
Shifting to Modern Software Development Infrastructures

Masterarbeit

zur Erlangung des akademischen Grades

Master of Science in Engineering (MSc)

Fachhochschule Vorarlberg

Masterstudiengang - Informatik

Betreut von

Dr. Peter Reiter

Vorgelegt von

Enes Eren, BSc

Dornbirn, 10.07.2022

Statutory Declaration

I declare that I have developed and written the enclosed work completely by myself,

and have not used sources or means without declaration in the text. Any thoughts from

others or literal quotations are clearly marked. This Master Thesis was not used in the

same or in a similar version to achieve an academic degree nor has it been published

elsewhere.

Dornbirn, am 10.07.2022 Enes Eren, BSc

2

Abstract

Legacy software systems are critical assets that carry vital business logic for companies.

These systems however are di�cult to maintain and extend because of the usage of out-

moded technologies and procedures which make even minor changes to a challenge and

therefore limit the organizations capability to stay competitive in the fast-growing tech-

nology industry. Yet, companies hesitate to switch to more modern software engineering

approaches like DevOps, Continuous Integration and Delivery since there is an immense

amount of literature and di�erent concepts out there and researching all these topics and

implementing the correct technology stack for their demands and needs would be a vast

�nancial investment.

This thesis is focused on the evaluation and presentation of current literature in the �eld

of software engineering concerned with state-of-the-art software infrastructures for soft-

ware development and best practices.

As a result, this thesis explicates current principals of software con�guration manage-

ment, version control systems, branching and versioning strategies, dependency man-

agement, build automation, Continuous Integration and Continuous Delivery and mod-

ern software release management. Furthermore, as a proof of concept, a concrete and

thorough strategy to shift from an existing legacy system to a postmodern automated

software development infrastructure is implemented and presented, by applying several

of the researched techniques and strategies.

3

Zusammenfassung

Legacy-Softwaresysteme sind Individualentwicklungen, die komplex sind und wichtige

Geschäftslogiken für Unternehmen enthalten. Diese Systeme sind jedoch schwierig zu

warten und zu erweitern, da veraltete Technologien und Verfahren verwendet werden.

Selbst geringfügige Änderungen werden zur Herausforderung und dies schränkt die Fähigkeit

vom Unternehmen ein, in der schnell wachsenden Technologiebranche wettbewerbsfähig

zu bleiben. Dennoch zögern Unternehmen, auf modernere Software-Engineering Ansätze

wie DevOps, Continuous Integration und Delivery umzusteigen. All diese Themen er-

forschen und den richtigen Technologie-Stack für ihre Anforderungen und Bedürfnisse zu

implementieren, ist eine enorme �nanzielle Belastung.

Der Fokus dieser Arbeit liegt auf der Auswertung und Darstellung aktueller Literatur im

Bereich Software Engineering, die sich mit aktuellen Prinzipien und bewährten Metho-

den von Softwareinfrastrukturen für die Softwareentwicklung beschäftigt.

In dieser Arbeit werden daher aktuelle Prinzipien bezüglich Softwarekon�gurationsman-

agement, Versionskontrollsysteme, Branching- und Versionierungsstrategien, Abhängigkeits-

management, Build-Automatisierung, Continuous Integration und Continuous Delivery

sowie modernes Software-Release-Management erläutert. Darüber hinaus wird als Proof

of Concept eine zur Umstellung eines bestehenden Altsystems auf eine postmoderne

automatisierte Softwareentwicklungsinfrastruktur implementiert und vorgestellt, bei der

mehrere der untersuchten Techniken und Strategien zum Einsatz kommen.

4

Contents

Abbildungsverzeichnis 7

1 Introduction 9

1.1 Modern Software Engineering Infrastructure 10

1.2 Legacy System . 10

2 Software Con�guration Management 11

2.1 Version Control Systems . 12

2.1.1 Centralized Version Control System and Distributed Version Con-

trol System . 12

2.1.2 Git . 15

2.1.3 Mercurial . 17

2.1.4 Subversion . 18

2.1.5 Perforce - Helix Core . 20

2.2 Branching . 21

2.2.1 Trunk Based Development . 22

2.2.2 Release Branching Strategy . 24

2.2.3 Develop Branch Strategy . 25

2.2.4 Feature Branching Strategy . 26

2.2.5 Git�ow . 27

2.3 Versioning . 30

2.3.1 Semantic Versioning . 30

2.3.2 Other Versioning Strategies . 32

2.4 Dependency/Package Management . 33

2.5 Artifact Management Server . 35

2.6 Build Automation . 37

2.6.1 TeamCity . 39

2.6.2 Jenkins . 41

5

3 Continuous Integration and Continuous Delivery/ Deployment 42

3.1 Continuous Integration (CI) . 43

3.1.1 Continuous Integration Work�ow 44

3.1.2 CI Practices and Patterns . 45

3.1.3 CI Antipatterns . 47

3.2 Continuous Delivery / Deployment . 48

3.2.1 CD Practices and Patterns . 50

3.2.2 CD Antipatterns . 51

3.3 Release Managment . 52

4 Software Testing 54

5 Implementation 61

5.1 The Legacy System's Current State . 61

5.2 Desired State . 62

5.3 Git as Version Control System . 64

5.3.1 Re-platforming to Git . 65

5.3.2 GitFlow as Branching Strategy . 67

5.4 Artifactory as Artifact Management Server 70

5.5 Conan as Package Manager . 73

5.6 TeamCity as Automation Build Tool . 75

5.7 Build Con�guration Strategy . 77

5.8 Integration-Testing . 88

6 Conclusion 90

Bibliography 92

6

List of Figures

2.1 Centralized Version Control System . 13

2.2 Distributed Version Control System . 14

2.3 Delta Based Version Control . 15

2.4 Snapshot of Files in Git . 16

2.5 SVN Components . 19

2.6 Perforce Components . 21

2.7 Trunk Based Development . 24

2.8 Develop Branch Strategy . 26

2.9 Feature Based Development . 27

2.10 Git�ow . 30

2.11 Semantic Versioning . 31

2.12 Semantic Versioning with pre-release . 32

2.13 Calendar Versioning . 32

2.14 Transitive Dependencies . 33

2.15 Build Automation Work�ow . 39

3.1 CI/CD Work�ow . 43

3.2 CI Work�ow . 45

3.3 CD Work�ow . 49

3.4 CD vs CD . 50

5.1 Legacy System Overview . 62

5.2 Desired Work�ow . 64

5.3 Creating a repository in GitHub . 65

5.4 VCS setup of Application-A . 67

5.5 Initialising Git�ow for Application-A . 68

5.6 Branch Protection . 69

5.7 Pull Requests with Code Owners . 70

5.8 DVC Remote Settings . 72

5.9 Application-A DVC Status . 72

7

5.10 Application-A conan�le.py . 74

5.11 Application-A Project Properties . 75

5.12 Application-A Project Property File . 75

5.13 Application-A TeamCity Project Creation 77

5.14 Application-A VCS Root . 78

5.15 Conan Build Con�guration Setup . 79

5.16 .NET Compile Build Con�guration . 80

5.17 DVC Build Con�guration . 81

5.18 .NET Test Build Con�guration . 81

5.19 Application-A Build and Test Overview 82

5.20 Application-A Build and Test . 83

5.21 Application-A Pull Request Status . 84

5.22 Application-A Schedule Trigger . 85

5.23 Application-A Branch Filter for Deployment 86

5.24 Application-A Package and Deploy . 86

5.25 Application-A Build And Deploy Builds 87

5.26 Conan Packages in Artifactory . 88

5.27 Application-B ConanFile.py . 89

5.28 TC Build Chain . 89

8

1 Introduction

Up until recently, integrating and delivering code was a time-consuming, laborious pro-

cedure. People from several teams had to get together to combine all of the code, solve

any ad-hoc bugs, and then deploy it to the production environment. Only then the code

built previously could provide business value [23] [87].

Nowadays, businesses must contend with fast changing competitive environments, ex-

panding security needs, and scalability issues. Businesses must �nd a method to �nd a

middle ground between the necessity for rapid product development and the requirement

for operational stability. Yet still only fast software development is no longer adequate

to compete in today's technology economy. Deployments must be more e�cient, depend-

able and precise [87] [102]. A modern software engineering infrastructure allows for more

frequent code changes while also improving and streamlining the product development

cycle, which includes software release plans and automated software testing techniques,

hence strategies like continuous integration and delivery (CI/CD) are implemented which

allow for quick development updates while ensuring all the previously mentioned aspects

[163].

If companies' software applications and infrastructures do not satisfy these digital busi-

ness requirements these systems must be updated and enhanced to �t appropriately and

to deliver higher business value. Systems that are not adaptable enough to keep up with

the new needs of digital businesses might be expensive and risky, since these systems

tend to be hard to maintain and adjust to modern business needs [103][102]. In spite of

the fact that the advantages of modern software practices like Continuous Integration,

Continuous Delivery and DevOps cannot be denied [36][51], many companies tend to

hesitate to apply them, since shifting strategies and infrastructure come with needs of

an initial �nancial investment and with obstacles such as e�orts to meet required qual-

ity standards and delays related to testing limitations. These di�culties are even more

increased when legacy applications lack proper documentation [113][103][134].

This is why this thesis proposes techniques for a state-of-the-art modern software devel-

9

opment infrastructure, work�ow and additionally techniques dealing with various types

of re-engineering di�culties in order to modernize and re-platform legacy systems.

1.1 Modern Software Engineering Infrastructure

Modern software development is built on three pillars: �exibility, speed, and quality.

Growing customer demand and the changing technical landscape have made software

development more complicated than ever before, rendering traditional software develop-

ment lifecycle (SDLC) methodologies, like the waterfall model, incapable of keeping up

with the fast-paced nature of development [164]. Agile and DevOps practices have grown

in favor as a way of providing these changing needs by adding agility and responsiveness

to the development process without losing overall product quality. Continuous Integra-

tion (CD) and Continuous Delivery (CD) are two crucial components that aid in this

process. It lets developers modify integrated development pipelines that span the whole

software development process, from development to production deployments [162] [164].

1.2 Legacy System

A legacy system is a outmoded still in use computing software and/or infrastructure

[156]. The system still may ful�ll the requirements for which it was created, but it does

not allow for expansion. A legacy system will only ever serve the company's current

needs. The older technology prevents interacting with modern systems [156]. As tech-

nology progresses, most businesses are forced to cope with problems generated by legacy

systems. A legacy system prevents a company from having the most modern capabilities

and services, such more data management and automation, and keeps them in a slump

in their business. [120] [2].

