
Near-Real-Time Demand Side Management of
Battery-electric Vehicle Charging Stations in Residential

Complexes of Vorarlberg using Methods of linear and
stochastic Optimization

Master Thesis
Submitted in Fulfillment of the Degree

Master of Science in Engineering

Vorarlberg University of Applied Sciences
Sustainable Energy Systems

Submitted to
Dr. Klaus Rheinberger

Handed in by
Dipl.-Ing. (FH) Albert Ulmer, BSc, MA

Dornbirn, August 11th 2022



Statuary Declaration

I declare that I have developed and written the enclosed work completely by myself, and have not
used sources or means without declaration in the text. Any thoughts from others or literal quotations
are clearly marked. This Master Thesis was not used in the same or in a similar version to achieve an
academic degree nor has it been published elsewhere.

Dornbirn, August 11th 2022 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dipl.-Ing. (FH) Albert Ulmer, BSc, MA

II



Abstract

Near-Real-Time Demand Side Management of Battery-electric Vehicle Charging Stations in
Residential Complexes of Vorarlberg using Methods of linear and stochastic Optimization

The number of electric vehicles will increase rapidly in the coming years. Studies suggest that most
owners prefer to charge their electric vehicle at home, which will fuel the need for charging stations in
residential complexes where vehicles can be charged overnight. Currently, there already are over 100
such residential complexes, with another 70 added every year in Vorarlberg alone.

In most existing residential complexes, however, the grid connections are not sufficient to charge all
vehicles at the same time with maximum power. In addition, it is also desirable for grid operators and
electricity producers that the power demand be as smooth and predictable as possible. To achieve this,
ways to manage flexible loads need to be found, which can operate within the technical constraints.

Therefore, the most common scenarios how the load can be made grid-friendly with the help of
optional battery storage and/or photovoltaics using optimization methods of linear and stochastic
programming were examined. At the same time, the needs of the vehicle owners for charging comfort -
namely to find their vehicles reliably charged at the time of their respective departure - were addressed
by combining both objectives using suitable weights.

The algorithms determined were verified in practice on an existing Vlotte prototype installation. For
this purpose, the necessary programs were implemented in Python, so that the data obtained during
the test operation, which lasted one month, could be subjected to a well-founded analysis. In addition,
simulation studies helped to further reveal the influence of PV and BESS sizing on the achievable
optimums and confirm that advanced optimization algorithms such as the ones discussed are a vital
contribution in reducing the charging stations’ peak load while at the same time maintaining high
satisfaction levels.

Keywords: Demand Side Management, Vorarlberg, Residential Complex, Charging Station, Linear
Optimization, Stochastic Optimization, Peak Shaving, Charging Comfort, Computation Time
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Kurzreferat

Quasi-Echtzeit Lastmanagement von Ladestationen für elektrische Fahrzeuge in Wohnanlagen
Vorarlbergs mit Methoden der linearen und stochastischen Optimierung

Der Anteil von E-Autos wird in den kommenden Jahren rasant zunehmen. Damit einher geht der
Bedarf an Ladestationen in Wohnanlagen, an welchen die Fahrzeuge über Nacht aufgeladen werden
können.

Die vorhandenen Anschlussleistungen reichen in den meisten Bestandsanlagen jedoch nicht aus, um alle
Fahrzeuge gleichzeitig mit maximaler Leistung aufzuladen. Für Netzbetreiber und Stromproduzenten
ist es zudem wünschenswert, dass die Last möglichst gleichmäßig und vorhersehbar ist. Mögliche
Lösungsansätze bestehen vor allem darin, flexible Lasten zeitlich so zu planen, dass die vorhandene
Anschlussleistung ausreicht.

Es wurde daher mit Optimierungsmethoden der linearen und stochastischen Programmierung für
die häufigsten Szenarien untersucht, wie sich unter Zuhilfenahme von optionalen Batteriespeichern
und/oder Photovoltaik die Last netzfreundlich gestalten lässt. Gleichzeitig wird das Bedürfnis der
Fahrzeugeigner nach Komfort befriedigt werden, morgens verlässlich ein aufgeladenes Auto vorzufinden.

Die ermittelten Algorithmen wurden in der Praxis an einer bestehenden Prototyp-Anlage der Vlotte ve-
rifiziert. Hierzu wurden die nötigen Programme in Python implementiert und anschließend die während
des einmonatigen Testbetriebs gewonnenen Daten einer fundierten Analyse unterzogen. Zusätzlich
wurde in einer Simulation der Einfluss der Photovoltaik- und Batteriespeicher-Dimensionierung auf
die erreichbaren Optimalwerte untersucht, wodurch bestätigt werden konnte, dass fortgeschrittene
Optimierungsmethoden ein zentrales Laststeuerungselement sind, mit dem einerseits die Spitzenlasten
reduziert und andererseits die Kundenzufriedenheit berücksichtigt werden kann.

Schlagwörter: Lastmanagement, Vorarlberg, Wohnanlagen, Ladestation, Lineare Optimierung, Sto-
chastische Optimierung, Spitzenlastreduktion, Ladekomfort, Rechenzeit
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1 Introduction

1.1 Initial Situation

Vorarlberg was Austria’s first model region for electromobility and already has extensive experience
in this area with internationally recognized pilot projects such as Vlotte [1]. Newly built apartment
buildings and residential complexes are equipped with sufficiently sized power grid connections, so
that every parking space can be equipped with charging infrastructure if required [1], while there are
subsidies for retrofitting the cabling that meets the new requirements for existing buildings. However,
it must be taken into account that the one-off subsidy for upgrading the supply line is offset by
significantly higher running costs if the power requirement exceeds the threshold of about 35 kW and
thus ongoing power measurement by the local network operator becomes mandatory[2].

The shift to electromobility itself is already presenting local grid operators with major challenges. The
demand for electricity and, in particular, the requirements for power output are increasing [1], while
at the same time, as part of the process towards energy autonomy, massive investments are being
made in the expansion of decentralized renewable energies for power generation [1], in the hope of
making a meaningful contribution to relieving the power grid [3].

On the one hand, this requires practical possibilities for load shifting of large consumers such as
electric car charging stations in times of lower demand and, on the other hand, for grid stabilization
through inexpensive, stationary electricity storage [1], as they are being investigated by Vlotte in the
’LiLa’ prototype plant, among others.

There is therefore a two-fold motivation to keep the power requirements of existing residential
complexes for electromobility below the limit of 35 kW: On the one hand on the part of the network
operator, who can possibly postpone a complex and costly expansion of capacity, and on the other
hand on the part of the residents of residential complexes, who can avoid unnecessarily high electricity
costs by means of load shifting through optimization.

1.2 Research Problem & Objective

The number of electric vehicles will increase rapidly in the coming years. Studies [4] suggest that
most owners prefer to charge their electric vehicle at home, which will fuel the need for charging
stations in residential complexes where vehicles can be charged overnight. According to the experts
at Vlotte, there already are over 100 such residential complexes, with another 70 added every year in
Vorarlberg alone.

1



CHAPTER 1. INTRODUCTION 1.2. RESEARCH PROBLEM & OBJECTIVE

In most existing residential complexes, however, the grid connections are not sufficient to charge all
vehicles at the same time with maximum power. In addition, it is also desirable for grid operators and
electricity producers that the power demand be as smooth and predictable as possible. To achieve this,
ways to manage flexible loads need to be found, which can operate within the technical constraints.

It is therefore to be examined for the most common scenarios how the load can be made grid-friendly
with the help of optional battery storage and/or photovoltaics using optimization methods of linear
and stochastic programming. At the same time, the needs of the vehicle owners for charging comfort
should be addressed, i.e. to find a reliably charged car at the time of their respective departure.

The algorithms determined are to be verified in practice on an existing Vlotte prototype installation.
For this purpose, the necessary programs will be implemented in Python using software engineering,
so that the data obtained during the test operation, which is expected to last one month, can be
subjected to a well-founded analysis. In addition, simulation studies will help to further quantify the
influence of PV and BESS sizing on the achievable optimums.

1.2.1 Research Question

The main research question this thesis aims to answer is:

• To which extent can the peak load be reduced by autonomous demand side management
using linear and stochastic optimization in residential complexes?

Secondary research questions include:

• How can loads be managed in order to minimize and smoothen grid draw?

• How can the vehicle owners’ desires regarding a sufficiently charged vehicle be adequately
considered?

• What added value regarding charging management is generated by extra data?

• What added value does stochastic optimization have compared to deterministic optimization
and perfect information?

• What is the effect of BESS and PV sizing regarding the achievable optimum?

1.2.2 Hypotheses

The following hypotheses are assumed for the scope of this thesis:

2



CHAPTER 1. INTRODUCTION 1.3. METHODOLOGY

1. Historical load profiles are suitable for the prediction of future loads.

2. The more sophisticated the optimization algorithm, the higher the added value.

3. Additional data used for the prediction of loads and PV production lead to an improved
optimization result.

4. Peak shaving and charging comfort can be combined in one optimization model.

5. Even advanced optimization algorithms can successfully be run on modest single-board
computers.

1.2.3 Objective

The main goal of this thesis is the quantitative evaluation and practical application of well-known
optimization algorithms to electric car charging stations in residential complexes. At the heart of
the energy system under consideration is the charging station itself, which, in addition to the grid
connection, can optionally be equipped with a battery storage system and/or a photovoltaic power
generator. This results in 4 possible basic configurations, for each of which a separate mathematical
model is to be set up and examined. The main power consumers of the energy system are the vehicles
to be charged, whose charging behavior should be controlled in such a way that on the one hand
the grid-side load is as smooth as possible and remains below the threshold of 35 kW of maximum
allowable power, while at the same time ensuring that the vehicles themselves are charged sufficiently
by the time their respective owners want to start driving..

Of particular interest in the context of modeling is the determination of the quantitative advantages
and disadvantages of the system configurations considered, in order to subsequently form a decision-
making basis for practical application. Starting with trivial charging strategies such as directly charging
with maximum power, we explore more advanced strategies like predictive charging all the way up
to complex modeling approaches like stochastic optimization. In addition, we attempt to quantify
what added value can result from the additional modeling and computational effort and to what
extent advanced optimization algorithms can be run in a decentralized fashion modest computer
infrastructure (e.g. a Raspberry Pi single-board computer).

1.3 Methodology

Informed by the relevant topic matter literature, the central concepts of optimization are briefly
introduced in order to subsequently describe the energy system "residential complex with charging
station" in more detail and define the input and target variables to be examined. The specification of
the energy system configuration informs the acquisition of necessary simulation data, most importantly
load and production profiles, as well as the formulation of the optimization models used both in the
field test as well as the simulation studies.

Based on the theoretical foundation, all components of the scientific arc are executed, consisting of
the following steps:

3



CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

• Initial situation

• Research question

• Methodology

• Data

• Execution

• Results

• Discussion and conclusions, including critical reflection

1.4 Structure of the Thesis

Following the general pattern of funneling from general concepts to specific data and ideas, this thesis
has been structured accordingly. The introduction gives a short overview of the topic and concepts
involved, including the motivation and goals as well as methodology and underlying hypotheses. The
basic concepts and definitions are approached in more detail in the second chapter, mainly focusing
on demand-side management, optimization techniques and suitable metrics to be used going forward.
Building upon this foundation, the third chapter zooms in on the energy system model that is the
foundation of chapters four and five, namely the field test and the simulation studies, each of which
conclude with a discussion of the results. Chapter six draws the conclusions from the results discussed
previously, while the seventh and final chapter offers an outlook to future trends and possibilities.

1.4.1 Theoretical Foundation

In order to arrive at a scientific result, the theoretical foundation has to be sound and as comprehensive
as necessary. Hence, we thoroughly evaluated available literature by leading authors in the field and
combined the insights gained with scientific articles from current and relevant journals.

1.4.1.1 Demand-side management

The main goal of DSM is to avoid peak loads and implement load management without loss of
comfort for the consumer [5]. DSM strategies typically include a combination of increasing energy
efficiency, reducing consumption, shifting consumption and demand-response programs.

1.4.1.2 Grid friendliness

Grid operators specify rules for equipment that consumes electric power, like i.e. charging stations.
These rules depend on the power consumption of the system and include, in particular, specifications
regarding interruptibility, reactive power control capability and active power behavior [6]. Energy
suppliers also define grid-friendliness as the smoothness and predictability of the consumer load, which
allows for better planning and utilization of existing power plants.

4



CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

1.4.1.3 Charging comfort

Depending on their driving profile, owners of electric vehicles have certain expectations of the charging
speed of charging stations. For the charging process at home, the focus is primarily on efficiency,
while when charging on the go, fast charging has top priority [7]. In residential contexts, however,
experts agree that there is a strong connection between satisfaction and the vehicle’s SOC.

