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Abstract

Bringing Context to Just-in-Time Adaptive Interventions
(JITAIs) based on Stress Monitoring Using HRV

With the rise of people wearing smartwatches and the ever-lasting issue of stress,
there has been an interest in detecting stress with wearables in real-time. This
allows for interventions that take place exactly when stress occurs. However,
many situations require all of our attention, making them unsuitable for any
interventions. Additionally, many approaches currently do not factor in this
aspect, running the risk of offering users undesirable interventions.

This thesis examines how contextual user information can be incorporated
into a stress intervention system to reduce undesirable intervention timings.
The system is split into detecting stress using heart rate variability (HRV)
metrics obtained from a photoplethysmography (PPG) signal, and inferring
user context from available sensor data. It is evaluated with a simulation-based
approach using daily schedules of created personas and randomly sampled stres-
sors during daily life.

The results obtained indicate the benefit of adding contextual user informa-
tion to a stress intervention system. Depending on the busyness of the schedule,
it can greatly decrease the number of received interventions. However, as these
findings are attained without performing a user testing, it is unclear how they
compare to results from real-world usage.
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Kurzreferat

Hinzufügen von Kontext für just-in-time adaptive
interventions (JITAIs) basierend auf Stressüberwachung
mit HRV

Da immer mehr Menschen Smartwatches tragen und Stress ein ständiges Thema
ist, besteht ein Interesse daran, Stress mit Wearables in Echtzeit zu erkennen.
Dies ermöglicht Interventionen, die genau dann erfolgen, wenn Stress auftritt.
Viele Situationen erfordern jedoch unsere ganze Aufmerksamkeit, sodass sie
für Interventionen ungeeignet sind. Außerdem berücksichtigen viele Ansätze
diesen Aspekt derzeit nicht, sodass die Gefahr besteht, dass den Nutzer*innen
unerwünschte Interventionen angeboten werden.

In dieser Arbeit wird untersucht, wie kontextbezogene Informationen über
Benutzer*innen in ein Stress-Interventionssystem integriert werden können, um
unerwünschte Interventionszeitpunkte zu reduzieren. Das System ist aufgeteilt
in die Erkennung von Stress mit Hilfe von Metriken der Herzfrequenzvariabil-
ität, die aus einem PPG-Signal gewonnen werden, und die Ableitung des Be-
nutzer*innenkontextes aus verfügbaren Sensordaten. Es wird mit einem simu-
lationsbasierten Ansatz evaluiert, bei dem Tagespläne von erstellten Personas
und zufällig ausgewählte Stressoren des täglichen Lebens verwendet werden.

Die erzielten Ergebnisse weisen auf den Nutzen der Hinzufügung von kon-
textbezogenen Informationen der Benutzer*innen für ein Stressintervention-
ssystem hin. Je nach Auslastung des Zeitplans kann dies die Anzahl der erhal-
tenen Interventionen stark verringern. Da diese Ergebnisse jedoch ohne reale
Testpersonen erzielt wurden, ist unklar, wie sie sich mit den Ergebnissen aus
der realen Nutzung vergleichen lassen.
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1. Introduction

Health is arguably one of the most important facets of life and is influenced by
many different factors. It is important to note that health does not just mean
being free of disease. The World Health Organisation (WHO) defines health as
physical, mental, social, and spiritual well-being (Svalastog et al., 2017). Being
healthy is not only an individual’s desire, but also a societal one. Ignoring the
personal motivations for being healthy, healthcare itself is by no means cheap.
In the EU in 2019 alone, healthcare expenditures were 1.38 billion euros, with
41.4 million coming from Austria. Additionally, these numbers increased for all
countries in the EU from 2012 to 2019, except for Greece (“Healthcare expen-
diture statistics”, n.d.).

One important aspect of health, that affects everybody, is stress. Chronic
stress has been associated with a higher risk and mortality of cardiovascular
diseases (Fishta & Backé, 2015), it affects the ageing process of cells and is
suggested to be a risk factor for specific cancers (Kruk et al., 2019), and is as-
sociated with Alzheimer’s disease and diabetes (Aguiló et al., 2015). Addition-
ally, chronic stress is related to many psychological diseases like schizophrenia
(Aguiló et al., 2015), post-traumatic stress disorder (PTSD), burnout, atypical
depression, and chronic fatigue disease (Marin et al., 2011).

As so many people are in possession of mobile phones nowadays, the interest
for mHealth applications is very high. A mHealth application is used to “cap-
ture, analyze, process, and transmit health-based information from sensors and
other biomedical systems” (Adibi, 2015, p.1). They are often used in conjunc-
tion with eHealth, which are healthcare practises that are assisted by electronic
processes and communication systems (Adibi, 2015). According to Rowland et
al. (2020), 26% of physicians were asked about mHealth applications by their
patients and 56% have discussed them with patients.

Therefore, it is not astounding that a rather new trend has emerged: Quantify
yourself. This movement is all about measuring indicators for their personal
well-being with smart devices, like smartphones and smartwatches. These indi-
cators include sleep duration and quality, step counters, heart rate and variabil-
ity, and stress (Massa et al., 2017). With the help of a multitude of apps, users
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can nowadays also be prompted when certain conditions arise. One of these
conditions is stress, that can be recognized with a PPG sensor of a smartwatch.
However, stress is by far not bad in all situations, and not every situation al-
lows for time and space for an intervention. Thus, determining whether an
intervention is beneficial in a specific situation is of great importance, to avoid
unfavourable intervention timings.

This leads to the research question of this thesis:
How can contextual information be integrated to reduce unfavourable timed
stress-related interventions for just-in-time adaptive interventions (JITAIs)?
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2. Heart rate variability (HRV)
and Stress

This chapter explains what HRV is, what parameters can be computed from it,
what stress is and its relationship with HRV.

2.1. HRV

Heart rate variability (HRV) describes the time change between heartbeats
(also referred to as RR intervals), which is controlled by the autonomic nervous
system (ANS). The ANS is divided into two parts, the sympathetic nervous
system (SNS) and the parasympathetic nervous system (PNS). The SNS is
responsible for the “fight or flight” response and is active during stressful sit-
uations. The PNS is responsible for “rest and digest” and is active in relaxed
scenarios. An increase in heart rate (HR) is generally related to higher activity
in the SNS, while a decrease is related to the PNS. (Pham et al., 2021) In
healthy individuals, the two parts work together and influence each other. Dis-
turbances, especially with an increase in sympathetic activity, are associated
with cardiovascular and some mental diseases. (Cygankiewicz & Zareba, 2013)
Additionally, HRV can also be used as an indicator of acute stress, which is
discussed in chapter 2.2. (Castaldo et al., 2015; Kim et al., 2018; Munla et al.,
2015)

Once HRV is measured, e.g., with an electrocardiogram (ECG), there are
multiple features that can be computed. They can be categorized into time-
domain and frequency-domain methods, as well as nonlinear methods. Table
2.1 visualizes the different measures for time-domain and frequency-domain
HRV analysis, which are the most common indices for HRV. (Pham et al.,
2021)

2.1.1. Time-based analysis

Time-based HRV analysis is calculated by either working with the entire se-
quence of normal-to-normal (NN) intervals of the whole recording, or with
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HRV indices