There are a variety of reasons why a corporation may stick with a legacy system. Mod-

ernizing to a new system necessitates an initial �nancial investment. Old systems may

be built using obsolete technology, making migration di�cult and there may be little

to no documentation about the system, and the original developers may have left the

company. Even the planning to change a legacy system and de�ning the requirements

can be di�cult at times [113].

Furthermore, preserving behaviour is a di�cult task. It can be di�cult to make changes

and to maintain behaviour, especially when there are no existing tests for the old system

[87][134].

10

2 Software Con�guration Management

Software Con�guration management (SCM) is the process of storing, retrieving, uniquely

identifying, and modifying all artifacts important to a project, as well as the relationships

between them [87]. It is a method for ensuring that a product's performance and func-

tionalities are consistent with its requirements, design, and operational data throughout

its life cycle, therefore ensuring an improvement in software quality. A con�guration

management strategy identi�es how to handle all the changes that occur during the

course of a project and ensures reproducibility of any parts of the project, including the

version of the operating system, its patch level, the network con�guration, the software

stack, all the dependencies and their con�guration [138][87].

It keeps track of the progress of systems and applications and consists of four major

components: Con�guration Identi�cation, Con�guration Auditing, Con�guration Status

Accounting and Con�guration Change [62].

Con�guration Identi�cation is the act of identifying all of a project's components and

ensuring that they can be identi�ed quickly throughout the project life cycle. Con�gu-

ration identi�cation divides a project into smaller, easier-to-manage subprojects, such as

design documents and unique graphic �les [44][127].

Con�guration Status Accounting keeps track of when, why and who makes changes to

a project`s source code. It ensures that as the product evolves through its life cycle,

information about the product and product con�guration information is captured, as

well as historical transparency [45] [26].

Con�guration Auditing is a procedure for ensuring that a project is on track and that the

developers are producing exactly what is needed and it allows the tracking of advancement

[109].

Con�guration Change Control organizes team members access to project components so

that data does not get lost, or unauthorized changes are performed. Most SCM systems

have a check-in/check-out mechanism that allows user to write to a project �le to prevent

against lost changes. Current and prior versions of a �le are identi�ed and monitored,

and user can request a copy of a previous version at any time [39] [127].

11

2.1 Version Control Systems

Within large, mature enterprises, requirements on software projects grow over the years

and with every modi�cation and technology addition, from many developers and applica-

tion managers the underlying codebase of a project and it`s �les will evolve. With many

contributors and changes the necessity to maintain the projects and it`s code robustness

is critical, in which version control systems (VCSs) play an important role [176] [25].

It is a technique for tracking changes of a group of �les over time so that certain ver-

sions can be accessed. It allows to revert chosen �les or the complete software project

to a former state, analyse changes over time, determine who last edited source code that

causes a problem, and when an issue was created [66]. Changes made in one section of

the software may con�ict with changes made by some other developer working on the

same project at the same time. With VCS these issues can be identi�ed and resolved

so that the rest of the teams' work is not a�ected [87] [25]. To not intervene with the

work of others every version control system supports a mechanism called branching (See

2.2). Branching allows to separate from the main development code and continuing to

work on a copy of the main code [31]. Use of a VCS also means that mistakes are more

easily to be recovered. Every item associated with the development of software should

be version controlled such as source code, tests, build and deployment scripts, database

scripts, libraries, documentation and con�guration �les [66][25]. Although it is feasible

to develop software in the absence of utilizing version control, it exposes the software

project to a signi�cant risk. So, the question is not whether a version control should be

used, but which VCS [87].

2.1.1 Centralized Version Control System and Distributed Version Control

System

There are two sorts of VCSs: Centralized version control systems (CVCS) and Distributed

version control systems (DVCS) [99].

In a centralized VCS a server serves as the primary repository, a storage for projects �les,

for every version of the project �les. There is a single server that houses all the versioned

�les in these systems, such as Subversion, also called SVN and Perforce, and several clients

that check out �les from that central server as illustrated in Figure 2.1 [148][87][66]. When

employing centralized source control, each user directly contributes to the one and only

server, which allows for quick communication between team members on small teams.

Therefore, collaboration and communication must be e�cient if a centralized process is to

be productive. [66]. A centralized work�ow, like a client-server architecture, enables �le

12

locking, ensuring that any code that is currently checked out is not available to others, and

that only a single developer may contribute to the code at a time. Developers contribute

to the central repository via branches, and the server unlocks �les after merges [155].

This con�guration has numerous advantages. For instance, everyone on the project is

aware of what everyone else is doing to some extent. Administrators have �ner control

over who can do what and administering a CVCS is signi�cantly easier than dealing with

local databases on each client. However, this setup has a number of serious �aws. The

centralized server's single point of failure is the most obvious. [155][66]. No developer is

able to commit and save their work to whatever if the server is o�ine. The whole history

of the project will be destroyed if the central database's hard drive malfunctions and

there are no su�cient backups produced, with the exception of any individual snapshots

that users may keep on their own workstations. [66].

Figure 2.1: Centralized Version Control System

Distributed version control systems (DVCS), such as Git (See 2.1.2) and Mercurial (See

2.1.3, do not simply check out the most recent state of the �les. User completely copy

the repository, including its whole commit history, as shown in Figure 2.2 [66]. As a

result, if any of the servers dies while these systems were cooperating through it, any of

the user repositories may be transferred back to the server to restore it. Every clone is a

13

complete backup of all data [66] [35]. DVCS allow users to change project �les, also called

committing, branch, and merge changes locally. The server just requires the di�erences

between each commit and does not need to store a physical �le for each branch. With each

developer uploading code changes to their own repository and administrators putting up a

code review policy to guarantee exclusively quality code merges into the main repository,

distributed version control systems allow software development teams construct robust

work�ows and hierarchies [136]. Additionally, many of these systems work well with

multiple remote repositories, enabling concurrent collaboration with distinct development

teams throughout the same project. This makes it possible to develop processes like

hierarchical models that are not o�ered by centralized systems [136] [87]. Yet, DVCS

have a bottleneck if clients need to manage and work with binary �les, since they require

huge amount of spaces [99].

Figure 2.2: Distributed Version Control System

14

2.1.2 Git

Git is a Distributed Version Control System and like many of today's most popular VCS

systems, is free and open-source. Rather than having a single repository for the whole

archive of the software, as is the case with once-popular version control systems like Sub-

version (See 2.1.4), Git allows to have an entire copy of the code on the local machines of

the developers and work on it without the need of remote connection to the repository.

Git is also utilized to track changes in the source code, to allow numerous engineers to

work cooperatively on one code base without intervening with each other and support

non-linear development since parallel branching is allowed [66] [24].

The way Git sees its data is what sets it apart from any other VCS. Most other sys-

tems save data in the form of a list of �le-based modi�cations. Other systems like SVN

(See 2.1.4) and Perforce (See 2.1.5) consider the data they store as a collection of �les,

with changes made to each item over time which is called delta-based version control as

shown in Figure 2.3 [66].

Figure 2.3: Delta Based Version Control
Source: https://git-scm.com/book/en/v2

Git views its data as a collection of snapshots of a small �lesystem. With every commit,

Git saves the current state of the �les and keeps a reference on it. Git does not store the

�le again if it has not changed, instead providing a link to the prior identical �le it has

previously stored as shown in Figure 2.4 [25] [24]. That is why Git`s branching system

is extremely light, making branching operations almost instantaneous and toggling back

and forth between branches quick. Git, unlike many other VCSs, promotes work�ows

15

https://git-scm.com/book/en/v2

that branch and merge frequently, even multiple times per day [66].

Figure 2.4: Snapshot of Files in Git
Source: https://git-scm.com/book/en/v2

Since Git allows working on local copies, most Git operations require just local �les and

resources to run. Information from other machines on the network is rarely required.

Unlike CVCS, where most activities have a network latency costs [25] [24].

Advantages of Git:

1. It is simple to branch and merge: It is a part of the working process. Branching

and merging are e�cient and take up minimal storage. Branching allows to test

features and ideas before releasing them to the public [66].

2. The work�ow is adaptable: When compared to a centralized VCS, git has the

ability to create a customized work�ow [24].

3. Git cryptographically hashes its content in order to protect �les from corruption

due to disk or network failures [66].

Disadvantages of Git:

1. A steep learning curve: There are a lot of commands with a lot of choices, some of

them are non-intuitive and require knowledge of git's internals [100].

2. Binary �les: If projects contain often updated non-text �les, git will grow bloated

and slow [65].

16

https://git-scm.com/book/en/v2

2.1.3 Mercurial

Mercurial is a distributed source control management program that is free to use. It

o�ers the ability to manage projects of any size. It is simple to use and di�cult to break,

which makes it excellent for anyone working with versioned �les [111].

In Mercurial creating new changes and branches, moving changes around, and running

history and status procedures are all quick. Mercurial is nimble and by mixing low cog-

nitive overhead with fast operations. Mercurial's utility is not restricted to projects of

a certain size [118]. While Mercurial repositories can have many development branches,

branching is usually accomplished via cloning a repository in its entirety. Mercurial

can produce independent lightweight clones of whole repositories in seconds utilizing

hard links and copy-on-write techniques. This is a key feature of Mercurial's distributed

model, since branches are inexpensive and easily discarded [106].

It is well-suited to scripting chores, and its clear internals and Python implementation

make it simple to add new functionality via extensions, if the primary features are not

enough [118].

The Mercurial system is built on a storage method called "revlog," or revision log, which

strives to achieve O(1) seek e�ciency for both reading and writing revisions while main-

taining e�ective compression and integrity. To calculate the position of the appropriate

record in the index and read it to �nd a speci�c revision is fast and simple [106]. It will

contain a pointer to the delta chain's �rst full revision, allowing the entire chain to be

read in one contiguous chunk. Therefore to locate and retrieve a revision, only O(1) is

required. For each �le maintained, it keeps a separate index and data �le. Mercurial

employs the method of storing a cache of controlled �le sizes and timestamps for future

commits to identify �le changes quickly. When a changeset is checked out, Mercurial

also informs which �les need to be updated. It naturally keeps track of which changeset

the current working directory is based on, and will have two such parents in the case of

merge operations [106].

Commits are atomic and are properly arranged such that developers do not have to lock

anything. When a changelog entry to the index is added, it becomes available to devel-

opers. Additionally, tracking is also done for commit operations [146].

Advantages of Mercurial:

1. Safe history: Mercurial includes only one single command that can alter history:hg

rollback. Other DVCS such as Git allow altering the history of repositories, which

can cause unwanted changes [100].

2. Extendible: Mercurial`s features are easy to extend with Python [112].

17

3. Simplicity: Mercurial is easy to learn and use, which is useful for less-technical

oriented users [100].