1.4.1.4 Linear programming

Optimization problems in which there are only linear relationships between the variables can be
solved with linear programming [8]. The target function specifies the optimization goal, while the
other conditions are formulated as linear (in)equation systems. In practice, mixed-integer linear
programming is particularly relevant, since it allows variables to be restricted to integers (or booleans)
which is a necessity when for example implementing anti-concurrency constraints or special ordered
sets.

1.4.1.5 Stochastic optimization

Stochastic optimization takes into account the fact that today’s decisions have to be made under
uncertainty [9]. The risks regarding the future development of decision variables are mapped by
formulating suitable probabilities of occurrence and the resulting problem is solved using linear
programming.

1.4.2 Available Literature

The basics of the linear optimization of energy systems have been sufficiently researched in the
standard works by Grimme and Bossek [8], Schellong [10], Diwekar [11] and Kallrath [12]. In the
context of flexibilities that are difficult to predict, such as those of electric vehicles, works such as
those by Marti [13] and Powell [14] are of great importance.

Richardson, Flynn, and Keane [15] already recognized 10 years ago, that widespread adoption of
electric vehicles and uncontrolled charging processes could have adverse effects on the power grid and
thus recommended to use linear programming to determine the optimal charging rate for each vehicle.

Elamin and Shaaban [16] describe a new real-time DSM system for switchable flexibilities in the
household, which, however, has comparatively high hardware requirements for daily operation.

Yang, Li, Foley, et al. [17] review state-of-the-art optimization methods suitable for scheduling
charging processes of electric vehicles (i.e. MILP), recognizing the need for powerful commercial
solver software as well as the high computational complexity as major concerns.

Nguyen, Tran-Quoc, Bacha, et al. [18] present an interesting method for distributing peak loads,
which, however, does without the integration of battery storage and renewable energies.

5



CHAPTER 1. INTRODUCTION 1.4. STRUCTURE OF THE THESIS

Amoasi Acquah, Kodaira, and Han [19] present a highly interesting approach to the stochastic
optimization of an energy system similar to the one described in this thesis, but do not provide any
information about the (probably quite high) computing power required for their extensive distribution
estimates and dimensional reductions.

Meer, Chandra Mouli, Morales-Espana Mouli, et al. [20] also consider an energy system very similar
to that of this thesis, but focus on charging processes at the workplace and cost reduction through
time series forecasting of PV production.

Sundstrom and Binding [21] already used grid-operator signals 12 years ago to optimize EV charging,
but they depend on expensive software to create their charging schedules.

Wu and Sioshansi [22] mathematically impressively model a comparable energy system for stochastic
optimization, but their elevated hardware and software requirements are also out of reach for use in
private residential complexes.

Gong, Cao, Liu, et al. [23] also deal with the limitations of the grid connection power, but formulate
their energy system as a non-linear model, which subsequently can only be solved using genetic
algorithms and is therefore far removed from the objectives of this thesis.

Mehta, Srinivasan, Khambadkone, et al. [24] focus primarily on the comparison of charging strategies
in large parking areas in terms of costs versus peak loads, which again requires a relatively complex
model that is solved with a genetic algorithm.

Chrysanidis, Kosmanos, Argyriou, et al. [25] present various algorithms for the stochastic control of
charging processes at a public charging station, but also do not provide any information about the
required computing power.

Judging from the research described above, we conclude that many exciting approaches in current
research are hardly suitable for practical application in residential complexes, since powerful hardware
and/or expensive software is often required.

6



2 Basic Concepts and Definitions

2.1 Demand-Side Management

The term demand-side management (DSM) was coined in the early 1980s by EPRI (Electric Power
Research Institute) and it is defined as “the planning, implementation and monitoring of those utility
activities designed to influence customer use of electricity in ways that will produce desired changes
in the utility’s load shape, i.e. changes in the pattern and magnitude of a utility’s load.” [26]

Shewale, Mokhade, Funde, et al. [27] go on to explain that DSM is a key feature of energy management
in that it “reduces the peak load instead of having to install new generating capacities”. In our case,
the problem is actually less one of needing new power generation capacities, but rather one of limited
power transportation capacities, which can be solved using the same DSM techniques.

2.2 Deterministic & Stochastic Optimization

According to Shewale, Mokhade, Funde, et al. [27], classical deterministic optimization techniques
like mixed integer linear programming can be applied to solve DSM problems like the one outlined
above deterministically and with great computational efficiency. Cavazzuti [28] goes on to explain
that deterministic optimization methods are intrinsically single-objective, while stochastic ones have
the ability to overcome local optimums.

In order to evaluate the benefits of either approach, Birge and Louveaux [29] recommend using
metrics like the VSS and EVPI, defined as follows:

V SS = V alue of Stochastic solution − V alue of Deterministic solution

EV PI = V alue of Perfect information − V alue of Stochastic solution

2.3 Optimization Goals & Metrics

As the title of this thesis already suggests, we will attempt to implement DSM by taking advantage of
the fact that the load generated by the charging process of the EVs is potentially flexible, as suggested
by Martin, Feron, De Jaeger, et al. [30]. At the same time, residents charging their EVs have certain
expectations as to how much their vehicle should be charged at their typical times of departure.

7



CHAPTER 2. BASIC CONCEPTS AND DEFINITIONS 2.3. OPTIMIZATION GOALS & METRICS

2.3.1 Peak shaving

According to Next Kraftwerke [31], peak shaving in the energy industry refers to the process of
‘leveling out peaks in electricity use by [...] power consumers’. They go on to clarify the difference
between actual peak shaving and load shifting: While peak shaving actually means that the overall
power consumption is reduced, mere load shifting tries to move peak consumption to other times of
the day (see Figure 2.1). While actual peak shaving requires extra energy sources like a PV as well as
a BESS, load shifting can already be achieved by optimizing the charging time slots of the EVs.

Figure 2.1: Load shifting vs. Peak shaving
Source: Next Kraftwerke [31]

There are numerous references in literature [32], [33] that propose to use the peak/average power
ratio (PAPR) as an indicator of the achieved smoothness of the load curve (see Equation (2.3)).
However, for configurations that potentially introduce extra energy from a PV, thus changing the
average value in the denominator, we find the application of a metric that is relative to the average
like the standard deviation (see Equation (2.2)) to be more suitable and will therefore add this metric
alongside the PAPR for comparison.

µ = E[X] = 1
N

N∑
i=1

xi (2.1)

σ =
√

E[(X − µ)2] (2.2)

PAPR = max(X)
µ

(2.3)

Directly minimizing the PAPR or the standard deviation in an optimization problem’s objective
function makes the problem non-linear and thus much more difficult to solve. For this reason, both
peak shaving as well as load shifting are typically formulated as so-called Minimax problems [34]
by introducing an additional decision variable y which is minimized in the objective function and is
defined to be the maximum of all values xi [35]:

min. y

s.t. y ≥xi, ∀i (2.4)

8



CHAPTER 2. BASIC CONCEPTS AND DEFINITIONS 2.3. OPTIMIZATION GOALS & METRICS

In practice, vector X will accumulate the respective first period values of each optimization run, since
those were the actual values that were actually measured or set, while all later period values are just
predictions. All metrics are then evaluated against this vector of result values in order to answer the
main research question of this thesis.

2.3.2 Charging comfort

As a consequence of the load shifting approach described in the previous section, EVs will typically
not be charged with maximal power right after they have been connected to the wallbox. For
non-residential settings, the length of the charging process until the vehicle is fully charged is often
cited as a good indicator for drivers’ preferences [36]. Similarly, some DSM approaches suggest using
the waiting time until power is actually delivered to the consumer as an indicator of user satisfaction
with the process [27].

We feel that neither of which are a good fit in a residential setting, since drivers expect to find a
fully charged EV by the time they want to depart for their daily activities the next day. From an
optimization point of view, this is formulated by maximizing the SOC at those time periods where the
EV is expected to depart. Thus, we propose using the EV’s SOC in percent at the time of departure
on a given day as quality metric.

2.3.3 Computation Time

Considering that we want to regulate charging power in near-real-time, it is important that the
optimization process be complete within a reasonable amount of time. In contrast to simple systems
that just divide and distribute the available power among all electric vehicles for charging, more
complex approaches like the ones discussed in the following chapters require more computation time
in order to arrive at a result. Nonetheless, we feel that an optimization run should take no longer
than 600 seconds, in order for a quarter-hour resolution to be possible.

Thus, we propose to record the computation time needed for the solution of the optimization problem
in seconds and report the maximum, average and standard deviation of that measure for comparison.

2.3.4 SSR & SCR

While not explicit optimization goals in our context, we feel that including metrics like self-sufficiency
rate and self-consumption rate is helpful in evaluating energy systems that contain PV components.

Markstaler [37] defines these metrics as follows:

SSR = Wconsumed − Wgrid

Wconsumed
(2.5)

SCR = Wconsumed − Wgrid

Wproduced
(2.6)
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3 Energy System Model

Considering the context given in the introduction, our energy system model consists of the following
main components, as depicted in Figure 3.1:

• Electric vehicles (EV)

• Wallboxes (WB)

• Battery-electric storage system (BESS)

• Photovoltaic power generator (PV)

• Low-voltage grid (LVG)

For the sake of simplicity and interpretability, electrical details like power form (AC or DC) or number
of phases (1 to 3) are ignored, since only power and energy are the relevant quantities for the research
question. In addition, electricity prices are assumed to be constant, as is usually the case for residential
power consumers. Lastly, we only consider the load from the charging of the EVs, household load is
ignored.

3.1 System Configurations

While the a complete energy system would contain a BESS and PV, most existing residential complexes
will probably have to do without one or both of them. For this reason, in addition to the model with
all components (see Figure 3.1) we also consider reduced system configurations (see Table 3.1) in
which either of PV or BESS or both are missing.

BESS available
yes no

PV available yes LVG + PV + BESS (1) LVG + PV (2)
no LVG + BESS (3) LVG only (4)

Table 3.1: Possible System Configurations Overview

3.1.1 LVG + PV + BESS

This configuration, containing both PV and BESS components (see Figure 3.1), is the most desirable
from a DSM point of view, as it offers the most flexibility and self-generation. As such, it should be
the default for newly planned residential complexes, considering the foreseeable rapid adoption of EVs.

10
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Electric Vehicles

LVGPVBESS

WB1 WB2 WB3 WB4 WB5

EV1 EV2 EV3 EV4 EV5

Figure 3.1: Energy System Model consisting of LVG, PV, BESS, EV & WB

We proceed to formulate the model constraints of this configuration as depicted in Figure 3.1 in the
following, with a list of all symbols and units used given in Table 3.2. As a general convention, the
direction of flow for each variable is denoted by a “in” or “out” in superscript in reference to the
perspective of the respective entity. As an example, nout

t denotes the power coming out of the LVG
for time period t, while din

t resembles the power going into the EVs for time period t.

First, we combine the sum of all power consumed by the EVs for all time periods P:

din
t =

∑
v∈V

evin
v,t ∀t ∈ P (3.1)

We define the maximum power drawn from the LVG as follows:

nout
ceil = max

t∈P
(nout

t ) (3.2)

Next, we require power conservation at the junction between power sources (LHS of Equation (3.3))
and power sinks (RHS of Equation (3.3)):

nout
t + bout

t + pvout
t = nin

t + bin
t + din

t ∀t ∈ P (3.3)

In order not to draw power from and feed excess power into the LVG, we introduce anti-concurrency
constraints by means of binary decision variables νout

t and νin
t while also limiting power to the allowable

maximum. This classifies the problem as a so-called MILP [11]:
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∀t ∈ P :

νout
t + νin

t ≤ 1 (3.4)
nout

t ≤ νout
t ∗ nout

max (3.5)
nin

t ≤ νin
t ∗ nin

max (3.6)
nout

t ≥ 0 (3.7)
nin

t ≥ 0 (3.8)

As with the LVG, it makes no sense to charge and discharge the BESS at the same time, so analogous
anti-concurrency constraints are put in place using binary decision variables βout

t and βin
t which also

set the minimum and maximum allowed charging power:

∀t ∈ P :

βout
t + βin

t ≤ 1 (3.9)
bout

t ≤ βout
t ∗ bout

max (3.10)
bin

t ≤ βin
t ∗ bin

max (3.11)
bout

t ≥ βout
t ∗ bout

min (3.12)
bin

t ≥ βin
t ∗ bin

min (3.13)

Realistically, charging and discharging the BESS will not be 100 % efficient. In addition, there will be
a certain degree of self-discharge over time. Based on the proposal of Ven, Hegde, Massoulie, et al.
[38], we model this behavior as follows in the BESS SOC-tracking Equation (3.14). The amount of
energy stored in the BESS of the next time period Bt+1 is based on the current SOC Bt reduced by
the self-discharging factor ξB, to which the energy put into the BESS by charging ηin

B ∗ bin
t ∗ ∆t is

added and from which the energy taken out by discharging bout
t

ηout
B

∗ ∆t is subtracted respectively:

∀t ∈ T :

Bt+1 = Bt ∗ ξB + (ηin
B ∗ bin

t − bout
t

ηout
B

) ∗ ∆t (3.14)

Bt ≤ Bmax (3.15)
Bt ≥ 0 (3.16)

The EVs can only be charged when they are loadable, which means they are connected to their
assigned wallbox. In addition, there are lower and upper bounds to the charging power, which we
model as follows:

12
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∀v ∈ V , t ∈ P :

evin
v,t ≤ εin

t ∗ λv,t ∗ evin
v,max (3.17)

evin
v,t ≥ εin

t ∗ λv,t ∗ evin
v,min (3.18)

Similar to the BESS, the EVs’ charging processes will not be 100 % efficient nor will they fully retain
their SOC over time. The amount of energy stored in each EV of the next time period EVv,t+1 is
based on the current SOC EVv,t reduced by the self-discharging factor ξEV , to which the energy
put into the EV by charging ηin

EV ∗ evin
v,t ∗ ∆t is added and from which the energy taken out by

discharging evout
v,t

ηout
EV

∗ ∆t is subtracted respectively, leading to Equation (3.19). As a safeguard, we allow
discharging of an EV only while it is driving, which is why we add the appropriate constraint as shown
in Equation (3.22).