Variable Units Description
Time-domain analysis

SDNN ms Standard deviation of all
normal-to-normal (NN) intervals

SDANN ms Standard deviation of average NN intervals
in all 5 minute segments

SDNN Index ms Mean of the standard deviations
of NN intervals in 5 min segments

RMSSD ms Root mean square of adjacent NN intervals

pnn50 % Percentage difference between adjacent NN
intervals greater than 50 ms

Frequency-domain analysis
ULF ms² Ultra-low frequency <0.003 Hz
VLF ms² Very-low frequency <0.003-0.04 Hz
LF ms² Low frequency power 0.04-0.15 Hz
HF ms² High frequency power 0.15-0.4 Hz
LF/HF Ratio Ratio of low-high frequency power

Table 2.1.: Summary of HRV indices; adapted from
(Cygankiewicz & Zareba, 2013, p.381; Pham et al., 2021, p.7)
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consecutive NN intervals. Then, statistical metrics can be calculated, which
lead to the different HRV indices. An example of this is the SDNN, which is
simply the standard deviation of all NN intervals recorded. Here, the index is
computed directly from the entire NN sequence, while other metrics like the
RMSSD (root-mean-square of consecutive differences) are calculated from suc-
cessive intervals.
Different HRV parameters all have different meanings and interpretations, the
SDNN for instance is considered to represent the overall heart variability,
whereas the RMSSD and pNN50 indicate parasympathetic heart modulation.
Additionally, indices derived from sequential NN intervals mostly indicate short-
term variations and can often be used with shorter recording times. However,
there are no indices that represent sympathetic heart modulation in time-based
analysis. (Cygankiewicz & Zareba, 2013; Pham et al., 2021)

2.1.2. Frequency-based analysis

Heart rate – and therefore also its variability – is determined by different sys-
tems in the body, each system using different frequencies. Thus, frequency-
based analysis can help evaluate specific components better than time-based
analysis. The individual signals can be grouped into four different frequency
bands:

• ultra-low frequency (ULF): ≤ 0.003 Hz

• very-low frequency (VLF): ≤ 0.003 – 0.04 Hz

• low frequency (LF): ≤ 0.04 – 0.15 Hz

• high frequency (HF): ≤ 0.15 – 0.4 Hz

Generally speaking, when it comes to the autonomic nervous system (ANS),
HF is associated with activity of the parasympathetic nervous system (PNS),
and LF with activity of the sympathetic nervous system (SNS). Additionally,
the ratio between the two activities (LF/HF) is often used to compare the ac-
tivity of the two systems with each other. (Pham et al., 2021)

However, one limitation of frequency-based analysis is the fact that different
spectral analysis algorithm can output different values. This makes it difficult
to compare values obtained from different studies and examinations. And even
if the same algorithms are chosen, some of them still have parameters that can
differ between studies. (Pham et al., 2021)
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2.2. Stress

Stress is part of human nature and has peaked the interest of scientists for a
long time. In 1950, it was defined as “the non-specific response of the body to
any noxious stimulus” (Koolhaas et al., 2011, p.1292). Then, the concepts of
stressors and stress responses were introduced. A stressor is a situation that
threatens homeostasis, and a stress response is the action that tries to return
to the state of homeostasis (Koolhaas et al., 2011). Homeostasis can be seen as
the body’s internal balance. Each bodily function has its own narrow range of
set-points and tries not to deviate too far from these set-points. Homeostasis
is only possible with observations and corrections. Control systems identify
disruptions in homeostasis (like body temperature and blood sugar levels) and
try to mitigate them. (Libretti & Puckett, 2022)

An addition to this theory is the adaptiveness of the stress response, which
is described by the General Adaption Syndrome (GAS). In essence, organisms
are usually able to adapt to stressors and return to homeostasis. However,
when stressors are present for a longer period of time, this adaption might fail.
This distinction of adaptiveness is also part of the principles behind eustress
and distress. However, it can sometimes be difficult to distinguish the two of
them, especially in studies where it could lead to some form of interpretation
bias. Therefore, another approach is looking at the unpredictability and con-
trollability of a stimulus. As the names suggest, controllability looks at how
much influence a subject has on the situation, whereas predictability defines
how well a scenario can be anticipated. When it comes to stressors, negative
consequences, such as pathology, do not occur due to the stimulus’ physical
nature. Rather, it is the level of predictability and controllability that causes
these outcomes. Specifically, in humans, it is the perceived control that is of
importance here. (Koolhaas et al., 2011)

Additionally, stressors have another dimension besides predictability and con-
trollability: intensity. This intensity can also be seen as the possible conse-
quences for one’s life, and ranges from almost non-existing to life-threatening.
Once more, this intensity is graded by the individual’s perception and is very
likely to add to the severity of the outcome. For example, traumatic events
cause post-traumatic stress disorder (PTSD) in around 20-30% of humans, al-
though the predictability and controllability of these situations might objec-
tively be very similar. (Koolhaas et al., 2011)

Another principle is the differentiation between regulatory range and adap-
tive capacity. Regulatory range describes the theoretically possible range of
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situations that a healthy organism can deal with. The adaptive capacity refers
to the range of responses in behaviour and physiology to cope with the environ-
ment. This principle can be clarified by looking at an animal that is living in an
area that is getting colder and has food shortage. The regulatory range would
include a range of temperatures where the animal can live without freezing to
death or dying of heat. The adaptive capacity consists of behaviours like leav-
ing the environment in search of a place with more food options and warmer
temperatures, food hoarding, and building nests. Additionally, depending on
the species, the adaptive capacity could also include physiological responses,
such as lowering the set-point of body temperature.

However, the adaptive capacity can be lowered by environmental factors, such
as droughts leading to less food availability, which results in less fat tissue. This
leads to a reduced ability to cope with the cold, although the temperature still
lies within the normal regulatory range. Ultimately, temperature as a stimulus
might now be seen as a stressor and a stress response might occur.
Following this principle, a stressor can either influence the regulatory range or
the adaptive capacity. A reduction in adaptive capacity like in the example
above entails that a stimulus, which was formerly not identified as a stressor,
is now perceived as one. Additionally, alteration in the regulatory range im-
plies that situations previously viewed as stressors are now controllable and
predictable and no longer count as stressors. (Koolhaas et al., 2011)

2.2.1. Measuring stress

Stress can be measured by looking at different groups of variables. The two
most important physiological groups are electrophysiological, and biochemical
variables. Additionally, stress can be measured with psychometric tests.
Electrophysiological parameters include blood pressure, skin conductance re-
sponse, brainwaves, skin temperature, blood volume pulse, heart rate, and
HRV. Biochemical parameters include levels of cortisol, α-amylase, copeptin
and prolactin. Some of these can be measured with saliva samples, such as cor-
tisol and α-amylase, whilst others require blood samples (Massa et al., 2017).

Psychometric tests include the Perceived Stress Scale (PSS), and Stress Vi-
sual Analogue Scale (VASS). The PSS assesses the general stress level in a
subject’s everyday life. VASS measures how stressful a subject perceives a
specifically given situation (Massa et al., 2017).
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2.2.2. Stress-related smartwatch apps

When searching for “stress”, “stress hrv”, and “hrv” in Google Play Store (fil-
tered to show only apps that support smartwatches), the following types of
apps are shown: puzzle games for stress reduction, and several health/fitness
and lifestyle apps and trackers. In the latter category, the most popular appli-
cations are “Calm – Meditate, Sleep, Relax”, “Stila | Stress Tracking and Mon-
itoring”, “Cardiogram: Heart Rate Monitor”, and “Cardiograph – Heart Rate
Meter”. Calm is an app for sleep and meditation and does not detect stress.
Cardiograph has one functionality – it displays the current heart rate when the
app is active. Cardiogram also measures heart rate, with the added functional-
ity of tracking it while running in the background and creating charts. However,
no stress or HRV is measured. Stila is still in early access and currently sup-
ports WearOS smartwatches and FitBit PurePulse wristbands. It is part of a
research project at the Institute for Informatics at Ludwig-Maximilian Univer-
sity of Munich with the goal of providing “students and professionals with per-
sonalized recommendations aiming at improving their learning performances”
(“Stila - About”, n.d.). It also uses HRV to measure the stress level, but does
currently not offer any interventions when stress is detected. However, in the
app itself is a segment of an assistant, which currently has no functionality, but
will be available in the upcoming release. This assistant might also be part of
an intervention system, but no additional information is available yet.