Drawbacks of Mercurial:

1. No partial checkouts, which is a big limitation for large projects [100].

2. Rolling back bigger changes is cumbersome [100]

2.1.4 Subversion

Subversion, also called SVN, is utilized to maintain current and past versions of software

projects and is an open-source centralized version control system. It was created to help

programmers coordinate their e�orts. SVN allows to keep track of and collaborate with

team members in the same workspace [173] [130]. Every �le in the project is saved with

a �le location and a revision number by Subversion. Because it does not host any �les,

its data consists of links to �les rather than actual �les, meaning the repository with the

whole �le history is only available on the Subversion server. By default, SVN keeps all

code and accompanying metadata on a single server. To retrieve a copy of the code from

a certain repository, client systems must connect to the server, as shown in Figure 2.5.

It also creates an XML log �le, making it simple to examine what has changed and who

made the changes. Any changes to a �le can be undone [144].

18

Figure 2.5: Components of SVN

Advantages of SVN:

1. SVN retains a complete revision history and allows to lock �les that cannot be

merged [131].

2. It enables symbolic link versioning as well as path-based authorization [173].

Since SVN is older there are some drawbacks of using it:

1. Because Subversion is centralized, it is not suited for open-source projects [131].

2. SVN is slower then Git [144]

3. Because the repositories are hosted on a single server, users must remain on top of

updates [173]

4. Changes made since the last backup will be lost if the SVN server fails [173].

19

2.1.5 Perforce - Helix Core

Helix Core is a centralized version control system by Perforce. Keeping everything in

one location guarantees that developers are always working with the most recent version.

All modi�cations made by developers are committed to a central server, regardless of

where they are situated [80]. Having a single copy of a project across an organization

establishes a sole source of truth. Despite being centralized, Helix Core securely enables

remote sites through replica and proxy servers. Because most activities are performed

locally, this increases performance. Helix Core was designed to be fast and scalable. It

has the capacity to process immense amount of transactions, �les, and petabytes of data.

Developers may check if they have the most recent version of a �le on their workstation

fast and conveniently [70] [121]. It also has exclusive locking for huge binary �les. This

keeps team members from stumbling over one another's work. Artifacts are kept with

source code and other non-code resources and can be checked in with relevant source

code in the same change list and since everything is stored on a single server it simpli�es

development and deployment work�ows [80][70].

As shown in Figure 2.6 the key components of Helix Core are:

1. Workspace: Directories and folder on a local workstation where developers work

on revisions of �les and artifacts that are managed by the Helix Core server [80].

2. Helix Core application: An Helix Core application, like P4V [80], runs on the local

workspaces of clients and make requests to the Helix Core server and fetches results,

such as status information about artifacts and �les [80].

3. Helix Core server: Responds to the requests of a Helix Core application, maintains

�les and tracks the state of workspaces [80].

4. Depot: The depot is a �le repository hosted on the Helix Core server, which contains

the complete history of every versions of all artifacts and �les. A single Helix Core

server can host multiple depots [80].

20

Figure 2.6: Perforce Components
Source:

https://www.perforce.com/manuals/p4v/Content/P4V/Home-p4v.html

The source code, artifacts and binary �les that the Helix Core server manages are stored

in a depot. Clients open and modify �les in their local workspace. After that, they use

a change list to send updated �les to the depot after editing. The depot maintains track

of all �le revisions, both current and past [80].

Advantages of Perforce:

1. Managing Binary Files: Artifacts are kept with source code and other non-code

materials in Helix Core, eliminating the need for an external binary �le server,

which results in a more simple work�ow [121] [70].

2. Partial checkouts: Perforce supports partial checkouts [70].

Drawbacks of Perforce:

1. Cost: Perforce is more expensive compared to other version control systems [21].

2. Branching on per-�le basis: Perforce creates an immense amount of metadata in

the Perforce database for every branch that is created. Which may contribute to

performance issues [21].

2.2 Branching

A branch is a copy of a code, managed in a VCS [125]. Through branching software

development teams can work on separate portions of a project without a�ecting each

other. Using branching, teams can better organize their work on a common codebase.

21

https://www.perforce.com/manuals/p4v/Content/P4V/Home-p4v.html

Most of the version control systems have own naming convention for the main branch

which is the default branch of a project and contains the primary project state. Git`s

default branch is called master, perforce has mainline and SVN has trunk [31] [87].

Developers create branches, either directly or indirectly from the default branch to work

in isolation. As a result, the entire product remains stable. It is best to keep these working

branches up to date with changes in relevant code lines. Software branching establishes

a link between the branch and the code from which it got created [125]. Other users may

be contributing changes to the same primary code line while developers are working on

their own branch [31] [125]. However, if branches are not properly managed, they can

quickly grow bloated and unmanageable, undermining the goal of branching and version

source control. Following a suitable branching strategy (See Branching Strategy) for all

development needs is one of the best approaches to keep everything organized [177].

Branching Strategy

Branching strategies focus on how branches are employed, created and named in the

development process. Simply stated, while working with a version control system for

developing and maintaining code, a software development team employs a branching

strategy in order to organize the VCS in use and keep it clean [78]. One major goal of a

version control system is to enable a collaborative development platform without causing

code to overlap or be a�ected. Each team member working on the same source code will

eventually make incompatible changes [77]. With a version control system in use with

a branching strategy, however, such disputes can be prevented. One of many keys to

developing an e�ective modern infrastructure process is a well-implemented branching

strategy, since it aids in the de�nition of how the delivery team works and how each

feature, enhancement, or bug �x is addressed. It also simpli�es the development and

delivery process by letting developers concentrate on developing and deploying only the

relevant branches of the product, rather than the complete product[177]. Since there

are many strategies out there, the branching strategy selection depends on the project

and user needs. This decision is in�uenced by factors such as the development approach,

scale, and user preferences. Other considerations, like as CI/CD tools, also in�uence

which branching techniques can be used in a CI/CD pipeline [77].

2.2.1 Trunk Based Development

Trunk-based development (TBD), commonly known as "mainline development," is a

branching approach, in which all branches branch out from a single trunk/main branch.

22

All developers integrate their modi�cations directly into a shared trunk (master) regu-

larly. This shared trunk is always in a safe and functioning state. As shown in Figure

2.7, with TBD developers pull code from this trunk, store it locally, and subsequently

push it to the common trunk [177] [22]. This regular integration allows developers to

instantly see one other's changes and react fast if any problems arise. Developers and re-

lease engineers rarely branch under this model. If the rare case occurs that they branch,

they create a temporary feature branch that is evaluated and then merged back into

the primary branch. By doing this, teams may avoid the di�culties of branching and

merging [78] [22]. Additionally, TBD helps to keep production release �ow as the project

complexity and the amount of contributors grows [22].

Bene�ts of Trunk Based Development:

1. Better overview: Smaller iterations help teams to keep track of all changes, reduce

code con�icts, and improve overall code quality [78].

2. Less merge con�icts: All other branches have a speci�ed and restricted lifespan

since the primary master branch is the only branch that is long-living. This reduces

larger merge con�icts by ensuring that branches are not left in development for too

long [78].

3. More e�cient code reviews: Code review is more e�cient with trunk-based devel-

opment's quick, tiny commits. Developers can rapidly observe and review small

changes with small branches [177].

4. Always in a deployable state: Trunk-based development aims to keep the trunk

branch available for deployment at any time. This allows the team to deploy

regularly to production and create new daily production release goals [22][177].

Drawbacks of Trunk Based Development:

1. Collision: Contention collision is one of the most di�cult aspects of trunk-based

development. It will be in a perpetual state of churn if too many individuals check

changes into the mainline simultaneously. Developers can wind up stumbling over

one another and ruining builds all the time. [177] [78]

2. Direct interaction with main branch: Because they are directly engaging with the

shared trunk, inexperienced developers may �nd this technique cumbersome [177].

23

Figure 2.7: Trunk Based Development
Source: https://www.optimizely.com/optimization-glossary/

trunk-based-development/

2.2.2 Release Branching Strategy

Most software development processes follow a simple pattern: code, test, release, and

repeat. There are two issues with this method. First, developers must continue to write

new features while quality assurance teams test presumably stable software versions.

While the software is being tested, new work cannot be done. Second, the team has to

support previous, released software versions. If a bug is detected in the most recent code,

it is almost certain that it also exists in released versions, and customers will want to

acquire that bug patch without having to wait for a major new release [69] [177]. The

Release Branching strategy solves this with the following steps [77].

1. The development team commits all new code to the primary branch.

2. When the developers are sure that the current stage of the trunk is ready to be

released, the trunk gets copied to a "release" branch, for example named "release/x"

where as "x" can be any kind of string, depending on the versioning strategy (See

2.3) in use.

3. While the QA (Quality Assurance) Team is testing the newly created release

branch, the developers can continue working on the new release on the trunk.

Whenever bugs are located in either branch, before the release, �xes are ported

into both branches.

24

https://www.optimizely.com/optimization-glossary/trunk-based-development/
https://www.optimizely.com/optimization-glossary/trunk-based-development/

4. After the testing phase, the "release/x" branch is copied to the "tag/x" branch,

indicating a steady code, which will then be then released.

5. After the release, the branch is still maintained. While working on the newest

features and releases, bug �xes continue to be merged into the release branch.

When the development team agrees that the amount of �xes are su�cient enough,

a new release is getting created.

2.2.3 Develop Branch Strategy

In this strategy, a permanent branch called develop is setup beside the master branch

with this strategy. All work goes into the develop branch �rst. This is a secure location

where new code is tested without risking breaking the project. Additionally, a testing

strategy in place is needed to guarantee that merges do not introduce bugs into the pri-

mary branch. The main branch has the o�cial release history, while the develop branch

is used for feature integration as shown in Figure 2.8. The project's whole history will

be in the develop branch, while a truncated version will be in the main branch [20] [177].

Bene�ts of Develop Branch Strategy:

1. As long as tentative development is done on the develop branch, the master branch

remains in a stable state.

2. While a feature is being implemented, a hot�x can be applied to the master branch

at any moment.

Drawbacks of Develop Branch Strategy:

1. Multiple features cannot be created at the same time.

2. It is di�cult to remove and restore functionality using only the develop branch.

25

Figure 2.8: Develop Branch Strategy
Source: https://www.atlassian.com/git/tutorials/

comparing-workflows/gitflow-workflow

2.2.4 Feature Branching Strategy

Feature driven development, also known as feature-based development, divides a prod-

uct's branches based on its features. Software teams plan, model, and integrate in terms

of features. This approach is closely lined up with agile approaches and is a common

GitFlow strategy and by splitting up development by features it can support teams to

move quicker [78][30]. This also enables that, features can be tested independently and

then included into to the mainline of the software project whenever they are ready to be

merged into the primary branch, as seen in Figure 2.9. There is never a straight commit

to the primary branch. Even the simplest modi�cations are made on a feature branch

and then merged into the primary branch [78]. This encapsulation allows developers to

work on a speci�c feature without interfering with the main codebase. It also guarantees

that the primary branch will never include broken code, which is extremely bene�cial

in continuous integration setups. Using feature development also allows to use pull re-

quests, which are a way to start conversations about a branch and lets other developers

to approve a feature before it is merged into the main project [19] [77].