∀v ∈ V , t ∈ T :

EVv,t+1 = EVv,t ∗ ξEV + (ηin
EV ∗ evin

v,t −
evout

v,t

ηout
EV

) ∗ ∆t (3.19)

EVv,t ≤ EVv,max (3.20)
EVv,t ≥ 0 (3.21)
evout

v,t ≤ δv,t ∗ evout
v,max (3.22)

To accommodate for EV owners’ expectations of never finding their vehicle less than 50 % charged,
we introduce a trickle-charge constraint that ensures charging is always attempted until the EV’s
SOC has reached 50 %. We implement this in Equation (3.23) by subtracting the dimensionless ratio
of EVv,t

EVv,max
(which is the EV’s SOC in percent) from the threshold of 1

2 (which is the same as 50 %)
on the right hand side and requiring that the binary variable εin

v,t be greater or equal to the result on
the left hand side. If the EV’s SOC in percent is lower than 50 %, the result is greater than zero,
thus forcing the binary variable to become one:

εin
v,t ≥ 1

2 − EVv,t

EVv,max
∀v ∈ V , t ∈ P (3.23)

As for initial conditions, the BESS should have the same SOC at the beginning and at the end of the
time period considered:

B0 = BT ∗∆t (3.24)

Finally, all decision variables are constrained to be non-negative, while the efficiency factors are set to
reasonable values. The actual values chosen for the field test and simulation studies are described in
Chapter 4 and Chapter 5 respectively.
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Symbol Quantity Unit Decision Variable

t Index of time periods
s Index of scenarios
∆t time step h
T number of time periods
S number of scenarios
P set of time periods := {1, . . . , T }
T set of time instants := {0, . . . , T }
S set of scenarios := {0, . . . , S}
Dv set of departure time periods ⊂ P of EV v

V set of vehicles
EVv,t SOC of EV v at period t kWh �

EVv,max maximum SOC of EV v kWh
evin

v,t EV v charging power during period t kW �

evout
v,t EV v discharging power during period t kW

evin
v,min minimum allowable EV v charging power kW

evin
v,max maximum allowable EV v charging power kW

ηin
EV efficiency factor for charging of EV

ηout
EV efficiency factor for discharging of EV

ξEV self-discharging factor of EV
εin

v,t switch for charging EV v , 0 if open, 1 if closed binary �

λv,t EV v loadability during period t binary
δv,t EV v driving during period t binary
Bt SOC of BESS at period t kWh �

Bmax maximum SOC of BESS kWh
bin

t BESS charging power during period t kW �

bout
t BESS discharging power during period t kW �

bin
min minimum allowable BESS charging power kW

bout
min minimum allowable BESS discharging power kW

bin
max maximum allowable BESS charging power kW

bout
max maximum allowable BESS discharging power kW

ηin
B efficiency factor for charging of BESS

ηout
B efficiency factor for discharging of BESS

ξB self-discharging factor of BESS
βout

t switch for discharging BESS, 0 if open, 1 if closed binary �

βin
t switch for charging BESS, 0 if open, 1 if closed binary �

nin
t power fed into LVG during period t kW �

nout
t power drawn from LVG during period t kW �

nout
ceil maximum power drawn from LVG kW �

nout
max maximum allowable power draw from LVG kW

nin
max maximum allowable power feed into LVG kW

νout
t switch for LVG power draw, 0 if open, 1 if closed binary �

νin
t switch for LVG power feed, 0 if open, 1 if closed binary �

din
t total EV charging power demand during period t kW �

pvout
t power output of PV during period t kW

pvout
peak peak power output of PV generator kWp

Table 3.2: Symbols and units used to describe the energy system model
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3.1.2 LVG + PV

The LVG + PV configuration as depicted in Figure 3.2 is currently the most popular choice for existing
residential complexes which want to offset their total electricity costs consisting of household and EV
charging by installing PV panels on their roofs and/or walls. Since solar power has its peak power
output typically around noon, this configuration will therefore be most useful in cases where the
residents charge their vehicles during the day, otherwise the excess solar power from the PV will be
fed into the LVG.

Electric Vehicles

LVGPV

WB1 WB2 WB3 WB4 WB5

EV1 EV2 EV3 EV4 EV5

Figure 3.2: Energy System Model consisting of LVG, PV, EV & WB

The degrees of freedom for DSM in this configuration stem exclusively from load shifting of the
individual EVs. Due to the extra power of the PV introduced during daytime, we expect to see the
optimized charging strategies shift EV charging load from night to day where possible.

We model the missing BESS component by adding the following constraint to the base model put
forward in section 3.1.1:

Bmax = 0 (3.25)

3.1.3 LVG + BESS

The LVG + BESS configuration (see figure 3.3) is probably one of the rarer configurations one
can think of. This is because BESS capacity has been and still is expensive, which - combined
with the effort of installing and maintaining the infrastructure - makes it less desirable from a cost
perspective. However, a BESS provides flexibility for DSM by load shifting, making this still a relevant
configuration.
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Electric Vehicles

LVGBESS

WB1 WB2 WB3 WB4 WB5

EV1 EV2 EV3 EV4 EV5

Figure 3.3: Energy System Model consisting of LVG, BESS, EV & WB

As such, it will be interesting to see which influence the capacity of the BESS has on the optimization
results in terms of peak shaving.

We model the missing PV component by adding the following constraint to the base model put
forward in section 3.1.1:

pvout
t = 0 ∀t ∈ P (3.26)

3.1.4 LVG only

The LVG only configuration is the most minimalistic of all possible configurations, since there is no
PV or BESS available (see Figure 3.4). This configuration is included to resemble the large number
of old residential complexes which were built without renewable energy sources and/or peak shaving
considerations in mind.

It goes without saying that this configuration possesses the least degrees of freedom when it comes to
DSM, since the only flexibility lies in the possibility to delay the charging processes of the individual
EVs.

We model the missing PV and BESS components by combining the constraints from the previous two
configurations, adding both Equation (3.25) and Equation (3.26) to this configuration’s constraints.

16



CHAPTER 3. ENERGY SYSTEM MODEL 3.2. CHARGING STRATEGIES

Electric Vehicles

LVG

WB1 WB2 WB3 WB4 WB5

EV1 EV2 EV3 EV4 EV5

Figure 3.4: Energy System Model consisting of LVG, EV & WB

3.2 Charging Strategies

In the following section we explore some of the possible ways the charging process of EVs can be
controlled. We do this by starting with the simplest method and working our way up the hierarchy
to the computationally most expensive. In addition, all strategies described are based on the same
ESMs described above, adding the effective objective function to complete the optimization model.

3.2.1 Direct Charging

The most well known charging strategy is the one we refer to as ‘direct charging’. Here, the EV is
connected to the wallbox and the charging process begins immediately, with the maximum allowable
power as negotiated between EV and wallbox.

This behavior is what EV drivers usually expect when plugging in their EV, since it leads to the
shortest charging time. The drawback, however, is that when this strategy is used by multiple vehicles
at the same time, the allowable maximum power that can be drawn from the LVG might not suffice
to satisfy their charging power demands. In addition, this is the kind of behavior that leads to huge
load peaks in the LVG, which is exactly what we are trying to avoid.

We implement the direct charging strategy in our ESM by using the time period index as a pseudo-
price-function and minimizing the price of the optimization problem:

min.
T∑

t=1
nout

t ∗ t (3.27)
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3.2.2 Rule-based Charging

To improve upon the direct charging strategy and avoid load peaks by all EVs trying to charge at
maximum power, one possibility is to introduce rules that govern how much power each EV is allowed
to draw for charging. In its simplest form, the maximum available power is simply divided between all
connected vehicles, which, however, can lead to problems if the individual share allocated to a vehicle
is below its minimum power requirements for charging. For such cases, queuing systems resolving
such concurrency issues [25] can be envisioned, but are beyond of the scope of this thesis.

To introduce an element of fairness, we implement a rule-based charging strategy in our ESM by
coupling charging power with the SOC as depicted in Figure 3.5. The idea is that the higher the
SOC the lower the charging power will be. This should ensure that vehicles needing a recharge the
most urgently also get the highest amount of power.

Figure 3.5: Charging power limit based on EV SOC

While the objective remains identical to that of the direct charging strategy described above, we have
to add 4 additional constraints to the optimization model to implement this special ordered set of
type 1 [12]:

∀i ∈ {1, 2, 3, 4, 5}, v ∈ V , t ∈ P∑
Ii,v,t = 1 (3.28)

EVv,t ≤ EVv,max ∗ (5
5 − 4

5I1,v,t − 3
5I2,v,t − 2

5I3,v,t − 1
5I4,v,t) (3.29)

EVv,t ≥ EVv,max ∗ (0
5 + 1

5I2,v,t + 2
5I3,v,t + 3

5I4,v,t + 4
5I5,v,t) (3.30)

evin
v,t ≤ evin

v,max − (evin
v,max − evin

v,min) ∗ (1
4I2,v,t + 1

2I3,v,t + 3
4I4,v,t + 4

4I5,v,t) (3.31)
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First, we define five indicators, referring to the respective area as depicted in Figure 3.5. In
Equation (3.28), we require that one (and only one) of the five indicators is set to one for each
time period and vehicle. In Equations 3.29 and 3.30, we couple the actual EV SOC to the five
areas by creating appropriate inequality boundaries. For example, if EVv,t were to be 1

2EVv,max,
indicator I3,v,t would have to become one, giving us .5 ≤ (5

5 − 4
5 ∗ 0 − 3

5 ∗ 0 − 2
5 ∗ 1 − 1

5 ∗ 0) and
.5 ≥ (0

5 + 1
5 ∗ 0 + 2

5 ∗ 1 + 3
5 ∗ 0 + 4

5 ∗ 0), both of which being true statements. With the indicator
coupled to the EV SOC, Equation (3.31) allows us to set the upper bound of the EV charging power
to the desired limit. Again, assuming I3,v,t being set to one as an example, we limit evin

v,t to be less
or equal than evin

v,max − (evin
v,max − evin

v,min) ∗ (1
4 ∗ 0 + 1

2 ∗ 1 + 3
4 ∗ 0 + 4

4 ∗ 0) or 50 % of the allowed
maximum charging power.

3.2.3 Predictive Charging

For the predictive charging strategy, we replace the objective function from the previously discussed
strategies with one that takes into consideration the goals of peak shaving and charging comfort, as
described in section §2.3. Regarding charging comfort, we need to consider that it is not guaranteed
that all vehicles depart at least once per day, which is why we split this goal into two sub goals. The
first sub goal is to maximize the SOC of the electric vehicle at departure time, if any. The second sub
goal is to maximize the SOC at the end of the 24 hour look ahead period, which ensures that a given
vehicle is fully charged within one day at the least. Thus, we will be combining three objectives into
one objective function: Firstly, minimize grid draw peaks. Secondly, maximize EV SOC at departure
times. Thirdly, maximize EV SOC at the end of the look ahead horizon.

Since we are trying to combine entities that differ in their unit of measure (i.e. grid draw is measured in
kW while SOC is measured in kWh) as well as their numerical range in a unified objective function, we
adopt the advice of [12] and will scale the entities to a common unit and numerical range, preventing
either of the three objectives to dominate the optimization result [39].