2.3. Stress evaluation with HRV

When it comes to evaluating stress responses with HRV, there are several fac-
tors that need to be considered. HRV can be influenced by several different
components, like physiological health and psychological disorders. These fac-
tors should be taken into consideration when evaluating HRV clinically. Addi-
tionally, many lifestyle habits can also influence HRV like drinking, smoking,
physical activity, and medications. However, most studies found that stress
lead to reduction of parasympathetic activity and an activation of the sympa-
thetic nervous system, which is represented by a decrease of HF and an increase
in LF. This change can also be tracked by examining the LF/HF ratio when
frequency-based analysis is performed (Kim et al., 2018). Additionally, when
it comes to time-based analysis, the measures RR, RMSSD are decreased when
being stressed (Castaldo et al., 2015). The concrete changes in HRV parameters
during stress are visualized in table 2.2, which also contains the mean values
during rest.

However, one limitation of stress response assessment with HRV is the in-
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Differences in HRV during stress

Parameter Mean* (Rest) SD* (Rest) MD CI95%

Time-based
RR 845.00 159.29 −142.20 (-168.9; -115.47)
RMSSD 47.92 27.35 −12.03 (-16.78; -7.28)
pNN50 33.46 19.82 −7.98 (-14.52; -1.45)
Frequency-based
LF 829.14 556.83 156.1 (157.6; 469.8)
HF 1971.64 1841.88 −359.7 (-559.20;-160.25)
LF/HF 1.02 1.11 0.6 (0.14; 1.08)
MD: mean difference during stress | CI95%: 95% confidence interval
*Weighted average calculated from (Castaldo et al., 2015, p. 374)

Table 2.2.: Change in HRV parameters during stress
adapted from (Castaldo et al., 2015, p.376)

ability to differentiate between different forms of stress (Oksman et al., 2016).
Depending on the stress model used, this could be eustress and distress or the
difference in controllability and predictability. Nevertheless, HRV represents a
non-invasive and accurate way of assessing stress (Kim et al., 2018).
Traditionally, the HRV measures are calculated from ECG signals, and is still
considered as the gold standard in clinical settings. However, with the in-
troduction of newer technology and wearables, new possibilities have arisen.
Ranging from ECG chest straps, to optical PPG sensors that are built into
smartwatches, the availability of these sensors is very high. When it comes to
how accurately these measures can be obtained from PPG sensors, it depends
on the setting and the measures themselves. In one study, Jeyhani et al. (2015)
compared time-based analysis HRV measures obtained from ECG sensors with
the same measures calculated from PPG sensors. Besides pNN50, which had
a relative error of 29.89%, all other parameters (SDNN, RMSSD, SD1, and
SD2) registered an error of less an 6%. Other studies also report similar obser-
vations. However, this assumption should only be made with resting healthy
subjects that do not take part in physical activity, such as exercise (Lin et al.,
2014; Pinheiro et al., 2016). Another factor that can influence the accuracy
of PPG derived parameters is breathing. One study compared HRV metrics
calculated from ECG and PPG data during rest and during breathing tasks,
such as taking deep and shallow breaths, both rapidly and slowly. Although
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reporting similarities in rest, the parameters obtained during breathing tasks
demonstrate a significant difference (Jan et al., 2019).
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3. State-of-the-art

The following chapter describes the current state of the art and introduces
related work as the foundation for this thesis.

3.1. Digital signal processing

Whenever dealing with digital signals, in this case PPG data, digital signal
processing techniques can help to reduce noise and extract underlying patterns.
This section gives a short introduction to the relevant methods that are later
used in the thesis.

3.1.1. Filters

Generally speaking, a filter allows some things to pass, while blocking others.
In digital signal processing frequencies are filtered, and there are four major
types of digital filters: low-pass, high-pass, band-pass, and band-stop filters.
As the name suggests, low-pass filters allow low frequencies to pass and block
high frequencies. The opposite is true for high-pass filters. Band-pass filters
define a passband – an interval of frequencies that it allows – while blocking the
rest. The opposite to that is a band-stop filter, that blocks the defined interval
of frequencies and allows all others (Lyons & Fugal, 2014).
Figure 3.1 illustrates the four different basic types of digital filters. In addition
to the type of filter and a cut-off frequency (where the transition between
passband and stopband is), each of them also has an order. The lower the
order, the flatter and smoother the cut-off response of the filter. Similarly, with
a higher order, the cut-off response will be similar to a “brick-wall” response,
the most extreme case that the visualized filters in figure 3.1 display. (Jones
et al., 2020a)

3.1.2. Change point detection

In digital signal processing, it is often a necessary task to detect and identify
data change points. Generally speaking, a change point is a shift in the un-
derlying model of the data. Besides digital signal processing, it is also often
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Figure 3.1.: The four basic types of digital filters
modified from (Jones et al., 2020b)

used in finance, climatology, bio-informatics, and speech processing. There are
two distinctive types of change point detection: online, and offline techniques.
The first tries to identify changes in real time and is often called anomaly or
event detection, whereas the second looks at the data only once all samples
are present. It is also referred to as signal segmentation. Additionally, change
point detection techniques differ whether the number of change points is known
beforehand or not. They can be categorized by:

• Cost function: how “homogeneous” (no change points) or “heteroge-
neous” (at least one change point) a segment of the signal is (Truong et
al., 2020)

• Search method: the algorithm how this optimization problem is solved
(such as window slicing, binary segmentation, and bottom-up segmenta-
tion) (Truong et al., 2020)

• Constraint: in cases where the number of change points are not known,
a penalty is added to the optimization problem. However, if this penalty
is too big, not enough change points will be detected. Similarly, if the
penalty is too small, too many are found, and even noise might be included
in the result (Truong et al., 2020)
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3.2. Persuasive Technologies

Persuasive Technologies (PTs) focus on trying to motivate people to adopt and
reinforce beneficial behaviours and attitudes, and to mitigate and avoid harmful
ones. This process is always done voluntarily, without coercion or misinforma-
tion, otherwise the system is no longer considered as PT. Generally, there are
two use cases for these systems, preventive health promotion and disease man-
agement. The first one focuses on a healthy lifestyle and/or to prevent diseases
in the first place. Examples of this are: increasing physical activity, making
diets more healthy, and decreasing alcohol consumption or smoking.
The second type of PTs (disease management) focuses on reminding people to
go along with their treatment or medication plans, and help them to live with
their health conditions. (Orji & Moffatt, 2018)

One major advantage that PTs have over types of media that use persuasion
is the adaptability and interactivity with users. Persuasive technology can be
adjusted based on (user) data that can help tailor the system to specific needs
and situations. A system using PTs that focuses on more physical activity by
encouraging walks could find out when a user is more likely or even unwilling
to take a stroll, the preferred length of a walk, or suggest a place near the user’s
location. (Fogg, 2003)

We humans can be very good persuaders. We can sense emotions and the
overall mood of other people, understand the social aspects of a situation, and
know when to use what forms of persuasions. However, there are some aspects
in which PT systems have advantage over human persuaders: (IJsselsteijn et
al., 2006)

• Depending on the field used, the anonymity that the users perceive can
help PT systems be more effective and help people make changes in their
lives more easily. This is especially true in sensitive fields such as psycho-
logical issues, sexuality, and substance abuse.