Bene�ts of Feature Based Development:

1. Stable code: Allowing developers to develop and work separately from the primary

product can help maintain the stability of a code base [77]

26

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

2. Scalable: Large-scale projects can be managed more simply using feature-driven

development. Innumerable amount of developers can be assigned to certain fea-

tures. Code can then be tested more simply before being merging to the main code

base [78]

3. Administrable: If the software development apartment consists of a huge amount of

teams, which are topographically distributed, this approach allows for more control

over where and what is being merged [78]

Drawbacks of Feature Based Development:

1. Long-living Branches: The aim of feature branches is for the branch to exist as long

as the feature is under development. Long-lived feature branches may be cumber-

some to merge. Because developers may operate in solitude for lengthy periods of

time in order to prevent disputes. Furthermore, when a feature branch is left in de-

velopment for too long, it may con�ict with other branches during merging [77][78].

Figure 2.9: Feature Based Development
Source: https://buddy.works/blog/5-types-of-git-workflows

2.2.5 Git�ow

Git�ow combines existing branching mechanisms like Release Branching Strategy (See

2.2.2), Feature Branching Strategy (See 2.2.4) and Develop Branch Strategy (See 2.2.3)

while expanding their functionality [85].

27

https://buddy.works/blog/5-types-of-git-workflows

Git�ow consists of two primary branches, master and develop that have unlimited lifes-

pan. The master branch is the primary branch, where source code is always in a stable

and production-ready form. Develop is the primary branch, where the source code is at

all times in a state where the latest development modi�cations for the upcoming release

have been provided [177][6].

When the source code on the develop branch is stabilized and is ready for release, all

the modi�cations must be integrated back into master and a release number assigned.

Here the applied release number, depends on the current release number and applied

versioning strategy (See. 2.3). As a result, every time modi�cations are merged back

into master, a new production release is created [20].

Furthermore, Git�ow uses a range of supporting branches in addition to the main branches,

master and develop, to enable parallel work across team members, arrange for production

releases, track features and assist in quickly �xing issues in already delivered products

[177].

The supporting branches are Release branches, Feature branches, which are inspired by

Releasing Branching Strategy (See 2.2.2) and Feature Based Strategy (See 2.2.4), and on

top of these Git�ow also uses Hot�x branches. Unlike the main branches, these branches

have a �nite lifespan because they will be eliminated at some point. Each and every

branch has a distinct use and is constrained by strict criteria regarding which branch can

serve as the origin branch and which branches may serve as a merge target. [6] [20].

Feature branches are applied to build new functionalities for upcoming releases. When

developing a feature, the target version for which it will be included may be uncertain at

the time. A feature branch survives for the duration of the feature's development, but it

will be merged back into develop and then deleted [6].

Release branches are used to prepare new production releases. They also enable minor

bug �xes and the preparation of meta data for a release. Because all the work is done on

a release branch, the develop branch is free to accept features for the next major release.

When the develop branch presents the desired state of a new release, it is time to branch

out a new release branch from develop. At this point in time, all features intended for

the current release have to be merged. All features planed for future releases may not be

included, they wait until the release branch is split o� [68] [69].

Hot�x branches are similar to release branches since they are used to prepare for an

unplanned new production release. They result from the need to respond quickly to an

undesirable state of an already released version of a product. When a major problem in a

production version has to be �xed right away, a hot�x branch can be created by branch-

ing o� from the master branch's matching tag that designates the production version.

28

The key point of hot�x branching is that team members' work on the develop branch

may continue while other developers prepare a short production patch [6] [68].

Advantages of Git�ow:

1. Organized: Because this technique has separate and clear branches for particular

goals, developers can better organize their work with the many sorts of branches.

Additionally, clearly de�ned branches that aid in de�ning the test scope and allow-

ing just speci�ed branches to be tested [177].

2. Versioning: When dealing with numerous versions of the production code, Git�ow

is ideal [68].

3. Scalable: Development is simple to scale. By separating features and guaranteeing

that developers never has to block either development or master branch for release

preparation, it facilitates parallel processing and CD [116].

Drawbacks of Git�ow:

1. Complex: Many branches with complicated regulations.

2. Maintenance: Maintenance is di�cult because of the sheer amount of branches,

especially long-lived branches [68].

3. Overhead: Depending on the complexity of the project, this method may overcom-

plicate source control [177].

29

Figure 2.10: Git�ow
Source: https://www.atlassian.com/git/tutorials/

comparing-workflows/gitflow-workflow

2.3 Versioning

Software Versioning allows software development teams to keep track of the changes that

are made to project �les and simultaneously allow to identify each build artifact rapidly

and easily. Using a software versioning strategy for projects helps everyone involved in

producing and using an application to work more e�ciently. Developers know exactly

which features and changes are included in which version and customers can report the

application version, which they use, when a e.g. a bug is found. Since there are multiple

versioning strategies it is up to the needs of a product which versioning strategy to utilize

[150] [175].

2.3.1 Semantic Versioning

Semantic Versioning is a de�ned method of providing meaning to software releases. It

allows software developers to communicate crucial information about versions to their

customers in a precise form. A SemVer version number is made up of three parts, sep-

arated by periods, Major, Minor and Patch as seen in Figure 2.11. Depending on what

30

https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

was modi�ed in the revision, each number represents a di�erent degree of revision. Read-

ing from left to right, the number re�ects the current Major release, the current Minor

release, and the current Patch release. Each number version has its own interpretation

[150] [58].

Figure 2.11: Semantic Versioning

A Major version has to be increased, if a release has any backward-incompatible breaking

changes. This has the advantage of making it simple for anybody to determine if a new

version will behave di�erently than a prior one.

The Minor version must be incremented whenever backward compatible functionality is

implemented, which implies that customers should manage to update to a new minor

version without encountering any problems [58][150].

A Patch release denotes that the code updates in this revision did not introduce any new

features or API changes, and that it is backward compatible with earlier versions. It's

most commonly used to denote a problem �x. Additionally, it indicates that the usage

of the product did not change.

With these three numbers, projects can quickly determine all of the compatibility infor-

mation a client requires and determine whether or not a client should update to the most

recent revision and how much e�ort it will entail. Authors can also send highly essential

information to their software's users using these three numbers. [58] [37].

Pre-releases are also possible with SemVer as illustrated in Figure 2.12. Developers can

add certain optional labels after the patch, such as a pre-release label or a build num-

ber. To mark a package as a pre-release, developers must include a hyphen before the

pre-release label, which can be a dash-separated identi�cation. A pre-release indicates

an unstable package and poses a high risk if utilized [150].

31

Figure 2.12: Semantic Versioning with pre-release

2.3.2 Other Versioning Strategies

There are multiple versioning strategies besides Semantic Versioning.

Calendar Versioning

Calendar Versioning, also called CalVer is a versioning technique that employs numbers

that correlate to the day that a particular version will be released. There are a few

segments of numbers and modi�ers that can make up Calendar Versioning. The �rst

segment often contains year information, which might be short year (YY), zero-padded

year (0Y, relative to year 2000) or full year (YYYY). The second segment might be dif-

ferent calendar information or a year's incremental release number. Calendar Versioning

is usually utilized by projects that want to establish a consistent cadence and user expec-

tation for future version release times. An example of CalVer is shown in the following

Figure 2.13 [37] [150].

Figure 2.13: Calendar Versioning
Source: https://nehckl0.medium.com/

semver-and-calver-2-popular-software-versioning-schemes-96be80efe36

32

https://nehckl0.medium.com/semver-and-calver-2-popular-software-versioning-schemes-96be80efe36
https://nehckl0.medium.com/semver-and-calver-2-popular-software-versioning-schemes-96be80efe36

2.4 Dependency/Package Management

When one piece of software relies on another to build or execute, it is called a dependency

[54]. There is a distinction between components and libraries when discussing dependen-

cies.

Libraries are software packages provided by third parties that are not controlled by an

organization's own team other than the choice of which to utilize. Libraries are often

updated only infrequently.

Components, on the other hand, are parts of software on which an organization's pro-

gram depends but which are also built by the same organization. Components are often

updated on a regular basis. This distinction is crucial since there are more things to

consider when developing a build process when working with components than libraries,

such as how to eliminate circular dependencies between components [87].

When talking about dependencies there are two types to distinguish between, direct

dependencies and transitive dependencies. Direct dependencies are libraries that are di-

rectly accessed by an application, whereas transitive dependencies are libraries that other

dependencies are using, they are dependencies of a dependencies as shown in Figure 2.14

[55].

Figure 2.14: Transitive Dependencies

As organizations grow, managing dependencies manually across several projects quickly

becomes tedious and di�cult to maintain, which is why proper dependency management

33

is essential.

Dependency management enables to keep applications stable and reproducible, despite

being under constant change, additionally it enables to setup the right dependencies for

applications at all times.

A critical feature of dependency management is to consider that the versions of depen-

dencies that an application needs, whether third-party libraries or organization owned

components, are likely to be updated and modi�ed, which might break applications or

introduce undesired behavior. Which may raise security risks since some of the needed

dependencies may get obsolete. In that case it is also more di�cult to �gure out what

is breaking the application or the cause of performance issues, since this issues can

occur without the main application changing [54][12]. Because it is crucial for the long-

term maintenance of a product, a solid dependency management approach also includes

versioning dependencies, including libraries and components. Reproducibility will be

unattainable if dependencies do not have versions. That implies that if an application

breaks as a result of a dependency update, developers will not be able to track down the

modi�cation that caused the problem or discover the last working version of the library

[83] [108]. Additionally, when a software project is checked out from version control and

an automated build is run, the same binaries will be built no matter who and when it

builds, which means that the exact same binaries will be reproduced in the future when

running that same version of the software application, hence versioning is indispensable

[87].

In software projects, there are two viable options for managing libraries. One option is

to put them in version control. That way developers may easily assess whether or not

the application is up to date with the newest versions of the libraries by knowing which

versions the program is utilizing. The advantage of this technique is that everything

clients need to use the application is in the same repository as the source code, once

the project is checked out of the repository, everyone is guaranteed to build the same

packages [87].

However, there is issues with checking libraries and components into VCSs. Checked-in

library repository may get enormous in size over time, making it di�cult to identify which

of these libraries are still being used by the application, and growing artifacts might be

di�cult to manage depending on which VCS is used.