We begin the formulation of our objective function by adding a constraint to implement nout
ceil based on

the time periods considered as described in equation (2.4). By minimizing nout
ceil, we lay the foundation

for the desired peak shaving behavior:

nout
ceil ≥ nout

t ∀t ∈ P (3.32)

The first term of our objective function is 1
nout

max
nout

ceil. As we pointed out earlier, dividing nout
ceil by the

maximum allowable value nout
max effectively gives us a percentage, which not only removes the unit,

but also scales the result to values between zero and one.

The second term of our objective function is 1
len(V)

∑
t∈Dv ,v∈V

1
len(Dv)

1
EVv,max

EVv,t, which aims to

maximize the EV SOC at the predicted departure times Dv. This is achieved by adding all the EV
SOCs at those departure times and dividing them by the maximum EV SOC per vehicle EVv,max to
get rid of the unit, while dividing the value further by the number of departure times len(Dv) and the
number of vehicles len(V) will scale this part of the objective function down to a percentage as well.
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The last term of our objective function is 1
len(V)

∑
t=T,v∈V

1
EVv,max

EVv,t, which aims to maximize the

EV SOC by the end of the 24 hour look ahead horizon. Similar to the previous term, we divide the
EV SOC by the EV battery capacity to remove the unit and divide by the number of vehicles to scale
the result to a percentage.

As we decided to give equal weight to peak shaving as well as charging comfort, with equal weight to
be given to both charging comfort sub goals, we determine the weights of the three objectives to be
1, .5 and .5 respectively. Since objectives two and three are to be maximized, we will multiply the
terms with -1 in order combine them with objective one. Thus, we formulate the objective function
as follows:

min.
1

nout
max

nout
ceil

− 1
2

1
len(V)

∑
t∈Dv ,v∈V

1
len(Dv)

1
EVv,max

EVv,t

− 1
2

1
len(V)

∑
t=T,v∈V

1
EVv,max

EVv,t (3.33)

Looking at the above objective function it is clear that we will need to predict the time periods Dv

per vehicle in which it departs, along with all other data needed to populate a full 24 hour look ahead
horizon, most notably the driving profiles of the vehicles as well as the PV production data. There is
large body of research dealing with time series forecasting, ranging from traditional statistical methods
like smoothing and auto-regression [40] to more advanced methods like basic machine learning [41]
and neural networks [42]. The choice of the actual method is going to be highly dependent on the
data available, the computing power one is willing to allocate as well as the quality expectations
associated with the predictions.

3.2.4 Stochastic Charging

Unlike the deterministic predictive charging strategy, the stochastic charging strategy considers historic
driving profiles (which we will refer to as scenarios in the following) as individual sub-problems instead
of collapsing all these possibilities into one single prediction of the vehicles’ behavior. Theory suggests
that this approach should result in a more robust optimization result [28] that performs well for
(almost) all possible scenarios [43], even for distribution-free problems such as ours [14] that depend
on historic data as source of information.

To implement a stochastic optimization model, all decision variables and input data relating to the
EVs gain an additional index s, denoting all the scenarios that are optimized against. As a result, we
no longer need to predict the departure times Dv of the EVs nor their power consumption.

As computation time is important, we use a two-stage stochastic modeling approach as discussed, for
example, in [44], [14] and [43], defining the first time period as stage one and all periods thereafter as
stage two. More specifically, stage one is the actual decision that has been made, considering all the
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possible future scenarios considered in stage two. Decisions in stage two are themselves constrained
by the decision made in stage one.

As for scenarios, again considering computation time, we follow the advice of Wu and Sioshansi [22]
to use scenario reduction in order to reduce complexity and simply use the previous 8 days of data
available sliced in 24 hour slices as scenarios, even though much more elaborate methods exist and
are discussed in [45].

Thus, in analogy to Equation (3.33) we formulate the objective function as:

min.
1

nout
max

nout
ceil

− 1
2

1
len(V)

1
len(S)

∑
t∈D,v∈V,s∈S

1
len(Dv,s)

1
EVv,max

EVv,t,s

− 1
2

1
len(V)

1
len(S)

∑
t=T,v∈V,s∈S

1
EVv,max

EVv,t,s (3.34)

Since only one decision can actually be made in stage one, we need to ensure that all scenarios
collapse into one for the first period by adding additional constraints:

∀t = 1, s ∈ S, v ∈ V : (3.35)
nout

t,s = nout
t,0

nin
t,s = nin

t,0

νout
t,s = νout

t,0

νin
t,s = νin

t,0

bout
t,s = bout

t,0

bin
t,s = bin

t,0

βout
t,s = βout

t,0

βin
t,s = βin

t,0

Bt,s = Bt,0

evin
v,t,s = evin

v,t,0
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4 Field Test

To verify the methods discussed in section §3.2 and gather driving profiles, which include the the
availability for charging and energy consumption during driving as well as PV production data, a field
test was conducted in cooperation with Vlotte on their LiLa prototype facility.

The planning for this field test already started months in advance to ensure that is was possible to
get the most out of it. It was decided to conduct the field test during the month of March 2022
(see Table 4.1), since the PV might be covered with snow during the earlier winter months otherwise.
In addition, the planning of the phases was ordered from simple to most difficult, in order for the
charging strategies involving optimization based on historic driving profiles to have enough data to go
on in terms of prediction and/or selection of scenarios.

Phase Starting Date Charging Strategy
1 2022-03-07 Direct Charging
2 2022-03-14 Rule-based Charging
3 2022-03-21 Predictive Charging
4 2022-03-28 Stochastic Charging

Table 4.1: Planned field test phases

4.1 Hardware Setup

4.1.1 Components

Considering the possible system configurations discussed in section §3.1, the energy system for the
field test can be classified as LVG+PV+BESS, meaning that it contains all the components desirable
for a complete setup.

4.1.1.1 PV & BESS

The inverter used to convert DC power coming from the PV to AC also included a BMS to manage
the BESS (see Figure 4.1). While various modes of operation exist according to the manufacturer’s
manual [46], the only useful option was ‘self-use’ mode, which basically stores energy from the PV in
the BESS for later use by the EVs.

In terms of sizing, the PV generator on site was specified for pvout
peak of 14.28 kWp. The BESS (see

Figure 4.2), a Neoom Kjuube H48074, was specified for Bmax of 26.56 kWh, allowing energy flow at
bin

t & bout
t of 12.78 kW respectively.
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Figure 4.1: Inverter modes of operation
Source: Adapted from Solax Power [46]

Figure 4.2: BESS installed at LiLa site
Source: Vlotte
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4.1.1.2 Wallboxes

To charge the EVs, wallboxes [47] that regulate the power delivery were installed at the LiLa prototype
facility (see Figure 4.3). While the wallboxes themselves could have handled evin

v,max of 22 kW, they
had to be limited to 11 kW due to electrical safety considerations.

Figure 4.3: Wallboxes installed at LiLa site
Source: Vlotte

4.1.1.3 Local Raspberry Pi

The LRP was installed in the power cabinet (see Figure 4.4) at the LiLa prototype facility, serving as
local data acquisition device running NodeRed (see section 4.2.2.5).

4.1.1.4 Remote FHV Server

The RFS was used for running the optimization models in a reliable Linux environment hosted at
FHV. A direct OpenVPN-tunnel [48] was configured to the LRP, in order to enable bi-directional
data access.

4.1.1.5 Electric Vehicles

While originally six vehicles were planned for the field test, only five were available by the time the
experiment was started (see Table 4.2).

Each of the vehicles was equipped with Evelix OBD2 data capturing devices [49]. Unfortunately,
the manufacturer announced their going out of business just a few months prior (see Figure 4.5),
unnoticed by the Vlotte team. A temporary solution was implemented using special firmware from
the OEM of the DCDs, but not without loss of stability and data quality. As a result, it was not
possible to retrieve the SOC of car #2, since the OEM firmware predated the release of this vehicle,
rendering it incompatible for the duration of the field test.
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Figure 4.4: Power cabinet installed at LiLa site
Source: Vlotte

ID Model Battery Capacity [kWh]
car1 Renault Zoe 52
car2 MG evLine 72
car3 Renault Zoe 52
car4 VW ID.3 62
car5 Renault Zoe 52

Table 4.2: Vehicles used in field test

Figure 4.5: Evelix - End of Life
Source: Evelix [49]
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4.1.2 Implementation

The components mentioned in section 4.1.1 were assembled and configured at the LiLa prototype
facility by Vlotte engineers. The electric vehicles (see Table 4.2) were kindly provided by local car
dealerships for the duration of the field test.

Figure 4.6: Planned LiLa system setup
Source: Vlotte original schematics, translated to English by Author

Deviating from the initially discussed system specifications (see Figure 4.6), the LiLa prototype facility
was configured to only allow charging of the BESS with power coming from the PV (see Figure 4.7),
due to the particular model of inverter used (see Figure 4.1).

Electric Vehicles

LVGPV BESS

WB1 WB2 WB3 WB4 WB5

EV1 EV2 EV3 EV4 EV5

Figure 4.7: Energy System Model - LiLa setup

We model this deviation from from the base model defined in section 3.1.1 by adding Equation (4.1)
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and equation (4.2) as anti-concurrency constraints, which effectively prohibit charging the BESS with
power from the LVG as well as feeding power to the LVG by discharging the BESS:

∀t ∈ P :

νout
t + βin

t ≤ 1 (4.1)
νin

t + βout
t ≤ 1 (4.2)

The system specific configuration parameters used in the software implementation are listed in
Table 4.3 for quick reference. Note that while the values for the most relevant parameters (i.
e. maximum power draw, battery capacities, etc.) could be quantified by the experts at Vlotte,
assumptions had to be made for others (i. e. efficiency and self-discharging factors).

Symbol Quantity Unit Value

∆t time step h 0.25
evin

v,min minimum allowable EV v charging power kW 4.14
evin

v,max maximum allowable EV v charging power kW 11.0
ηin

EV efficiency factor for charging of EV 0.85
ηout

EV efficiency factor for discharging of EV 0.85
ξEV self-discharging factor of EV 0.9983
Bmax maximum SOC of BESS kWh 26.56
bin

min minimum allowable BESS charging power kW 0.0
bout

min minimum allowable BESS discharging power kW 0.0
bin

max maximum allowable BESS charging power kW 12.78
bout

max maximum allowable BESS discharging power kW 12.78
ηin

B efficiency factor for charging of BESS 0.95
ηout

B efficiency factor for discharging of BESS 0.95
ξB self-discharging factor of BESS 0.9986
nout

max maximum allowable power draw from LVG kW 35.0
nin

max maximum allowable power feed into LVG kW 35.0
pvout

peak peak power output of PV generator kWp 14.28

Table 4.3: Configuration values used in the field test

4.2 Software Setup

4.2.1 Design Goals

In order to be able to choose the right software components and guide a successful implementation
of the field test, a set of design goals was defined based on the author’s experience as a professional
software developer.
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4.2.1.1 Open Source Software

The use of Open Source software has many advantages, the most important of which are availability,
cost and documentation. Popular Open Source software typically is available for all relevant platforms
and Operating Systems, licensed so that it can even be used in a commercial setting and and -
depending on popularity of the project - well documented and supported. We will therefore prefer
solutions that are fully open source and well supported for our field test.

4.2.1.2 Time to market

Considering the ambitious time schedule for implementation of the field test, software components
that reduce the amount of code that needs to be written clearly pose a big advantage when trying to
meet fixed deadlines. We will therefore prefer components and frameworks that reduce the need to
reimplement basic functionality.

4.2.1.3 Maintainability

Experienced software developers know that the context in which an application is run can change
quickly, making it necessary to quickly develop new features, adapt to unexpected data or fix
undiscovered bugs. At the same time, the running system needs to remain stable, while new software
versions are deployed. We will therefore prefer software and development patterns that allow for
proper testing and deployment procedures.

4.2.2 Components

4.2.2.1 Python

According to Van Rossum and Drake [50], Python ‘is an easy to learn object-oriented programming
language, which combines power with clear syntax’. Being developed since the 1990s, it has become
one of the most important programming languages for data science and engineering. This is mainly
due to its ubiquity and vast library of 3rd party packages to add a wide range of functionalities.