• PTs have more forms of presentation at their disposal than human per-
suaders. They can use different video, audio, and text formats to convey
their messages, combine several modes of presentation, and match the
type of presentation used with the user’s preferences.

• As these systems often have huge amounts of data to work with, they can
offer information that a single human persuader could never know. They
can use this data, both past data from the individual user to create trends,
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goals and statistics, and data from other users to create competitions and
recommendations. (Fogg, 2003)

• The replicability and scalability of PT systems allows these persuasive
systems to reach a significant number of people all at once.

• The size of PT systems often allows them access to places that are inac-
cessible for humans (such as clothing or wearables), and are often granted
access to places where human persuaders would not be allowed (e.g., bath-
room or bedroom). (IJsselsteijn et al., 2006)

Persuasive technology systems can play different roles depending on the use
cases. These roles are described by the functional triad, a conceptional frame-
work that describe how these technologies can be classified as: tools, media,
and social actors.
Tool-PTs focus on making certain behaviour easier to accomplish for users,
some of which they would not be able to accomplish without the use of tech-
nology.
Media-PTs focus on conveying messages through different forms of media, which
can be further categorized into symbolic and sensory media. Symbolic media
use texts, charts, and graphics, while sensory media operate with video and
audio.
Social actor-PTs try to create an image of the system being alive. When
achieved, users interact with these systems almost as if it were a living be-
ing. The idea is that the perception of the system being alive can apply social
influence, such as peer pressure. (Fogg, 2003)

3.3. Context

This section introduces what user context is, which characteristics it has, and
concepts to infer higher level context.

3.3.1. Definition of context

Before discussing how contextual information of users can be integrated into
JITAIs, it is important to define what user context even is. Unfortunately,
there does not seem to be one general, universally accepted definition and its
meaning is based on the interpretation of researchers across different domains
(Pradeep & Krishnamoorthy, 2019). For example, in the study conducted by
Oinas-Kukkonen and Harjumaa (2008) the authors differentiate between a use
context and a user context. Here, use context refers to what information is
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important for a user in a given situation, whereas the user context focuses on
the bigger picture, like motivation, needs, and interest of the user.
Other researchers do not distinguish between a use and user context. Addition-
ally, depending on the field of their research, their definition of user context can
vary quite a bit and is often very specific. In those cases, user context some-
times only includes location, time, people, and places nearby and the changes
of them, without addressing psychological aspects such as emotional well-being
(Shin et al., 2009).

A more broad definition of context is given by Almazan: “Context consists
of one or more relationships an information item has to another information
item. An information item can be any entity, either physical (such as a person,
a computer, an object), virtual (such as a computer service, a message), or
a concept (location, time, and so on). A relationship describes a predicate
connecting two or more information items, which may change at any time for
any reason” (Pradeep & Krishnamoorthy, 2019, p. 47). This definition is
suitable for this thesis, and is kept in mind when mentioning (user) context
from now on.

3.3.2. Characteristics of context

With context being now defined, some important characteristics and properties
of context can now be examined. It is important to note that depending on the
definition of context, some characteristics might vary. However, for the most
part, these properties can also be found with other context definitions.

• Context can be temporally static or dynamic
Depending on the kind of information, its relevancy can be either very
short or very long (sometimes even indefinitely). A user’s date of birth, for
example, never changes and his or her relationships likely stays the same
for months or years. However, physiological data for instance changes
very fast and its relevancy is therefore short-lived. (Henricksen et al.,
2002)

• Context is imperfect
Contextual information can be incorrect, outdated, inconsistent, or in-
complete. Errors in sensors, time-delays, inconsistencies between sensors
and the inability to cover all aspects of the context will lead to imperfect
context. This becomes especially true if some contextual information is
derived from other sensors that provide false information (Henricksen et
al., 2002).
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• Context arises from multiple sources
Context can often only be derived from multiple sources. These sources
on their own lack the ability to paint the bigger picture on their own
(Pradeep & Krishnamoorthy, 2019).

• Sources for context information
There are three major types of sources for contextual information: sen-
sors, human input and inference. Generally speaking, sensor information
is mostly short-lived and changes frequently, whereas data obtained from
human input is mostly longer relevant than sensor-based data. The rele-
vancy of inferred data is dependent upon on what kind of information it
was derived from (Henricksen & Indulska, 2004).

Multiple pieces of context information cannot only vary from how they are
obtained and their time of relevancy, but also on their quality. One idea is to
rate their quality with the following five metrics:
(i) accuracy – the precision of the obtained data,
(ii) confidence – how likely it is that the information is correct,
(iii) freshness – how recent the information is,
(iv) resolution – the granularity of the data,
(iv) credibility – how reliable the information is.
(Pradeep & Krishnamoorthy, 2019)

3.3.3. Context reasoning

With context and its characteristics now being defined, and the available sensors
and pieces of context information introduced, the next step is deriving concrete
context from these data points. This process can also be referred to as context
reasoning. One approach is a three-step process: (i) data pre-processing –
handling null values, normalizing data, removing outliers, (ii) combining sensor
data – aggregating data points from multiple sources, and (iii) inference –
inferring a higher level context from this lower level context. How this process
is performed is highly dependant upon the technologies and algorithms used in
the approach (Pradeep & Krishnamoorthy, 2019). Some of the most common
techniques are as follows:

• Rule-based: Rules are defined by a human expert, and are IF-THEN
statements that link certain conditions to actions. They are easy to un-
derstand and create, but lack validation and are more prone to errors
than other methods (Pradeep & Krishnamoorthy, 2019; Abu-Nasser &
Abu Naser, 2018).
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• Supervised learning: This method uses a significant amount of la-
belled data – where each training example has a label of the correspond-
ing ground-truth – to create predictive models. The most common tech-
niques are Bayesian Networks, Artificial Neural Networks, Support Vector
Machines, and Decision Trees (Zhou, 2018; Pradeep & Krishnamoorthy,
2019).

• Unsupervised learning: Unsupervised learning techniques use unla-
belled data to find hidden structures of the provided data. The most
common techniques are k-Nearest Neighbour, Clustering, and Kohonen
Self Organization Map (Pradeep & Krishnamoorthy, 2019)

• Probabilistic logic: Here, numerical values all have associated prob-
abilities that can be used to handle uncertainty by combining multiple
sources. The most common techniques are Hidden Markov Models and
the Dempster Schafer Theory of Evidence (Pradeep & Krishnamoorthy,
2019).

