skill/match.py
11https://mycroft-ai.gitbook.io/docs/mycroft-technologies/adapt
12https://mycroft-ai.gitbook.io/docs/mycroft-technologies/padatious
13https://mycroft-ai.gitbook.io/docs/mycroft-technologies/mimic-overview

29

https://github.com/MycroftAI/mycroft-timer/blob/21.02/skill/match.py
https://github.com/MycroftAI/mycroft-timer/blob/21.02/skill/match.py

Figure 2.10: Work�ow of a Mycroft skill

Source: Based on: https://opensource.com/article/20/6/mycroft, adapted by the author

Mycroft-core is under an Apache-2.0 License.

The GitHub Repository for Mycroft can be found at: https://github.com/MycroftAI

2.2.1.2 Jasper

In 2014, the development of Jasper started as can be seen in the GitHub repository. Further

information taken from the repository shows that almost 100% of the code is written in Python

(Jasper Client GitHub Repository 2022). This assistant is promoted with a low �nancial

commitment, as it is plug-and-play and is easy to expand with user code. Jasper requires either

an ethernet or WiFi connection. (Saha & Marsh 2014a).

The documentation covers the basics for starting to use Jasper. Concerning the hard-

ware requirements, a Raspberry Pi Model B, USB microphone, 4 GB SD card, internet

connection, power supply, micro USB cable and speakers are needed. After building all previous

components on the Raspberry Pi, the installation of Jasper follows. (Saha & Marsh 2014a)

There are three ways for installation; the quick start, the installation via the package manager

and lastly the manual installation. The �rst and recommended quick start installation provides

a con�rmed disk image for model B. After putting the image into operation, the installation

instructions for Jasper are four command line inputs. The second installation guide gives

instructions for Jasper on ArchLinux14. The third and last option guides through the manual

installation (Saha & Marsh 2014b). Additionally, the STT and TTS engines need to be

con�gured. Currently, there are �ve supported STT and eight TTS engines for Jasper.

14https://archlinux.org/

30

https://opensource.com/article/20/6/mycroft
https://github.com/MycroftAI

Pocketsphinx15, Google STT 16, AT&T STT 17, Wit.ai STT18 and Julius 19can be used as an

STT engine. Julius and Pocketsphinx are the only two engines that can process the speech

locally on the machine. ESpeak20, Festival21, Flite22, SVOC Pico TTS23, Google TTS24, Ivona

TTS25, Mary TTS26 and Mac OS X TTS27 are the options for the TTS engine. (Saha & Marsh

2014c)

To start interaction with Jasper, the trigger word is used to activate the wake-word en-

gine. Afterwards, audio feedback will be given by Jasper. (Saha & Marsh 2014d) Some basic

skills o�ered by Jasper are time, weather, news, Gmail, Facebook noti�cations, jokes and some

more (Saha & Marsh 2014e). For some skills, credentials are required. It is possible to add

a new skill to Jasper. There are two di�erent developer APIs de�ned called Standard and

Noti�cation Module (Saha & Marsh 2014f). If Jasper needs to play an interactive role, the

Standard Module. For other cases, the Noti�cation Module is used. A code fragment 2.2 of a

noti�cation skill 28 is provided. It shows the email skill of Jasper:

def handleGMXEmailNotifications(self, lastDate):

grab gmx emails

emails = Gmxmail.fetchUnreadEmails(self.profile, since=lastDate)

if emails:

lastDate = Gmxmail.getMostRecentDate(emails)

notifications read to user as provided

def styleGmxEmail(e):

return "New email from \%s." \% Gmxmail.getSender(e)

put notifications in queue

for e in emails:

self.q.put(styleEmail(e))

return timestamp of most recent gmx email

return lastDate

Code Fragment 2.2: Code of a noti�cation skill of Jasper ,Based on: https://
jasperproject.github.io/documentation/api/notification/,
adapted by the author

15https://sourceforge.net/projects/cmusphinx/�les/pocketsphinx/5prealpha/
16https://cloud.google.com/speech-to-text?hl=de
17https://www.att.com/gen/sites/ipsales?pid=17755
18https://wit.ai/
19https://github.com/julius-speech/julius
20https://github.com/espeak-ng/espeak-ng
21https://www.cstr.ed.ac.uk/projects/festival/
22https://github.com/festvox/�ite
23https://github.com/naggety/picotts
24https://cloud.google.com/text-to-speech?hl=de
25http://www.tts-systeme.de/ivona-home/index.html
26http://mary.dfki.de/
27https://www.cereproc.com/de/products/Mac_OSX_voices
28https://jasperproject.github.io/documentation/api/noti�cation/

31

https://jasperproject.github.io/documentation/api/notification/
https://jasperproject.github.io/documentation/api/notification/

Practical straightforward examples are given for both APIs. It is advisable to look at the pro-

vided modules of other developers before developing a skill. How to add a new skill to Jasper

depends on the instructions of the third-party developer (Saha & Marsh 2014e).

The main function is placed in a �le called jasper.py. It coordinates everything, as can be

seen in �gure 2.11. This main function initialises the microphone, conversation and pro�le dis-

played, as red rectangles in the �gure below. The representative of the conversation, pictured in

green, can use the microphone and the information from the pro�les �le. This results in building

a brain and a noti�er. The brain and the noti�er are displayed as the purple rectangles in the

�gure. The main passes the microphone and pro�le to the brain and brings the components

into the ready-to-use state. The task of the brain is the communication between the self-created

modules/skills and the basic o�ered functionalities. A prerequisite for a usable module is that

the functions isValid(), handle() and WORDS = [...] are implemented.(Saha & Marsh 2014c)

Figure 2.11: Programm organisation of Jasper

Source: Based on: https://jasperproject.github.io/documentation/configuration/,
adapted by the author

Jasper is under an MIT License.

The GitHub Repository for Jasper can be found at: https://github.com/jasperproject

32

https://jasperproject.github.io/documentation/configuration/
https://github.com/jasperproject

2.2.1.3 Rhasspy Voice Assistant

Michael Hansen is the creator and maintainer of project Rhasspy. Since November 2018, he

has been working on Rhasspy. The latest release v2.5.11 of Rhasspy supports a wide range

of languages, although it is designed to be completely o�ine in a local network. The German

model is provided by Kaldi, Pocketsphinx or Deepspeech as the STT engine. (Hansen 2022d)

The target group for Rhasspy was initially home assistants or smart home assistants, as can be

seen in the old Github repository (Hansen 2016). In the new repository, the target group was

expanded with experienced users. As can be seen on the website, the assistant is compatible with

Home Assistant, Hermes Protocol29, Hass.io30, Node-RED, Jeedom31 and OpenHAB32 (Hansen

2022c). No costs arise with the usage of Rhasspy. (Hansen 2022d)

The documentation gives a brief overview of the installation steps and the supported hard-

ware. Rhasspy is supported on Raspberry Pi 2 model B/B+ and Raspberry Pi 3 model B/B+

or Raspberry Pi Zero. An SD Card of 32 GB is recommended. Further requirements are a

laptop or a server, as well as a microphone. A monitor is also advantageous. The installation

deals with the supported platforms and the corresponding installation steps. To install Rhasspy

a Docker image, Debian-based Linux distribution, Virtual Environment, Hass.io or Windows

Subsystem for Linux (WSL) can be used. The Docker installation is recommended to start with

Rhasspy (Hansen 2022a). In the Tutorial chapter, detailed instructions on customisation using

the web interface are given. The web interface has a clear design and is easy to understand.

Despite other functionalities of the web interface, it allows managing tools like the STT engine,

the audio recording library, the TTS engine and further con�gurations. (Hansen 2022e)

Another bene�t of the web interface is the option to add new sentences. These sentences are

used to �nd the right skill, by entering the intent name and the sentences that should be rec-

ognized. It only requires the saving this �le and retraining. To acquire speech-like feedback

of the Rhasspy via TTS, which is called a service, a second interface called Node-RED �ow

is used, as can be seen in the �gure 2.12 below. The API for TTS, audio output and other

services need to be connected with the corresponding intent. This is achvied by dragging and

dropping the components into the canvas and connecting boxes. The �rst node on the left side

is the connection to the Rhasspy. This node receives all incoming requests. The green nodes

are debug nodes. These are used to check the message content. The task of the intent switch is

to �lter the requests. If this node is missing, all skills are executed. The orange boxes are the

intents containing logic. The output of these intents is set into the message body with the nodes

on the right side. The TTS node performs the audio feedback. On the internet, video tutorials

on customisation and intent creation can be found and are useful supplements to the description

found in the documentation. To add a new functionality, the choice of programming languages is

restricted to the ones which provide access to Message Queuing Telemetry Transport (MQTT),

WebSockets and other o�ered protocols of Rhasspy. (Hansen 2022e)

29https://hermes-protocol.com/
30https://www.home-assistant.io/
31https://www.jeedom.com/en/
32https://www.openhab.org/

33

Figure 2.12: Three example intents of Rhasspy created in Node-RED.

Source: Created by the author

In contrast to other speech assistants, Rhasspy can run completely o�ine. This means that no

further cloud is needed to work with Rhasspy. As can be seen in the �gure 2.13 below, the basic

structure of Rhasspy provides the microphone, speakers and the core with the functionality. The

core functionality is illustrated as a brain. The speech is transcribed locally and parsed with the

intent parser. Subsequently, with the then known intent, services like Home Assistant or Hass.io

can be addressed. To address one of these services an API call over the local network is used.

After the task is completed, often the TTS engine gives feedback to communicate that the task

has been performed. The basic structure of Rhasspy can be con�gured to have more than one

microphone and speakers. These additional microphones and speakers are called satellites. In

this case, the brain is decoupled from the rest, such as the services. (Hansen 2022f)

Figure 2.13: Communication of Rhasspy with Hass.io and Node-RED

Source: Based on: https://rhasspy.readthedocs.io/en/latest/why-rhasspy/, adapted by
the author

Rhasspy is under an MIT License.

The GitHub Repository for Rhasspy can be found at: https://github.com/rhasspy/rhasspy

34

https://rhasspy.readthedocs.io/en/latest/why-rhasspy/
https://github.com/rhasspy/rhasspy

2.2.2 Proprietary Tools

In contrast to open-source software, proprietary software can be expensive in terms of usage

or have hardware restrictions. There is also a downside in terms of privacy, as some users are

not aware of the fact that their audio recordings are being saved and can be used for training.

However, before the audio becomes useful a person has to �rstly transcribe it. (Thakur 2021)

2.2.2.1 Amazon Alexa

The �rst Amazon Echo was released in 2014 (Etherington 2014). A statistic by Kunst (2021)

in the year 2021 has shown that almost three-quarters of the smart-speaker owners in the US

have owned an Amazon Alexa product (Kunst 2021). Further research carried out by Laricchia

(2022) has pointed out that Amazon was the international ruling supplier in 2021 with a market

share of 26.5% followed by Google. Since audio recordings are transmitted to an Alexa Ser-

vice in order to perform a task, this demonstrates that Alexa relies on an internet connection.

(Amazon.com Inc. 2010b) The STT engine of Alexa can be con�gured to local voice control

(Amazon.com Inc. 2022a). The ongoing version of the Alexa Skills Kit (ASK), which can be

used for skill development, is in the latest version v2.10.0. (Amazon.com Inc. 2010b)

A main part of the documentation focuses on the skills. It touches upon how the user can

use a skill and how the user receives the result of a skill. There is a listing of di�erent skill

types combined with existing skills for demonstration purposes. APIs, such as the Smart Home

API or Custom Skill Interface (Custom Interface), focus on the feature of the explicit skill.

(Amazon.com Inc. 2022f). To use Alexa, either an Amazon Alexa device can be purchased or

an Alexa integrated device can be used (Amazon.com Inc. 2022g) and (Amazon.com Inc. 2022b).

Each skill includes a voice interaction model. This model speci�es the expressions that need

to be said by the user in order to trigger a skill (Amazon.com Inc. 2022j). In contrast to the

custom voice interaction model, the pre-built interaction model uses pre-formed requests (Alexa

GitHub Repository 2022). For skill development, some requirements should be met. Firstly,

an Amazon developer account is necessary. Secondly, depending on the skill, an Amazon Web

Services (AWS) account is mandatory, with either the Alexa developer console or ASK CLI, an

Alexa Skill Kit SDK or an IDE. Lastly, the non-mandatory Alexa Presentation Language (APL)

authoring tool is required. The ASK SDK supports JavaScript, Java and Python. A skill created

with an existing voice interaction model provides bene�ts, such as other programming languages

than those with a custom voice interaction model (Amazon.com Inc. 2022c). To o�er a skill as

cloud-based, the skill should be hosted for instance on AWS Lambda which is a service provided

by AWS (Amazon.com Inc. 2022d). An extract of a skill example for a Hello World33 is displayed

in listing 2.3.

33https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-python/sample-skills.html

35

class SayHiIntentHandler(AbstractRequestHandler):

"""Handler for Say Hi Intent."""

def can_handle(self, handler_input):

type: (HandlerInput) -> bool

return is_intent_name("SayHiIntent")(handler_input)

def handle(self, handler_input):

type: (HandlerInput) -> Response

speech_text = "Hi, from Classes!"

handler_input.response_builder.speak(speech_text).set_card(

SimpleCard("Hi", speech_text)).set_should_end_session(

True)

return handler_input.response_builder.response

Code Fragment 2.3: Say Hi Intent of Alexa, Based on:
https://developer.amazon.com/en-US/docs/alexa/

alexa-skills-kit-sdk-for-python/sample-skills.html, adapted by
the author

How Alexa works is shown with the Smart Home Skill example in �gure 2.14. A prerequisite is

that the user has enabled the Smart Home Skill. Consequently, the user can address the skill by

the usage of the wake-word that Alexa combines with the respective utterance. Alternatively,

an app can be utilised to trigger the skill, as pictured as a smartphone in �gure 2.14. Alexa

extracts the information and the endpoint to operate. Afterwards, Alexa transmits the message,

also called the directive, to a lightbulb for example. The directive needs to contain all necessary

information in order to ful�ll the task, as well as the authentication of the client, the endpoint

and other criteria. In addition, the directive is transmitted to the skill code in AWS Lambda.

At this point, the directive is checked whether the directive has been authenticated or not. At

this point, the directive is checked whether the directive has been authenticated or not. The

skill then exchanges information with the device that has triggered the skill, illustrated as the

smartphone or Echo. As a result, the skill transmits an event to Alexa with feedback when the

task has been performed. This event can be asynchronous, in the case of the device cloud, and

synchronous, in the case of Lambda. In the example of a Smart Home Lightbulb, Alexa would

also receive notice if the light state has been changed manually. (Amazon.com Inc. 2022i)

36

https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-python/sample-skills.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-python/sample-skills.html

Figure 2.14: Communication between Alexa, smart home devices and the Alexa Coud.

Source: Based on: https://developer.amazon.com/en-US/docs/alexa/smarthome/
understand-the-smart-home-skill-api.html, adapted by the author

Alexa Skills Kit SDK is under an Apache-2.0 License.

The GitHub Repository for Alexa Skills Kit can be found at: https://github.com/alexa/

alexa-skills-kit-sdk-for-nodejs

2.2.2.2 Apple Siri

In 2011, Apple �rst revealed Siri with the iPhone 4S. Since the reveal, much has changed.

Presently, in 2022, Siri is one of the most well-known speech assistants in the world. Almost all

iPhone users have tried Siri at a minimum of once. Siri is used for online purchases by a quarter

of the users. (Wardini 2022)

The �rst versions of Siri, the speech assistant, were dependent on the internet. However, this

has also changed. Siri is now capable of processing the majority of the learning process o�ine,

but not entirely. (Apple Inc. 2022e). Siri can speak more than 30 languages (Apple Inc. 2022f).

Siri can be utilised by users as a Smart Home Assistant, in order to manage the ambience

at home. Siri is comparable to a personal assistant that receives dictated texts and then sends

these onwards. Of course, Siri can perform other useful delegable tasks (Apple Inc. 2022h). The

present version of Xcode for the SiriKit, the API provided by Apple, is 13.0-13.3. The SiriKit

provides the functionality which is known to Siri users. The basic functionality of Siri originates

from the Intents and IntentsUI framework tied to the actions of the users. The documentation

o�ers topics such as User Interface (UI) components for interactivity, instructions for a new

extension and how to design an Intents UI extension. The Intents UI extension displays more

information on the screen after the task is completed. However, SiriKit is supported on iOS and

iPadOS at 10.0+, macOS 12.+, tvOS 14.0+ and �nally, watchOS 3.2+. Generally, there are

seven di�erent intents to handle a given Intent. The "Standard Intents" are the default intents

of Siri. They are grouped by �elds such as Car Commands and Messaging. The Shortcuts and

Donations focus on the synergy between usability and Siri. The "Vocabulary" allows addressing

functionality via customised voice commands. The Custom UIs display additional information

37

https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs

on the screen of the device. For each subcategory in the previously mentioned subjects, interface

descriptions are provided in Objective-C and Swift. (Apple Inc. 2022i) Usage of the API itself

is free, but access to the API requires a paid account (Apple Inc. 2022k).