4.2.2.2 PuLP

Mitchell, O’Sullivan, and Dunning [51] introduce PuLP [52] as ‘an open source package that allows
mathematical programs to be described in the Python computer programming language’. A big
advantage of this particular package is the fact that the models it generates can be solved with
different solvers like Gurobi [53] and CBC [54], the latter of which is even included in the distribution
due to its open source nature, making it a viable alternative to commercial solutions available [12].
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4.2.2.3 Kedro

According to Alam, Bălan, Comym, et al. [55], Kedro ‘is an open-source Python framework for
creating reproducible, maintainable and modular data science code’. Compared to Python, it is a
comparatively young project, having been donated to the Open Source community in 2019. Since
then, it has received great praise from the data engineering community, because it helps developers
focus on creating maintainable code by providing useful project structure templates, doing away with
the usual mess of glue-code stuck in-between one-off scripts and Jupyter notebooks.

4.2.2.4 SQLite

SQLite is a ’a small, fast, self-contained, high-reliability, full-featured, SQL database engine’ [56],
which is freely available under an open-source license for all major platforms. Thus, it greatly helps in
data management when dealing with large volumes of data that need to be processed efficiently.

4.2.2.5 NodeRed

The OpenJS Foundation [57] provides NodeRed as a ’programming tool for wiring together hardware
devices, APIs and online services in new and interesting ways’.

4.2.3 Implementation

There are three main processes, all of which were implemented in Python within the aforementioned
Kedro framework (see Figure 4.8, apologies for the very small font which unfortunately was beyond
the control of the author):

• Data acquisition

• Data preprocessing

• Charging power calculation

We make the software implementation publicly available at [58].

All three subprocesses were implemented as pipelines in Kedro and scheduled to run every 15 minutes
on the RFS.

4.2.3.1 Data acquisition

The process of data acquisition was handled on the remote side of the system described in the previous
sections. The components of the energy system were polled for data which were written to the file
system in CSV format (see algorithm 4.1).
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Figure 4.8: Kedro Pipeline
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Algorithmus 4.1 Data acquisition
load config

get model timestamps

for all entities
read new data from CSVs
store new data to SQLite database

set latest processing timestamp

4.2.3.2 Data preprocessing

As in most real life scenarios, raw data is rarely ready for direct use in analytical processes. Therefore,
the individual CSV files containing the acquired data were pulled from the remote system using SSH
and stored in a SQLite database. This made it possible to resample and combine the data from all
entities into one data table using SQL (see algorithm 4.2).

Algorithmus 4.2 Data preprocessing
load config

load PV data

for all vehicles
load EV data

When resampling the data, we went with a ∆t of 15 Minutes, effectively giving us a 96 period look
ahead horizon for a full day.

4.2.3.3 Charging power calculation

With the preprocessed data available, we construct suitable model data from the most current value
and the historic data. For the prediction of the PV profile, we simply use the average power per time
period of the previous 8 days. For the EV driving profiles, we looked at various ways to predict driving
profiles using methods of machine learning, but ended up using the same simple averaging method
used for the PV to predict EV driving times and power consumption, the deciding factor being the
much reduced calculation time combined with little to no loss of prediction quality compared to the
more elaborate machine learning approaches.

We then proceed to solve the previously described charging strategy models to determine the optimal
charging power limit for each of the cars connected to their wallboxes (see algorithm 4.3). The
values to be set for each vehicle are stored on the LRP in a text file, which in turn is consumed by a
monitoring process implemented in NodeRed in order to set the charging power limits on each of the
wallboxes associated with a particular EV, thus completing a full optimization cycle.

Note: For the stochastic charging model, we construct the 8 scenarios per vehicle from the 8 preceding
days instead of predicting an average profile of the look ahead period regarding EV power consumption
and loadability from the same historic data.
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Algorithmus 4.3 Charging power calculation
load config

get model timestamps

get current PV data

get current EV data

get history PV data

get history EV data

predict PV data for look ahead period

predict EV data for look ahead period

build model data using current and predicted PV & EV data

construct model

solve model

extract charging power from model solution

set charging power to wallboxes

4.3 Results

We will be examining the results of the field test in the following. Note that we make the software
implementation publicly available at [59].

4.3.1 Data quality

Unfortunately, the field test was plagued by numerous data acquisition problems. A few days before
the field test was scheduled to start, it was discovered during the installation of the equipment on-site
that the data capturing devices (DCD) to be installed in the EVs were not fully compatible with the
vehicles available. It was discovered, as we described earlier, that the service provider of the DCDs
had gone out of business, which made obtaining software updates to make new vehicles work quite
challenging. In case of car #2, it was not possible to capture the SOC during the course of the field
test at all, while for the duration of the field test, the DCDs installed in the other cars were struggling
to reliably report correct measurements (see Figure 4.9). A large number of these problems could
be related to the design of the DCDs themselves, in that the OBD2 socket they had to be installed
in usually is meant for connecting diagnostic equipment for short periods and not as a permanent
installation that is subject to vibrations or other mechanical influences that are destined to impede
connectivity.

During the field test, there also were numerous LRP outages causing further gaps in the data. In
some cases, the VPN tunnel was unbearably slow (see Figure 4.10) or collapsed altogether, preventing
timely control of the charging power allowed for the wallboxes, while data was still being collected
locally.
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Figure 4.9: SOC measurement problems

Figure 4.10: VPN tunnel problems
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In other cases, the LRP stopped working altogether due to software and hardware issues (see
Figure 4.11), leaving gaps of hours (and in rarer instances days) in the data collected. Unless the
issue could be resolved remotely, a maintenance technician from Vlotte had to go onsite and solve
the problem in order for the data collection to resume.

Figure 4.11: LRP downtime due to running out of storage

To make matters worse, the BESS was not tested prior to the field test and despite all optimism
turned out to be defective, not accepting any charge at all (see column “Kreisel-SOC” in Figure 4.12).
Sadly, it was not possible to obtain a replacement from the manufacturer during the course of the
field test.

Figure 4.12: BESS not accepting charge despite PV power availability

4.3.2 Driving Profiles

4.3.2.1 Vehicle Departure Times

Since one of the most interesting metrics for DSM is the deadline, by which the electric vehicle needs
to be charged as much as possible, we first look at the departure times of the five vehicles in the field
test.

In Figure 4.13, we plot the vehicles’ departure times and immediately see that there seems to have
been a problem with car #2. Indeed, car #2 was largely incompatible with the DCD and therefore
hardly any usable data was gathered. While the median of the departure time ranges between 7 and
11 a.m. for the remaining cars, car #4 has minima of leaving as early as 4 a.m. while car #3 has
maxima of leaving as late as midnight.

4.3.2.2 Driving & Charging Periods

In order to create meaningful predictions or scenarios for the charging strategy models, there needs to
be a minimum of event data available. Considering all the problems during the field test, a certain
amount of skepticism about the data quality was in order.
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Figure 4.13: Vehicle Departure Times

As can be seen in the heatmap depicted in Figure 4.14, there are actually no events of driving recorded
for car #2. Moreover, during the 2nd week of the field test, the data recorded say that car #3 was
only driving, while the other cars were only charging. Week 4 also shows a strange picture, in that the
vehicles were more driving than charging, with car #5 seemingly driving non-stop without charging
at all.

All in all, due to the problems in data acquisition on the LRP side of things, hardly any reliable driving
profiles could be obtained.

4.3.3 Optimization Runs

Despite the aforementioned issues with data acquisition, we will inspect select examples of the
documented optimization runs, since they still give us insight into the operation of the various
charging strategies.

4.3.3.1 Direct Charging

As expected, the direct charging strategy causes the vehicles to draw power at maximum rate (see
Figure 4.15), hitting the maximum allowable combined grid draw for the first few periods until the
respective SOC of the EVs has reached maximum levels. We can also see that there is hardly any
driving activity predicted for the look ahead horizon, due to the aforementioned lack of overall driving
activity.

Looking at the curves for PV production (yellow in the top plot) and the BESS SOC (black in the
bottom plot), it becomes obvious that the sizing of either is far too small to make any difference,
even considering the time of year (March) where PV output is not at its maximum.
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Figure 4.14: Charging & Driving Periods
(red = driving, green = charging)

4.3.3.2 Rule-based Charging

Similar to the direct charging strategy, we can see in Figure 4.16 that the grid draw ceiling hits the
maximum allowable grid draw at the beginning of the observation period. At the same time, when
comparing the combined grid draw of both strategies, it becomes clear that the rule-based charging
strategy helps to more quickly reduced the maximum grid draw as the SOC of the EVs increases.

4.3.3.3 Predictive Charging

The predictive charging strategy is the first approach that actually tries to optimize peak power
consumption by shifting loads throughout the look ahead horizon. Comparing the maximum grid draw
to the two previous examples shows a big difference: Where the non-peak shaving models hit the
maximum allowable power limit, predictive charging spreads out the charging power demand across
the look ahead horizon (see Figure 4.17), taking down the maximum value from 35 to just 5.7 kW. In
addition, we can see that the model tries to take advantage of the PV power by not only charging
the EVs, but also storing energy in the BESS for later use in the day.

Note that since the BESS didn’t really work during the field test, the starting value is always going to
be zero and the model being unaware of this thinks it can use the BESS for energy storage, which in
fact will not be the case.
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Figure 4.15: Direct Charging - Solution Timeseries example from 2022-03-13 00:10:54
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Figure 4.16: Rule-based Charging - Solution Timeseries example from 2022-03-20 00:10:23
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Figure 4.17: Predictive Charging - Solution Timeseries example from 2022-03-27 00:10:26
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4.3.3.4 Stochastic Charging

As described earlier, the stochastic charging strategy is an extension of the deterministic charging
strategy model where the prediction of the future periods of the look ahead horizon are replaced with
numerous scenarios from historic data, thus optimizing the expected value against a much broader
set of possible future developments.

Note that the first period resembles stage one in our stochastic model, meaning that these values
represent what is happening now (see Figure 4.18), while all future values in the plot denote possible
future scenarios or stage two. These future scenarios are plotted in lighter colors, while their expected
value is plotted with a more solid color. To highlight the range of the values, the standard deviation
is plotted and the areas between are hatched to show the most likely range of values within the
scenarios considered.

Comparing the time series of the stochastic solution, we see that the maximum grid draw could be
reduced even further, from 5.7 to 4.14 kW, which is also the minimum allowable EV charging power
in our field test setup.

4.3.4 Peak Shaving

As outlined in section 2.3.1, we evaluate the effectiveness of a charging strategy in terms of peak
shaving by four key metrics applied to the power draw from the LVG: Maximum, average, standard
deviation and PAPR. Inspecting Figure 4.19 confirms what we already saw section 4.3.3, namely that
the direct charging strategy has the highest maximum grid draw, with the average not being far below
the peak. Introducing additional rules that reduce the grid draw the higher the EV SOC improves the
situation already considerably, reducing the average power draw to slightly below 12 kW, while still
having peaks at the maximum allowable grid draw. As expected, the maximum grid draw is greatly
reduced to below 13 kW with strategies that minimize the maximum grid draw, like in the case of the
predictive and stochastic charging strategies.

A closer look at the same metrics in Table 4.4 reveals that the standard deviation is inversely related
to the sophistication of the charging strategy used, as we expected. As somewhat of a surprise,
however, the PAPR metric actually increased the more the maximum grid draw was reduced. This
means that while actually reducing maximum and average grid draw values alike, which is the effect
desired for peak shaving, the PAPR metric looks worse and thus might lead to wrong conclusions,
which confirms our initial conjecture that the standard deviation might be the more practical metric
to use for evaluating peak shaving effectiveness in situations where not only the maximum is lowered,
but the average grid draw as well.

Maximum [kW] Average [kW] Std. Deviation [kW] PAPR

Direct 35.00 21.65 14.64 1.62
Rule-based 35.00 12.81 7.34 2.73
Predictive 12.42 4.98 2.81 2.49
Stochastic 10.94 3.10 2.47 3.53

Table 4.4: Grid Draw per Strategy
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Figure 4.18: Stochastic Charging - Solution Timeseries example from 2022-03-31 00:10:40

Figure 4.19: Grid Draw per Strategy
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4.3.5 Charging Comfort

As we already pointed out in section 4.3.1, due to the absence of SOC data from car #2 we will not
be able to evaluate the charging comfort experienced by drivers of that particular electric vehicle.
For the remaining four vehicles, however, we were able to extract some of the average EV SOCs at
the time of departure, grouped by the respective charging strategy in Figure 4.20, with gray squares
resembling missing data.

Judging from the heatmap, charging comfort never fell below the critical value of 50 %, meaning that
the drivers were probably mostly happy about the charging level at the time of departure. For the
direct charging strategy, however, we would have expected much higher values, but the issues with
data quality already mentioned numerous times probably prevented a more complete measurement.