3.4. Just-in-time adaptive
interventions (JITAIs)

Just-in-time adaptive interventions (JITAIs) are interventions “aiming to pro-
vide the right type/amount of support, at the right time, by adapting to an
individual’s changing internal and contextual state” (Nahum-Shani et al., 2017,
p. 446). As the name suggests, JITAIs try to time interventions so that they
are neither too early nor too late. Timing can either refer to clock time or can
be event-based depending on the use cases. A time-bound JITAI could help
comply with the medication plans in the mornings and evenings. An example
of an event-based system would be when an alcoholic in the proximity of a
favourite bar or liquor shop (or any other high-risk location). As these events
often happen irregularly, it would be hard to predict them on clock time alone.
To try to find a suitable timing and type of intervention, JITAIs look for three
key points. (Nahum-Shani et al., 2017)

• Check if the person is in a state that needs support

• Check what type and amount of support is necessary for this current state

• Check if offering this support could potentially lead to the desired be-
haviour.
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To identify states that need support, states of vulnerability are introduced.
They describe situations, where people are more prone to make decisions that
have adverse health consequences for them. The problem is that they can hap-
pen multiple times in short time windows, and designers might be tempted to
offer interventions very often as a counter measure. However, this can backfire,
because the users might be overwhelmed by this.
Also, depending on the situation and the context, the person’s attention might
be needed somewhere else entirely. These two factors introduce new challenges
for intervention, as badly timed ones can lead to intervention fatigue, where the
person is emotionally or cognitively burnout. Therefore, interventions should
only be offered when the individual can and is willing to “receive, process, and
utilize just-in-time support” (Nahum-Shani et al., 2017, p.450).

3.4.1. Components

To fulfil the unique properties of JITAIs, there exists a framework describing
four major components suggested for these interventions: decision points, in-
tervention options, tailoring variables and decision rules.

Decision points define at which points in time the decision for an interven-
tion should occur. It depends on how often a change in a tailoring variable can
realistically occur. In a JITAI that focuses on medication plan adherence, it
does not make sense to set a decision point every minute, if the user should
take the medication at a certain time. However, when these tailoring variables
are expected to change quickly, decision points could occur as often as every
minute. Also, the day of the week could also play an important role, such as
when dealing with work-related stress. Then, decision points on the weekend
are not meaningful (Nahum-Shani et al., 2017).

Intervention options are the strategies that could potentially be offered at a
decision point. Depending on the application, they can vary drastically, from
offering feedback or advice, the intensity of support, to the way the support
is offered. Many JITAIs follow a framework for their interventions, a concept
called ecological momentary interventions (EMIs). These EMIs are delivered
to people in their daily lives – in the real world and in real time – and should
therefore be quick and short. (Nahum-Shani et al., 2017; Heron & Smyth, 2010)

Tailoring variables are pieces of information about the subject that are used
to determine under which conditions an intervention should take place, and
which of the intervention options should be applied. An example could be
the distance to a high-risk location, such as a bar or liquor shop, for alcohol-
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consumption JITAIs. These tailoring variables can either be active, where the
user has some form of interaction (e.g., self-reporting), or passive ones that
need no interactions (e.g., tracking the GPS location of the person).

Decision rules combine intervention options with tailoring variables. They
include thresholds that define which intervention option should be offered with
a given tailoring variable. In the example with the distance to a high-risk loca-
tion (the tailoring variable) the decision rule could look like this: (Nahum-Shani
et al., 2017, p. 451-452)

If distance ≤ threshold, then
Provide intervention i

Else (distance > threshold),
Provide nothing

3.4.2. Design

These four components should be chosen with a clear goal in mind. JITAIs
differentiate between proximal and distal goals. The distal ones can be seen
as the long-term goals that the interventions try to achieve, such as reducing
alcohol consumption or spending more time being physically active. The prox-
imal outcomes are short-term goals that should ideally be measurable shortly
after the intervention. An example would be a step counter measuring if the
subject is taking a walk during lunch breaks. The idea is that if proximal goals
are regularly and consistently reached, then it is only a matter of time until
the distal goals are achieved as well. The following figure 3.2 visualizes the
interactions between the four JITAI components and the proximal and distal
outcomes (Nahum-Shani et al., 2017).

Additionally, these two types of goals also have an impact on the compliance
and quitting of JITAIs. Depending on the type of distal outcome, the minimum
amount of engagement time with the JITAI system can range from short-term
to long-term. Especially with long-term JITAIs, it can be difficult to keep peo-
ple from lowering their use or discarding the whole system entirely. Generally,
this intervention fatigue can be characterized into three groups. Firstly, cog-
nitive overload, which is when people come across tasks that are too mentally
challenging. Secondly, habituation, which describes the phenomenon where an
excessive number of interventions leads to a reduction in a user’s response to the
intervention. And lastly, negative emotions (boredom, anger, disappointment,
etc.) towards the JITAI application in general.
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Figure 3.2.: Concept for JITAI components
modified from (Nahum-Shani et al., 2017, p.451)
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4. Hypotheses

H0: There is no difference between stress-related JITAIs, which do and do
not incorporate contextual user information, when it comes to reducing un-
favourable intervention timings.

H1: Incorporating contextual user information does help to reduce unfavourable
intervention timings for stress-related JITAIs.
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5. Design

This chapter gives an overview of the design of the proposed intervention ap-
plication and discusses the choices made during this process.

5.1. The JITAI components

As a general guideline, the intervention application described in this paper fol-
lows the framework of just-in-time adaptive interventions (JITAIs), discussed in
section 3.4. This section includes the specific components with their respective
parameters chosen for this use-case.

5.1.1. Decision points

As explained, decision points describe how often or when an intervention could
be deemed meaningful. This depends on the application and is very contingent
upon how often the tailoring variables change. For this application, the two
most important times to avoid interventions are both during sleep and in the
period directly after an offered intervention. During the day, decision points are
chosen in a pre-defined time interval. However, the length of this interval is of
great importance. On the one hand, more frequent decision points will increase
the probability of detecting moments of stress. On the other hand, constant
checks via the smartwatch’s PPG sensor will drain its battery rather quickly.
Depending on how the smartwatch is used otherwise, and how often the user is
willing to charge the device, this number might be changed accordingly.
Therefore, the following rules will be applied for this system:

• Decision points only occur from when the application is launched until
23:00. This is to preserve battery life and to prevent intervention prompts
during sleep.

• After an intervention took place, wait for one hour until which decision
points will continue normally. This is primarily to prevent intervention
fatigue.
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• During the day, a decision point is due every 15 minutes. This is a
compromise between battery duration and detecting as many stressful
situations as possible.

5.1.2. Intervention options

Intervention options define what the interventions are. As a guideline, the
framework of EMIs was used. One key feature of EMIs is that they are provided
during the user’s everyday lives – in real time and in the real world. Ideally, they
incorporate personalized feedback and contextual information and are most
often rather short. In a clinical study, in which EMIs are most often used,
psychologists and other experts work together to create these tailored messages
(Heron & Smyth, 2010). For this thesis, a general purpose intervention will be
used, as creating tailored interventions is not the focus of it and would require
expert knowledge in psychology. More precisely, a prompt is shown where the
user is asked to use the five senses to label objects in the vicinity, which is
a mindfulness exercise taught in cognitive behavioural therapy. (Howe et al.,
2022)

5.1.3. Tailoring variables

Tailoring variables are information used to determine if an intervention is going
to be performed, and can also be used to select which intervention option to of-
fer. For this system, the most important variable is data from the smartwatch’s
PPG sensor. More specifically, the RR intervals that are used to calculate
all time-domain and frequency-domain HRV parameters. This is the primary
source of data.
The secondary source is the combination of different sensor and device infor-
mation that is used to infer the context of the user. While this information
is not used to detect stress itself, it is needed to differentiate between suitable
and unsuitable user contexts.