For creating a skill or intent there are two options. Option A is to create a completely new

skill or intent. Option B is to adapt a standard or default skill or intent, if there is already one

existing. Each individual intent should have three phases, which are called the resolve, con�rm

and handle phases (Apple Inc. 2022g). To process the intent a corresponding handler needs to

be implemented, as well as the resolving and handling of intents. The intent handler addresses

the app and causes the loading of the corresponding app to the intent. A brief extract of an

intent of Siri, in listing 2.4 shows what occurs within the shortcuts. A practical example of a

Custom Intent34 is provided. The previously mentioned resolve and handle phases of an intent

are used at this point, as con�rmation needs to take place before the intent can be completed.

User interaction is necessary to check and con�rm the information. Code examples are provided

in the documentation for resolving and con�rming the intent. (Apple Inc. 2020)

A new intent can be added to Siri's functionality via shortcuts. That means that the created

intent needs to o�er a shortcut in order to be accessible by Siri. To address the intent, the trigger

word followed by the name of the shortcut name is used. To develop the intent, Xcode with

an API is account is a prerequisite, such as the programming languages Swift and Objective-C.

(Apple Inc. 2022k) and (Apple Inc. 2022a)

34https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc

38

/// The system calls this method when continuing a user activity

// through the restoration handler

/// in `UISceneDelegate scene(_:continue:)`.

override func restoreUserActivityState(_ activity: NSUserActivity) {

super.restoreUserActivityState(activity)

if activity.activityType == NSUserActivity.viewMenuActivityType {

// This order came from the "View Menu" shortcut that is based

// on NSUserActivity.

prepareForUserActivityRestoration() {

self.performSegue(withIdentifier: SegueIdentifiers.mySoupMenu.rawValue

, sender: nil)

}

} else if activity.activityType == NSStringFromClass(OrderSoupIntent.self) {

// This order started as a shortcut, but isn't complete because the user

// tapped on the SoupChef Intent UI

// during the order process. Let the user finish customizing their order.

prepareForUserActivityRestoration() {

self.performSegue(withIdentifier: SegueIdentifiers.mySoupMenu.rawValue,

sender: activity)

}

} else if activity.activityType == NSUserActivity.orderCompleteActivityType,

let orderID = activity.userInfo?[NSUserActivity

.ActivityKeys.orderID.rawValue]

as? UUID,

let order = mySoupOrderManager.order(matching: orderID) {

// This order was just created outside of the main app through an intent.

// Display the order in the order history.

prepareForUserActivityRestoration() {

self.displayOrderDetail(order)

}

}

}

Code Fragment 2.4: MySoup intent of Siri, Based on:
https://developer.apple.com/documentation/sirikit/soup_chef

_accelerating_app_interactions_with_shortcuts?language=objc,
adapted by the author

39

https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc
https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc

Figure 2.15 shows how the SiriKit works. At �rst, Siri will extract the intent from the speech,

which is shown as the �rst purple circle in the �gure below. This happens with the use of the

vocabulary speci�ed as according to the intent. The intent is illustrated as the second purple

circle next to Speech. The vocabulary is shown as the �rst green rectangle. This is where the

resolve and subsequently the con�rm phases take place. In the con�rm phase, the intent and

all parameters need to be validated. Depending on the intent certain actions will be performed.

Some of the actions use the app logic in order to process the task given by the operator. Lastly,

either audio or optical feedback will be given by Siri, which is illustrated as the purple response

circle. This is the last phase and is called the handle phase. (Ortinau 2021)

Figure 2.15: Communication between apps and Siri

Source: Based on: https://docs.microsoft.com/en-us/xamarin/ios/platform/sirikit/
understanding-sirikit/, adapted by the author

SiriKit is under an Apple Inc. iOS Software License.

The GitHub Repository for SiriKit can be found at: https://github.com/apple

2.2.2.3 Microsoft Cortana

According to the GitHub repository of Microsoft (MS), the development of Cortana started in

2017. The predominant programming language is C#. (Microsoft GitHub Repository 2022)

Regarding the Microsoft documentation, Cortana is no longer supported on Windows 10 since

May 2020. For this reason, the developer stage of Cortana Skills Kit was also halted. (Bridge

2021) Since then, Cortana has been adapted and is now available with Microsoft 365 in order

to improve the e�ciency of users (Microsoft 2021). In an article in 2021, further information

regarding Cortana for Microsoft 365 was published (Bridge 2021). Cortana can now be accessed

as a cloud-based assistant using a Microsoft 365 work or school account. (Microsoft 2021).

40

https://docs.microsoft.com/en-us/xamarin/ios/platform/sirikit/understanding-sirikit/
https://docs.microsoft.com/en-us/xamarin/ios/platform/sirikit/understanding-sirikit/
https://github.com/apple

As expected from such an assistant, Cortana in MS 365 helps to connect everyday life with more

hand-free experiences. This happens through the integration of MS teams and when combined

with Outlook (Zawideh 2022). Functionality, such as brie�ng emails and reading emails out

aloud, is currently also provided. Additionally, Cortana helps users to stay updated in regards

to appointments or information. Further, Cortana can help creating new appointments. Only

the English language is currently supported, but further language support is planned. However,

Cortana is still in use with Windows 10 and newly with Outlook and MS Teams on the mobile

app for iOS and Android. To improve the learning continuously, MS uses the text version of

the command and not the audio itself. For machine learning in the O�ce 365 cloud, there is

no Human-in-the-loop (HITL). This means that there is no human interaction with the data.

(Microsoft 2021)

A brief retrospective of the time before Cortana was integrated into MS 365. The GitHub

repository provides task-based samples divided into Consumer and Enterprise categories. The

di�erence between these is that consumer samples are from third parties and the Enterprise

samples are provided by Azure Active Directory. The samples are written in C# and Node.js

(Microsoft GitHub Repository 2022). As Cortana is outdated, the documentation is not avail-

able anymore.

To create a skill for Cortana, the Bot Framework is recommended. For the development, an

Azure account is essential. At �rst, there is a possibility of a trial free of charge, however further

costs can be applied. (Microsoft GitHub Repository 2022). For the Bot Framework SDK, the

version of .NET Framework 4.6 or more recent is necessary. Explicit examples are provided

(Standefer & Fingold 2017). The Bot Framework SDK o�ers practical examples for C#, Java,

JavaScript and Python. The requirements di�er depending on the programming language. For

the creation of a code template, the usage of either Visual Studio or the VS Code/CLI is possible.

In the case of the language C#, an ASP.NET Core Runtime 3.1 and a Bot Framework Emula-

tor are essential. Additional knowledge of ASP.NET Core and asynchronous programming is a

bene�t. Afterwards, the Bot needs to be installed in Azure (Fingold 2021). An extract of the

example code from the Roller Skill sample35 of the Bot Framework is shown in the listing 2.5.

This code is used to display the cards on the canvas. (Microsoft BotBuilder GitHub Repository

2022)

35https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill

41

bot.dialog('HelpDialog', function (session) {

var card = new builder.HeroCard(session)

.title('help_title')

.buttons([

builder.CardAction.imBack(session, 'play roll some dice', 'Roll Dice'),

builder.CardAction.imBack(session, 'play craps', 'Play Craps')

]);

var message = new builder.Message(session)

.speak(speak(session, 'help_ssml'))

.addAttachment(card)

.inputHint(builder.InputHint.acceptingInput);

session.send(message).endDialog();

}).triggerAction({ matches: /help/i });

/** Helper function to wrap SSML stored in the prompts file with <speak/> tag. */

function speak(session, prompt) {

var localized = session.gettext(prompt);

return ssml.speak(localized);

}

Code Fragment 2.5: Extract of the Roller Skill sample of a Bot for Cortana, Based on:
https://github.com/microsoft/BotBuilder-Samples/tree/releases/

v3-sdk-samples/Node/demo-RollerSkill, adapted by the author

To interact with Cortana, it �rstly needs to be activated. Further on, the concern needs to be

addressed. Figure 2.16 illustrates an example of a cancelled Las Vegas trip using Cortana. For

this concern, the "Adventure Works" app is active in the background. The interaction with

the app takes place via canvas and the voice interaction via Cortana. The addressed concern

is displayed on the canvas, where user interaction such as con�rming or cancelling is required.

Several possible results �t the user's concern. All possible concerns are displayed on the canvas.

Cortana tries to observe which of the elements is correct by initiating interaction. The user

designates the name of the element. The functionality of cancelling an appointment does not

provide a rollback action. For this reason, veri�cation is required to avoid errors, after which

the completed canvas is presented. (Bridge 2021)

42

https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill
https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill

Figure 2.16: Interaction example of Cortana

Source: Based on: https://docs.microsoft.com/en-us/windows/apps/design/input/
cortana-design-guidelines, adapted by the author

Cortana is under an Creative Commons Attribution 4.0 International Public License.

The GitHub Repository for Microsoft Cortana can be found at: https://github.com/microsoft/

cortana-skills-samples

43

https://docs.microsoft.com/en-us/windows/apps/design/input/cortana-design-guidelines
https://docs.microsoft.com/en-us/windows/apps/design/input/cortana-design-guidelines
https://github.com/microsoft/cortana-skills-samples
https://github.com/microsoft/cortana-skills-samples

2.2.2.4 Google Assistant

In 2017, the �rst Google Assistant SDK was released on GitHub. The SDK is used to integrate

voice-driven control into individual projects by communicating with the Google Assistant. In

Google's GitHub repository, Assistant SDKs for Node.js, Python and C++ are o�ered. The

latest version of the Assistant SDK for Python is 0.6.0. (Google Developers 2022c)

Since the beginning of 2017, Google and Amazon have been competitors. A statistic, by Lar-

icchia (2022) in 2022, has shown that Amazon is the market leader in the international smart

speaker market, followed by Google. Google has a share of 20.5% (Laricchia 2022). Features such

as Google Maps, with downloaded maps, and playing music can be used o�ine. However, some

con�gurations are required beforehand. (Muelaner 2021) Google Assistant can be connected to

smart home devices (Google 2022b). Depending on the Google device, di�erent languages are

supported. All devices, except the Google Nest Hub Max, support German (Google 2022a). In

terms of the costs, the usage of the Google Assistant is free (Stegner 2018).

The documentation presents the Google Assistant as a faster alternative for interacting with

an Android app, a possibility for natural conversations, a way to improve internet presence and

as a tool to operate with smart home devices (Google Developers 2022b). Each of the pre-

viously mentioned topics are discussed in the documentation. For the sake of simplicity and

understandability, the focus is on Google Assistant embedded into a Raspberry Pi, which uses

the Google Assistant SDK. Google Assistant SDK on Raspberry Pi counts as an experimental

device. It needs to be emphasised that it allows only experimental and not commercial purposes

(Google Developers 2020). The SDK is used to address Google Assistant Service. The feature of

the so-called Hands-free Activation is not supported on experimental devices. Therefore, push-

to-talk is instead. This service consists of an API that enables direct access to audio bytes of

the requests and the responses of the assistant. The API provides connections for Node.js, Go,

C++, Java and other languages that are capable of Google's Remote Procedure Calls (RPC),

also called GRPC (Google Developers 2020). Hardware prerequisites are a running device with

an internet connection, a microphone and a speaker (Google Developers 2022g). For the installa-

tion, a step-by-step guide for C++, Node.js, Python and Android is o�ered (Google Developers

2022f). Additional information on con�gurations for audio, developer projects, account settings,

registration of the model and installation instructions is given (Google Developers 2022e). To

use a device with Google Assistant, it needs to be registered. This can be done via UI (Google

Developers 2022g). After completing all the steps, the practical examples can be used for testing

(Google Developers 2022h).

44

It is possible to extend the abilities of the Google Assistant. To address your device with a

voice command, Device Action is necessary. In the documentation, an example use case of a

light is used for demonstration purposes. For this example, the following hardware requirements

need to be met: a breadboard, an LED, a series resistor and two jumper wires female and male

connectors. Instructions to mount these components on the Raspberry Pi Model B can be found

in the documentation. Furthermore, detailed information on how to register a skill or also call

trait, and handle commands is given (Google Developers 2022d). The code listing 2.6 shows an

example for a trait36 which handles all devices.

device_handler = device_helpers.DeviceRequestHandler(device_id)

@device_handler.command('action.devices.commands.OnOff')

def onoff(on):

if on:

logging.info('Turning device on.')

else:

logging.info('Turning device off.')

@device_handler.command('com.example.commands.BlinkingLight')

def blink(speed, number):

logging.info('Blinking device \%s times.' \% number)

delay = 1

if speed == "SLOW":

delay = 2

elif speed == "QUICK":

delay = 0.5

for i in range(int(number)):

logging.info('Device is now blinking.')

time.sleep(delay)

Code Fragment 2.6: Extract of the blinky light code example of a Google Assistant skill, Based
on: https://github.com/googlesamples/assistant-sdk-python/blob/
master/google-assistant-sdk/googlesamples/assistant/grpc/

pushtotalk.py, adapted by the author

36assistant-sdk-python/pushtotalk.py at master · googlesamples/assistant-sdk-python · GitHub

45

https://github.com/googlesamples/assistant-sdk-python/blob/master/google-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py
https://github.com/googlesamples/assistant-sdk-python/blob/master/google-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py
https://github.com/googlesamples/assistant-sdk-python/blob/master/google-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py

The example with the Raspberry Pi and the light demonstrates the work�ow displayed in �gure

2.17. In this case, the device (Raspberry PI) has installed the Google Assistant SDK and holds

the credentials to access the API of the Google Assistant Service. The assistant is activated

via a button, followed by the intent. Afterwards, the device model and its identi�ers are sent

to the service. Then the corresponding response actions are identi�ed. The service then will

perform speech to text conversion. Natural Language Processing (NLP) is used to �gure out the

intent of the user. The context speci�es the supported device actions. Depending on the context,

actions are chosen to accomplish the request. To verify the request, device matching takes place.

Subsequently, the service transmits the text for the output linked with the supported command

for the device. (Google Developers 2022a)

Figure 2.17: Communication of the Google Assistant to turn on a light

Source: Based on:
https://developers.google.com/assistant/sdk/device-actions-overview/, adapted by
the author

Google Assistant SDK is under an Apache-2.0 License.

The GitHub Repository for Google Assistant SDK can be found at: https://github.com/

googlesamples/assistant-sdk-python

46

https://developers.google.com/assistant/sdk/device-actions-overview/
https://github.com/googlesamples/assistant-sdk-python
https://github.com/googlesamples/assistant-sdk-python

2.3 Technology Decision

Due to the amount of diverse audio recordings, the proprietary STT engines and assistants

perform well. The proprietary STT engines and assistants are excluded from the choice of tech-

nology for the exhibit because the transmission of the audio �les to external servers cannot be

reconciled with data protection directive. Further reasons for exclusion are the reliance on an

internet connection and the costs for API calls.

In the following section, the open-source technology decision is visualised in the table 2.1. The

evaluation of the technologies is based on a scale of points. The point score ranges from 0 to

6 points, whereas 0 - means it does not apply, and 6 - means it does fully apply to this technology.

Initially, Deepspeech from Mozilla was considered, but the German model is not yet ready

for usage (Mycroft AI Inc. 2021d). Consequently, the performance of Deepspeech was not con-

vincing and training resources would be necessary in order to increase the performance. For this

reason, other STT engines were researched.

The rating of the STT reveals a score of 33 points for Vosk, followed by CMUSphinx and Coqui.

Vosk provides good documentation for installation and di�erent models. The documentation,

as well as the models, are continuously updated. With the provided scripts from the docu-

mentation of Vosk, it is possible to transcribe the audio in real-time. Regarding adaptability,

all mentioned STT technologies require a certain amount of data, transcription and technical

resources. Another reason in favour of Vosk is: that it can, or is, already integrated into some

speech assistants such as Mycroft and Rhasspy.