Figure 4.20: Charging Comfort per Vehicle

If we leave the individual vehicles out of the picture and aggregate the data on charging strategy level
as depicted in Figure 4.21, we can see that the direct charging strategy did indeed yield maximum
values of 90 % satisfaction, while also dipping below 60 % in some cases. Surprisingly, the rule-based
charging strategy did considerably worse, both in maximum and average satisfaction, which might
partially be explained by the aforementioned data acquisition problems. With predictive and stochastic
charging strategies, it was possible to achieve over 86 % median satisfaction, with a outlier in case of
the former dipping into 30 % territory.

Looking more closely at the numbers in Table 4.5, we can see that - had it not been for the outlier
in case of the predictive charging strategy - the standard deviation of the charging comfort levels
achieved by predictive and stochastic charging are greatly improved, suggesting consistently high
satisfaction levels on the part of the vehicles’ drivers.
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Figure 4.21: Charging Comfort per Strategy

Maximum Minimum Std. Deviation Median
Satisfaction [%] Satisfaction [%] Satisfaction [%] Satisfaction [%]

Direct 90.0 56.0 11.44 80.0
Rule-based 75.0 47.0 11.67 71.0
Predictive 98.0 31.0 19.20 86.0
Stochastic 97.0 82.0 4.84 89.0

Table 4.5: Charging Comfort per Strategy

4.3.6 Computation Time

The actual optimization runs were executed on the RFS, which contained an Intel i7-3770 CPU (4
cores, 8 threads, 16 GB RAM) running a Linux operating system.

Considering that the charging process of electric vehicles is usually measured in hours and not seconds,
we designed the system for near real-time operation, scheduling the computation of new maximum
charging power values every 15 minutes. Looking at Figure 4.22, we can see that the rather simple
direct charging strategy usually ran quite quickly, averaging at six seconds per optimization run, with
some outliers taking as long as over 200 seconds to complete. Surprisingly, the rule-based strategy
took considerably longer, averaging at over 160 seconds per optimization run with lots of variance
between the individual runs. The predictive charging strategy ran quite quickly, averaging only slightly
above the simpler direct charging strategy. Lastly, with the stochastic charging strategy we can see
the reason why this plot had to be log-scaled on the y-axis: Not only is the average well above 600
seconds, but the optimization runs also hit the time limit of 1200 seconds quite often, resulting in a
non-optimal solution of the optimization problem.

Inspecting the numbers in Table 4.6, we conclude that from a computation time standpoint, the
direct and predictive charging strategies are good choices to calculate new maximum charging power
values as often as possible, while stochastic charging clearly was too demanding for the configuration
and settings of this field test.
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Figure 4.22: Computation Time per Strategy

Maximum Minimum Std. Deviation Average
Computation Time [s] Computation Time [s] Computation Time [s] Computation Time [s]

Direct 216.26 0.26 22.58 6.09
Rule-based 600.44 1.64 198.01 167.48
Predictive 601.00 0.41 43.46 7.87
Stochastic 1197.99 1.02 422.96 617.54

Table 4.6: Computation Time per Strategy

4.4 Discussion

Despite the planning for the field test already having started well in advance of its execution, the
high number of problems clearly shows that not enough time can be spent on preparation and testing.
While chance will always introduce some problems into real world implementations, in hindsight we
feel that many issues could have been avoided had more time been spent on testing the hardware
side of the implementation, unfortunately outside of the author’s influence. Nonetheless, we did
our utmost to prevent the field test from failing entirely, capturing the data that was available and
analyzing it. A big part in saving the field test from failing entirely was the use of a best-of-breed data
pipelining framework like Kedro, which allowed for quick fixes in the code to address the numerous
issues as they came up.

Being a complete LVG + PV + BESS configuration, the sizing of the components at the LiLa
prototype facility clearly shows its age (apart from the BESS failing altogether). With the advent of
electric vehicles sporting 50 kWh batteries and above in the mainstream market, a BESS half that size
for more than five EVs clearly is no longer sufficient for serious DSM efforts. In addition, allowing it
to only be charged by equally under-sized PV also hampered more impactful load shifting, especially
considering that the most important charging periods do not coincide with peak PV generation.

It could be shown that advanced charging strategies can make a huge difference in reducing the
peak power draw from the grid, greatly improving grid friendliness from the point of view of the grid
operators. At the same time, the shifting of the loads did not impede charging comfort from the
point of view of the vehicles’ drivers, with satisfaction levels always remaining in the non-critical
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range of above 50 %. In addition, it appears that the computation time for the optimization can be
brought down to sub-minute level, well supporting the idea of near real-time operation.

By means of the field test, we were able to verify hypothesis #1, in that our - admittedly sparse -
historical data is suitable for the prediction of future loads, which can clearly be seen by comparing the
results of the direct and rule-based charging and the predictive and stochastic charging strategies side
by side. Considering all the data acquisition issues during the field test, we have to defer evaluating
hypothesis #3 to the simulation studies. Inspecting Figure 4.20 and Figure 4.21 we see hypothesis
#4 confirmed in that predictive and stochastic charging actually even raised the charging comfort
experienced by the vehicles’ drivers. Lastly, hypothesis #5 is also verified, with the predictive charging
strategy well within the defined 15 minute time window of charging power updates to the LRP.

Looking at Table 4.4, we can also verify hypothesis #2, in that stochastic charging yielded a lower
maximum and average grid draw as well as the lowest standard deviation out of all strategies applied.
Moreover, we are also able to partially answer the main research question of this thesis as follows:
Predictive charging reduced the peak load in our field test by 64.5 %, stochastic charging by a slightly
higher 68.7 %.
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Since the insights generated by the field test were rather limited by the data acquisition issues
described in the last chapter, we proceed to study the ESM in more detail by simulating various
combinations of configurations and charging strategies using better quality data. In general, we will
be reusing most of the definitions and models introduced in the previous chapters, exploring a wider
range of configurations regarding PV and BESS sizings to test the sensitivity on the main metrics. In
addition, we will inspect additional metrics like the PV self-sufficiency- and self-consumption-rate, as
well as compute key optimization metrics like the VSS and the EVPI.

5.1 Setup

5.1.1 Data

For our simulation studies, we use data of much better quality, kindly put together by Rheinberger
[60] for researchers trying to apply DSM principles to real world data [61]. In essence, this repository
provides programs that will process raw data from various sources and preprocess them for maximum
consistency, resulting in a dataset that offers a whole year worth of data in quarter-hourly resolution.
In our case, that parts of highest interest are the photovoltaic production as well as the electric vehicle
driving patterns.

5.1.1.1 Electric vehicles

The vehicles in this dataset have a maximum battery capacity of 40 kWh, which is what we will be
using as the upper bound for the optimization runs. For starting conditions, we assume all EVs to
have 50 % SOC.

5.1.1.2 PV generation

The PV generation data in this dataset will be scaled to reasonable peak value, based on the simulation
plan.
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5.1.2 Simulation planning

In essence, we want to apply the charging strategies described in section §3.2 and already used in the
field test (see Table 4.1) to higher quality data. In terms of factors, we want to understand the effects
of various system configurations, as already described in section §3.1, giving us 20 base scenarios to
simulate (see Table 5.1).

Charging Strategy

System
Configuration

Direct
charging

Rule-
based

charging
Predictive
charging

Stochastic
charging

Perfect
Informa-

tion
LVG only #01 #02 #03 #04 #05

LVG + PV #06 #07 #08 #09 #10
LVG + BESS #11 #12 #13 #14 #15
LVG + PV +

BESS #16 #17 #18 #19 #20

Table 5.1: Combinations of base scenarios to be examined

However, we also want to more clearly understand the sensitivities of the key metrics described in
section §2.3, which is why we not only simulate the extreme configuration options described in
Table 3.1, but take a more fine-grained approach by exploring the values in between. This is done
by redefining the binary features ‘PV’ and ‘BESS’ into linear space ranging from 0 to 100 % of the
respective nominal capacity value. In order to get a reasonable amount of supporting data points for
later analysis, we propose values of 0, 25, 50, 75 and 100 % of the maximum size for both PV and
BESS each, resulting in 25 combinations to simulate for each of the 5 charging strategies.

pvout
peak = {0, .25, .50, .75, 1} ∗ pvout

max (5.1)
Bmax = {0, .25, .50, .75, 1} ∗ Bmax,sys (5.2)

Thus, we are going to simulate 125 different configuration combinations (see Table 5.2), which allows
us to see the sensitivities between the maximum and minimum settings as well as the values at the
extremes.

System Configuration Charging Strategy

PV [%]
BESS
[%]

Direct
charging

Rule-
based

charging
Predictive
charging

Stochastic
charging

Perfect
Informa-

tion
0 0 #001 #002 #003 #004 #005
0 25 #006 #007 #008 #009 #010
... ... ... ... ... ... ...

100 75 #116 #117 #118 #119 #120
100 100 #121 #122 #123 #124 #125

Table 5.2: Combinations of sensitivity scenarios to be examined

With the relative values and step sizes determined, the question still remains which values to choose
for pvout

max and Bmax,sys. For the latter, we choose to set the maximum value to the capacity of the
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batteries in the electric vehicles - in our case 40 kWh - in order to be able to theoretically fully charge
at least one EV with the BESS alone.

Since the focus of this thesis is not one of economic optimization, we dispense with the sizing
guidelines put forward by [62], recommending to minimize BESS sizing for maximum economic
efficiency, and instead follow the analysis of [63], which recommends a ratio of PV to BESS size of
roughly 3

4 . For sake of simplicity and following the findings of Rüf [3], we will extend the explored
parameter space to a ratio of 1, giving us maximum boundary values of 40 kWp and 40 kWh for PV
and BESS respectively.

In order to further reduce the problem size in favor of a larger parameter space, we reduce - without
loss of generality - the resolution of the data from quarter-hourly to hourly by resampling. In addition,
we simulate a single 24 hour day from the dataset (namely the 22nd of June 2016), using the 8
previous days of data for profile and scenario building and the day after for the perfect information
model run.

The system specific configuration parameters used in the software implementation are listed in
Table 5.3 for quick reference.

Symbol Quantity Unit Value

∆t time step h 1.0
evin

v,min minimum allowable EV v charging power kW 4.14
evin

v,max maximum allowable EV v charging power kW 22.0
ηin

EV efficiency factor for charging of EV 0.85
ηout

EV efficiency factor for discharging of EV 0.85
ξEV self-discharging factor of EV 0.9983
bin

min minimum allowable BESS charging power kW 0.0
bout

min minimum allowable BESS discharging power kW 0.0
bin

max maximum allowable BESS charging power kW 12.78
bout

max maximum allowable BESS discharging power kW 12.78
ηin

B efficiency factor for charging of BESS 0.95
ηout

B efficiency factor for discharging of BESS 0.95
ξB self-discharging factor of BESS 0.9986
nout

max maximum allowable power draw from LVG kW 35.0
nin

max maximum allowable power feed into LVG kW 35.0
EVmax maximum SOC of EVs kWh 40.0
pvout

max maximum power of PV kWp 40.0
Bmax,sys maximum SOC of BESS kWh 40.0

Table 5.3: Configuration values used in the simulation studies

Finally, we initialize the BESS with an SOC of 50 %, while mandating it to end the 24 hour period
with the same value it had at the beginning.

5.2 Results

We will be examining the results of the simulation runs in the following. We make the code for both
simulation and analysis available publicly at [64].
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5.2.1 Optimization Runs

5.2.1.1 Direct Charging

Looking at Figure 5.1, we can see a similar picture as in the field test, insofar as the electric vehicles
immediately start to charge, causing a peak in the grid draw right at the beginning. Since the
simulation initializes the BESS with 50 % SOC, we can see that the power drawn by the electric
vehicles even exceeds the maximum grid draw by tapping into the BESS’ power. Unlike the field
test, the model makes good use of the available PV power to recharge the BESS without affecting
maximum grid draw at all.

Figure 5.1: Direct Charging - Solution Timeseries example with 100 % PV & BESS
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5.2.1.2 Rule-based Charging

In Figure 5.2, we can see that the initial conditions chosen result in an almost identical result compared
to the direct charging strategy. This is caused by the fact that the 8 electric vehicles are already
competing for power due to the constraint of the maximum power draw, leaving the rules depicted in
Figure 3.5 without effect on the charging behavior.

Figure 5.2: Rule-based Charging - Solution Timeseries example with 100 % PV & BESS

5.2.1.3 Predictive Charging

As expected considering theory and field test, the predictive charging strategy attempts to postpone
charging some of the electric vehicles to later periods, greatly reducing peak power draw from the
grid (see Figure 5.3). In this particular example we can also see how the model makes good use of the
available PV and BESS, by using stored energy in the morning to quickly charge some of the available
vehicles and recharging the BESS with excess PV energy for later use in the afternoon and evening.
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Figure 5.3: Predictive Charging - Solution Timeseries example with 100 % PV & BESS
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5.2.1.4 Stochastic Charging

Inspecting Figure 5.4, we see how the stochastic charging strategy considers all future scenarios in
(stage two) to make the optimal choice in the first period (stage one). More than in the field test,
where predictive and stochastic charging were run at different times and thus on different data, we
can see the subtle differences between the average-based prediction and the expected value of the
scenarios. Where outliers in the historic data probably were flattened out by averaging over the values,
their retention in the in the individual scenarios causes the model to arrive at a potentially more
conservative solution, reducing the peak power draw from the grid less than in the predictive charging
strategy.