Another option is to utilize a dependency management tool to get libraries from online

repositories or, the organization's own artifact management server (See 2.5) [87] [3]. As

part of a project's setup, a dependency management tool allows declaring exactly which

versions of libraries and components are required. The dependency management tools

34

then downloads the necessary versions of the libraries that the project requires, resolving

dependencies on other projects and guaranteeing that the project's lifecycle is free of

inconsistencies. Additionally, using an own artifact repository, such as Artifactory (See

Artifactory) or Nexus (See Nexus), guarantees that builds are reproducible and further-

more it also makes auditing libraries much easier, by managing which versions of each

library are available to projects within an organization [87] [11].

2.5 Artifact Management Server

Packages, containers, binaries and libraries are examples of artifacts produced by software

development processes [13]. Furthermore, artifacts may are dependencies (See 2.4) that

an application requires to run or deploy, such as open-source software. Working with

artifacts can be di�cult because they come from a variety of places both inside and

outside an organization. Each system with which an organization interacts carries a

risk of failure owing to outages or other problems. By centralizing artifacts in a single

location, an artifact management system overcomes these challenges of complexity and

reliability. Organizations therefore gain greater control over their artifacts and how they

are utilized [14][13]. When it comes to dependency management and CI/CD integration

for artifacts and dependencies, an artifact management system can serve as a single source

of truth. This cuts down on the time and risk associated with downloading dependencies

from public repositories. Universal artifact management helps development teams avoid

inconsistencies by making it simple to locate the correct version of an artifact [87] [12].

It also provides many other features and advantages such as:

1. Traceability: Versions are kept track of, which comes in handy when standardizing

software libraries and auditing third-party licenses [13].

2. Reproducibility: Artifacts and metadata remain stable, ensuring predictable and

repeatable builds [13].

Artifactory

JFrog Artifactory [15] is a cloud based repository management tool for software develop-

ment teams and is used for managing artifacts and binary repositories [96] [15]. Software

distribution, encrypted data storage, access control and automatic server backups are

all important characteristics. Admins may obtain insight and manage application pack-

ages and open-source libraries using the Artifactory platform. To expedite application

35

delivery, administrators may link the solution with continuous delivery tools such as An-

sible [79] and Saltstack [124]. JFrog Artifactory, being a universal Artifact Repository

Manager, completely supports software packages written in any language or technol-

ogy. Artifactory has a REST API that DevOps teams can use to automate releases and

minimize downtime. Artifactory provides users with access to metadata related to en-

vironment maps and application �les. It also supports integration with version control

systems such as Git, TFS, and Bitbucket [98] [89]. Artifactory also allows to deploy with

CI servers like TeamCity and Jenkins and additionally gives access to other advanced

features like, open-source library organization, license control, a REST API, security and

access control, monitoring and maintenance of binaries [96] [15] [95].

Key functionalities of Artifactory are:

1. Artifactory is easy to set-up and to con�gure. There is no need for dedicated

hardware to buy [96].

2. Minimal costs to maintain [96]

3. JFrog Artifactory is supports periodic backups of private and protected repositories

[96]

4. It also has access control, which allows administrators to manage the access rights

of users and teams to repositories [96]

Nexus

Nexus is a binary repository manager, which enables open-source artifacts from public

repositories to be cached, and also the hosting of software components produced inside

of an organization, thanks to its proxy features. Nexus has functionalities like build

promotion, staging, and comprehensive authentication and authorization. Nexus addi-

tionally includes meta data management, dispersed team support, and high availability

capability [128].

Key functionalities of Nexus are [89]:

1. Universal repository support like Java, Maven, npm, NuGet, PyPI and RubyGems

2. Compatible with IDEs and CI tools like Eclipse, IntelliJ, Visual Studio, Jenkins

3. Role Based access control

36

2.6 Build Automation

Build automation is a way to handle builds within a CI/CD (See 3) pipeline. When a

developer commits code changes to a repository, a continuous integration server detects

the commit and starts a build on the CI system, then veri�es the changes by running

available software tests and sends a report to the developer which made the change or the

code administrator [33]. Build automation is the process of creating and building software

without the manual involvement of humans. Tasks that were formerly the responsibility

of a developer are standardized with build automation, resulting in programmed, repeat-

able, automated stages for bringing new software forward to its ultimate form [161].

Software development follows a single track, step by step path from architecture through

deployment without automation [161]. This, however, results in a time consuming, man-

ual process that delays the lifespan and introduces problems. Automation, on the other

hand, allows a company to become more �exible, agile, and responsive to changing busi-

ness demands. Many software development processes, like unit- and integration testing,

are ideal candidates for automation since they are repetitive [63][32].

Automated builds can be triggered in a variety of ways:

1. Manually: Developers start a build of a project manually, without the necessity of

a particular event [32].

2. Schedule: A schedule trigger allows de�ning a time schedule for automatically

running builds for a given project [48].

3. VCS: A build is triggered when changes are detected in the version control system

4. Post-process: A build is triggered after a di�erent build is �nished [47].

When implemented correctly, build automation can have enormous bene�ts for organi-

zations, such as:

1. Improved Quality: Build automation to helps companies to move more quickly.

That means they are be able to detect and �x errors faster, improving the overall

quality of products and avoid faulty builds [63].

2. Faster deliveries: Build automation aids in delivery speed. This is because it min-

imizes repetitive work and guarantees that faults are discovered quickly, allowing

to release faster [33].

37

3. Increase in productivity: Build automation allows for quick feedback. This means

that developers will be more productive, therefore devoting less time on tools and

processes and more to delivering value [32].

4. Scalable: Once implemented, automated builds are more scalable than manual

processes. As projects grow in size and complexity, build automation can support

and enable that growth without requiring large investments in additional resources

[161].

Build Automation Work�ow

The work�ow of build automation is illustrated in Figure 2.15 and can be described as

the following:

1. Based on the build trigger con�guration, a CI server registers that a build has to

start for a given VCS repository.

A build con�guration is a set of settings which determines which, how, what and

when a build has to be started for a speci�c project, including the di�erent vari-

ety of build triggers which were mentioned above. Build con�gurations may also

include when to run tests and when and where to publish artifacts which resulted

from building a software [33][126].

A continuous integration server is a system that orchestrates a continuous integra-

tion pipeline, allowing developers to start builds numerous times per day and build

automatically on di�erent target servers outside of their local computers [33].

2. Depending on the build automation tool the CI server polls the VCS repository

and forwards it to a build agent or the CI server commands a build agent to poll

the repository itself [33].

The build agent is the software that follows the instructions from the server to

complete a build. It is usually installed and con�gured on a system other than the

CI server [126].

3. When the build agent has the needed sources and �les it utilizes the according build

tool, based on the build con�guration, which compiles and runs tests [126][33].

A build tool is a script, framework, or other piece of software written speci�cally

for a programming language to compile code, run tests on it, and perform other

build related tasks, for example MSBuild for C++ or Maven for Java [87][33].

4. After the �nished build, be it a successful build or a failed one, a report is sent to

the CI server and depending on the outcome of the build artifacts may be send to

38

the server [126][33].

Figure 2.15: Build Automation Work�ow

2.6.1 TeamCity

TeamCity is a Continuous Integration and Deployment server that comes with built-in

continuous software testing, early build problem reporting, and code quality analysis.

TeamCity can be easily deployed and used to improve release management techniques

thanks to a straightforward installation process [141][50]. TeamCity is compatible with

most IDEs, version control systems and supports Java,.NET, and Ruby development

[140]. TeamCity automates the development and testing of software products. It gives

immediate feedback on every code change, decreases code integration issues. Builds,

changes, and failures can all be saved in TeamCity. Cloud integration, continuous in-

tegration, build history, customization, extensibility and access control are some of the

39

features available [50][126]. Furthermore, TeamCity includes a number of build tools and

integration middleware that operate natively with build tools like Gradle, Maven, NAnt,

MSBuild, and others [33].

TeamCity Architecture

The TeamCity architecture consists of two major components [126][64]:

1. TeamCity Server: TeamCity Server provides the UI for managing build con�gu-

rations. Build Information and result. It is the component which maintains all

the objects settings, keeps track of the status of running builds and manages build

queues [82].

2. TeamCity Build Agents: Is the program that carries out a build process in accor-

dance with the directions from the server. It is typically installed and set up on a

system other than the TeamCity server. Multiple operating systems, various plat-

forms, and pre-con�gured environments are all possible for TeamCity build agents

[82].

Advantages of TeamCity:

1. Simple integration with popular IDEs [50].

2. Continuous integration and code reuse [141].

3. Support of various version control systems like Perforce, Mercurial, Git and Sub-

version [49]

4. User and build history management [50]

5. Cross-platform [50]

6. Provision of statistics on build agents and the usage of build machines [140]

Drawbacks of TeamCity:

1. It is not open-source [50].

2. Steep learning curve since there are many possibilities and con�gurations available

[50].

40

2.6.2 Jenkins

Jenkins is a open-source automation platform designed for Continuous Integration. It is

a self contained automation server that can automate a variety of operations connected

to software development, testing, and delivery or deployment [74]. It is used to contin-

ually test and compile software applications, which makes it e�ortless for developers to

commit changes and to automatically start a new build. It also enables continuous soft-

ware delivery by interacting with a wide range of testing and deployment tools and has

extensibility and con�guration simplicity. It is compatible with all main systems and can

quickly test and deploy on numerous platforms [140][74]. It is also possible for organiza-

tions, which utilize Jenkins to automate and increase the speed of software development

processes. Jenkins incorporates many di�erent development life-cycle operations, such

as test, build, package and deploy [33].

Advantages of Jenkins:

1. It is open-source [94]

2. Free of cost [168]

Drawbacks of Jenkins:

1. A lot of functionalities are depending on plug-ins [8]

2. A lot of plug-ins have issues with the updating [8].

41

3 Continuous Integration and

Continuous Delivery/ Deployment

The �rst step toward a modern software engineering infrastructure starts with the intro-

duction of Continuous Integration and Continuous Delivery / Deployment.

Continuous integration (CI) is a method in which programmers make minor modi�ca-

tions and tests to their code on a regular basis. This process is automated due to the size

of the requirements and the number of stages involved, ensuring that teams can build,

test, and deploy applications in a consistent and repeatable manner. CI streamlines code

updates, giving developers more time to make changes and contribute to better products

[23] [38].

Continuous delivery and deployment (CD) are the packaging equivalent of continuous

integration (CI). CD enables building, con�guring, packaging, and deploying software

in a matter that it may be delivered and released to production in an automated and

consistent process at any time [38][164].

A correctly structured CI/CD pipeline enables businesses to quickly respond to shifting

consumer demands and technology advancements. Since CI/CD pipelines are signi�-

cantly more �exible, approaches like DevOps with CI/CD overcome problems like always

changing requirements and needs of clients [164].