DeepSpeech Flashlight Kaldi Coqui Sphinx Vosk

German model 6 6 6 6 6 6
WER 4 37 4 38 5 39 4 40 5 41 6 42

Documentation 5 3 3 4 5 5
Speed 4 5 5 5 5 6

Adaptability 3 4 3 4 4 4
O�ine-capable 6 6 6 6 6 6

Sum 28 28 28 29 31 33

Mycroft Jasper Rhasspy

German model 6 6 6
Documentation 6 4 5

Speed 5 5 5
Skill maintenance 5 4 5
O�ine-capable 0 4 6

Sum 22 23 27

Table 2.1: Technology decision matrix of the open-source tools.

47

The rating of the speech assistants yields the score of 27 points for Rhasspy followed by Jasper

with 23 points and 22 points in the case of Mycroft. Mycroft got excluded due to the incapability

to run o�ine without further ado. Additionally, the creator of Rhasspy mentioned that Rhasspy

is the user-friendliest speech assistant for users with privacy concerns (Hansen 2022f). Due to

the documentation and the userfriendly UI, Rhasspy was chosen as a possible speech assistant

for the exhibit.

37https://github.com/AASHISHAG/deepspeech-german
38https://goofy.zamia.org/zamia-speech/asr-models/
39https://github.com/german-asr/kaldi-german
40https://coqui.ai/german/AASHISHAG/v0.9.0
41https://sourceforge.net/projects/cmusphinx/�les/Acoustic%20and%20Language%20Models/German/
42https://alphacephei.com/vosk/models

48

3 Model Adaption

Since this exhibit is going to be a permanent part of the exhibition at the Inatura1, it is bene�cial

to the curator that the exhibit can be modi�ed. Due to the fact that not all questions can be

processed after the initial installation, modi�cations, such as additions of excluded questions or

changes in vocabulary, are desirable. The focus of this chapter is on the customisation of the

STT engine models. The �rst option is to enhance the model with new words. The second

option is to remove words from the model. (Alpha Cephei Inc. 2016b)

For reproducibility purposes, the used hardware and software are disclosed. A conclusion of the

process is also given.

3.1 Hardware

The following hardware was used for this section:

� Microsoft Windows 10 Pro, x64-based PC

� Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz, 1190 Mhz, 4 Core(s), 8 Logical Proces-

sor(s)

� Installed Physical RAM 16,0 GB

� Intel(R) UHD Graphics

3.2 Software Prerequisite

In this section, the software requirements for the model adaption are introduced. In order to

adapt the model of Vosk, some software needs to be installed before starting.

3.2.1 Vosk

Vosk is one of the previously presented open-source STT engines. One of the reasons that Vosk

was selected was due to the uncomplicated documentation. Vosk needs to be installed before it

can be used. It can be installed via pip3 (Alpha Cephei Inc. 2016a). Another reason in favour of

Vosk was that there is an explicit German model o�ered for model adaption (Alpha Cephei Inc.

2016b). The large model was used in this chapter, although the loading time on the mentioned

system and the high memory consumption (Alpha Cephei Inc. 2016c).

1https://www.inatura.at/

49

3.2.2 SRILM

To enhance the vocabulary of a Vosk model, SRILM should be pre-installed. SRILM is a language

modelling toolkit, next to OpenGRM2, Kenlm3 and MITLM4. Only SRILM and OpenGRM

support the essential characteristics. These are interpolation, Witten-Bell discounting, LM

pruning and training with a dataset size of one Tb. SRILM can be used for free with a "Research

Community License" for non-pro�t organizations and projects, without independent �nancial

support. Otherwise, a commercial license is required. (SRI International SRILM 2021) (Alpha

Cephei Inc. 2016b)

3.2.3 Kaldi

Kaldi was used to perform a RNNLM modi�cation of the Vosk model. One advantage is that

Kaldi provides the best accuracy. The disadvantage is that it is slow and memory intense.

However, Kaldis RNNLM is capable of adding new words to an existing RNNLM. Kaldis

RNNLM needed to be installed on the server. (Alpha Cephei Inc. 2016b)

3.2.4 Phonetisaurus

The Vosk model adaption section suggests Phonetisaurus for creating phoneme representations

of the new words. There are several options to get a phoneme representation for the dictionary.

The �rst option is that it is extracted from an existing dictionary. The second option is that

a library creates it. Phonetisaurus5 and G2P6 are representants of potential libraries. For this

reason, Phonetisaurus was installed on the system. Phonetisaurus was already integrated into

the models and was used for prediction. (Alpha Cephei Inc. 2016b)

3.2.5 Docker for Windows

To enhance the model of Vosk, a Linux environment is recommened (Alpha Cephei Inc. 2016b).

For this reason, Docker for Windows was used for virtualisation. Docker Desktop 4.5.1 (74721)

is the most recent available version and was used in this scenario. In addition, Docker was

connected with the WSL 2. Therefore, it was possible to adjust the memory, the CPU and the

size of the swap in a separate �le.

2https://www.opengrm.org/twiki/bin/view/GRM/WebHome
3https://github.com/kpu/kenlm
4https://github.com/mitlm/mitlm
5https://pypi.org/project/phonetisaurus/
6https://github.com/cmusphinx/g2p-seq2seq

50

3.3 Setup

Firstly, the Docker Image was downloaded. Subsequently, a container was created using an

Ubuntu 20.04 image. This container was mapped to port 2200:22 Transmission Control Pro-

tocol (TCP). After connecting to the container, the Ubunutu was updated. In addition, tools

such as Automake, sox7, gfortran8, libtoolize9 and some further requirements for Kaldi were

installed which took approximately an hour. The next step was the installation of Kaldi and

corresponding packages. Onwards SRILM got installed. This installation was time-consuming in

comparison to the rest of the installations. After consenting SRILM license, it was downloaded

and installed on the docker container. Lastly, Phonetisaurus was installed via pip3 package

manager.

To begin with the model modi�cation, an adaptable model was required. This adaptable model

was downloaded from the Vosk website10 with wget11. This model contained an RNNLM. (Al-

pha Cephei Inc. 2016c)

3.4 Conclusion

In theory, it is possible to adapt an RNNLM by adding a text �le, followed by a bash script for

compiling the graph, as stated in the guide.

To summarise this chapter, the aim was to �rstly enhance the model. The extension of the

model failed. The only successful model adaption was achieved by removing words from the

dictionary. For this reason, the model was censored by removing inappropriate words.

The extension failed because of a lack of information. The chapter Language Model Adaption

shared basic information and was di�cult to understand. However, the documentation was

updated after these attempts. Hardware requirements and additional instructions were sup-

plemented. Precise instructions and data preparations are still missing. Due to the hardware

prerequisites and lack of time, further attempts were postponed.

7http://sox.sourceforge.net/
8https://gcc.gnu.org/wiki/GFortran
9http://manpages.ubuntu.com/manpages/trusty/man1/libtoolize.1.html

10https://alphacephei.com/vosk/lm
11https://www.gnu.org/software/wget/

51

4 Development

The core parts of the implementation of the exhibit will be discussed in this chapter. The core

parts consist of the STT engine and the matching strategy of the transcript to the path to video

answer. Furthermore, considered solution proposals and solutions are introduced. Subsequently,

the implemented solutions and their technologies are presented and justi�ed.

4.1 Solution Proposals

There are two possible solutions for the realisation of the exhibit. The �rst one is a speech

assistant. The second is an individual implementation, where the mapping and matching from

question to answer was inspired by the previously mentioned speech assistants.

4.1.1 Solution 1 - Speech Assistant

This solution utilises a speech assistant to handle speech input and process the transcribed output

of the STT engine. At �rst, Mycroft was suggested as the used speech assistant. Following

the setup and testing, it was apparent that Mycroft can not be run entirely o�ine, except if

the backend is hosted on a server (Mycroft Selene GitHub Repository 2022). For this reason,

Mycroft was excluded. After further research, Rhasspy was envisaged for usage. Rhasspy can

run entirely o�ine. Additionally, it can be con�gured to use di�erent STT engines. With

Rhasspy, it is possible to use various questions to trigger the same answer. In other words,

questions with a di�erent text but the same answer could be cumulated into one skill, which

improves the manageability. (Hansen 2022e) Furthermore, Rhasspy provides a userfriendly UI

for skill maintenance.

4.1.2 Solution 2 - Individual Implementation

This solution was individually implemented and can be used with di�erent STT engines. For the

case of the exhibit, Vosk was chosen as STT. For this reason, the implementation will use Vosk

to transcribe the input questions. This individual solution provides two di�erent strategies to

match an input question to a known question catalogue and therefore, to the path of the answer

video. The two matching strategies which can be selected are called "Text Matching" and "Text

and Keyword Matching". Both strategies have in common that they access an JSON �le with

the known questions which provide a mapping of the path to the answer video. This JSON �le

represents all questions which can be answered by the system. It also contains keywords and

synonyms for each question in the case of word deviations.

52

The di�erence between the Text and Keyword Matching and the Text Matching algorithm lies

in the way they compare the input question with the known questions of the catalogue to �nd

the correct answer.

The Text Matching algorithm compares the input question to each known question in the JSON

�le using Jaro Similarity1. The Jaro Similarity checks for the similarity of two strings. This al-

gorithm returns a �oating value between zero and one, whereas zero is a complete mismatch and

one an exact match (T. James 2021). The Text Matching algorithm uses the Jaro Similarity to

compare the input question to a known question. If the comparison results in a value of at least

0.75, this question is used to match the corresponding answer. If the value is below 0.75, the

response will be a random alternative answer. The text matching strategy approach attempts

to match questions with an exact, or at least a close wording to the known questions. In the

case of a question where the best match is below 75 %, the text deviates more than 25 % and it

is presumed that there is no known question which matches this input question. Therefore, the

answer is unknown. As a result, a random answer will be given. This approach can be adapted

to use the keyword comparison as well.

The Text and Keyword Matching algorithm compares all known questions of the JSON �le

with the input question using Damerau-Levenshtein Distance2. The comparison considers the

number of character modi�cations from the text of the input question and the known questions

(T. James 2021). The questions with the least number of character modi�cations are saved

for later comparisons with the keywords. If the least number of changes is lower than 5, it is

assumed that this question is the input question. Afterwards, the corresponding answer is given.

The keywords are used if the number of modi�cations is in an interval of 5-20. The keywords

should improve the con�dence of the question to match the input question. If the number of

changes is above the value of 20, a random alternative answer is given. This text and keyword

approach attempts to match more input questions to context-related questions, rather than give

an alternative answer right away when the context becomes lost. For example, it allows the

matching of an input question with a speci�c context regarding the fear of a scythe to a sim-

ilar known question regarding fear in general, instead of giving an alternative random answer.

Therefore, the user has an impression of being slightly understood.

Those approaches were developed to reduce the problem of the exact wording of the question

in order to match them to a known question. This procress of matching an input to an action

is called intent parsing in the domain of speech assistants. It provides the possibility of slight

deviations in the syntax or the wording of the questions and errors of the transcription of the

STT engine. Additionally, these approaches allow the usage of some dialect questions as input

in contrast to the speech assistants.

1https://rosettacode.org/wiki/Jaro_similarity
2https://en.wikipedia.org/wiki/Damerau%E2%80%93Levenshtein_distance

53

4.2 Justi�cation of the Solutions

There are several reasons why Solution 1 was excluded. It was planned that a video would be

displayed when the system is idle. A further video would be played during the question matching

process and another during the answer. It is possible to implement these video requirements, but

an individual solution is associated with less e�ort. Another argument in favour of individual

solutions was the maintenance of the video con�guration.

The UI of Rhasspy is an advantage, in regards to managing the question repertoire. For the

functionality of a new question, the drag and drop interface of Node-RED was used. In con-

sideration of the number of questions which should be understood, the Node-RED canvas can

become complex to maintain.

A further desired functionality was the push-to-talk recording. The push to talk can be imple-

mented with a Python script. To �nd out which input questions are asked by the users, the

audio recordings should be logged. The saving of these �les can also be implemented in the

push-to-talk script.

It is possible to con�gure Rhasspy so that it does not need exact wording to match an input

question to skill correctly. (Hansen 2022b) However, it is still necessary to announce all textual

variations to Rhasspy that should be understood. To preserve the clear structure, questions

with the same answer can be aggregated to the same skill and then to the correct answer. As

a result, the number of textual deviations, for example for one question, can be massive. In

particular, if the dialect or synonyms are taken into account. These cases can complicate when

matching the corresponding skill and diminishes the conciseness of the question repertoire.

Another reason, against the usage of a speech assistant in combination with the exhibit, was

the event of an input question which cannot be matched to a known question of Rhasspy. For

the alternative answer strategy, a fallback skill should be implemented. This can be done in

Node-RED (Hansen 2021). To respond with a contextual close answers phonetic string matching

can be con�gured, but requires more e�ort to be tested and customised. (Hansen 2022b)

Solution 1 provides a list of prede�ned STT engines, in contrast to Solution 2 where the STT

engine can be exchanged arbitrary.

The reason in favour of Solutions 2 is the �exibility regarding customisations, such as the desired

videos for the idle, question matching and answer process. Additionally, push-to-talk can be re-

alized with a Python script comparable to the script of Solution 1. To save the audio recordings

minor changes in the push-to-talk script can be carried out.

A further bene�t is that all requested functionalities can be implemented with the same pro-

gramming language, in this case, Python. The STT engine can be exchanged, but for testing

reasons, the STT engine of Vosk was used. The code example of the Vosk API is written in

Python, which is a bene�t. This example uses an audio �le as input and can be adjusted for unit

tests of the implementation of the text matching and text and keyword matching algorithm.

Both algorithms use the same JSON �le. To add a new question, only the JSON �le needs to be

adjusted. Supplementary keywords are required for the text and keyword matching approach.

There are two main di�erences between these two algorithms. One di�erence lies in the match-

ing procedure. The text matching algorithm tries to match only the questions which are almost

54

identical to the known questions. For this reason, the text matching approach is not as robust as

the text and keyword matching algorithm. The text and keyword matching approach considers

not only the known question but also the keywords. This feature enables the text and keyword

matching algorithm to match more questions correctly, even though there are textual deviations.

However, this is only if the textual deviations are announced in the keywords.

Another di�erence between both algorithms lies in the strategy for not correctly matching ques-

tions. The text matching algorithm follows a straightforward approach. If it cannot successfully

match an input question, a random answer will be the response. In contrast to the text matching

algorithm, the text and keyword matching algorithm tries to �nd an answer which has at least

some context in common with the input question. If the variation between the input question

and the known question is too high, the same approach as in the text matching algorithm will

become e�ective.

As a result of the previous argumentations, Solutions 2 with both algorithms was implemented

and tested. The better performing solution, in terms of matching the input question to the

corresponding question, will be used for the exhibit.

4.3 Used Technologies

Python was used to develop both solutions. Furthermore, WSL 2 for Windows was used to

develop with Python and Visual Studio Code. Two di�erent functions of the phonetic string

matching library jelly�sh have been used for the matching process. For testing purposes, the

example which receives an audio �le from the GitHub Repository of the STT engine Vosk

was adjusted and integrated. It is possible to exchange the STT engine, because there are no

dependencies between the implementations.

4.3.1 Python

Python version 3.8.10 was installed for development. Python was chosen because of the code

examples of Python in combination with a Raspberry Pi of Ko�er, Kühnast, and Scherbeck

(2019), which will be useful for the exhibit. In addition, Vosk provided examples and connections

for Python. As a result, the exhibit consists solely of one programming language that eases

maintenance. The phonetic matching library Jelly�sh is o�ered via the Python package installer

pip. Another advantage of Python is the possibility of cross-platform development. The unit

test package of Python was used for unit testing the implementations.

4.3.2 Jelly�sh

Both implemented solutions utilise the phonetic matching library Jelly�sh version 0.9.0. Solution

2 uses the Jaro Similarity to compare the input question to the known questions. Solution 3 is

implemented with the Damerau-Levenshtein Distance. Both used functions of Jelly�sh are case

sensitive and consider punctuations (T. James 2021). Due to this, these factors were removed

before comparing the questions and keywords.

55

4.3.3 Vosk

Initially, Deepspeech was intended for the exhibit. After testing, it became apparent that Deep-

speech currently does not perform as well as expected. This was proven in the documentation

of Mycroft. (Mycroft AI Inc. 2021d) During the research for suitable STT engines, more em-

phasis was focused on Vosk. It is the new STT engine of CMUSphinx (Shmyrev 2019f). As

previously mentioned, it is an open-source o�ine STT engine. There are two di�erent German

models available for it. Both models were tested and evaluated for the hypotheses, of whether

the open-source o�ine STT engine performs as well as a proprietary cloud-based STT engine.