Figure 5.4: Stochastic Charging - Solution Timeseries example with 100 % PV & BESS
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5.2.1.5 Perfect Information

Unlike in the live-run of the field test, we can compare all the previous charging strategies against
a situation in which we have perfect information. Instead of making predictions or using scenarios
to fill the look ahead horizon, this time we optimize against data that has actually happened. Not
only was there more power from the PV, but the driving behavior of the vehicles themselves was also
different from the prediction as well as the scenarios used in the previous models (see Figure 5.5).
Since the model is the same as the one used for the predictive charging strategy, it is no surprise that
they look quite similar.

Figure 5.5: Perfect Information - Solution Timeseries example with 100 % PV & BESS

5.2.2 Peak Shaving

In order to see the influence of the PV and BESS configuration as factors on the individual metrics,
we present the data using contour plots, applying a 2nd order least-squares model Scipy2022 to the
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raw data beforehand to make the effects easier to interpret.

5.2.2.1 Direct Charging

Looking at Figure 5.6, it is probably no surprise that regardless of the sizing of either PV and BESS,
the maximum grid draw peaks at the allowable 35 kW mark. Adding PV to the configuration lowers
the average grid draw from 11 to 7 kW, while the sizing of the BESS seems to have only a slightly
positive effect. Without little to no PV power, adding more BESS capacity increases the standard
deviation due to the fact that all charging activities have to come from the power grid. As explained
in the analysis of the field test, we can see the PAPR increase with the amount of PV power added
to the system, while the sizing of the BESS having a slightly negative (if any) effect in this charging
strategy.

Figure 5.6: Direct Charging - Grid Draw sensitivity to variations in PV & BESS sizing

5.2.2.2 Rule-based Charging

While the example time series we inspected in the analysis of the optimization runs looked quite
similar to the one obtained using direct charging, in Figure 5.7 we can see PV and BESS sizing have
a stronger effect, with the exception of the maximum grid draw, which also peaks at the maximum
allowable value of 35 kW. The average grid draw is lowered by about 1 kW, while the advantage
of increasing both PV and BESS capacity is more pronounced. In contrast to the otherwise similar
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direct charging strategy, the power limiting rules in this model seem to favor adding BESS capacity
past 50 % sizing of the PV capacity, as far as the standard deviation is concerned.

Figure 5.7: Rule-based Charging - Grid Draw sensitivity to variations in PV & BESS sizing

5.2.2.3 Predictive Charging

As we can see in Figure 5.8, the predictive charging strategy manages to lower the maximum power
draw from the grid considerably, with an optimal value of less than 5 kW when both PV and BESS
are maximized in capacity. As for the average grid draw, adding more PV has the strongest influence,
lowering the average value from 7 to below 2 kW, while the BESS capacity only has a slightly positive
effect. Looking at the standard deviation, we see an interesting non-linear relationship between
PV and BESS, where the optimal values are those with maximum BESS capacity and either no or
maximum PV, while the standard deviation is worst at 50 % PV capacity. The PAPR on the other
hand, as we have seen in previous plots, gets worse as we add more PV, while adding more BESS
capacity just narrows the spread of this metric.

5.2.2.4 Stochastic Charging

Gathering from Figure 5.9, we can see that results of the main metrics are quite similar to those
we obtained using predictive charging. However, in this model we observe an overall lower standard
deviation regarding grid draw, in addition to the non-linear relationship between PV and BESS
capacity being even more pronounced around the 50 % PV capacity mark than in the previous model.
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Figure 5.8: Predictive Charging - Grid Draw sensitivity to variations in PV & BESS sizing

Figure 5.9: Stochastic Charging - Grid Draw sensitivity to variations in PV & BESS sizing
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5.2.2.5 Perfect Information

As expected, we can see the theoretically optimal values in Figure 5.10, where the simulation was run
using actual data instead of predictions or scenarios based on historic data. As such, it is no surprise
that overall, we see the lowest maximum and average grid draw. The standard deviation is the lowest
we have seen so far, albeit expanding the area of highest standard deviation to 25 % PV capacity. We
also see an interesting new relation between PV and BESS in the PAPR metric, where finally adding
more BESS capacity actually lowers the metric instead of increasing it like with the previous models.

Figure 5.10: Perfect Information - Grid Draw sensitivity to variations in PV & BESS sizing

5.2.2.6 Summary

In essence, we could see that predictive and stochastic charging strategies greatly contribute to
lowering the maximum power draw from the grid. In contrast to direct and rule-based charging, they
also are the only ones that really benefit from adding BESS capacity to the system, while adding PV
makes sense in most cases, given that some vehicles are loadable during the times of day when PV
power is available.

Looking at Figure 5.11 leaves no doubt regarding the effectiveness of advanced optimization techniques
when it comes to reducing grid draw. At the same time, it is remarkable, how close the predictive
and stochastic charging strategies come to the theoretically optimal results obtained with perfect
information.
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Figure 5.11: Peak shaving - Summary

5.2.3 Charging Comfort

5.2.3.1 Direct Charging

Considering that the direct charging strategy attempts to maximize the SOC of the electric vehicles
at all times, it comes at little surprise that the satisfaction values all are well above 93 % (see
Figure 5.12). For all practical purposes, PV and BESS sizing has little to no influence with this model.

Figure 5.12: Direct Charging - Charging Comfort sensitivity to variations in PV & BESS sizing

5.2.3.2 Rule-based Charging

As can be seen in Figure 5.13, satisfaction values with the SOC of the electric vehicles are equally
high as in the case of direct charging. While the lowest satisfaction value is found with 0 % PV and
100 % BESS capacity, it is still above 93 % and not far at all from the overall maximum of 95 %.
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Figure 5.13: Rule-based Charging - Charging Comfort sensitivity to variations in PV & BESS sizing

5.2.3.3 Predictive Charging

In contrast to the previous two charging strategies, overall we observe somewhat lower satisfaction
values with the predictive charging strategy (see Figure 5.14), ranging between 72 and 80 %, while
there is a positive correlation between the satisfaction and higher PV and BESS capacity values. The
overall lower satisfaction values can be explained by the conflicting goals of minimizing maximum grid
draw and maximizing each vehicle’s SOC at the time of departure. While we deem these satisfaction
levels to be totally acceptable, changing the weights of the conflicting objectives in the objective
function of the optimization model in favor of the vehicles’ SOC might help in achieving higher values,
albeit at the cost of potentially worsening the grid draw side of things.

Figure 5.14: Predictive Charging - Charging Comfort sensitivity to variations in PV & BESS sizing

5.2.3.4 Stochastic Charging

Looking at Figure 5.15, we observe slightly lower satisfaction levels compared to the predictive charging
strategy. While the BESS seems to have little influence on the result, the optimal values regarding
charging comfort are obtained when the PV capacity is at 50 to 75 % of the defined maximum.
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Figure 5.15: Stochastic Charging - Charging Comfort sensitivity to variations in PV & BESS sizing

5.2.3.5 Perfect Information

Using perfect information, we get satisfaction levels ranging between 80 and 88 % (see Figure 5.16)
with the BESS capacity having a clearly positive influence on the result, while adding more PV
capacity actually decreases satisfaction levels slightly. As with the predictive charging strategy model,
the lower maximum satisfaction compared to the direct and rule-based models can be explained by
the conflict in objectives, thus having to compromise on SOC somewhat in favor of peak shaving.
Nonetheless, drivers will probably agree that 80 % is usually more than enough in most real world
situations.

Figure 5.16: Perfect Information - Charging Comfort sensitivity to variations in PV & BESS sizing

5.2.3.6 Summary

As we have seen in the detailed discussion of the sensitivities, charging comfort using either of the
charging strategies ranges well above 70 % in all cases. It was no surprise, that simple strategies
that only focus on maximizing the vehicles’ SOC will have higher satisfaction levels (see Figure 5.17),
while the models having to strike a balance with the competing objective of minimizing maximum
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grid draw are clearly at a disadvantage here. As pointed out earlier, this can be improved by adjusting
the weights in the objective function accordingly (see Equation (3.33) and Equation (3.34)).

Figure 5.17: Charging Comfort - Summary

5.2.4 Computation Time

One of the goals of this thesis is to verify that implementing peak shaving DSM algorithms is actually
feasible on comparatively low powered computing hardware all while using open source solvers like
CBC instead of commercial offerings like Gurobi.

To do this, we ran our simulations on an Intel i7-6700 CPU (4 cores, 8 threads, 32 GB RAM) using
Gurobi as a solver (see Figure 5.18) and repeated the process using CBC instead (see Figure 5.19).
Finally, we ran the simulation on a low-end AMD Ryzen 3200U CPU (2 cores, 4 threads, 16 GB
RAM) using CBC as a solver (see Figure 5.20) to find out whether any of the methods discussed
previously were actually feasible on lower end hardware.

Inspecting Figure 5.18, we can see that the most optimization runs were complete on the i7 using
Gurobi in less than 0.1 seconds on average and that like in the field test, the stochastic charging
strategy generally took over an order of magnitude longer.

Figure 5.19 shows a similar picture, with the stochastic charging strategy taking much longer than any
other, but we can also see that Gurobi is vastly superior to CBC when it comes to solving efficiency
on identical problems and hardware.

Lastly, Figure 5.20 shows the computation times when using CBC on lower end hardware to execute
the various charging strategies. Quite surprisingly, execution times did not increase despite using
much slower hardware. Since all simulations were run on Windows systems, we suspect that this can
at least partially be explained by the fact that CBC is by default compiled without support for multi
threading on this platform, thus being unable to utilize the extra cores despite their availability.
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Figure 5.18: Computation Time - Gurobi Solver on Intel i7

Figure 5.19: Computation Time - CBC Solver on Intel i7
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Figure 5.20: Computation Time - CBC Solver on AMD Ryzen 3 3200U

Looking at Table 5.4, with the exception of the stochastic charging strategy, it appears entirely
feasible to run advanced optimization models even on modest hardware.

Metric mean std max
CPU CBC on 3200U CBC on i7 Gurobi on i7 CBC on 3200U CBC on i7 Gurobi on i7 CBC on 3200U CBC on i7 Gurobi on i7
Strategy

Direct 0.782 0.803 0.094 0.716 0.560 0.031 2.982 3.425 0.225
Perfect 1.235 1.160 0.096 0.737 0.455 0.035 3.864 3.051 0.407
Predictive 1.211 0.987 0.084 0.984 0.418 0.017 5.982 3.623 0.210
Rule-based 1.404 1.078 0.112 6.465 8.005 0.026 63.909 192.697 0.255
Stochastic 229.478 319.005 1.775 281.612 219.651 1.912 1568.841 1803.512 39.710

Table 5.4: Computation Time per Strategy & Environment

5.2.5 Self-Sufficiency- & Self-Consumption-Rate

For the evaluation of the SSR and SCR, we consider the results of the simulations where a PV
component was present only.

5.2.5.1 Direct Charging

As we already have seen in the analyses above, by design the direct charging strategy immediately
draws maximum power to charge the non-fully charged electric vehicles, which in our case means
that the biggest draw happens at times where PV power is not yet available and thus has to be
drawn from the grid (see Figure 5.1), limiting the Self-sufficiency rate to a maximum of 44 % (see
Figure 5.21). In general, adding more PV and BESS capacity will increase the SSR here. As for the
Self-consumption rate, we observe that adding more PV power requires adding more BESS capacity
in order to maintain the same SCR.
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Figure 5.21: Direct Charging - SSR & SCR sensitivity to variations in PV & BESS sizing

5.2.5.2 Rule-based Charging

Similar to the analyses above, there is again little difference in the results of the rule-based charging
strategy regarding SSR and SCR compared to the direct one (see Figure 5.22).