5.1.4. Decision rules

As mentioned, decision rules combine tailoring variables with intervention op-
tions. Often times, machine learning models or knowledge-based systems are
used for this task. Because of its simplicity and speed of implementation (and
also because of the lack of pre-existing datasets), a rule-based system was cho-
sen for this thesis. The thresholds for the HRV metrics are taken from the
literature and are discussed in the next chapter.
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With all these components in mind, the general idea of the application is
visualized in figure 5.1 and works like this: When a decision point is reached,
stress is classified with the HRV parameters. If stress occurred, contextual
information is retrieved and inferred. Lastly, if the user context allows for an
intervention, the intervention is displayed. Then there is a wait duration of one
hour, until the decision points continue normally. If any of the other checks are
false, then the decision points also continue normally.

Figure 5.1.: A flow chart visualizing the decision rules
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5.2. Context

This section discusses the available sources for context information, which were
chosen for this thesis, and how they are inferred.

5.2.1. Available context information

This thesis discusses how to bring context to stress-monitoring JITAIs with
evaluating HRV. Specifically, this process is done with the help of a smart-
watch, which delivers the PPG data for the HRV analysis, and a smartphone
which functions as the companion device. Therefore, both the smartwatch and
the smartphone can be used as devices for context information. The typical
sensors available in a smartphone nowadays are visualized in figure 5.2.

Figure 5.2.: Typical sensors present in smartphones
modified from (Majumder & Deen, 2019, p.5)

with (“Android black smartphone | Free SVG”, n.d.)

Additionally, other contextual information can be used from smartphones
besides hardware sensors. The day of the week (or the distinction between
work week and weekend), the time of day, and calendar events can all be used
to derive the context of the user (Santos et al., 2010). Furthermore, how the
smartphone is being used can also be used as contextual information. What
kinds of apps are used for how long, web activity of users, and even with whom
they talk to or text (and the contents of their conversations) can all be indi-
cators for the user’s context. Also, even when location services are turned off,
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available Wi-Fi and Bluetooth devices can give hints about the user’s where-
abouts (Sarker, 2019).

Besides the smartphone, the sensors of the smartwatch can also be used. As
this thesis uses a Compal Fossil Sport (model FTW6024 – released in 2019), the
list of available sensors were retrieved and printed via Android’s SensorManager
class. The retrieved list of accessible sensors is as follows:

• Wrist tilt gesture

• Step detection

• Step counter

• Stationary detection

• Significant motion

• Game rotation vector

• Geomagnetic rotation vector

• Pressure

• PPG

• Motion detection

• Magnetic field

• Linear acceleration

• Uncalibrated accelerometer

• Heart rate

• Off-body detect

• Gravity

• Gyroscope

• Ambient light sensor

However, it is important to note that some of these listed sensors might not
all be hardware sensors. As stated on the Android developers website (“Motion
sensors | Android Developers”, 2022), some sensors like linear accelerometer
can either be hardware-based or software-based, depending on the model of
the device. However, based on the API that is provided by Wear OS, sensors
cannot be differentiated between hardware- and software-based.

5.2.2. Chosen sensors

To infer context later, the following sensors (or pieces of information from apps)
were used:

• Calendar (phone)

• PPG (watch)

• GPS location (phone)

• List of Wi-Fi networks (phone)
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• Gyroscope (watch)

Generally speaking, if both the smartphone and the smartwatch have the
same type of sensor (like GPS), then the phone’s sensor will be used. This has
the effect of prolonged battery life and removes the need to send data to the
smartphone that it already has, as the smartphone will handle all the logic to
determine the context. The only exception to this rule is the gyroscope. The
data comes from the smartwatch and is used to detect abrupt hand movements
(e.g., during sport) that would lead to measurement errors of the PPG sensor.

With these sensors, the following contextual information is inferred: the lo-
cation of the user via GPS, differentiation between work and home via the
names of available Wi-Fi networks if location services are disabled, the avail-
ability during work time, and the detection of physical activities. Also, users
can manually blacklist locations if they wish to remain undisturbed, such as
when visiting a place of worship or going to a healthcare facility.

35



6. Methods

This chapter describes the general flow of the apps, their communication with
the server, how the PPG signal was preprocessed and analysed, and how context
is inferred.

6.1. General procedure

The system developed consists of three different parts: the Wear OS (Google’s
operating system for smartwatches) app running on the smartwatch, the An-
droid app running on the smartphone, and a Python application running on a
server. Once a decision point is reached (and under the assumption that the
user is stressed and the user’s context allows for an intervention), the commu-
nication between the three applications is visualized in figure 6.1.

The smartphone app acts as the main component and communicates with the
smartwatch via the Wearable Data Layer API. The API comes with a Message-
Client and a DataClient. The former is used for requests and remote procedure
calls, while the latter synchronizes data between the devices (“Send and sync
data on Wear OS | Android Developers”, 2022). When a decision point occurs,
it sends a message to the Wear OS app on the smartwatch. Then, a listener
is registered on the smartwatch that captures incoming PPG data with around
100 samples per second for four minutes. The data is then transferred via the
DataClient to the smartphone app, that sends an HTTP request to the python
server. The python server analyses the signal – discussed in section 6.2 – and
then responds with the calculated RMSSD value.

The smartphone compares the calculated RMSSD value with the RMSSD
confidence intervals for stress and rest. The values used for the calculation
were discussed in section 2.3 and visualized in table 2.2. The confidence levels
for the intervals are 99.95%. The reason behind this number is to maximize the
size of the two intervals, while still avoiding any overlaps between the two. The
calculated value is discarded when it does not lie in one of the two intervals,
as it is most likely due to a measurement error. When the value indicates rest,
then no further action is performed and the smartphone apps waits until the
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Figure 6.1.: Communication between the apps and the server

next decision point.

When the RMSSD value hints at stress, the subcomponents for context infer-
ence are started. Currently, there are four different in use: CalendarContext,
DnDContext, LocationContext, and ActivityContext. Each of them decides,
with provided data, whether this current context is suitable for an intervention
or not – which is discussed in section 6.3 in greater detail. Only when all com-
ponents determine that the situation is convenient will an intervention start
and a message is sent to the smartwatch. As mentioned before, to maximize
the benefit of the JITAI application, the interventions themselves should be
modelled and chosen with care and expertise. However, as this thesis focuses
on technical implementation and a general proof-of-concept, only the discussed
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exercise from cognitive behavioural therapy is offered. Finally, the calculated
RMSSD value, the inferred context, and the intervention decision are saved for
analytic purposes.

6.2. PPG signal analysis

As mentioned before, the raw PPG signal is analysed by a Python server. The
signal is sent in a JSON format, consisting of the timestamps and the recorded
values. For the HRV analysis, the python library HeartPy (Van Gent et al.,
2019; van Gent et al., 2019) was chosen.

HeartPy offers functions to preprocess the PPG signal, such as clipping de-
tection and interpolation, digital filters (discussed in 3.1.1), and peak enhance-
ment. The filtered signal is then passed to a peak detection algorithm, that
either accepts and marks or rejects the peaks of the signal. In the case of a PPG
signal, these peaks are called diastolic peaks and are used for time-domain and
frequency-domain analysis. For time-domain analysis, the time between these
peaks (also called R-R interval) is used for the metrics, such as the root-mean-
square of successive differences (RMSSD).
For frequency-domain analysis, the signal is first interpolated to evenly space
out the data, then the Power Spectral Density (PSD) is calculated, e.g., with
a fast Fourier transform. The PSD is then used to integrate the required fre-
quency spectrums, such as 0.05-0.15Hz for low frequency (LF).