The models of Vosk were compared to Google's Cloud Speech to Text. For the development and

testing of the mapping process, the small model version 0.15 and Vosk 0.3.32 were used. The

small model is designed for Raspberry Pi's, which will be used for the exhibit. The STT engine

itself can be exchanged.

4.3.4 WSL 2 for Windows

WSL 2 was used for development with Python on a Windows machine. It provides Intellisense,

linting and debugging support in combination with Visual Studio Code. Additionally, it allows

running a script in a terminal (Wojciakowski, Junker, Patel, Davis, & Coulter 2022).

4.3.5 Hardware

The following hardware was used for this section:

� Microsoft Windows 10 Pro, x64-based PC

� Intel(R) Core(TM) i5-1035G1 CPU @ 1.00GHz, 1190 Mhz, 4 Core(s), 8 Logical Proces-

sor(s)

� Installed Physical RAM 16,0 GB

� Intel(R) UHD Graphics

4.4 Implementation

The intended work�ow of the exhibit is displayed in the sequence diagram of �gure 4.1. If the

system is idle, a video for this state will be shown on the screen. To interact with the exhibit,

a visitor uses the push-to-talk functionality of the exhibit. This causes the recording of the

question using "arecord". As soon as the button is released, the recording stops. The recorded

audio is then transmitted to the STT engines and is transcribed. The transcribed question is

used to �nd the corresponding answer. For this reason, the transcribed question is passed to the

matching algorithm to �nd the corresponding answer video. Depending on the applied matching

strategy, either the text matching or the text and keyword matching is used. Regardless of which

solution is used, this software part responds with the path to the corresponding answer video.

This path is used as an input to the "omxplayer" to playback the answer video, in order to

communicate the answer to the question asked by the visitor.

56

Figure 4.1: Sequence diagram of the exhibit communitation parts

Source: Prepared by the author

Due to automation testing purposes test function of Vosk was designed as a higher-order func-

tion. This higher-order function receives the matching algorithm as an input parameter and the

path to the audio �le. The concept of a higher-order function results in decoupling and therefore

allows the exchange of the matching algorithm. Additionally, both matching algorithms follow

the same interface, which is the transcribed text of the input question, the path to the JSON �le

with the known questions and the optional parameter to exchange the phonetic string matching

library. Both matching algorithms return the path to the answer video. Furthermore, all code

parts are implemented in such a way that all components can be independently tested.

57

5 Evaluation

Firstly, the quality of the developed matching algorithms was examined. Secondly, an o�ine

open-source STT engine was compared to a proprietary cloud-based STT engine to evaluate

the performance. The comparison was based on the robustness of the engines. Additionally,

the examination of whether an o�ine STT engine can be a reliable alternative to a cloud-based

solution was discussed.

5.1 Google Cloud Speech to Text vs Vosk

For the comparison between an open-source and a proprietary variant, an adequate representa-

tive was chosen. Google Cloud STT was selected as a surrogate of a proprietary engine. This

proprietary engine was used as a benchmark to evaluate the performance of a not proprietary

service. Vosk represents the open-source solution. For this comparison, two hypotheses were

established:

H0: The open-source o�ine speech to text engine performs as well as a proprietary cloud-based

speech to text engine.

H1: The proprietary cloud-based speech to text engine performs better than the open-source

o�ine speech to text engine.

5.1.1 Method

A requirement for a fair comparison is the same preconditions. Therefore, audio recordings were

used for testing. Each engine was tested with the same audio recordings. For this reason, audio

recordings of 30 test subjects were collected. In total, the number of participants were 15 female

and 15 male test subjects. Five of the male and female participants were between the ages of

four to eighteen. The female adults were between the ages of 26-42 years old. The male adult

subjects were between the ages of 26-40 years old. The lowest age boundary of the test subjects

was the age of four. One subject had a speech impediment. Each participant was given seven

questions, in which six questions were context-related. One question was context-related, but

not within the known questions catalogue. Each subject was instructed to record themselves

asking all seven questions in standard German and also in their common dialect. Some of the

younger test subjects did not speak dialect at all, which is the reason why the total amount of

audio recordings totalled 392.

58

For the comparison of the previously mentioned engines, their robustness was consulted. Each

audio recording was manually transcribed beforehand. Afterwards, each audio was used with

both engines. The manual transcript was compared with the transcript of the engine. Each

correctly transcribed word was counted. Therefore, the number of correctly understood words

was compared to the number of misunderstood words. Subsequently, the percentage of the

correctly transcribed words per sentence was calculated.

5.1.2 Results

Table 5.1 presents a �rst overview of the spoken and correctly transcribed words. The data

from big and small models, from Vosk and Google Cloud STT, were compared. In total, 1835

words were included in this test scenario, which is illustrated on the right-hand side of table 5.1.

This number varied depending on the test subject group. This was caused by the exact wording

not being used and due to the di�erences in dialect. In total, Google Cloud STT transcribed

86.81 % of the words correctly. The big model of Vosk achieved 82.83 % and the small model

78.91 %.

As can be extracted from table 5.1, 383 words from a total amount of 534 words, spoken

by children between the age of four to eighteen, were correctly transcribed by the big model of

Vosk. These 383 words are 71.72 % and also included dialect words. The number of correctly

transcribed words by the small model is reduced by 35 words, in comparison to the big model.

The accuracy of the small model totals 65.17 %. The best performing engine was Google Cloud

STT with 419 words and an accuracy of 78.46 %.

59

Overview 30 Participants

Vosk Big Vosk Small Google STT Total words
Nr. of recognised words 1520 1448 1593 1835
Nr. of recognised words in % 82,83 78,91 86,81

Nr. of not recognised words 315 387 242 1835
Nr. of not recognised words in % 17,17 21,09 13,19

10 Children - 5 Female, 5 Male (aged between 4-18)

Vosk Big Vosk Small Google STT Total words
Nr. of recognised words 383 348 419 534
Nr. of recognised words in % 71,72 65,17 78,46

Nr. of not recognised words 151 186 115 534
Nr. of not recognised words in % 28,28 34,83 21,54

10 Females (aged between 26-42)

Vosk Big Vosk Small Google STT Total words
Nr. of recognised words 554 541 592 660
Nr. of recognised words in % 83,94 81,97 89,70

Nr. of not recognised words 106 119 68 660
Nr. of not recognised words in % 16,06 18,03 10,30

10 Males (aged between 26-40)

Vosk Big Vosk Small Google STT Total words
Nr. of recognised words 583 559 582 641
Nr. of recognised words in % 90,95 87,21 90,80

Nr. of not recognised words 58 82 59 641
Nr. of not recognised words in % 9,05 12,79 9,20

Table 5.1: Table of correctly transcripted words by Vosk and Google Cloud Speech-to-Text

The accuracy increased with the adult test subjects signi�cantly. An amount of 592 from 660

words, from the female test participants, were correctly transcribed by the Google Cloud STT

engine. The big model transcribed 554 from 660 words, which are 38 words less than Google.

The small model transcribed 541 from 660 words, which was are 51 words less than Google. The

percentage of successfully transcripted words of the female subjects was 89.70 % from Google,

83.94 % from the big Vosk model and 81.97 % from the small Vosk model.

Regarding the male test subjects, both Vosk models' performances were similar to Google Cloud

STT. The small model transcribed 559 from 641 word correctly, which was 23 words less than

Google, as can be extracted from table 5.1. The percentage of successfully transcripted words

from the male subjects was 90.80 % from Google, 90.95 % from the big Vosk model and 87.21

% from the small Vosk model.

60

Percentual Arithmetic Mean of all 30 Participants

Vosk Big Vosk Small Google STT
Mean of all understood words 81,45 77,98 86,01

Children (age between 4-18) 71,61 66,77 79,51
Children speaking dialect 58,93 50,54 69,09
Children speaking standard german 80,75 77,27 86,62

Females (age between 26-42) 82,78 80,84 88,78
Females speaking dialect 71,02 69,44 80,80
Females speaking standard german 94,54 92,24 96,76

Males (age between 26-40) 89,60 86,33 89,74
Males speaking dialect 80,74 75,19 80,40
Males speaking standard german 98,46 97,46 99,43

Table 5.2: Table of the percentual arithmetic means per group

In the table 5.2, the arithmetic mean of all participants is presented. Overall, Google transcribed

on average 86.01 % of the spoken words correctly in this user testing, whereas the big Vosk model

transcribed 81.45 % and the small Vosk model transcribed 77.98 %. These averages also took

dialect into account. The big Vosk model performed 21.82 % better, when a child was speaking

standard German. The mean of the small Vosk model was reduced by 26.73 %, when a child

was speaking dialect instead of standard German. The di�erence by Google on the children's

data was 17.53 % from dialect to standard German. All of the data from the female and male

speakers scored at least 69.44 %. This percentage was achieved by the small Vosk model with

the dialect data of the female participants.

Speaker Deviations in Percentage

Vosk Big Vosk Small Google STT
All participants 13,76 16,79 11,94

Children 18,40 21,51 16,88
Females 7,15 11,91 7,57
Males 4,81 6,64 6,78

Table 5.3: Table of the speaker depending deviation per group

Table 5.3 shows the percentual speaker deviations by engines. The standard deviation of the

children's data was 18.40 % by the big model, 21.51 % by the small model and 16.88 % by

Google Cloud STT. The standard deviation of the female adult data was 7.15 % by the big

model, 11.91 % by the small model and 7.57 % by Google. The smallest deviation was reached

in the male adult data. The big model reached 4.81 %, 6.64 % by the small model and 6.78 %

by Google Cloud STT.

61

The Kolmogorov-Smirnov1 test was used to examine whether the data was normally distributed.

The result of the Kolmogorov-Smirnov test was that there was no normal distribution. As a

result, the data was further compared using the Wilcoxon2 test. No statistically signi�cant

di�erences in accuracy could be detected by a Wilcoxon Test between the models. The result

of the Wilcoxon test considered the big model from Vosk and Google Cloud STT entailing in-

dications of equality (z value of -11.791). The same applied to the Wilcoxon test, in which

Google was compared to the small Vosk model (z value of -13.504). Furthermore, both models

of Vosk were compared with each other, whereby equality was also indicated (z value of -11.929).

5.1.3 Interpretation

The results of table 5.2 demonstrates that all three engines performed best when the input was

in standard German. The lowest performance in standard German was 92.24 % with the female

speaker data, taken from the small Vosk model. The accuracy levels shown in table 5.3 indicate

that the quality of a test subject's speech a�ects transcription.

Since the Wilcoxon test did not con�rm signi�cant di�erences between the big model of Vosk

and Google Cloud STT, the hypothesis H0 was accepted. Thus, the assumption is made that

an o�ine open-source STT engine performs just as well as a proprietary cloud-based STT engine.

The Wilcoxon result of the comparison between the small Vosk model and Google also did

not con�rm signi�cant di�erences. The same applies to the comparison between the big model

and the small model of Vosk.

5.2 Text Matching and Text and Keyword Matching

Implementation

The basis of both strategies was the selected STT engine. In the best case, each word is cor-

rectly interpreted by the engine and matches exactly a known question. But this depends on

the accuracy of the engine and the speech of the user. Some words can be misinterpreted, thus

the worst case is that a completely incorrect word or a similar word will be transcribed by the

engine. The goal of both matching strategies is to improve the matching quote from an input

question to a valid question, in the known question catalogue.

1https://de.wikipedia.org/wiki/Kolmogorow-Smirnow-Test
2https://de.wikipedia.org/wiki/Wilcoxon-Vorzeichen-Rang-Test

62

In order to identify possible matching questions, the input question should be exact or close to

the correct question. To mitigate the problem of an exact matching question, these strategies

were developed and implemented. Both strategies can weaken this problem to a certain degree.

The concrete �ow of the text matching approach can be seen in �gure 5.1. This algorithm

matches a question with a compliance of at least 75 %. If the threshold of 75 % is reduced, this

algorithm will match more questions incorrectly without considering the context of the input

question.

Figure 5.1: Flow diagram of the text matching algorithm.

Source: Prepared by the author

63

In contrast to the threshold of the text matching algorithm, the thresholds of text and keyword

matching are more �exible. It is illustrated in �gure 5.2, which assumes that the worst case

of similar wording is more likely to happen. For this reason, the number of character modi�ca-

tions, such as deletions or insertions, were taken into account for comparison. To achieve more

success when synonyms are used instead of the originated words, the keywords are considered.

This solution allows the matching of input questions to known questions with similar wording

and thus assumes context-related meaning. As a result, more context-related questions will be

matched instead of giving an alternative answer.

64

Figure 5.2: Flow diagram of the text and keyword matching algorithm.

Source: Prepared by the author
65

5.2.1 Method

The matching implementations were tested with the unit test library of Python. Each imple-

mentation had two �les of unit tests. The �rst test involved questions and recordings of the

STT user-testing. The second test included the remaining questions of the JSON �le with all

known questions. Therefore, all questions from the known questions catalogue were covered at

least once. The �rst test included 392 test cases for each implementation. 182 from these 392

test cases were in dialect and the rest were in standard German. The second involved 232 test

cases with standard german recordings for each implementation. These tests, in combination

with the report of the unit test library, were used to evaluate the algorithms. As mentioned

in chapter 4, these tests were automated by feeding the audio recordings to the STT engine of

Vosk. The audio was transcribed using the small Vosk model. The output of the engine is the

text of the recording. This text is the input to the function, which uses the text and keyword

matching or the text matching algorithm. Both algorithms return the path to the answer video.

5.2.2 Results

In the �rst test, the user-testing recordings were used to test the text matching algorithm that

matched 270 from 392 recordings correctly to the corresponding questions and answers. This

had a success rate of 68.88 %. 111 successfully matched questions were dialect recordings (60.99

%). Four of the 122 incorrectly matched questions were not matched to the alternative answers.

However, three of these four questions were matched to context-related questions. The highest

rate of correctly matched questions was 94.64 % and the lowest rate was 0 %, as displayed in

the �gure 5.3. The reason for the question with the lowest success rate of 0 % was because

it deviated textually far from the original question, within the known question catalogue. On

average 60.99 % of the questions were correctly matched. The time taken to process all 392 tests

was 1159.475 seconds.

The test with the text and keyword algorithm, in the user-testing data, shows a successful

matching rate of 329 from 392 (83.92 %). Of these 329 correctly matched questions, 136 were

spoken in dialect (74.73 %). As can be extracted from �gure 5.3, the lowest success rate of a

question was 55.36 %.

The highest score of a question has an accuracy of 96.43 %. The quantity of incorrectly matched

questions is 63. Four of the 63 incorrectly matched questions were matched to the alternative

answers. 38 of the 63 results were matched to context-related answers. 16 incorrectly matched

answers were neither context-close nor alternative answers. On average 83.76 % of the questions

were correctly matched. The time taken to run all 392 tests was 1309,521 seconds.

66

Figure 5.3: Percentual comparison of both matching algorithms.

Source: Prepared by the author

Each of the presented algorithms were tested with the remaining 232 questions of the JSON

�le containing the known questions. Both the text and keyword matching and text matching

algorithms matched all questions correctly without any error. The only di�erence was in the

time it took to complete these tests. The text matching variant needed 609.602 seconds, whereas

the text and keywords variant needed 741.097 seconds.

Figure 5.4 shows the �nished result of the exhibit. It is activated via the push-to-talk but-

ton. After the question is asked, the button needs to be released. Following this, Vosk as the

STT engine transcribes the question into text. This text is used to �nd the path to the answer

video which will be displayed on the screen.

67

Figure 5.4: A photograph of the �nished exhibit at the inatura in Dornbirn.

Source: Prepared by the author

5.2.3 Interpretation

As can be extracted from the previous section, the text and keyword matching algorithm per-

formed better on average when matching the questions. Furthermore, the text and keyword

matching algorithm was able to match all questions, including the one with textual deviations

with an accuracy of at least 62.50 %. In addition, the text and keyword matching variant had

a higher matching score regarding the dialect recordings. Due to the ability to match context-

related questions, the text and keyword matching variant complied more with the requirements

of the exhibit. One disadvantage of the text and keyword matching algorithm is that more

questions, which are not context-related, are matched incorrectly. Also, the time aspect shows

that the text matching method is faster than the text and keyword matching method. However,

the time aspect is not that important, as there is no noticeable di�erence when an individual

question is asked.

68

6 Conclusion

This chapter contains a discussion on possible improvements to the algorithms, a re�ection of

the thesis process and a presentation of possible future extensions for the exhibit.