Figure 5.22: Rule-based Charging - SSR & SCR sensitivity to variations in PV & BESS sizing

5.2.5.3 Predictive Charging

Looking at Figure 5.23, we can clearly see a big difference to the previous two charging strategies. First
of all, the maximum SSR now reaches 64 %. This is mostly due to model’s objective of minimizing
grid draw, thus directly increasing the value of the nominator in Equation (2.5). While overall the
SSR increases with adding more PV power, the maximum value require upwards of 75 % BESS sizing.
In the same vein, the predictive charging strategy yields the highest self-consumption rate provided
with maximum PV and BESS capacities. However, even without a BESS, this charging strategy
manages to use 75 % of PV energy by cleverly shifting the loading times of the electric vehicles alone.
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Figure 5.23: Predictive Charging - SSR & SCR sensitivity to variations in PV & BESS sizing

5.2.5.4 Stochastic Charging

Compared to predictive charging, the sizing of the BESS hardly seems to have any influence on the
Self-sufficiency rate in case of the stochastic charging strategy (see Figure 5.24), while the range of
achievable SSR values themselves are in the same range. In case of the SCR, on the other hand, we
see an entirely different picture in that all values are between 96 and 100 %, more or less regardless
of PV and BESS sizing.

Figure 5.24: Stochastic Charging - SSR & SCR sensitivity to variations in PV & BESS sizing

5.2.5.5 Perfect Information

While in previous analyses, the results with perfect information were always rather similar to the ones
obtained by the predictive charging strategy, we can see subtle differences in Figure 5.25. For starters,
the SSR can be brought up to almost 90 % using perfect information, while the influence of the
BESS sizing remains small for this metric. Having perfect information also seems to help achieving
higher self-consumption rates, in our case ranging between 90 and 100 % as compared with the 75 %
to 100 % we saw in the model using predicted data.

65



CHAPTER 5. SIMULATION STUDIES 5.3. DISCUSSION

Figure 5.25: Perfect Information - SSR & SCR sensitivity to variations in PV & BESS sizing

5.3 Discussion

Our simulation studies explored the parameter space defined by PV size, BESS size and charging
strategy for the metrics grid draw, charging comfort, computation time and SSR/SCR using 3000
optimization runs.

Looking at Table 5.5, we get the same vast improvement of the maximum grid draw when moving
from the rule-based to the predictive charging strategy as we saw in the field test previously, thus
hypothesis #1 stands confirmed also in the simulation studies. While certainly not perfect, even the
most basic prediction based on simple averages of the historic data enables our linear and stochastic
optimization models to improve the metrics considerably.

Configuration LVG only LVG + PV LVG + BESS LVG + PV + BESS
Strategy

Direct 35.00 35.00 35.00 35.00
Rule-based 35.00 35.00 35.00 35.00
Predictive 12.42 8.14 12.42 4.14
Stochastic 12.35 7.33 11.62 5.14
Perfect 12.42 4.14 9.84 4.14

Table 5.5: Charging Strategies vs. Configurations - Maximum Grid Draw [kW]

This leads us to hypothesis #2, which states that more sophisticated optimization algorithms create
higher added value, which in our case means lowering maximum and average grid draw as well as
standard deviation and PAPR. As we can see in Table 5.5, the maximum values generally decrease
with the sophistication of the charging strategy, usually having the lowest value in case of perfect
information. The same is true for the average values (see Table 5.6), the standard deviation (see
Table 5.7) and even the PAPR (see Table 5.8). While there are some minor outliers, the general
direction holds true, thus confirming hypothesis #2.

Regarding hypothesis #3, stating that using additional data for predictions of load and PV production,
we are a bit more skeptical, considering the data we have seen. On the one hand, having perfect
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Configuration LVG only LVG + PV LVG + BESS LVG + PV + BESS
Strategy

Direct 9.99 7.49 10.63 7.43
Rule-based 9.56 7.63 10.48 7.77
Predictive 6.94 1.83 6.69 1.41
Stochastic 6.38 2.37 6.61 1.05
Perfect 7.24 0.74 6.96 1.01

Table 5.6: Charging Strategies vs. Configurations - Average Grid Draw [kW]

information yields the best results for configuration and strategies, but not all. On the other hand,
we see how well our predictive charging strategy performs using really simple aggregation of historic
data. Overall, we feel that hypothesis #3 is confirmed, but at the same time we have serious doubts
regarding diminishing marginal gains possible with additional data.

Configuration LVG only LVG + PV LVG + BESS LVG + PV + BESS
Strategy

Direct 13.19 12.61 13.81 12.67
Rule-based 12.82 12.51 13.62 12.38
Predictive 2.18 2.35 2.02 1.88
Stochastic 2.34 2.66 2.03 1.89
Perfect 2.86 1.53 2.58 1.68

Table 5.7: Charging Strategies vs. Configurations - Standard Deviation [kW]

As for hypothesis #4, stating that peak shaving and charging comfort can be addressed in a single
optimization model, we are glad to report that this hypothesis holds true as well. As we have
seen in Figure 5.11 and Figure 5.17, the objective functions as formulated in Equation (3.33) and
Equation (3.34) served their purpose of unifying the potentially diverging interests of peak shaving
and charging comfort very well.

Configuration LVG only LVG + PV LVG + BESS LVG + PV + BESS
Strategy

Direct 3.51 4.67 3.29 4.71
Rule-based 3.66 4.58 3.34 4.50
Predictive 1.79 4.46 1.86 2.93
Stochastic 1.94 3.09 1.76 4.91
Perfect 1.72 5.60 1.41 4.10

Table 5.8: Charging Strategies vs. Configurations - PAPR

Similar to our observations during the field test, the simulation studies have revealed that in general,
advanced charging strategies can be successfully run on lower end hardware like single-board computers.
Looking at the computation times needed in Table 5.4, however, hypothesis #5 can only be verified
for reasonably compact problems like the predictive charging strategy and not for the obviously too
overwhelmingly large problems resulting from a stochastic formulation.

In general, we saw that adding a BESS to an existing LVG only or LVG + PV configuration has
positive effects. For configurations containing PV, we saw in Figure 5.23 that a BESS greatly helps
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in leveraging the additional power for peak shaving as well as maximizing SSR and SCR alike.

Finally, we are able to evaluate the benefits of the deterministic and stochastic optimization approaches
by calculating the VSS and EVPI metrics as described in Section §2.2. As we can gather from
Table 5.9, there is a clear progression of added value (in our case decreasing values) moving from
predictive to stochastic charging and finally having perfect information. However, considering the
high computational effort combined with the comparatively low VSS value in our setting, we doubt
that stochastic optimization will be adopted by the mainstream in these kinds of scenarios in the near
future.

Strategy Predictive Stochastic Perfect VSS EVPI
Grid Draw Maximum [kW] 10.28 9.48 6.99 0.8 2.49

Table 5.9: VSS & EVPI of Charging Strategies
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6 Conclusion

In this thesis, an optimization framework for near-realtime demand-side management of battery-electric
vehicle charging stations in residential complexes of Vorarlberg was developed using methods of linear
and stochastic optimization techniques. With the basic concepts briefly explained in chapter 2, we
proceeded to formulate an energy system model suitable to the problem at hand, including possible
system configurations and charging strategies as summarized in chapter 3. A first verification of
the outlined concepts was attempted in a field test, documented in chapter 4, yielding only partially
satisfactory results due to operational issues during execution. To more deeply explore the effects of
the system components in a setting of quality data, we proceeded to clarify the effects by performing
a simulation study in chapter 5.

Judging by all the efforts to promote electromobility and phase out combustion engines within the next
ten years, there is no doubt that demand-side management is going to have to be a key feature in any
electric vehicle charging infrastructure going forward. This is especially true for the context we placed
our thesis in, namely the residential complexes of Vorarlberg, where despite the broad availability
of renewable energies neither the production capacities nor the power transmission capabilities are
limitless. With that in mind, it is clear that making the most efficient use of the energy available in a
decentralized fashion is going to be important.

As we have seen in both the field test as well as the simulation studies with little surprise, the
traditional charging strategies we currently know (referred to as direct charging in this thesis) from
public charging stations are entirely unsuitable for existing residential complexes, since on the one
hand the power peaks of the combined charging load of multiple vehicles are a great burden for the
power grid while on the other hand power still has to be divided among all vehicles, not yielding the
maximum possible charging speeds anyway. While some manufacturers of wallboxes try to optimize
this power distribution problem by allocating power dependent on the SOC of each individual vehicle
(referred to as rule-based charging in this thesis), we saw in both the field test as well as the simulation
studies that this only adds some amount of fairness among the individual vehicles, but does nothing
to address the main problem of power consumption peaks.

An original contribution of this thesis is the empirical quantification of the effects of using advanced
optimization algorithms on such kinds of systems, measured by key metrics as maximum grid draw,
charging comfort and computation time as described in section §2.3. We employed deterministic and
stochastic optimization techniques (referred to as predictive and stochastic charging in this thesis) to
optimize the outlined energy system, reducing the maximum grid draw by over 64 and the standard
deviation by over 80 % in the field test, thus answering the primary research question of this thesis as
well a the first secondary one.
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Moreover, both the field test as well as the simulation studies confirmed that it is entirely possible to
peak-shave the load generated by electrical vehicle charging processes while maintaining high charging
comfort on the part of the vehicles’ drivers, with satisfaction levels typically well above 80 % in most
configurations and scenarios. This was achieved by predicting the typical departure times of each
vehicle and formulating the objective function such that the SOC at those times is maximized. By
combining this objective with the minimization of the maximum grid draw through adjustable weights,
we were able to answer the second secondary research question of this thesis as well.

When comparing the field test with the simulation studies, it became apparent that the importance of
reliability and quality of the data being used can not be over-emphasized. Combined with the excellent
results obtained by using simple predictions of driving profiles and PV production, we conclude that
given a choice, emphasis should be put on obtaining good historic data rather than adding additional
data sources. To be clear, more data is usually always better, but it fails to add value unless the
essential data is not sound, which is the answer to the third of the secondary research questions.

Taking the deterministic optimization result from the discussion of the simulation studies as a baseline,
we saw that the more sophisticated stochastic optimization only improved the result by 7.8 % in
terms of the VSS, while at the same time increasing the computational effort by at least an order of
magnitude, making this approach non-viable in the context of the intended usage scenario. Having
perfect information would improve the obtainable result by another 26.3 % in terms of the EVPI.
In answering the fourth of the secondary research questions, we see great potential in obtaining
more data from the vehicles’ drivers themselves, especially in terms of their typical coming home and
departure times which could further close the gap in striving for perfect information.

In the simulation studies, we took the opportunity of exhaustively exploring the sensitivities regarding
PV and BESS sizing on each of the metrics discussed in order to answer the fifth and final of our
secondary research questions. Overall, we saw that while adding PV to a system already helps reduce
maximum grid draw in some scenarios (like figure 5.8 for example), there can be no doubt that
the addition of a BESS is needed to achieve optimal results, especially in the context of residential
complexes which are unique in that the primary charging times are assumed to be over night where
there is no PV production.
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7 Outlook

With the advent of the European energy crisis in March 2022, it has become painfully obvious that
the efforts to break the dependence from fossil energy sources need to be pursued with top priority
going forward. While in Vorarlberg we are lucky to have a sizable amount of renewable energy sources
available, the necessity of employing the latest in demand-side management methodology if we want
to successfully manage the transition to electromobility is only slowly beginning to dawn on us.

We have become accustomed to being surrounded by technology that makes our lives more mobile
and smart. The trend towards smarter devices has also found its way into our vehicles, electric or
otherwise. Mandated by EU safety regulations, modern vehicles are equipped with a plethora of
sensors that capture data about the vehicle itself as well as its whereabouts, the idea being that in case
of emergency, vehicles are able to call for help autonomously using existing mobile cell infrastructure.
With this data already being available in their (cloud) data centers, car manufacturers have proceeded
to make it available to their customers also, so they can stay informed about the status of their
vehicles using apps on their smartphones, for example. From a technological point of view, the
communication between those apps and the vehicle itself is orchestrated using so-called APIs, which -
after proper authentication and authorization - could also be used by other information systems such
as a smart home controller.

At this point it is undeniably obvious that the equipment used in the field test, specifically the
cumbersome and unreliable data acquisition devices, needs to be replaced and upgraded with
something more adequate and up-to-date. Instead of relying on in-vehicle add-on devices, modern
demand-side management of the charging process in a residential complex should tap into the new
smart capabilities of current electric vehicles, immediately gaining access to all the data we have been
struggling to reliably obtain in our field test. While there are attempts being made to make vehicle
data available to enthusiasts’ home automation systems (see Heck [65] and TA2k [66] for examples),
to the best of our knowledge, there still are no commercial systems available to the mass market that
would allow residential complexes to manage their charging efforts based on historical driving profiles
while applying the predictive charging strategies outlined in this thesis.

It appears that local energy providers as well as grid operators should (and will) be heavily investing
in systems such as this, since otherwise the market will be dominated by the solutions put forward by
car manufacturers, hardly known for being overly concerned with peak-shaving, but rather charging
vehicles in the shortest possible time.
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