However, after some testing with self-recorded PPG data from the smart-
watch, the provided methods for signal preprocessing did not suffice for a sat-
isfactory result of the peak detection algorithm. While working as intended
when remaining still, abrupt hand movements cause errors in the calculated
RMSSD value. Thus, before passing the raw data to a band-pass filter, an
off-line change point detection algorithm (discussed in 3.1.2) is used to split
the data into segments. A sliding window algorithm from the Python package
ruptures (Truong et al., 2020) was chosen, and the result is visualized in figure
6.2.

The next step is to pass the segments that were obtained from the step
detection with a minimum length of 20 seconds to a bandpass filter that removes
frequencies smaller than 0.7 and greater and 3.5Hz. This is equivalent to 42 and
210 beats per minute and is done to filter unnaturally low or high frequencies.
The filtered signal is then passed to the peak detection algorithm. The signal
before and after band-pass filtering is visualized in figure 6.3 and the output
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of the peak detection algorithm in figure 6.4. The peaks are then used to
calculate the time-domain metrics. Because the original signal was first split
into segments, and each segment has its own HRV metrics, the weighted average
HRV metrics across all segments are then calculated. The weights themselves
are the lengths of the specific intervals. The weighted average HRV metrics,
which currently only includes the RMSSD, is then returned by the server to
the smartphone.

Figure 6.2.: Results of the change point detection algorithm

Figure 6.3.: Segment before and after band-pass filtering
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Figure 6.4.: Peak detection with HeartPy

6.3. Context inference

After detecting stress with the HRV metrics, contextual information is retrieved
and analysed. The system was designed modularly, so that additional aspects
of user context can be added at any given time. Currently, there are four dif-
ferent topics being evaluated.
Calendar: all calendars that are linked with the user’s device are searched for
events that overlap with the recorded time of the stressful situation. Events
that are automatically added (such as start of a calendar week or public holi-
days) are ignored. The same is true for any birthday entries.
Location: for this module, the user can specify if a certain location is inconve-
nient for an intervention. For this, the GPS location (longitude and latitude)
with a maximum distance to this location can be defined. Additionally, a list
of the available Wi-Fi networks is also saved, which allows for the detection of
a location even if location services are turned off.
Do not disturb: this simply checks if the smartphone or the smartwatch are
currently in do-not-disturb mode or not. Additionally, the user can specify
times when interventions are not desired in general.
Physical activity: the gyroscope and accelerometer of the smartwatch are
used to capture and evaluate data related to the position and movement of the
arm where the smartwatch is worn. This data is used to detect if the user is
probably engaged in any physical activities, such as sport. This step might not
be that important for the user, but is especially important to ensure the proper
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performance of the systems as a whole. This is because the readings of the
PPG are more prone to measurement errors during physical activities, there-
fore limiting the possibility of accurately assessing the user’s HRV parameters.
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7. Evaluation and Results

This chapter discusses the methods used to evaluate the system and presents
the obtained results from said methods.

7.1. Evaluation

To evaluate the system, a simulation-based approach was chosen. Different
personas – discussed in subsection 7.1.1 – were created, each of them with a
unique daily routine. The idea of this approach is that even though not all
contextual information is temporal in nature, the fact whether a context is
suitable for an intervention always has a time-component associated with it.
For example, if a user is doing sports or is at a location where no intervention
is desired, the contextual information are sensor values of the gyroscope and
the longitude and latitude of the GPS position. However, all of these situations
take place at a certain time during the day. Therefore, for the sake of this type
of evaluation, any context can be broken down in time periods when they take
place, and when simply no intervention is desired.

7.1.1. Personas and daily routines

Before creating the timetables for the evaluation, three personas were created.
The idea behind a persona is to make the concept of the user more realistic.
It includes a fictional name, picture, and background, and other information
about the person, such as goals, behaviours, and motives. They are used in
order to avoid vague concepts like “the user” and “user-friendly” that can be
hard to grasp. (Blomkvist, 2002)

Three personas were created with a template of a persona canvas (Weid-
mann, 2018), which are included in appendix B: a 24-year-old physics student
(Filippo), a 32-year-old human resource manager (Mujika), and a 42-year-old
financial analyst (Martha). The average times (in hours per day), when these
three people are not available or do not desire intervention are as follows:
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• Filippo: total of 5.55h per day of no interventions desired

– Calendar 2.8h → lectures and seminars

– Do not disturb (DnD) 1.5h → submissions, uni projects and learning

– Location 0.75h → flat of his girlfriend

– Sport 0.5h → various types of sports across the seasons

• Mujika: total of 7h per day

– Calendar 4.5h → work

– Do not disturb (DnD) 1.5h → spending time with her son and hus-
band

– Location 0.3h → homes of other family members

– Sport 0.70h → running

• Martha: total of 8.7h per day

– Calendar 7h → work related meetings

– Do not disturb (DnD) 0.75h → wants to be undisturbed while driving

– Location 0.75h → various restaurants and church

– Sport 0.2h → some tennis and miniature golf on weekends

As not every day is the same, these average values are taken as a guideline value
and each day has a random deviation of ±5% (evenly distributed). Additionally,
the average values are changed during the weekend. As a rule of thumb, the
time of the calendar context is reduced by 80% and the rest of the contexts are
all increased by 35%. This is done to reflect work- and study-free time, while
also factoring in spending more time doing sports, meeting with friends and
family and recuperating from the work week.

7.1.2. Stress simulation

In order to realistically model stressors in daily life, the average number of daily
stressors is of utmost importance. The University of California, San Francisco,
and the National Institute of Aging offer The Stress Measurement Network,
which is a toolbox describing techniques for capturing different types of stress
(Crosswell & Lockwood, 2020). For daily stress, the Daily Inventory of Stress-
ful Events (DISE) is recommended, which is a semi-structured interview. (D.
Almeida, 2018)
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Studies utilizing this technique found that on average, participants reported
at least one stressor on around 37% of days, and at least two stressors on
around 12.5% of days. The average number of experienced stressors per day
is M = 0.51 and M = 0.65 with a standard deviation of SD = 0.74 and
SD = 0.86, respectively. (Koffer et al., 2016; Bellingtier et al., 2017; D. M.
Almeida et al., 2002)

With these numbers in mind, the concrete simulation of stressors is per-
formed as follows: a typical day is assumed to have a duration of 14 hours
(from 08:00h until 22:00h), each day with associated probabilities of having N
stressors. The chances of a day having zero or one stressor (0.64 and 0.21) have
been calculated from Bellingtier et al. (2017), with the remaining probability of
0.15 distributed between two and three stressors (with probabilities of 0.1 and
0.05). If a sampled day has at least one stressor, then random times between
08:00h and 22:00h will be sampled and assigned to the stressor.
When the stress generation is performed with the above-mentioned probabil-
ities, and run for 50 million days, the average stressors per day is M = 0.56
with a standard deviation of SD = 0.86. Both of these statistical parameters
are close enough to the ones found in the papers mentioned, thus making this
stress simulation model a suitable approximation.