6.1 Discussion

The continuous learning of the proprietary STT and speech assistants can be compared with

the enhancement of the known questions catalogue. Adding new words to the known questions

catalogue allows the exhibit to learn and understand more questions than before. The only

di�erence is that the proprietary tools learn new words and enhance the model, whereas the

solution for the exhibit learns new questions, which can be recognised and answered. (Microsoft

2021)

Due to the fact that some STT utilise the same models, the WER is also identical. The WER

in the case of Coqui or Deepspeech was insu�cient for the use case of the exhibit. A potential

reason for the insu�cient model can be the data on which the model was trained, or due to the

context of the exhibit. (A. Agarwal 2022b) and (A. Agarwal 2022a)

The work�ow and components of the individually implemented solution are similar to the work-

�ow and components of a speech assistant such as Mycroft, except for the fact that it works

entirely o�ine. An STT engine is used to transcribe the speech and an intent parser is used to

identify the intent. In the case of the exhibit, the intent parsing took place using the developed

algorithms, whereas Mycroft uses Adapt as default. After the intent parsing, the given command

or question is performed or answered. (Ovens 2020)

As there is not much of a signi�cant di�erence between an o�ine open-source STT, a pro-

prietary cloud-based STT and the WER of Vosk, there would currently be no di�erence if a

cloud-based STT engine is used (Alpha Cephei Inc. 2016c). If the o�ine models do not improve

in comparison to the cloud-based STT engines and models, then it could be advantageous to

use a cloud-based solution. (Microsoft 2021) and (Marr 2021)

The issue of data protection and privacy is still present if a cloud-based solution is used for an

application, such as with an exhibition. It is not realistic to ask each visitor for consent, so that

the data can be transmitted to external servers.

This o�ine speech assistant-like implementation could be used as an interactive guide for exhi-

bitions in museums. It could be integrated into a smartphone-like device, which is handed out to

the visitors. The visitors would walk through the exhibition and could ask questions about the

69

exhibits or exhibition. Depending on the exhibition and its necessary vocabulary, an o�ine STT

could be unsatisfying. If the vocabulary is speci�c, an o�ine STT engine might not perform as

well as a cloud-based STT, due to continuous learning. (Marr 2021) The exception is if a model

could be developed especially for this use case.

As mentioned in the chapter related work, Rhasspy provides libraries for intent recognition,

such as Fsticu�s1 and Fuzzywuzzy2. The Fsticu�s library performs excellent recognition with

a large number of sentences. The approach of Fsticu�s is comparable to the text and keyword

matching algorithm, which performs better with a large amount of known questions and key-

words.

The Fuzzywuzzy approach performs best if the number of sentences is small. This strategy is

similar to the method of the text matching algorithm. (Hansen 2022b)

After some adaptation, the developed algorithms could be used for intent recognition in speech

assistants or as a phonetic search working in the background of a search machine, such as Google.

(Cardillo, Clements, & Price 2008)

Another sector of application of the algorithms, without the STT engines, could be as a code

completion3 tool for IDEs. The written code of the software developer could be compared to the

existing keywords and syntax of a programming language using the text and keyword matching

algorithm.

6.2 Re�ection

The imposed requirements are essentially ful�lled. For the given context, the researched o�ine

STT engine Vosk performs comparable to Google Cloud STT and is integrated into the exhibit

in order to transcribe the asked question. To increase the matching rate and to diminish the

issue of the need for the exact wording, two algorithms for intent parsing were implemented.

The better performing algorithm, which was the text and keyword matching algorithm, was

recommended for the exhibit.

The time spent on researching proprietary STT and speech assistants could have been halved.

It was still important to research them, in order to learn how proprietary tools work, but the

other half of the time could have been used to research algorithms for the string comparison.

The decision of choosing Vosk as the STT engine for the exhibit turned out to be a good

choice, due to the results of the Wilcoxon test. As the results showed not much of a signi�cant

di�erence, this only reinforces the decision.

The only negative aspect of this STT engine was the documentation section, concerning the

model adaption.

1https://rhasspy.readthedocs.io/en/latest/intent-recognition/#fsticu�s
2https://rhasspy.readthedocs.io/en/latest/intent-recognition/#fuzzywuzzy
3https://en.wikipedia.org/wiki/Intelligent_code_completion#: :text=Intelligent%20code%20completion%20is%20a,typos%20and%20other%20common%20mistakes.

70

For the test of the algorithms, the small model of Vosk was applied. The accuracy would

probably have improved, if the big model would have been selected. The main reason in favour

of using the small model of Vosk for tests was that there is no signi�cant di�erence between the

big and the small model. However, due to the loading time and memory consumption of the big

model, it was not selected for the tests.

Even though it is possible to change the vocabulary of the big model by removing words, the

loading time of the model is not an advantage here, in contrast to the memory consumption.

Furthermore, the accuracy of the big model remains the same, despite the deletion of possible

misguiding words.

Due to the fact that Python connections were provided by Vosk, the decision to use Python

for the implementation of the algorithms turned out to be a good choice. This is because the

codebase consists of only one programming language, which eases the maintenance and adapta-

tions.

Regarding the string comparison, it may have been a better approach to use a function of

Phonetics4, such as "metaphone", for each string and to use the resulting phonetic key for the

comparison, such as using the Jaro Similarity of Jelly�sh.

The algorithms used a known questions catalogue of 484 questions. This amount of questions is

the foundation of the performance of the algorithms. In retrospect, it would have been better

to test the algorithms with the number of questions in which the exhibit would be going into

operation.

If the number of the known questions catalogue doubles, it could be possible that the per-

formance of a speech assistant such as Rhasspy could have been a better-suited choice than the

individual implementations.

The software architecture could have been designed to receive more dependencies as param-

eters, such as the JSON �le, or the comparison function of another library, such as Jelly�sh.

But due to the fact that the algorithm contains knowledge of the structure of the JSON �le,

and because these algorithms are developed to �t this explicit case, the decision of refactoring

was postponed. Another reason against the refactoring was the lack of time.

4https://pypi.org/project/phonetics/#usage

71

6.3 Outlook

In regards to the algorithms, the phonetic matching library Jelly�sh was applied. This library

could have been exchanged and tested, in order to examine the di�erences in accuracy or per-

formance. Another change could have been to use Soundex5, Metaphones6 or the Match Rating

Approach of Jelly�sh7 for comparison.

Regarding the text matching algorithm, some improvements would be to consider the keywords.

Potentially, this could be matched more accurately. After changing the consideration in the text

matching algorithm, both algorithms need to be tested and compared again. To improve the

validity of the algorithm tests, the amount of data could be increased.

To maintain the quality of the matching algorithms, further tests should be written. Also,

more tests with a focus on dialect recordings would be in favour of quality assurance.

Further optimisation options could be tested and used with the exhibit. To increase the rate

of correctly matched dialect questions, the transcriptions of dialect words could be added as

keywords.

Another approach would be to investigate whether a model created speci�cally for this delim-

ited context works better than a proprietary STT engine. Resources such as su�cient audio

recordings and better hardware are necessary for this task.

To adapt the known questions catalogue of the exhibit, knowledge of JSON is necessary. A

potential upgrade would be to create a User Interface (UI), so to improve this situation. With

UI, errors could be avoided when adding new questions to the JSON �le.

A potential improvement for the exhibit could also be to display three or �ve similar ques-

tions relating to the input questions on the screen. In this case, a child could select one of

these suggested questions. These question proposals could reduce the frustration of the user,

especially if the question is not correctly transcribed, due to quality issues of the audio recording

or if a user has a speech impediment.

Further user-testing could be carried out, in order to check whether the known questions are the

common ones that users are asking. To examine if the known question catalogue covers asked

questions, a Wizard-Of-Oz-Experiment8 could be carried out. Another test could be to put the

exhibit under real test conditions within inatura and to record the questions asked, so that these

could be examined at a later date.

5https://pypi.org/project/phonetics/
6https://pypi.org/project/phonetics/
7https://jamesturk.github.io/jelly�sh/functions/
8https://de.wikipedia.org/wiki/Wizard-of-Oz-Experiment

72

List of Figures

1.1 Conceptual structure of the core components of the exhibit. 6

2.1 Structure of the Mozilla Deepspeech Model. 11

2.2 Components of the Flashlight STT engine. 13

2.3 Individually adjustable parts of Kaldi. 14

2.4 Structure and data �ow of Coqui's acoustic model. 16

2.5 Interaction of the di�erent components of Sphinx4. 18

2.6 Data �ow from feature input to Single Stream TDNN-F into multistream TDNN-

F into the ReLU Dropout Layer. 20

2.7 Structure of the DNN behind Apple Speech. 23

2.8 Componentes of a LACE CNN. 25

2.9 Componentes of a RNN-T with a sequence-to-sequence process. 27

2.10 Work�ow of a Mycroft skill . 30

2.11 Programm organisation of Jasper . 32

2.12 Three example intents of Rhasspy created in Node-RED. 34

2.13 Communication of Rhasspy with Hass.io and Node-RED 34

2.14 Communication between Alexa, smart home devices and the Alexa Coud. 37

2.15 Communication between apps and Siri . 40

2.16 Interaction example of Cortana . 43

2.17 Communication of the Google Assistant to turn on a light 46

4.1 Sequence diagram of the exhibit communitation parts 57

5.1 Flow diagram of the text matching algorithm. 63

5.2 Flow diagram of the text and keyword matching algorithm. 65

5.3 Percentual comparison of both matching algorithms. 67

5.4 A photograph of the �nished exhibit at the inatura in Dornbirn. 68

LXXIII

List of Tables

2.1 Technology decision matrix of the open-source tools. 47

5.1 Table of correctly transcripted words by Vosk and Google Cloud Speech-to-Text . 60

5.2 Table of the percentual arithmetic means per group 61

5.3 Table of the speaker depending deviation per group 61

LXXIV

List of Source Codes

2.1 A fraction of the Timer Skill of Mycroft, Based on: https://github.com/MycroftAI/

mycroft-timer/blob/21.02/skill/match.py, adapted by the author 29

2.2 Code of a noti�cation skill of Jasper ,Based on: https://jasperproject.github

.io/documentation/api/notification/, adapted by the author 31

2.3 Say Hi Intent of Alexa, Based on: https://developer.amazon.com/en-US/docs/

alexa/alexa-skills-kit-sdk-for-python/sample-skills.html, adapted by the

author . 36

2.4 MySoup intent of Siri, Based on: https://developer.apple.com/documentation/

sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=

objc, adapted by the author . 39

2.5 Extract of the Roller Skill sample of a Bot for Cortana, Based on: https://

github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/

Node/demo-RollerSkill, adapted by the author 42

2.6 Extract of the blinky light code example of a Google Assistant skill, Based on:

https://github.com/googlesamples/assistant-sdk-python/blob/master/google

-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py, adapted by

the author . 45

LXXV

https://github.com/MycroftAI/mycroft-timer/blob/21.02/skill/match.py
https://github.com/MycroftAI/mycroft-timer/blob/21.02/skill/match.py
https://jasperproject.github.io/documentation/api/notification/
https://jasperproject.github.io/documentation/api/notification/
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-python/sample-skills.html
https://developer.amazon.com/en-US/docs/alexa/alexa-skills-kit-sdk-for-python/sample-skills.html
https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc
https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc
https://developer.apple.com/documentation/sirikit/soup_chef_accelerating_app_interactions_with_shortcuts?language=objc
https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill
https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill
https://github.com/microsoft/BotBuilder-Samples/tree/releases/v3-sdk-samples/Node/demo-RollerSkill
https://github.com/googlesamples/assistant-sdk-python/blob/master/google-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py
https://github.com/googlesamples/assistant-sdk-python/blob/master/google-assistant-sdk/googlesamples/assistant/grpc/pushtotalk.py

References

Adobe. (2019, March). State of Voice Technology for Brands. Retrieved 2022-

04-01, from https://www.slideshare.net/adobe/state-of-voice-technology-for

-brands-145863065

Agarwal, A. (2022a, March). Automatic Speech Recognition (ASR) - DeepSpeech German. Re-

trieved 2022-04-01, from https://github.com/AASHISHAG/deepspeech-german (original-

date: 2019-07-01T18:25:53Z)

Agarwal, A. (2022b). Coqui. Retrieved 2022-06-30, from https://coqui.ai/german/

AASHISHAG/v0.9.0

Agarwal, N. (2019). Advances in Speech Recognition - WWDC19 - Videos. Retrieved 2022-04-03,

from https://developer.apple.com/videos/play/wwdc2019/256/

Alexa AVS Device GitHub Repository. (2022, May). alexa/avs-device-sdk. Alexa. Retrieved

2022-05-29, from https://github.com/alexa/avs-device-sdk (original-date: 2017-02-

09T18:57:26Z)

Alexa GitHub Repository. (2022, April). Alexa Skills Kit SDK for Node.js. Alexa.

Retrieved 2022-04-04, from https://github.com/alexa/alexa-skills-kit-sdk-for

-nodejs (original-date: 2016-06-24T06:26:05Z)

Alpha Cephei Inc. (2016a). Vosk Installation. Retrieved 2022-04-02, from https://alphacephei

.com/vosk/install

Alpha Cephei Inc. (2016b). VOSK language model adaptation. Retrieved 2022-04-02, from

https://alphacephei.com/vosk/lm

Alpha Cephei Inc. (2016c). VOSK Models. Retrieved 2022-04-02, from https://alphacephei

.com/vosk/models

Alpha Cephei Inc. (2016d). VOSK O�ine Speech Recognition API. Retrieved 2022-04-02, from

https://alphacephei.com/vosk/

Alphacep GitHub Repository. (2022, April). Vosk Speech Recognition Toolkit. Alpha Cephei. Re-

trieved 2022-04-02, from https://github.com/alphacep/vosk-api (original-date: 2019-

09-03T17:48:42Z)

Amazon.com Inc. (2010a). Get Started with the Alexa Skills Kit | Amazon Alexa Developer. Re-

trieved 2022-04-01, from https://developer.amazon.com/en-US/alexa/alexa-skills

-kit/start.html

Amazon.com Inc. (2010b). Overview of the Alexa Voice Service (AVS) Device SDK | Alexa

Voice Service. Retrieved 2022-04-03, from https://developer.amazon.com/en-US/docs/

alexa/avs-device-sdk/overview.html

Amazon.com Inc. (2010c). Set Up the AVS Device SDK on Ubuntu | Alexa Voice Ser-

vice. Retrieved 2022-04-03, from https://developer.amazon.com/en-US/docs/alexa/

avs-device-sdk/ubuntu.html

LXXVI

https://www.slideshare.net/adobe/state-of-voice-technology-for-brands-145863065
https://www.slideshare.net/adobe/state-of-voice-technology-for-brands-145863065
https://github.com/AASHISHAG/deepspeech-german
https://coqui.ai/german/AASHISHAG/v0.9.0
https://coqui.ai/german/AASHISHAG/v0.9.0
https://developer.apple.com/videos/play/wwdc2019/256/
https://github.com/alexa/avs-device-sdk
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://github.com/alexa/alexa-skills-kit-sdk-for-nodejs
https://alphacephei.com/vosk/install
https://alphacephei.com/vosk/install
https://alphacephei.com/vosk/lm
https://alphacephei.com/vosk/models
https://alphacephei.com/vosk/models
https://alphacephei.com/vosk/
https://github.com/alphacep/vosk-api
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/start.html
https://developer.amazon.com/en-US/alexa/alexa-skills-kit/start.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/overview.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/ubuntu.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/ubuntu.html

Amazon.com Inc. (2010d). What is the Alexa Voice Service? | Alexa Voice Service.