Figure 3.1 displays how an iterative CI/CD Work�ow looks like. With every code change

automated builds and tests are run. Depending on needs, releases are automatically cre-

ated on every single code change, implemented feature or on a time basis. The releases

are then deployed and used by other parties.

42

Figure 3.1: CI/CD Work�ow
Source: https://www.synopsys.com/glossary/what-is-cicd.html

3.1 Continuous Integration (CI)

The majority of software builds by wide-reaching teams spend a substantial amount of

time in an inoperative condition. The cause for this is that most of the time no one

wants to attempt to run the entire application before it is completed, since it can be

time consuming and tedious and no developer is trying to compile the entire software

project and utilize it in an environment similar to production [87]. This is especially on

point in software projects that use long-living branching strategies or wait until a project

is �nished to perform quality assurance. Many of these projects arrange extensive inte-

gration phases near the end of the software development phase to give the teams enough

time to integrate the features and branches and have the software application operating

before acceptance and integration testing. Too often, some projects discover that by

the time they reach this stage, their software or feature is no longer suited for purpose.

These integration phases can take an exceptionally long time, and the durations are not

predictable [87][38].

With CI in use, every time someone makes a change, continuous integration demands

that the complete application is created and a wide-ranging set of automated tests be

run against it. Importantly, whenever these automated builds or tests fail, the develop-

ment team must quickly stop what they are doing and solve the problem. Continuous

integration aims to keep the software in a functioning state at all times [87][18]. Software

43

https://www.synopsys.com/glossary/what-is-cicd.html

is broken until it is shown di�erently, usually during the testing or integration stages, if

continuous integration is not used. Software is proved to work with continuous integra-

tion due to a robust set of automated tests that run on every new update. Companies

that e�ciently utilize continuous integration can release software faster and with fewer

errors than those who do not. Bugs are identi�ed far earlier in the delivery process, when

they are less expensive to �x, saving both money and time [87][38].

3.1.1 Continuous Integration Work�ow

Development checks out code from the repository and works on it locally. For the feature

to add, a new branch in the version control system will be created. Development conducts

tests locally once the feature branch is ready to be merged [60] [145]. The modi�cations

will be committed to the VCS once all tests pass. A CI server checks out changes to

the repository and conducts a "build and test" whenever changes occur. The CI system

compiles the complete system on the particular branch and performs every available unit

and integration tests. Development gets noti�ed of the integration result via the CI

server. There are four possible outcomes: failed builds, successful builds, failed tests,

and successful tests [145].

44

Figure 3.2: CI Work�ow
Source:https:

//speakerdeck.com/jadavchirag/continuous-delivery-with-flutter

3.1.2 CI Practices and Patterns

The goal of a CI system is to ensure that software is working, in essence, all of the time.

In order to ensure that this is the case, there are patterns and practices.

Build on every commit

One of Continuous Integrations principal goals is to make application administration

easier in order to speed up production and maintenance. The frequency of deployment

is one of the most essential parameters in this sort of procedure. This metric is critical

for a successful DevOps transition, thus it must be clearly monitored. A CI/CD pipeline

gives immediate feedback to developers by generating the solution and executing a set

of automated tests each time a change is submitted [51] [52]. The goal is to avoid laying

weak foundations and maintain a consistently releasable code base. Every pull request,

45

https://speakerdeck.com/jadavchirag/continuous-delivery-with-flutter
https://speakerdeck.com/jadavchirag/continuous-delivery-with-flutter

merge or commit to the version control system should therefore be built in order to catch

unwanted errors and bugs. Developers who commit code changes, need to be able to

monitor the mainline build so they can �x it if the code changes break the application

[87] [51].

VCS Conventions

De�ning norms has signi�cant implications for individuals, teams, and automated sys-

tems. Even if their importance is sometimes overlooked, they play a major part in the

continuous integration chain and may help to organize development [52].

1. Commit messages: Making commit messages more human and machine readable,

which can help developers who have to review the commits to understand the code

changes [52], e.g. if a commit is �xing a particular problem on a particular method,

this may be mentioned in the commit message.

2. Branch names: A convention for branch names in version control system can help

other teams and developers to understand what changes are done in a particular

branch [52], e.g. if a branch is created for a new feature, the pre�x of the branch

name may be "feature".

Only Check-In Working Builds and Commits

The primary branch should always be in a stable state. Therefore a restriction in order

to prevent developers to commit directly to the primary branch is favourable. Code

changes to the primary branch should only be allowed via veri�ed pull requests by other

developers [51].

Cleaned-Up Environments

Multiple source codes can be supported by a build automation tool at the same time.

Taking the e�ort to clean up pre-production settings between deployments can help to

get the most out of testing processes. It is di�cult to keep track of all the con�guration

changes and upgrades that have been performed to each environment when they have

been operating for a long period. Environments diverge from the initial con�guration

and from one another over time, thus results of software tests may vary from environment

to environment and may not have identical outcomes [52][28].

46

3.1.3 CI Antipatterns

Antipatterns, like their design pattern counterparts, establish an industry vocabulary

for prevalent �aws in organizational procedures and implementations. An Antipattern

is a type of pattern that indicates a popular solution to a problem that has de�nitely

negative outcomes. The Antipattern could be the result of a developer who did not

know any better, did not have the expertise or experience to solve a speci�c problem, or

implemented a perfectly �ne pattern in the inappropriate environment [10] [56].

Infrequent Check-Ins

In this anti pattern, the code remains uncommitted and unchecked in for a long time

on local laptops. The most common explanation is the enormous amount of changes

required to complete the feature. The integration is delayed since check-ins are not

frequent. Other developers check-in their code while the feature is being developed.

Others will check in more code as this feature takes longer. Because of the large amount

of modi�cations made, this causes several merge con�icts [9].

Spam Noti�cation

Sending little feedback that is either non-actionable or provides no insight into the build

failure. Excessive input, including to team members who were not involved in the build.

This is eventually classi�ed as spam, causing developers to disregard messages. People

become overwhelmed by such noti�cations and begin to ignore them. This renders the

noti�cations worthless, as one may miss a build failure noti�cation. To address this, the

CI server should be set up to not send out noti�cations for every check-in. It should

only be noti�ed when a fresh check-in fails, this is when developers should concentrate

on �xing the build [9].

Build Time

Continuous integration is all about getting quick feedback. A long-running build length-

ens the time developers must wait after checking in because they must wait for the build

to �nish before proceeding. This may lead to infrequent check-ins in order to avoid the

long wait time. Running several checks and tests as part of the build is one reason for

the lengthy build time. To solve this problem, con�gure the build to only build the code

and run fast unit tests [9].

47

3.2 Continuous Delivery / Deployment

Continuous delivery and deployment (CD) starts where Continuous Integration (CI)

stops. CD simpli�es the process of getting the new code changes on di�erent environ-

ments. This could be, for example, a production server.

Most teams deal with many environments, each of which has its own con�guration, such

as [87][110]:

1. Development: Where developers build the code

2. Integration: This is where new code and features are combined and validated that

it works with existing code

3. Test: This is when the merged code is put through both functional and non-

functional tests to ensure it �ts the organizations and customers needs.

4. Staging: Staging is used to con�rm that the program is ready for usage by testing

it with actual data.

5. Production: This is when the program is made accessible to users.

Continuous Delivery and Continuous Deployment ensures that code modi�cations to

these many environments is done in an automatic manner. Continuous delivery starts

where continuous integration ends since it sends the software code to a production and

testing environment after the build process [18]. This means an automatic release process

in addition to automated testing, and deployment of applications at any time. In theory,

continuous delivery allows to distribute as often as the business needs it. However, if all

the bene�ts of continuous delivery are wanted, a deployment to production as soon as

possible to ensure that tiny batches of code are released that are easier to troubleshoot

in the event of a problem, is desirable [104] [86].

According to a peer-reviewed study [59], the use of CD in businesses has an immense

positive impact on software delivery performance issues like change fail rates and IT

performance [86].

With the correct usage of continuous delivery companies may gain important bene�ts

such as:

1. More reliable releases: The number of code changes in each release reduces as the

frequency of releases increases. This makes locating and resolving any issues that

48

do arise easier, as well as lowering the amount of time they have an e�ect [86] [104].

It is simple to make zero downtime installations that are unnoticeable to users by

using di�erent patterns (See 3.2.1)[86].

2. Lower costs: In the long-term, any successful software or service will change vastly.

It lowers the cost of generating and delivering incremental software changes by

eliminating many of the �xed expenses involved with the release process by investing

in deployment, and environment automation [154] [86].

3. Reduced complexity: The di�culty of software deployment will be reduced[154].

4. Faster development: There is no need to interrupt production for releases[154].

5. Improved Customer Satisfaction: Customers notice a steady stream of improve-

ments, and quality improves on a daily basis rather than monthly, quarterly, or

annually [36].

Continuous Delivery/ Deployment Work�ow

A CD work�ow, also called a CD pipeline, is an implementation of the continuous

paradigm in which automated builds, tests, and deploys are organized as a single re-

lease procedure. A CD pipeline, to put it another way, is a series of processes that a

code changes will go through on their way to production. A CD pipeline automates the

delivery of high-quality goods from test to staging to production, according to business

requirements [17]. As seen in Figure 3.3, after the testing phase in the CI pipeline is

done, additional reviews, in the form of tests for example, are done before publishing to

a staging or production environment.

Figure 3.3: CD Work�ow
Source: https://www.elasticweb.nl/kennisbank/

continuous-integration-en-continuous-delivery-verder-uitgelegd

49

https://www.elasticweb.nl/kennisbank/continuous-integration-en-continuous-delivery-verder-uitgelegd
https://www.elasticweb.nl/kennisbank/continuous-integration-en-continuous-delivery-verder-uitgelegd

Continuous Delivery vs Continuous Deployment

Continuous delivery is a semi-manual technique in which developers transmit changes

to clients by just manually enabling them, whereas continuous deployment focuses on

automating the entire process. [165] [18]

Figure 3.4: CD vs CD
Source: https://www.atlassian.com/continuous-delivery/principles/

continuous-integration-vs-delivery-vs-deployment

3.2.1 CD Practices and Patterns

This section focuses on some of the important patterns that are prevalent while imple-

menting CD.

Blue-Green Deployments

Getting software from the last level of testing to actual production is one of the issues with

automating deployment. It is critical to complete this promptly to avoid downtime. The

blue-green deployment strategy accomplishes this by having two production environments

that are as similar as feasible. The previous version is referred to as the blue environment,

whilst the current version is referred to as the green environment. Once all production

tra�c has been migrated to green, blue may either be put on standby in case of a

50

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

rollback, or it can be taken from production and upgraded to become the template for

the next update. If something goes wrong, teams may switch the router back to the blue

environment using the blue-green deployment method [87][160].