7.2. Results

The length of the simulation was chosen to be 365 days and was run with the
mentioned parameters. For each day, the stressors with corresponding times-
tamps for that particular day were sampled. It is important to note that while
the schedules of the three personas differ, the time when stressors arise are
equal for all. Figure 7.1 shows how often stressors occurred (with absolute and
relative values). The vast majority of days do not have any stressors (65.21%),
followed by one (22.19%), two (8.77%), and three stressors per day (3.83%).
After that, the schedules of each persona were examined and checked which
of the interventions that were caused by the stressors are desirable or not. If
an overlap between their schedule and the time of the stressor was found, an
intervention was deemed to be undesirable. This information – how many in-
terventions are blocked per day – was combined with how many stressors occur
each day to create figure 7.2. It shows the ratio of how many interventions are
blocked on days with the given number of stressors.
Filippo blocks an average of M = 0.382 with a standard deviation of SD =
0.093 of interventions in any given day. The values for Mujika and Martha are
M = 0.479, SD = 0.028, and M = 0.498, SD = 0.083 respectively.
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Figure 7.1.: Distribution of stressors per day

Although Martha normally blocks more interventions (around 55%) on most
days compared to Mujika and Filippo, the opposite is true for days that have
three stressors. Here, Martha prevents around 38%, while Filippo and Mujika
intercept approximately 50% and 45%. This is discussed in the next chapter.

Due to the nature of the chosen evaluation, the stated hypotheses (chapter 4)
cannot be empirically verified or falsified. However, the observed results show
that a number of interventions are blocked due to undesirable user context. This
indicates the interception of numerous interventions in a real-world setting,
resulting in less unwelcome interventions offered to the user. Therefore, the
results hint at the usefulness of incorporating user context in a stress-related
JITAI system and at a potential acceptance of the H1 hypothesis.
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Figure 7.2.: How many interventions are blocked due to unsuitable context
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8. Discussion

This chapter discusses the evaluation of this thesis and reflects upon the results
that were obtained.

8.1. Evaluation

Ideally, the evaluation of the system would have been in the form of a long-
term, large-scale user testing, combining objective data (such as HRV trends,
contextual information, and data about the app usage) with subjective data
(perceived stress levels and satisfaction with the system). However, due to en-
countered difficulties, the chances of this approach being successful were not
sufficient.
Firstly, there was a lack of usable hardware that could have been given out to
people for the user tests. Ergo, this would cause a need for a longer time pe-
riod just for the user tests, as the number of tests that could be run in parallel
would be quite small. Even if a user was in possession of a smartwatch, the use
of their own device would not be recommendable, as differences in hardware
(especially the PPG sensor) can cause alterations in the observed results.
Secondly, there is still the issue of measurement errors caused by hand move-
ments. Without a highly reliable method to prevent this, there are chances of
the HRV metrics being faulty as a consequence. This would then lead to either
false positives or false negatives for intervention timings, decreasing the benefit
for the user.

However, the chosen method of stress and schedule simulation is by far not
perfect. While the parameters of stress simulation are backed by the discussed
papers, the question remains if this average number of stressors is approximate
to the number of stressors that would have been obtained during a real user
test. The Daily Inventory of Stressful Events (DISE) examines the stressful
events via asking the user for their experiences. Therefore, this method cap-
tures perceived stress. Whether less, equal, or more stressors are captured with
HRV metrics is debatable. However, it could be argued, that unmemorable
events during the day that still cause short-term stress (such as almost missing
a connecting bus or being cut off in traffic) would not show up on DISE at
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the end of the day. Nevertheless, these situations would still be recognized by
analysing HRV.

Another limitation of this thesis was the hardware used.
Firstly, a compromise between battery lifetime and accuracy/runtime of the
application was necessary. Running the Wear OS app continuously on the
smartwatch (Compal Fossil Sport – model FTW6024) drains the battery com-
pletely in around five hours, even without any additional use of the device.
Therefore, there is the decision whether to limit the time the app is active and
risk missing stressful situations, or increase the PPG sensor’s delay and there-
fore decrease the quality of the data collected.
Secondly, with an mHealth application in mind, it is not feasible to ask the
user to recharge their smartwatches at least once per day, so that just this ap-
plication is able to run in the background continuously. Further research could
be done to test the quality of HRV metrics obtained from less accurate PPG
data, and to examine how much battery life per day users are willing to spend
on this application.

8.2. Results

As stated before, the results obtained cannot be used to empirically verify or
falsify the hypothesis, but indicate the usefulness of adding context information
to JITAIs. The results themselves were quite expectable, because the personas
were created in a way that reflects different lifestyles with different levels of
busyness in different schedules. Martha was most busy with an average of 8.7h
per day, followed by Mujika with 7h, and Filippo with 5.55h per day. Natu-
rally, Martha would intercept most interventions per day on average, as she is
the most busy persona. This is reflected in the chart discussed before, that
visualizes the ratio of blocked interventions on days with one, two, or three
stressors. However, while she does prevent more interventions than the other
two personas on days with one or two stressors, the opposite is true on days
with tree stressors. One explanation to that is how often three stressors per day
occur in the simulation. With a probability of 5%, only 14 out of 365 simulated
days have three stressors. Therefore, the observed difference could potentially
be due to the rarity of these days.

With this theory and the law of large numbers in mind, another simulation
was performed with one million days to show the difference. The law of large
numbers state that the higher the sample size, the closer the observed value is
to the expected value (Bobbitt, 2020). With a length of one million days, two
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observations can be made. Firstly, the ratio of days that have N stressors more
closely resembles the initial distribution used for the sampling. Secondly, as the
number of days having three stressors is sufficiently large enough (now 49 993
instead of 14 occurrences), the difference between days having three stressors
per day and any other given day is now insignificantly low. For Martha, the
maximum difference between the different types of days is now 0.27%, compared
to 18.69% observed before. The same can be said for the other two personas
as well. In the simulation with one million days, the difference between the
types of days become irrelevantly minor for them as well. This suggests that
intercepting interventions is similarly efficient, regardless of how many stressors
occur per day, and that the obtained results were due to an insufficiently large
sample size.
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9. Conclusion

This thesis examined the concept of adding contextual user information for
stress interventions using the framework of just-in-time adaptive interventions
(JITAIs). This was done by introducing HRV and how it can be analysed,
defining stress and ways to detect it, and giving an overview of the current
state-of-the-art methods in digital signal processing, JITAIs, persuasive tech-
nologies, and user context.
Next, it was hypothesized that including contextual information from users de-
creases the amount of undesirable intervention timings. The following segment
discusses the conceptional structure of the application, that closely follows the
concept and components of JITAIs. Additionally, the way how user context
is captured and which sensors are to be used is also proposed. This was fol-
lowed by the details of the implementation, how the PPG signal is retrieved
and analysed, and which data sources are used to infer the user context. After
that, the way how the results were evaluated was explained, and the obtained
results listed. The last part of this thesis discussed the results and examined
the limitations of it.

The results of the simulation-based approach indicate the benefit of includ-
ing user context in stress-related JITAIs. However, since the evaluation did
not include a user testing, the extent of this benefit can currently only be sur-
mised. The next step would be to recruit people willing to participate in a mid-
to long-term user test to obtain and evaluate realistic data. Additionally, the
system itself could also be improved to increase user benefits. Concretely speak-
ing, enhancing the reliability of the obtained HRV metrics (especially during
movement) and looking into personalized context inference, such as by using
machine learning methods.
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A. Healthcare expenditures in
the EU

Figure A.1.: (“Healthcare expenditure statistics”, n.d.)
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Figure A.2.: (“Healthcare expenditure statistics”, n.d.)
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B. Personas

Figure B.1.: Persona 1
Template from (Weidmann, 2018),
picture from (“Free Images”, 2017)

59



Figure B.2.: Persona 2
Template from (Weidmann, 2018),
picture from (Akemi et al., 2019)
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Figure B.3.: Persona 3
Template from (Weidmann, 2018),

picture from (“business woman clapping isolated over a white background |
Freestock photos”, n.d.)
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