Retrieved 2022-04-03, from https://developer.amazon.com/en-US/docs/alexa/alexa

-voice-service/get-started-with-alexa-voice-service.html

Amazon.com Inc. (2022a). Amazon Customer Service Help. Retrieved 2022-05-

29, from https://www.amazon.com/gp/help/customer/display.html?nodeId=

GCC6XV9DX58VW5YW

Amazon.com Inc. (2022b). Amazon.de: Alexa kennenlernen - Übersicht: Stores. Retrieved

2022-05-26, from https://www.amazon.de/b?ie=UTF8&node=12775495031

Amazon.com Inc. (2022c). Build Your Skill | Alexa Skills Kit. Retrieved 2022-

04-04, from https://developer.amazon.com/en-US/docs/alexa/build/build-your

-skill-overview.html

Amazon.com Inc. (2022d). Host a Custom Skill as an AWS Lambda Function | Alexa Skills

Kit. Retrieved 2022-04-04, from https://developer.amazon.com/en-US/docs/alexa/

custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html

Amazon.com Inc. (2022e). Learn to add Alexa to a Speaker, Sound bar, or AVR | Alexa Voice Ser-

vice. Retrieved 2022-05-29, from https://developer.amazon.com/en-US/docs/alexa/

alexa-voice-service/get-started-with-alexa-voice-service-speakers.html

Amazon.com Inc. (2022f). List of Alexa Interfaces and Supported Languages | Alexa Skills

Kit. Retrieved 2022-04-04, from https://developer.amazon.com/en-US/docs/alexa/

device-apis/list-of-interfaces.html

Amazon.com Inc. (2022g). Set Up the AVS Device SDK on Raspberry Pi with a Script | Alexa

Voice Service. Retrieved 2022-04-04, from https://developer.amazon.com/en-US/docs/

alexa/avs-device-sdk/raspberry-pi-script.html

Amazon.com Inc. (2022h). Set Up the AVS Device SDK on Ubuntu | Alexa Voice Ser-

vice. Retrieved 2022-05-29, from https://developer.amazon.com/en-US/docs/alexa/

avs-device-sdk/ubuntu.html

Amazon.com Inc. (2022i). Understand Smart Home Skills | Alexa Skills Kit. Retrieved 2022-04-

04, from https://developer.amazon.com/en-US/docs/alexa/smarthome/understand

-the-smart-home-skill-api.html

Amazon.com Inc. (2022j). What is the Alexa Skills Kit? | Alexa Skills Kit. Retrieved 2022-04-

04, from https://developer.amazon.com/en-US/docs/alexa/ask-overviews/what-is

-the-alexa-skills-kit.html

Apple Inc. (2017). Technical Q&A QA1951: How many calls can I make to the Speech Framework

API? Retrieved 2022-04-03, from https://developer.apple.com/library/archive/qa/

qa1951/_index.html

Apple Inc. (2020). Empower your intents - WWDC20 - Videos. Retrieved 2022-04-05, from

https://developer.apple.com/videos/play/wwdc2020/10073/

Apple Inc. (2022a). Adding User Interactivity with Siri Shortcuts and the Shortcuts App | Apple

Developer Documentation. Retrieved 2022-05-25, from https://developer.apple.com/

documentation/sirikit/adding_user_interactivity_with_siri_shortcuts_and_the

_shortcuts_app?changes=latest_minor&language=objc

Apple Inc. (2022b). Asking Permission to Use Speech Recognition | Apple Developer Docu-

LXXVII

https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/get-started-with-alexa-voice-service.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/get-started-with-alexa-voice-service.html
https://www.amazon.com/gp/help/customer/display.html?nodeId=GCC6XV9DX58VW5YW
https://www.amazon.com/gp/help/customer/display.html?nodeId=GCC6XV9DX58VW5YW
https://www.amazon.de/b?ie=UTF8&node=12775495031
https://developer.amazon.com/en-US/docs/alexa/build/build-your-skill-overview.html
https://developer.amazon.com/en-US/docs/alexa/build/build-your-skill-overview.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html
https://developer.amazon.com/en-US/docs/alexa/custom-skills/host-a-custom-skill-as-an-aws-lambda-function.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/get-started-with-alexa-voice-service-speakers.html
https://developer.amazon.com/en-US/docs/alexa/alexa-voice-service/get-started-with-alexa-voice-service-speakers.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/list-of-interfaces.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/list-of-interfaces.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/raspberry-pi-script.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/raspberry-pi-script.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/ubuntu.html
https://developer.amazon.com/en-US/docs/alexa/avs-device-sdk/ubuntu.html
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/en-US/docs/alexa/smarthome/understand-the-smart-home-skill-api.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/what-is-the-alexa-skills-kit.html
https://developer.amazon.com/en-US/docs/alexa/ask-overviews/what-is-the-alexa-skills-kit.html
https://developer.apple.com/library/archive/qa/qa1951/_index.html
https://developer.apple.com/library/archive/qa/qa1951/_index.html
https://developer.apple.com/videos/play/wwdc2020/10073/
https://developer.apple.com/documentation/sirikit/adding_user_interactivity_with_siri_shortcuts_and_the_shortcuts_app?changes=latest_minor&language=objc
https://developer.apple.com/documentation/sirikit/adding_user_interactivity_with_siri_shortcuts_and_the_shortcuts_app?changes=latest_minor&language=objc
https://developer.apple.com/documentation/sirikit/adding_user_interactivity_with_siri_shortcuts_and_the_shortcuts_app?changes=latest_minor&language=objc

mentation. Retrieved 2022-05-26, from https://developer.apple.com/documentation/

speech/asking_permission_to_use_speech_recognition?language=objc

Apple Inc. (2022c). Core ML | Apple Developer Documentation. Retrieved 2022-

04-03, from https://developer.apple.com/documentation/coreml?changes=latest

_minor&language=objc

Apple Inc. (2022d). Create ML | Apple Developer Documentation. Retrieved 2022-04-03, from

https://developer.apple.com/documentation/createml

Apple Inc. (2022e). iOS and iPadOS - Feature Availability. Retrieved 2022-05-26, from https://

www.apple.com/ios/feature-availability/#siri-on-device-speech

Apple Inc. (2022f). iOS and iPadOS - Feature Availability. Retrieved 2022-04-05, from https://

www.apple.com/ios/feature-availability/#siri

Apple Inc. (2022g). Resolving and Handling Intents | Apple Developer Documentation.

Retrieved 2022-04-05, from https://developer.apple.com/documentation/sirikit/

resolving_and_handling_intents?language=objc

Apple Inc. (2022h). Siri. Retrieved 2022-04-05, from https://www.apple.com/siri/

Apple Inc. (2022i). SiriKit | Apple Developer Documentation. Retrieved 2022-04-05, from

https://developer.apple.com/documentation/sirikit?language=objc

Apple Inc. (2022j). Speech | Apple Developer Documentation. Retrieved 2022-05-29, from

https://developer.apple.com/documentation/speech?language=objc

Apple Inc. (2022k). Supported capabilities (iOS) - Developer Account Help. Retrieved 2022-04-05,

from https://help.apple.com/developer-account/#/dev21218dfd6

Apple Inc. (2022l). Xcode. Retrieved 2022-04-03, from https://developer.apple.com/xcode/

Apple Machine Learning Research. (2017). Hey Siri: An On-device DNN-powered Voice Trigger

for Apple's Personal Assistant. Retrieved 2022-04-03, from https://machinelearning

.apple.com/research/hey-siri

Bridge, K. (2021, June). Cortana design guidelines - Cortana UWP design and develop-

ment - Windows apps. Retrieved 2022-04-05, from https://docs.microsoft.com/en-us/

windows/apps/design/input/cortana-design-guidelines

Cardillo, P. S., Clements, M. A., & Price, W. E. (2008, July). Mark A. Clements, Lilburn, GA

(US);. , 10.

Carman, A., Dzieza, J., & Zelenko, M. (2016, June). The 13 biggest announcements from

Apple WWDC 2016. Retrieved 2022-04-03, from https://www.theverge.com/2016/6/

13/11906654/apple-wwdc-2016-news-highlights-recap-imessage-siri

Chan, W., Jaitly, N., Le, Q. V., & Vinyals, O. (2015, August). Listen, Attend and

Spell. arXiv:1508.01211 [cs, stat] . Retrieved 2022-04-03, from http://arxiv.org/abs/

1508.01211 (arXiv: 1508.01211)

Chorowski, J., Bahdanau, D., Serdyuk, D., Cho, K., & Bengio, Y. (2015, June). Attention-Based

Models for Speech Recognition. arXiv:1506.07503 [cs, stat] . Retrieved 2022-04-03, from

http://arxiv.org/abs/1506.07503 (arXiv: 1506.07503)

Coqui. (2022). Coqui. Retrieved 2022-04-02, from https://coqui.ai/blog/stt/a-journey-to

-10-word-error-rate

Coqui GitHub Repository. (2022, February). coqui. Retrieved 2022-04-02, from https://

LXXVIII

https://developer.apple.com/documentation/speech/asking_permission_to_use_speech_recognition?language=objc
https://developer.apple.com/documentation/speech/asking_permission_to_use_speech_recognition?language=objc
https://developer.apple.com/documentation/coreml?changes=latest_minor&language=objc
https://developer.apple.com/documentation/coreml?changes=latest_minor&language=objc
https://developer.apple.com/documentation/createml
https://www.apple.com/ios/feature-availability/#siri-on-device-speech
https://www.apple.com/ios/feature-availability/#siri-on-device-speech
https://www.apple.com/ios/feature-availability/#siri
https://www.apple.com/ios/feature-availability/#siri
https://developer.apple.com/documentation/sirikit/resolving_and_handling_intents?language=objc
https://developer.apple.com/documentation/sirikit/resolving_and_handling_intents?language=objc
https://www.apple.com/siri/
https://developer.apple.com/documentation/sirikit?language=objc
https://developer.apple.com/documentation/speech?language=objc
https://help.apple.com/developer-account/#/dev21218dfd6
https://developer.apple.com/xcode/
https://machinelearning.apple.com/research/hey-siri
https://machinelearning.apple.com/research/hey-siri
https://docs.microsoft.com/en-us/windows/apps/design/input/cortana-design-guidelines
https://docs.microsoft.com/en-us/windows/apps/design/input/cortana-design-guidelines
https://www.theverge.com/2016/6/13/11906654/apple-wwdc-2016-news-highlights-recap-imessage-siri
https://www.theverge.com/2016/6/13/11906654/apple-wwdc-2016-news-highlights-recap-imessage-siri
http://arxiv.org/abs/1508.01211
http://arxiv.org/abs/1508.01211
http://arxiv.org/abs/1506.07503
https://coqui.ai/blog/stt/a-journey-to-10-word-error-rate
https://coqui.ai/blog/stt/a-journey-to-10-word-error-rate
https://github.com/coqui-ai/STT
https://github.com/coqui-ai/STT
https://github.com/coqui-ai/STT

github.com/coqui-ai/STT

Coqui GmbH. (2021a). Coqui. Retrieved 2022-04-02, from https://coqui.ai/about

Coqui GmbH. (2021b). Home - Coqui STT 1.3.0 documentation. Retrieved 2022-04-02, from

https://stt.readthedocs.io/en/latest/index.html

Coqui GmbH. (2021c). Training: Quickstart - Coqui STT 1.3.0 documentation. Retrieved

2022-04-02, from https://stt.readthedocs.io/en/latest/TRAINING_INTRO.html

Coqui GmbH. (2022). Coqui. Retrieved 2022-04-02, from https://coqui.ai/models

DeepSpeech. (2020a). DeepSpeech Model � Mozilla DeepSpeech 0.9.3 documentation. Retrieved

2022-04-01, from https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html

DeepSpeech. (2020b). External scorer scripts � DeepSpeech 0.9.3 documentation.

Retrieved 2022-05-26, from https://deepspeech.readthedocs.io/en/v0.9.3/Scorer

.html?highlight=data

DeepSpeech. (2020c). Training Your Own Model � DeepSpeech 0.9.3 documentation.

Retrieved 2022-05-26, from https://deepspeech.readthedocs.io/en/v0.9.3/TRAINING

.html?highlight=data

DeepSpeech. (2020d). User contributed examples � Mozilla DeepSpeech 0.9.3 documen-

tation. Retrieved 2022-05-26, from https://deepspeech.readthedocs.io/en/r0.9/

Contributed-Examples.html

DeepSpeech. (2020e). Welcome to DeepSpeech's documentation! � Mozilla DeepSpeech 0.9.3

documentation. Retrieved 2022-05-26, from https://deepspeech.readthedocs.io/en/

r0.9/index.html

Etherington, D. (2014, June). Amazon Echo Is A $199 Connected Speaker

Packing An Always-On Siri-Style Assistant | TechCrunch. Retrieved

2022-04-01, from https://techcrunch.com/2014/11/06/amazon-echo/

?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce

_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp

_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8

_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp

Fingold, J. (2021, December). Create a bot with the Bot Framework SDK in

C#, Java, JavaScript, or Python - Azure Bot Service - Bot Service. Re-

trieved 2022-04-05, from https://docs.microsoft.com/en-us/azure/bot-service/bot

-service-quickstart-create-bot

Flashlight GitHub Repository. (2022a, March). �ashlight/�ashlight. �ashlight. Retrieved

2022-04-01, from https://github.com/flashlight/flashlight (original-date: 2018-

12-11T18:28:47Z)

Flashlight GitHub Repository. (2022b). �ashlight/�ashlight/app/asr at main · �ashlight/�ash-

light. Retrieved 2022-04-01, from https://github.com/flashlight/flashlight

Flashlight GitHub Repository. (2022c). wav2letter/recipes/mls at main · �ashlight/wav2letter.

Retrieved 2022-05-24, from https://github.com/flashlight/wav2letter

Foster, K. (2021, October). The Top Free Speech-to-Text APIs and Open Source Engines.

Retrieved 2022-04-01, from https://www.assemblyai.com/blog/the-top-free-speech

-to-text-apis-and-open-source-engines/

LXXIX

https://github.com/coqui-ai/STT
https://github.com/coqui-ai/STT
https://github.com/coqui-ai/STT
https://github.com/coqui-ai/STT
https://coqui.ai/about
https://stt.readthedocs.io/en/latest/index.html
https://stt.readthedocs.io/en/latest/TRAINING_INTRO.html
https://coqui.ai/models
https://deepspeech.readthedocs.io/en/r0.9/DeepSpeech.html
https://deepspeech.readthedocs.io/en/v0.9.3/Scorer.html?highlight=data
https://deepspeech.readthedocs.io/en/v0.9.3/Scorer.html?highlight=data
https://deepspeech.readthedocs.io/en/v0.9.3/TRAINING.html?highlight=data
https://deepspeech.readthedocs.io/en/v0.9.3/TRAINING.html?highlight=data
https://deepspeech.readthedocs.io/en/r0.9/Contributed-Examples.html
https://deepspeech.readthedocs.io/en/r0.9/Contributed-Examples.html
https://deepspeech.readthedocs.io/en/r0.9/index.html
https://deepspeech.readthedocs.io/en/r0.9/index.html
https://techcrunch.com/2014/11/06/amazon-echo/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp
https://techcrunch.com/2014/11/06/amazon-echo/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp
https://techcrunch.com/2014/11/06/amazon-echo/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp
https://techcrunch.com/2014/11/06/amazon-echo/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp
https://techcrunch.com/2014/11/06/amazon-echo/?guccounter=1&guce_referrer=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnLw&guce_referrer_sig=AQAAABine5cpC67EZAvjco5qq58xjLKMWaoKMvp_4PIyx0pSoDjTAuIIHOG5oMuieuFidWJvtTW7tSqmREuEQvkU1PWDLfr3h_L0iQOQdnk09R8_T0-lH1GLxIfWEzImuimI8N5MxjasfVuWhzcaDXTE2ZH4gkXUKTo1xUdS6HE7F0kp
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-quickstart-create-bot
https://docs.microsoft.com/en-us/azure/bot-service/bot-service-quickstart-create-bot
https://github.com/flashlight/flashlight
https://github.com/flashlight/flashlight
https://github.com/flashlight/wav2letter
https://www.assemblyai.com/blog/the-top-free-speech-to-text-apis-and-open-source-engines/
https://www.assemblyai.com/blog/the-top-free-speech-to-text-apis-and-open-source-engines/

Google. (2022a). Change the language of Google Assistant - Android - Google Nest Help.

Retrieved 2022-04-05, from https://support.google.com/googlenest/answer/7550584

?co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Cgoogle-home%2Cgoogle-nest-hub

Google. (2022b). Control smart home devices with Google Assistant - Google Assistant Help.