Build Binaries Only Once

The binaries that are put into production should be identical to the ones that passed

the acceptance test. If developers rebuild binaries, there is a chance that something may

change between the time they are created and when they are released, and the released

binary will be di�erent from the tested one. [122].

Always Deploy The Same Way

To guarantee that the build and deployment process is properly tested, utilize the same

approach to deploy to every environment, whether the workstation of a developer, a

testing environment, or production [122].

3.2.2 CD Antipatterns

This section focuses on some of the important anti-patterns that are prevalent while

implementing CD.

Manual Deploying

Most modern apps, regardless of size, are di�cult to deploy due to the numerous mov-

ing elements. Many companies release software by hand. This means that the actions

required to install such an application are viewed as discrete and atomic tasks that are

completed by a single person or group. These steps require judgement, making them

vulnerable to human mistake. Even if this is not the case, variations in the order and

timing of these processes can result in various outcomes. These distinctions are rarely

bene�cial [87].

Deploying only to a Production-like Environment after Development

In this design, most of the development work is completed before the software is de-

ployed to a production-like environment, for example, staging. It is very common to �nd

that inaccurate assumptions about the production environment have been built into the

design of the system when using this method of deployment. New issues are frequently

discovered after the application is delivered to staging [87].

51

3.3 Release Managment

A release is the publication of a software application's �nal or most recent version. It

usually refers to the introduction of a new or improved version of an application [158]. A

release makes services and features available to users. Release management guarantees

that release teams deliver the apps and upgrades that the business requires while main-

taining the integrity of the production environment. Release management is more often

than not a business duty rather than a technical one. This is because, from a revenue

or portfolio management standpoint, release timing decisions can be linked to business

strategy [110]. A business can choose to release features in accordance with a marketing

strategy or stagger them to avoid cannibalism of existing goods or to counter competi-

tion activity. Features can also be distributed to di�erent clients based on the company's

product o�erings, such as advanced functionality for premium customers [170]. The ef-

fort necessary to oversee, administer, and make that process successful requires a variety

of disciplines [101][170]:

1. Planning and scheduling releases

2. Standardizing release processes when possible

3. De�ning the roles and duties within the release process

4. Automating the release procedures

5. Reporting on release performance

Release Practices and Patterns

One of the main goals of continuous deployment is to lower the risk of software release

[61]. In order to ensure for low risk releases there are the following patterns.

Canary Release

Software canary release is a deployment approach that combines the best features of

di�erent deployment methods to create an optimal current strategy. To reduce the risks

associated with releasing new software, it uses a step-by-step rollout procedure with

excellent monitoring and rollback alternatives. Small subsets of people are used in a

canary release, who are exposed to new updates before everyone else. They usually have

a limited amount of time to evaluate the rollout and assess whether the software is ready

for distribution to a larger number of users or all chevaliers [152][105][87].

52

Dark Launch

Development teams may utilize dark launching to test the e�ectiveness of new, production-

ready features without exposing them to the full user base. Using feature �ags or feature

toggles, which activate or deactivate functionality without publishing code, is the easiest

approach to dark launch [137]. Feature �ags are if-then logic statements in a code that

separate code deployments from feature releases. The development team may make a

feature visible to a limited set of users once it has been delivered to production, and then

scale up as needed. During the dark launch, software developers may monitor user feed-

back to determine whether the product should be sent out to a larger audience. They are

also keeping an eye on how the new features e�ect system performance. If the feature fails

to gain traction, users provide unfavorable feedback, or system di�culties appear, the

feature �ag may be removed with a single click, without restarting the program, while

the function is re�ned. Software teams do not have to rely on potentially dangerous,

all-or-nothing feature releases with dark launches [137][29].

Deployment vs Release: The key di�erence

The di�erence between release and deployment is, that deployment does not always

mean that clients and users have access to the features and functionalities, but only in

the production environment as mentioned in 3.2, whereas releasing always indicates the

publishing to users [110].

53

4 Software Testing

Testing is the process of examining a software product to evaluate whether or not it

meets the required standards. The testing process comprises assessing the character-

istics of the software product for missing requirements, errors , or �aws, performance,

and reliability. It entails the use of tools to analyze one or more attributes of interest

while running software/system components. Testing enables to �nd and �x mistakes and

�aws in the software before the software product is released and delivered. A wide test

coverage for a software solution o�ers reliability, security and great performance, which

saves money, time, and increases client satisfaction. Software �aws may be costly, thus

testing is essential [27] [76] [172].

Bene�ts of software testing:

1. Cost-E�ectiveness: In the long run, having tests for software projects can save

money. There are numerous stages to software development, and catching defects

early on saves a lot of money in the long run [88] [114] [4].

2. Increase in quality: Testing and quality are inextricably linked. The number of

faults discovered during testing can be used to evaluate quality, and those prob-

lems will be corrected as part of the software development lifecycle. This will be

done throughout the development period, and by testing frequently, the software's

quality can be enhanced [114].

3. Reduce risks: Defects must be found and either recti�ed or excluded from the

�nal product to ensure that the system operates as intended during live operation.

Because the impact and severity of a serious fault discovered in a live environment

are both high due to the end user's involvement, testing is required to reduce risks

and ensure that the program is ready for live operation [114].

4. Customer satisfaction: Clients expect system stability. Testing during the devel-

opment lifecycle provides insight into how well and reliably the application was

created, boosting customer trust once it is deployed in a live environment. [88]

[114].

54

When it comes to software testing it can be classi�ed into two categories: functional

testing and non-functional testing.

Functional Testing

Functional testing is the testing of the functional features of a software application. This

type of software testing compares the system to its functional speci�cations. Functional

testing guarantees that the application meets all of the criteria or standards. This form

of testing is focused on the end product of the processing. It does not make any struc-

tural assumptions and instead concentrates on mimicking actual system utilization. It

is a sort of testing that veri�es each software program function operates in compliance

with the speci�cations and technical requirements. Each software application's function-

ality is tested by handing appropriate test input and comparing the actual result to the

anticipated result [57][73][143].

Following are several types of functional tests:

1. Unit tests: Unit testing is a sort of software testing that examines the corrections of

a single unit or component. Unit testing is often performed by the developer during

the application development phase. A method, function, procedure, or object can

be considered a unit in unit testing. Programming skills is required to execute this

type of testing [5].

2. Integration tests: Integration tests are critical if an application communicates with

a number of external systems using a range of protocols, or if an application is

made up of a succession of loosely linked modules with complicated interactions

between them [87]. Integration testing is a sort of software testing that testing

multiple modules of an application as a whole. This sort of testing focuses on

�nding defects in the interface, communication, and data �ow between modules.

These functional tests ensure that all of the software test's various components are

functioning properly as a whole [5][142].

3. End-to-end tests: End-to-end testing requires placing a complete application sys-

tem through its paces in a situation that closely approaches actual use, such as

utilizing network communications, connecting to a database or interfacing with

other hardware or systems.[143][153].

4. Regression tests: Regression testing involves testing the application's unmodi�ed

features to ensure that changing, deleting, or adding new features won't have an

adverse e�ect on other project components that have not changed. [142].

55

5. Smoke tests: Smoke testing is used to ensure that the system under test's basic and

important functions are operating properly at a high level. When the development

team provides a new build, the Software Testing team evaluates it and guarantees

that no severe issues exist. Before beginning a more thorough level of testing, the

testing team will ensure that the build is stable. [143].

Non-Functional Testing

Non-functional testing is a sort of testing that examines a software application's non-

functional features such as usability, dependability and performance. It is speci�cally

designed to assess a system's readiness using non-functional factors that are never ad-

dressed during functional testing.

Following are some examples of non-functional testing types:

1. Load tests: Load testing allows engineers to better understand how a system be-

haves when subjected to a given load. The load testing procedure involves simulat-

ing the expected number of concurrent users and transactions over a period of time

in order to verify predicted response times and identify bottlenecks. This type of

test allows developers to �gure out how many users an app or system can manage

before it goes live [139].

2. Scalability tests: A non-functional testing technique called scalability testing mea-

sures how well a system or network performs when the volume of user requests

rises or falls. Scalability testing ensures that the system can manage anticipated

increases in user tra�c, data volume, transaction counts frequency, and so on. It

assesses the system's ability to ful�ll escalating demands [171][75].

3. Stress tests: Stress testing exposes a system to higher than expected tra�c volumes,

allowing developers to assess how well it performs beyond its capacity limitations.

Software teams can use stress tests to determine the scalability of a workload.

Stress tests put a demand on hardware resources in order to �gure out when an

application can break due to resource utilization. CPUs, RAM, and hard disks are

possible resources [139] [169].

Automated Software Testing

When it comes to software testing there are two kinds of testing: manual testing and

automated testing [132].

56

Without the use of test scripts, manual testing is the process of running tests by hand.

Manual tests are routinely performed during development cycles for source code modi-

�cations as well as for additional scenarios like various operating systems and hardware

con�gurations.

In automated testing, test automation frameworks like Selenium, Cypress and Robotium,

are used to automate the execution of tests. Automated testing can carry out pre-

recorded and scheduled tasks, evaluate results against expected behavior, and inform

a test engineer whether manual tests were successful or unsuccessful. Once automated

tests are created, they may easily be extended and repeated. [153][174].

Automated tests can be conducted multiple times throughout the day. This approach is in

line with continuous testing, continuous integration, and continuous delivery (CD) tech-

niques to software development, all of which aim to automatically deploy code changes

to production [159].

Bene�ts of Automated Testing

1. Maintaining a constant cost of testing: As new features are added, the software

gets more complicated, and as the program grows more advanced, adding new

features becomes increasingly di�cult. This is especially true when there is a

push to provide new versions quickly while not investing enough e�ort in planning

and improving code quality. This eventually slows the delivery of new features

[27][133]. The majority complexity of a software is due to features being added

hastily without good design, a lack of communication within the team, or a lack of

expertise, either about the underlying technology or about the business demands.

As a result of when a software becomes more complicated, its maintenance cost

rises since it takes more time to test everything, as well as more time to patch and

retest the �aws that are discovered. Accidental complexity, in particular, makes

software more vulnerable and di�cult to maintain. [27][174]. Automated software

testing can help with reducing the risks of neglecting testing particular section of a

software, since with automated software tests it can be con�gured to run tests on

every change, without the need of an engineer triggering it manually [27].

2. Reduced Business Expenses: To assure quality, software tests must be done fre-

quently during development cycles. Software tests should be run on every source

code change and additionally every software release needs to be tested on any of the

57

available operating systems and hardware con�gurations. Manually repeating such

tests is time-consuming and expensive. Automated tests can be run repetitively at

no additional expense after they have been generated. The time it takes to execute

repeated tests can be reduced immense using automated software testing [159][174].