Retrieved 2022-04-05, from https://support.google.com/assistant/answer/7314909

?hl=en

Google Cloud. (2018a). All Speech-to-Text code samples | Cloud Speech-to-Text Documen-

tation. Retrieved 2022-04-03, from https://cloud.google.com/speech-to-text/docs/

samples

Google Cloud. (2018b). googleapis/nodejs-speech: Node.js client for Google Cloud Speech: Speech

to text conversion powered by machine learning. Retrieved 2022-04-03, from https://

github.com/googleapis/nodejs-speech

Google Cloud. (2018c). Improve transcription results with model adaptation | Cloud Speech-to-

Text Documentation. Retrieved 2022-04-03, from https://cloud.google.com/speech-to

-text/docs/adaptation-model

Google Cloud. (2018d). Language support | Cloud Speech-to-Text Documentation. Retrieved

2022-04-03, from https://cloud.google.com/speech-to-text/docs/languages

Google Cloud. (2018e). Speech-to-Text: Automatic Speech Recognition. Retrieved 2022-04-03,

from https://cloud.google.com/speech-to-text

Google Cloud. (2018f). Speech-to-Text basics | Cloud Speech-to-Text Documentation | Google

Cloud. Retrieved 2022-04-03, from https://cloud.google.com/speech-to-text/docs/

basics?hl=en#select-model

Google Cloud. (2022). Pricing | Cloud Speech-to-Text. Retrieved 2022-04-01, from https://

cloud.google.com/speech-to-text/pricing

Google Cloud Repository. (2022, March). Cloud Speech: Node.js Client. Google APIs. Re-

trieved 2022-04-03, from https://github.com/googleapis/nodejs-speech (original-

date: 2017-07-26T20:52:39Z)

Google Developers. (2020, October). Overview | Google Assistant SDK. Retrieved 2022-04-01,

from https://developers.google.com/assistant/sdk/overview

Google Developers. (2022a). Device Actions Overview | Google Assistant SDK.

Retrieved 2022-04-05, from https://developers.google.com/assistant/sdk/device

-actions-overview

Google Developers. (2022b). Google Assistant. Retrieved 2022-04-05, from https://developers

.google.com/assistant

Google Developers. (2022c, March). Google Assistant SDK for devices - Python. Google Sam-

ples. Retrieved 2022-04-05, from https://github.com/googlesamples/assistant-sdk

-python (original-date: 2017-04-25T22:06:02Z)

Google Developers. (2022d). Install Hardware (Optional) | Google Assistant SDK. Retrieved

2022-04-05, from https://developers.google.com/assistant/sdk/guides/service/

python/extend/install-hardware

Google Developers. (2022e). Integrate the Assistant into Your Project (Other Languages) |

Google Assistant SDK. Retrieved 2022-04-05, from https://developers.google.com/

LXXX

https://support.google.com/googlenest/answer/7550584?co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Cgoogle-home%2Cgoogle-nest-hub
https://support.google.com/googlenest/answer/7550584?co=GENIE.Platform%3DAndroid&hl=en#zippy=%2Cgoogle-home%2Cgoogle-nest-hub
https://support.google.com/assistant/answer/7314909?hl=en
https://support.google.com/assistant/answer/7314909?hl=en
https://cloud.google.com/speech-to-text/docs/samples
https://cloud.google.com/speech-to-text/docs/samples
https://github.com/googleapis/nodejs-speech
https://github.com/googleapis/nodejs-speech
https://cloud.google.com/speech-to-text/docs/adaptation-model
https://cloud.google.com/speech-to-text/docs/adaptation-model
https://cloud.google.com/speech-to-text/docs/languages
https://cloud.google.com/speech-to-text
https://cloud.google.com/speech-to-text/docs/basics?hl=en#select-model
https://cloud.google.com/speech-to-text/docs/basics?hl=en#select-model
https://cloud.google.com/speech-to-text/pricing
https://cloud.google.com/speech-to-text/pricing
https://github.com/googleapis/nodejs-speech
https://developers.google.com/assistant/sdk/overview
https://developers.google.com/assistant/sdk/device-actions-overview
https://developers.google.com/assistant/sdk/device-actions-overview
https://developers.google.com/assistant
https://developers.google.com/assistant
https://github.com/googlesamples/assistant-sdk-python
https://github.com/googlesamples/assistant-sdk-python
https://developers.google.com/assistant/sdk/guides/service/python/extend/install-hardware
https://developers.google.com/assistant/sdk/guides/service/python/extend/install-hardware
https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/integrate

assistant/sdk/guides/service/integrate

Google Developers. (2022f). Introduction to the Google Assistant Service | Google Assistant SDK.

Retrieved 2022-04-05, from https://developers.google.com/assistant/sdk/guides/

service/python

Google Developers. (2022g). Register the Device Model | Google Assistant SDK. Retrieved

2022-04-05, from https://developers.google.com/assistant/sdk/guides/service/

python/embed/register-device

Google Developers. (2022h). Run the Sample Code | Google Assistant SDK. Retrieved

2022-05-26, from https://developers.google.com/assistant/sdk/guides/service/

python/embed/run-sample

Grabianowski, E. (2006, November). How Speech Recognition Works. Retrieved 2022-

04-01, from https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/

speech-recognition.htm

Han, K. J., Pan, J., Tadala, V. K. N., Ma, T., & Povey, D. (2020). Multistream CNN for Robust

Acoustic Modeling. , 5.

Hansen, M. (2016). Issues · synesthesiam/rhasspy. Retrieved 2022-04-04, from https://

github.com/synesthesiam/rhasspy

Hansen, M. (2021, May). Is there a way to setup a 'default' or 'fallback' intent? -

Help. Retrieved 2022-05-06, from https://community.rhasspy.org/t/is-there-a-way

-to-setup-a-default-or-fallback-intent/1198?page=2

Hansen, M. (2022a). Installation - Rhasspy. Retrieved 2022-04-04, from https://rhasspy

.readthedocs.io/en/latest/installation/

Hansen, M. (2022b). Intent Recognition - Rhasspy. Retrieved 2022-05-29, from https://

rhasspy.readthedocs.io/en/latest/intent-recognition/

Hansen, M. (2022c). Rhasspy. Retrieved 2022-05-29, from https://rhasspy.readthedocs.io/

en/latest/

Hansen, M. (2022d, April). Rhasspy Voice Assistant. Rhasspy. Retrieved 2022-04-04, from

https://github.com/rhasspy/rhasspy (original-date: 2020-01-08T20:58:48Z)

Hansen, M. (2022e). Tutorials - Rhasspy. Retrieved 2022-04-04, from https://rhasspy

.readthedocs.io/en/latest/tutorials/

Hansen, M. (2022f). Why Rhasspy? - Rhasspy. Retrieved 2022-05-25, from https://rhasspy

.readthedocs.io/en/latest/why-rhasspy/

He, Y., Sainath, T. N., Prabhavalkar, R., McGraw, I., Alvarez, R., Zhao, D., . . . Gruenstein,

A. (2018, November). Streaming End-to-end Speech Recognition For Mobile Devices.

arXiv:1811.06621 [cs] . Retrieved 2022-04-03, from http://arxiv.org/abs/1811.06621

(arXiv: 1811.06621)

James, S. (2020, August). Top 10 Open Source Speech Recognition Systems [2022]. Retrieved

2022-04-01, from https://fosspost.org/open-source-speech-recognition/

James, T. (2021). Functions - jelly�sh. Retrieved 2022-05-03, from https://jamesturk.github

.io/jellyfish/functions/

Jasper Client GitHub Repository. (2022, April). jasper-client. Jasper Project. Retrieved

2022-04-04, from https://github.com/jasperproject/jasper-client (original-date:

LXXXI

https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/integrate
https://developers.google.com/assistant/sdk/guides/service/python
https://developers.google.com/assistant/sdk/guides/service/python
https://developers.google.com/assistant/sdk/guides/service/python/embed/register-device
https://developers.google.com/assistant/sdk/guides/service/python/embed/register-device
https://developers.google.com/assistant/sdk/guides/service/python/embed/run-sample
https://developers.google.com/assistant/sdk/guides/service/python/embed/run-sample
https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/speech-recognition.htm
https://electronics.howstuffworks.com/gadgets/high-tech-gadgets/speech-recognition.htm
https://github.com/synesthesiam/rhasspy
https://github.com/synesthesiam/rhasspy
https://community.rhasspy.org/t/is-there-a-way-to-setup-a-default-or-fallback-intent/1198?page=2
https://community.rhasspy.org/t/is-there-a-way-to-setup-a-default-or-fallback-intent/1198?page=2
https://rhasspy.readthedocs.io/en/latest/installation/
https://rhasspy.readthedocs.io/en/latest/installation/
https://rhasspy.readthedocs.io/en/latest/intent-recognition/
https://rhasspy.readthedocs.io/en/latest/intent-recognition/
https://rhasspy.readthedocs.io/en/latest/
https://rhasspy.readthedocs.io/en/latest/
https://github.com/rhasspy/rhasspy
https://rhasspy.readthedocs.io/en/latest/tutorials/
https://rhasspy.readthedocs.io/en/latest/tutorials/
https://rhasspy.readthedocs.io/en/latest/why-rhasspy/
https://rhasspy.readthedocs.io/en/latest/why-rhasspy/
http://arxiv.org/abs/1811.06621
https://fosspost.org/open-source-speech-recognition/
https://jamesturk.github.io/jellyfish/functions/
https://jamesturk.github.io/jellyfish/functions/
https://github.com/jasperproject/jasper-client

2014-03-30T20:02:44Z)

Ko�er, M., Kühnast, C., & Scherbeck, C. (2019). Raspberry Pi: Das umfassende Handbuch (6th

ed.). Rheinwerk Computing.

Kunst, A. (2021). � Smart speaker ownership by brand in the United States 2021 |

Statista. Retrieved 2022-04-04, from https://www.statista.com/forecasts/997149/

smart-speaker-ownership-by-brand-in-the-us

Laricchia, F. (2022, May). Global smart speaker market share 2021. Retrieved 2022-04-

05, from https://www.statista.com/statistics/792604/worldwide-smart-speaker

-market-share/

Manson, H. (2016). Speech Recognition API - WWDC16 - Videos. Retrieved 2022-04-03, from

https://developer.apple.com/videos/play/wwdc2016/509/

Marr, B. (2021, July). Machine Learning In Practice: How Does Amazon's Alexa Really Work?

Retrieved 2022-04-03, from https://bernardmarr.com/machine-learning-in-practice

-how-does-amazons-alexa-really-work/

Meta. (2018, December). Open sourcing wav2letter++, the fastest state-of-the-art speech sys-

tem, and �ashlight, an ML library going native. Retrieved 2022-04-01, from https://

engineering.fb.com/2018/12/21/ai-research/wav2letter/

Meta AI. (2021, April). Flashlight: Fast and �exible machine learning in C++. Retrieved 2022-

04-01, from https://ai.facebook.com/blog/flashlight-fast-and-flexible-machine

-learning-in-c-plus-plus/

Microsoft. (2021, October). Cortana in Microsoft 365 - Microsoft 365 admin. Retrieved 2022-

04-05, from https://docs.microsoft.com/en-us/microsoft-365/admin/misc/cortana

-integration

Microsoft. (2022). Cognitive Speech Services Pricing | Microsoft Azure. Retrieved

2022-04-03, from https://azure.microsoft.com/en-us/pricing/details/cognitive

-services/speech-services/

Microsoft Azure GitHub Repository. (2022, May). Sample Repository for the Microsoft Cog-

nitive Services Speech SDK. Azure Samples. Retrieved 2022-05-29, from https://

github.com/Azure-Samples/cognitive-services-speech-sdk (original-date: 2018-04-

26T11:28:25Z)

Microsoft BotBuilder GitHub Repository. (2022). BotBuilder-Samples/Node/demo-RollerSkill

at releases/v3-sdk-samples · microsoft/BotBuilder-Samples. Retrieved 2022-05-29, from

https://github.com/microsoft/BotBuilder-Samples

Microsoft GitHub Repository. (2022, January). Cortana Skills Kit. Microsoft. Retrieved 2022-

04-05, from https://github.com/microsoft/cortana-skills-samples (original-date:

2017-09-14T21:05:00Z)

Milde, B., & Köhn, A. (2018, July). Open Source Automatic Speech Recognition for German.

arXiv:1807.10311 [cs] . Retrieved 2022-04-01, from http://arxiv.org/abs/1807.10311

(arXiv: 1807.10311)

Mlopatka. (2021, April). DeepSpeech update, grant and playbook. Retrieved 2022-04-01, from

https://discourse.mozilla.org/t/deepspeech-update-grant-and-playbook/78569

Morais, R. (2020, August). Future of DeepSpeech / STT after recent changes at Mozilla.

LXXXII

https://www.statista.com/forecasts/997149/smart-speaker-ownership-by-brand-in-the-us
https://www.statista.com/forecasts/997149/smart-speaker-ownership-by-brand-in-the-us
https://www.statista.com/statistics/792604/worldwide-smart-speaker-market-share/
https://www.statista.com/statistics/792604/worldwide-smart-speaker-market-share/
https://developer.apple.com/videos/play/wwdc2016/509/
https://bernardmarr.com/machine-learning-in-practice-how-does-amazons-alexa-really-work/
https://bernardmarr.com/machine-learning-in-practice-how-does-amazons-alexa-really-work/
https://engineering.fb.com/2018/12/21/ai-research/wav2letter/
https://engineering.fb.com/2018/12/21/ai-research/wav2letter/
https://ai.facebook.com/blog/flashlight-fast-and-flexible-machine-learning-in-c-plus-plus/
https://ai.facebook.com/blog/flashlight-fast-and-flexible-machine-learning-in-c-plus-plus/
https://docs.microsoft.com/en-us/microsoft-365/admin/misc/cortana-integration
https://docs.microsoft.com/en-us/microsoft-365/admin/misc/cortana-integration
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/speech-services/
https://azure.microsoft.com/en-us/pricing/details/cognitive-services/speech-services/
https://github.com/Azure-Samples/cognitive-services-speech-sdk
https://github.com/Azure-Samples/cognitive-services-speech-sdk
https://github.com/microsoft/BotBuilder-Samples
https://github.com/microsoft/cortana-skills-samples
http://arxiv.org/abs/1807.10311
https://discourse.mozilla.org/t/deepspeech-update-grant-and-playbook/78569

Retrieved 2022-04-01, from https://discourse.mozilla.org/t/future-of-deepspeech

-stt-after-recent-changes-at-mozilla/66191

Mozilla. (2019, August). Mozilla Common Voice. Retrieved 2022-04-01, from https://

commonvoice.mozilla.org/

Muelaner, J. E. (2021, April). How to Use 'Ok, Google' O�ine. Retrieved 2022-04-05, from

https://www.lifewire.com/use-ok-google-offline-4589595 (Section: Lifewire)

Mycroft AI GitHub Repository. (2022, April). Mycroft. Mycroft. Retrieved 2022-04-04, from

https://github.com/MycroftAI/mycroft-core (original-date: 2016-05-20T14:11:07Z)

Mycroft AI Inc. (2020). Why use Mycroft AI? Retrieved 2022-04-04, from https://mycroft

-ai.gitbook.io/docs/about-mycroft-ai/why-use-mycroft

Mycroft AI Inc. (2021a). Get Mycroft. Retrieved 2022-04-04, from https://mycroft-ai

.gitbook.io/docs/using-mycroft-ai/get-mycroft#mark-ii

Mycroft AI Inc. (2021b). Pairing Your Device. Retrieved 2022-04-04, from https://mycroft

-ai.gitbook.io/docs/using-mycroft-ai/pairing-your-device

Mycroft AI Inc. (2021c). Picroft. Retrieved 2022-04-04, from https://mycroft-ai.gitbook

.io/docs/using-mycroft-ai/get-mycroft/picroft

Mycroft AI Inc. (2021d). Speech-To-Text. Retrieved 2022-04-01, from https://mycroft-ai

.gitbook.io/docs/using-mycroft-ai/customizations/stt-engine

Mycroft AI Inc. (2021e). Your First Skill. Retrieved 2022-04-04, from https://mycroft-ai

.gitbook.io/docs/skill-development/introduction/your-first-skill

Mycroft Selene GitHub Repository. (2022, March). Selene � Mycroft's Server Backend. Mycroft.

Retrieved 2022-04-04, from https://github.com/MycroftAI/selene-backend (original-

date: 2018-08-01T02:03:39Z)

Ortinau, D. (2021, July). Understanding SiriKit Concepts - Xamarin. Re-

trieved 2022-04-05, from https://docs.microsoft.com/en-us/xamarin/ios/platform/

sirikit/understanding-sirikit

Ovens, S. (2020, September). Get started with open source voice assistant software |

Opensource.com. Retrieved 2022-04-04, from https://opensource.com/article/20/6/

mycroft

Perez, S. (2017, June). Microsoft's Dictate uses Cortana's speech recognition to enable dictation

in O�ce. Retrieved 2022-05-29, from https://social.techcrunch.com/2017/06/20/

microsofts-dictate-uses-cortanas-speech-recognition-to-enable-dictation-in

-office/

Povey, D. (2011a). Kaldi: History of the Kaldi project. Retrieved 2022-05-29, from https://

kaldi-asr.org/doc/history.html

Povey, D. (2011b). Kaldi: Kaldi. Retrieved 2022-04-01, from https://kaldi-asr.org/doc/

Povey, D. (2011c). Kaldi: Kaldi tutorial: Getting started (15 minutes). Retrieved 2022-05-29,

from https://kaldi-asr.org/doc/tutorial_setup.html

Povey, D. (2011d). Kaldi: Kaldi tutorial: Prerequisites. Retrieved 2022-05-29, from https://

kaldi-asr.org/doc/tutorial_prereqs.html

Povey, D. (2022, May). Kaldi Speech Recognition Toolkit. Kaldi. Retrieved 2022-05-29, from

https://github.com/kaldi-asr/kaldi (original-date: 2015-04-20T17:23:16Z)

LXXXIII

https://discourse.mozilla.org/t/future-of-deepspeech-stt-after-recent-changes-at-mozilla/66191
https://discourse.mozilla.org/t/future-of-deepspeech-stt-after-recent-changes-at-mozilla/66191
https://commonvoice.mozilla.org/
https://commonvoice.mozilla.org/
https://www.lifewire.com/use-ok-google-offline-4589595
https://github.com/MycroftAI/mycroft-core
https://mycroft-ai.gitbook.io/docs/about-mycroft-ai/why-use-mycroft
https://mycroft-ai.gitbook.io/docs/about-mycroft-ai/why-use-mycroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft#mark-ii
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft#mark-ii
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/pairing-your-device
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/pairing-your-device
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/get-mycroft/picroft
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/customizations/stt-engine
https://mycroft-ai.gitbook.io/docs/using-mycroft-ai/customizations/stt-engine
https://mycroft-ai.gitbook.io/docs/skill-development/introduction/your-first-skill
https://mycroft-ai.gitbook.io/docs/skill-development/introduction/your-first-skill
https://github.com/MycroftAI/selene-backend
https://docs.microsoft.com/en-us/xamarin/ios/platform/sirikit/understanding-sirikit
https://docs.microsoft.com/en-us/xamarin/ios/platform/sirikit/understanding-sirikit
https://opensource.com/article/20/6/mycroft
https://opensource.com/article/20/6/mycroft
https://social.techcrunch.com/2017/06/20/microsofts-dictate-uses-cortanas-speech-recognition-to-enable-dictation-in-office/
https://social.techcrunch.com/2017/06/20/microsofts-dictate-uses-cortanas-speech-recognition-to-enable-dictation-in-office/
https://social.techcrunch.com/2017/06/20/microsofts-dictate-uses-cortanas-speech-recognition-to-enable-dictation-in-office/
https://kaldi-asr.org/doc/history.html
https://kaldi-asr.org/doc/history.html
https://kaldi-asr.org/doc/
https://kaldi-asr.org/doc/tutorial_setup.html
https://kaldi-asr.org/doc/tutorial_prereqs.html
https://kaldi-asr.org/doc/tutorial_prereqs.html
https://github.com/kaldi-asr/kaldi

Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O., Goel, N., . . . Vesely, K. (2011).

The Kaldi Speech Recognition Toolkit. , 4.

Rahmel, H. (2022). Model and Endpoint Lifecycle of Custom Speech - Speech service -

Azure Cognitive Services. Retrieved 2022-04-03, from https://docs.microsoft.com/

en-us/azure/cognitive-services/speech-service/how-to-custom-speech-model

-and-endpoint-lifecycle

Saha, S., & Marsh, C. (2014a). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/hardware/

Saha, S., & Marsh, C. (2014b). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/installation/

Saha, S., & Marsh, C. (2014c). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/configuration/

Saha, S., & Marsh, C. (2014d). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/usage/

Saha, S., & Marsh, C. (2014e). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/modules/

Saha, S., & Marsh, C. (2014f). Jasper | Documentation. Retrieved 2022-04-04, from https://

jasperproject.github.io/documentation/api/

Schalkwyk, J., Fellow, G., & Team, S. (2019, December). An All-Neural On-Device Speech Recog-

nizer. Retrieved 2022-04-03, from http://ai.googleblog.com/2019/03/an-all-neural

-on-device-speech.html

Shmyrev, N. (2018, October). CMU Sphinx - Browse /Acoustic and Language Models at Source-

Forge.net. Retrieved 2022-04-03, from https://sourceforge.net/projects/cmusphinx/

files/Acoustic%20and%20Language%20Models/

Shmyrev, N. (2019a). About CMUSphinx. Retrieved 2022-04-03, from http://cmusphinx

.github.io/wiki/about/

Shmyrev, N. (2019b). Before you start. Retrieved 2022-04-03, from http://cmusphinx.github

.io/wiki/tutorialbeforestart/

Shmyrev, N. (2019c). Building a language model. Retrieved 2022-04-03, from http://cmusphinx

.github.io/wiki/tutoriallm/

Shmyrev, N. (2019d). Building an application with PocketSphinx. Retrieved 2022-04-03, from

http://cmusphinx.github.io/wiki/tutorialpocketsphinx/

Shmyrev, N. (2019e). Building a phonetic dictionary. Retrieved 2022-04-03, from http://

cmusphinx.github.io/wiki/tutorialdict/

Shmyrev, N. (2019f, October). CMUSphinx Open Source Speech Recognition. Retrieved 2022-

04-02, from http://cmusphinx.github.io/

Shmyrev, N. (2019g). Large scale language model. Retrieved 2022-04-02, from http://cmusphinx

.github.io/wiki/tutoriallmadvanced/

Shmyrev, N. (2019h). Overview of the CMUSphinx toolkit. Retrieved 2022-05-29, from http://

cmusphinx.github.io/wiki/tutorialoverview/

Shmyrev, N. (2019i). Training an acoustic model for CMUSphinx. Retrieved 2022-04-03, from

http://cmusphinx.github.io/wiki/tutorialam/

LXXXIV

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-model-and-endpoint-lifecycle
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-model-and-endpoint-lifecycle
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-model-and-endpoint-lifecycle
https://jasperproject.github.io/documentation/hardware/
https://jasperproject.github.io/documentation/hardware/
https://jasperproject.github.io/documentation/installation/
https://jasperproject.github.io/documentation/installation/
https://jasperproject.github.io/documentation/configuration/
https://jasperproject.github.io/documentation/configuration/
https://jasperproject.github.io/documentation/usage/
https://jasperproject.github.io/documentation/usage/
https://jasperproject.github.io/documentation/modules/
https://jasperproject.github.io/documentation/modules/
https://jasperproject.github.io/documentation/api/
https://jasperproject.github.io/documentation/api/
http://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
http://ai.googleblog.com/2019/03/an-all-neural-on-device-speech.html
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
https://sourceforge.net/projects/cmusphinx/files/Acoustic%20and%20Language%20Models/
http://cmusphinx.github.io/wiki/about/
http://cmusphinx.github.io/wiki/about/
http://cmusphinx.github.io/wiki/tutorialbeforestart/
http://cmusphinx.github.io/wiki/tutorialbeforestart/
http://cmusphinx.github.io/wiki/tutoriallm/
http://cmusphinx.github.io/wiki/tutoriallm/
http://cmusphinx.github.io/wiki/tutorialpocketsphinx/
http://cmusphinx.github.io/wiki/tutorialdict/
http://cmusphinx.github.io/wiki/tutorialdict/
http://cmusphinx.github.io/
http://cmusphinx.github.io/wiki/tutoriallmadvanced/
http://cmusphinx.github.io/wiki/tutoriallmadvanced/
http://cmusphinx.github.io/wiki/tutorialoverview/
http://cmusphinx.github.io/wiki/tutorialoverview/
http://cmusphinx.github.io/wiki/tutorialam/

Shmyrev, N. (2020, August). Vosk/Kaldi German acoustic model for callcenter and broacast

transcription. Retrieved 2022-04-02, from https://alphacephei.com/nsh/2020/08/09/

german.html

Shmyrev, N. (2021, July). Multistream TDNN and new Vosk model. Retrieved 2022-04-02, from

https://alphacephei.com/nsh/2021/07/16/multstream-tdnn.html

SRI International SRILM. (2021). STAR Laboratory: SRI Language Modeling Toolkit. Retrieved

2022-04-05, from http://www.speech.sri.com/projects/srilm/

Standefer, R., & Fingold, J. (2017, December). Bot Framework SDK for .NET - Bot Service.

Retrieved 2022-04-05, from https://docs.microsoft.com/en-us/previous-versions/

azure/bot-service/dotnet/bot-builder-dotnet-overview

Stegner, B. (2018, March). What Is Google Assistant? How to Use It to Full Potential. Retrieved

2022-05-26, from https://www.makeuseof.com/tag/what-is-google-assistant/ (Sec-

tion: Android)

Swarup, P., Maas, R., Garimella, S., Mallidi, S. H., & Ho�meister, B. (2019, September).

Improving ASR Con�dence Scores for Alexa Using Acoustic and Hypothesis Embeddings.

In Interspeech 2019 (pp. 2175�2179). ISCA. Retrieved 2022-04-03, from https://www

.isca-speech.org/archive/interspeech_2019/swarup19_interspeech.html doi: 10

.21437/Interspeech.2019-1241

Thakur, A. (2021, November). How to listen, delete, and ask Amazon not to save your Alexa

voice recordings. Retrieved 2022-04-04, from https://www.idownloadblog.com/2021/11/

12/how-to-listen-delete-stop-use-alexa-voice-recordings/

To²ovi¢, e. O.-P. D. B. (2022, April). Phonem. Retrieved 2022-04-01, from https://www-gewi

.uni-graz.at/gralis/Linguistikarium/Phonetik/Phonem_Wikipedia.html

Urban, E. (2022a, April). How to recognize speech - Speech service - Azure Cogni-

tive Services. Retrieved 2022-05-24, from https://docs.microsoft.com/en-us/azure/

cognitive-services/speech-service/how-to-recognize-speech

Urban, E. (2022b). Language support - Speech service - Azure Cognitive Services. Retrieved 2022-

04-03, from https://docs.microsoft.com/en-us/azure/cognitive-services/speech

-service/language-support

Urban, E. (2022c). Prepare data for Custom Speech - Speech service - Azure Cogni-

tive Services. Retrieved 2022-04-03, from https://docs.microsoft.com/en-us/azure/

cognitive-services/speech-service/how-to-custom-speech-test-and-train

Urban, E. (2022d). Speech-to-text overview - Speech service - Azure Cognitive

Services. Retrieved 2022-04-03, from https://docs.microsoft.com/en-us/azure/

cognitive-services/speech-service/speech-to-text

Urban, E. (2022e). Speech-to-text quickstart - Speech service - Azure Cognitive

Services. Retrieved 2022-04-03, from https://docs.microsoft.com/en-us/azure/

cognitive-services/speech-service/get-started-speech-to-text

Urban, E. (2022f). Train and deploy a Custom Speech model - Speech service - Azure Cogni-

tive Services. Retrieved 2022-04-03, from https://docs.microsoft.com/en-us/azure/

cognitive-services/speech-service/how-to-custom-speech-train-model

Urban, E. (2022g). What is the Speech service? - Azure Cognitive Services. Retrieved 2022-

LXXXV

https://alphacephei.com/nsh/2020/08/09/german.html
https://alphacephei.com/nsh/2020/08/09/german.html
https://alphacephei.com/nsh/2021/07/16/multstream-tdnn.html
http://www.speech.sri.com/projects/srilm/
https://docs.microsoft.com/en-us/previous-versions/azure/bot-service/dotnet/bot-builder-dotnet-overview
https://docs.microsoft.com/en-us/previous-versions/azure/bot-service/dotnet/bot-builder-dotnet-overview
https://www.makeuseof.com/tag/what-is-google-assistant/
https://www.isca-speech.org/archive/interspeech_2019/swarup19_interspeech.html
https://www.isca-speech.org/archive/interspeech_2019/swarup19_interspeech.html
https://www.idownloadblog.com/2021/11/12/how-to-listen-delete-stop-use-alexa-voice-recordings/
https://www.idownloadblog.com/2021/11/12/how-to-listen-delete-stop-use-alexa-voice-recordings/
https://www-gewi.uni-graz.at/gralis/Linguistikarium/Phonetik/Phonem_Wikipedia.html
https://www-gewi.uni-graz.at/gralis/Linguistikarium/Phonetik/Phonem_Wikipedia.html
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-recognize-speech
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-recognize-speech
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/language-support
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-test-and-train
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/speech-to-text
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/get-started-speech-to-text
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-train-model
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/how-to-custom-speech-train-model

04-03, from https://docs.microsoft.com/en-us/azure/cognitive-services/speech

-service/overview

Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R., Gouvea, E., . . . Wölfel, J. (2004,

December). Sphinx-4: A �exible open source framework for speech recognition. Sun

Microsystems.

Wardini. (2022, January). Voice Search Statistics 2022: Smart Speakers, VA, and Users

| SerpWatch. Retrieved 2022-04-05, from https://serpwatch.io/blog/voice-search

-statistics/

wav2letter GitHub Repository. (2022, April). wav2letter++. �ashlight. Retrieved 2022-

04-01, from https://github.com/flashlight/wav2letter (original-date: 2017-11-

20T17:39:41Z)

Wojciakowski, M., Junker, A., Patel, M., Davis, J., & Coulter, D. (2022, January). Python

on Windows for beginners. Retrieved 2022-05-09, from https://docs.microsoft.com/

en-us/windows/python/beginners

Xiong, W., Wu, L., Alleva, F., Droppo, J., Huang, X., & Stolcke, A. (2018, April). The Microsoft

2017 Conversational Speech Recognition System. 2018 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), 5934�5938. Retrieved 2022-04-03,

from http://arxiv.org/abs/1708.06073 (arXiv: 1708.06073) doi: 10.1109/ICASSP

.2018.8461870

yourtechdietAdmin. (2021). 7 Best Open Source Voice Assistants - 2020. Retrieved 2022-04-01,

from https://yourtechdiet.com/blogs/open-source-voice-assistants/

Zawideh, C. (2022, March). Microsoft Teams displays - Microsoft Teams. Retrieved 2022-04-05,

from https://docs.microsoft.com/en-us/microsoftteams/devices/teams-displays

Zeghidour, N., Xu, Q., Liptchinsky, V., Usunier, N., Synnaeve, G., & Collobert, R. (2019,

April). Fully Convolutional Speech Recognition. arXiv:1812.06864 [cs] . Retrieved 2022-

04-01, from http://arxiv.org/abs/1812.06864 (arXiv: 1812.06864)

LXXXVI

https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/overview
https://docs.microsoft.com/en-us/azure/cognitive-services/speech-service/overview
https://serpwatch.io/blog/voice-search-statistics/
https://serpwatch.io/blog/voice-search-statistics/
https://github.com/flashlight/wav2letter
https://docs.microsoft.com/en-us/windows/python/beginners
https://docs.microsoft.com/en-us/windows/python/beginners
http://arxiv.org/abs/1708.06073
https://yourtechdiet.com/blogs/open-source-voice-assistants/
https://docs.microsoft.com/en-us/microsoftteams/devices/teams-displays
http://arxiv.org/abs/1812.06864

	List of Acronyms
	Introduction
	Conceptual Formulation
	Definition of Objectives
	Solution Requirements

	Related Work
	Speech to Text Engines
	Open-Source Software
	Mozilla Deepspeech
	Flashlight
	Kaldi
	Coqui STT
	CMUSphinx
	Vosk

	Proprietary Software
	Alexa Voice Service
	Apple Speech
	Microsoft Azure Cognitives Service Speech to Text
	Google Cloud Speech-to-Text

	Speech Assistants
	Open-Source Tools
	Mycroft
	Jasper
	Rhasspy Voice Assistant

	Proprietary Tools
	Amazon Alexa
	Apple Siri
	Microsoft Cortana
	Google Assistant

	Technology Decision

	Model Adaption
	Hardware
	Software Prerequisite
	Vosk
	SRILM
	Kaldi
	Phonetisaurus
	Docker for Windows

	Setup
	Conclusion

	Development
	Solution Proposals
	Solution 1 - Speech Assistant
	Solution 2 - Individual Implementation

	Justification of the Solutions
	Used Technologies
	Python
	Jellyfish
	Vosk
	WSL 2 for Windows
	Hardware

	Implementation

	Evaluation
	Google Cloud Speech to Text vs Vosk
	Method
	Results
	Interpretation

	Text Matching and Text and Keyword Matching Implementation
	Method
	Results
	Interpretation

	Conclusion
	Discussion
	Reflection
	Outlook

	List of Figures
	List of Tables
	List of Source Codes
	Bibliography