3. Better reporting: Automated tests repeat the same processes every time they are

run and keep thorough records of the outcomes. The results can then be compared

to other reports to see how the software performs in comparison to expectations

and needs [174].

4. Increases test coverage: Automated software testing may assist to enhance software

quality by increasing the detail and range of tests. Unsupervised automated testing

can be utilized to execute lengthy tests that are often ignored during manual testing.

They can also be built in a variety of con�gurations. To asses if a software product

is operating as desired, automated software testing can glance inside an application

and inspect memory, �le contents, data tables and internal program states. With

each test run, automated tests are able to execute many complicated test cases,

o�ering extensive coverage [133][174][81].

Scheduling Automated Tests

If an application's entire testing process is short and developers can wait, and the tests

are stable, it is worth retaining the testing phase as a single consolidated process and

executing it in CI mode, which means the build is started automatically upon each check-

in or commit. However, if it takes longer, the test data sets are too big or if the tests

are unstable, the development team's productivity will su�er. It is typical to split the

construction process in these situations [87][27].

Nightly Builds

A nightly build takes place every night when no one is working and no commits made to

the source code [87]. Nightly builds are triggered automatically every night and all source

code that has been committed into source control during the day is compiled. In larger

software projects, a complete reassembling of the whole project and the running of tests

with all test data may take too long for an individual to do as part of a work day, there-

fore nightly builds can be introduced. Nightly builds, which are executed periodically

regardless of whether any source code has changed, also make sure that the build tools

have not broken as a result of system updates [27][135][117]. This method necessitates

58

that someone from the development team investigates the results every morning, �xing

the tests as needed and reporting any relevant bugs to the developers [27][135].

Running Tests as Part of the CI

The tests must be executed as part of the CI build itself if companies are to truly bene�t

from test automation and the quick feedback loop it can provide. This can only happen

if the tests are very reliable and quick, otherwise developers will not be able to check in

valid modi�cations or they will just ignore them and the system would be left ine�ective

[27]. An example would be to build the whole application including every test on the

creation of a release.

Continuous Testing

Continuous Integration and Continuous Delivery are focused on how applications are

developed and brought to customers which are certainly important aspects for a software

development life cycle. Instead of being a bene�t, the increased frequency and pace of

Continuous Integration and Continuous Delivery may become a liability if the automated

delivery process is unable to immediately assess how changes will a�ect business risk or

negatively a�ect end-user experience. [167]. This is where the Continuous Testing ap-

proach comes into play. Continuous Testing (CT) is a software development process that

involves automatically testing applications continually throughout the software develop-

ment life cycle (SDLC) and whenever changes come in. CT's purpose is to assess software

quality across the SDLC, providing vital feedback earlier and allowing for higher quality,

faster delivery [166].

When done correctly, it conducts automated tests as part of the software delivery pipeline

to o�er feedback as quickly as feasible. It promotes testing at all stages of the SDLC,

from development, e.g. on every code change, to deployment, e.g. every time a new

release is created, which helps to enhance the CI/CD process. Continuous testing makes

certain that development is error-free and that only stable software is released. At a

higher level, it eliminates the stumbling barriers that come with conducting testing in a

single phase like in the Waterfall model. As soon as code is integrated with continuous

testing, it is automatically tested. This immediately supports CI/CD and the goal of

producing high-quality software in a shorter amount of time [166][167].

CT also saves time and e�ort for developers because they no longer have to wait for

software testing teams to �nish testing before they can �x their code. Instead, testing

is done on a continuous basis, allowing for proactive changes to code quality and secu-

59

rity issues in real time. It has a broader bene�t in that it minimizes risk. Instead of

being reviewed or checked once at a certain phase of the SDLC, software is reviewed or

checked many more times and in many more ways with CT. This gives more visibility

into weaknesses and more chances to �nd them [166].

60

5 Implementation

In this chapter, as a proof-of-concept a through strategy will be presented in order to

shift from legacy systems and applications to a postmodern automated software infras-

tructure, while using methods and technologies described in the previous chapters of this

thesis.

The suggested concept should show software engineering practitioners, which do not make

use of any modern software development practices, a possibility to upgrade their infras-

tructure to use Continuous Integration and Deployment, automated building processes,

continuous testing with automated software tests and techniques for software developer

teams to make use of best practices.

5.1 The Legacy System's Current State

The considered legacy system consists of two C++ applications, Application-A and

Application-B. As seen in Figure 5.1, Application-A has dependencies to two open-source

libraries and Application-B is depending on the binaries from Application-A. The open-

source libraries are not hosted by the company and have to be downloaded locally and

the Visual Studio[151] project solutions have to be con�gured manually to be able to

compile. Both applications and the test data are not under any version control and

not part of any automated infrastructure, in order to build them every component has

to be downloaded on the developers' local machines and con�gured manually. Because

of that, whenever developers want to merge their changes together, they have to do it

hand-operated and test the applications manually.

From the current state of the application and the non-existing infrastructure it can be

assumed that introducing changes to the software applications is cumbersome, needs a

lot of e�ort and communications between the developers. Because of lacking versioning

of source code and test data, changes need to be implemented especially carefully and

since there is also no automation testing processes, developers need to manually execute

and test every single part of the code in order to be sure that changes do not break the

61

systems. Ultimately causing di�culties in assured releases to customers.

Figure 5.1: Legacy System Overview

5.2 Desired State

In order to modernize the software development process and implement an automated

infrastructure for building and testing, it is needed to introduce a version control sys-

tem, an automation build tool, software engineering best practices like versioning- and

branching strategies and a binary repository management system. Additionally, it will

allow to version and audit every developed application and every created and used library

or binary.

The modernized system will include:

1. Git (See 2.1.2) as VCS to version control the source code and con�gure �les.

2. TeamCity (See 2.6.1) as an automation build tool in order to build and test code

changes checked in to the VCS.

3. JFrog Artifactory (See 2.5) as a binary repository management system for binaries

and test data.

4. Semantic Versioning (See 2.3.1), as a uni�ed versioning strategy for developers, in

order to consistently version software releases and test data for reproducibility.

62

5. GitFlow (See 2.2.5) as a branching strategy, so that all developers and teams from

an organization, create uni�ed branching names in the VCS and therefore under-

stand what other developers and teams are doing.

6. Automated testing strategies to increase test coverage, to ensure that only working

code can be checked in to the VCS and to be able to release always stable applica-

tions.

As illustrated in Figure 5.2, the desired state of the whole infrastructure will enable an

agile work�ow for software developers. It will allow developers commit changes to the

VCS without the fear of breaking anything. Whenever it is wished for, the build automa-

tion tool will be able to build and monitor the code base, to ensure stable and compiling

code. The results of automated tests will be reported to the developers responsible of

the according repository of the build. The automation build tool and developers will

have access to Artifactory in order to download needed binaries and test data, and also

update and upload these data back on.

63

Figure 5.2: Desired Work�ow

5.3 Git as Version Control System

As mentioned above the strategy in this thesis suggests Git as the version control system

for the source code of the applications.

Why Git?

Considering all the advantages and disadvantages of the mentioned version control sys-

tems in section 2.1, this thesis suggests the use of Git. Taking into account that Git is

one of the most popular VCS [149][25] and the out of the box integrability with Team-

City without the need of any additional con�guration [67], Git is an reasonable choice.

Additionally, Data Version Control (DVC) (See Data Version Control), the suggested

tool to version binaries and test data, is based on Git and Git repositories which makes

integrating it simple [53].

64

GitHub

There are multiple platforms to host git repositories, such as GitLab, GitHub and Bit-

Bucket. The implementation for this thesis will use GitHub, since it is the most popular

one among all the other platforms [129][71].

5.3.1 Re-platforming to Git

In order to use Git as VCS it is needed to create an online repository on GitHub and to

install Git on a local machine which has the source code of the application.

As shown in Figure 5.3, creating repositories in GitHub is done by pressing the "New"

button.

Figure 5.3: Creating a repository in GitHub

After creating the online repository, it is then possible to connect the local source code

with the online repository and to upload the source code to that online repository. Firstly,

it is needed to navigate via a command-line tool like Cmd, Powershell or Git Bash to the

root folder of the source code. Then the following Git commands needed to be executed

step by step [66][24]:

1. git init : This command creates an empty local Git repository and adds a ".git"

directory.

2. git add . : The git add command adds a modi�cation to the staging area from

the working directory. It informs Git to include changes to a speci�c �le or all

changed �les indicated by the period, in the command. However, git add has

little e�ect on the repository, changes are not truly recorded until git commit is

performed.

3. git commit -m "<Commit Message>": The git commit command saves a snapshot

of the current staged changes, done with the previous add command, in the project.

65

Git Snapshots are committed to the local repository. With the -m option, a message

can be added to the commit, to describe what the changes and the current commit

is about.

4. git branch -M master: It creates, or deletes branches. With the -M option the

command will rename the current branch.

5. git remote add origin <URL of the Repository>: This command links the lo-

cal project folder to an online repository.

6. git push -u origin master: The git push command is applied to transfer local

repository content to the set remote repository. Pushing transfers commits from a

local repository to the a linked remote repository. This allows other team members

to view a collection of stored modi�cations.

All these command sequence looks like as shown in Figure 5.4. After that the software

project is under version control and everyone who wants to contribute to that project

can download the repository with git clone <URL of the Repository>

66

Figure 5.4: VCS setup of Application-A

5.3.2 GitFlow as Branching Strategy

As it was mentioned in section 2.2 Branching strategies are concerned with how branches

are used, formed, and named during the development process. While working with a ver-

sion control system for generating and maintaining code, a software development team

uses a branching technique to structure and keep the VCS clean.

The strategy in this thesis suggests the utilizing of GitFlow, since it includes complete

rules with de�nite responsibilities of branches, suggests very thorough and detailed ver-

sion control and is very versatile if any adjustments for business needs are wanted as

mentioned in 2.2.5.

To apply git �ow on an existing repository the command git flow init may be applied

[20]. This initializes the git �ow tool on a computer in order to de�ne how the di�erent

branches of the Git�ow (See 2.2.5) have to be named when creating them. The output

of this command looks like as shown in Figure 5.5.

67

Figure 5.5: Initialising Git�ow for Application-A

This command needs to be executed by every developers which wants to utilize the git

�ow tool on their local machine.

After the initialization it is then possible to use this tool to create branches with ap-

propriate names. If e.g. a release branch is wanted to be created then the following

command may be executed: git flow release start <Version Number>. Since with

the initializing command it was con�gured what the pre�x of a release branch is, this

command creates a branch with the name release/1.0.0 if the given version number

to the command is 1.0.0.

Branch Protection

Git branch protection rules are an e�ective con�guration choice that gives repository

administrators control over the application of security restrictions. This helps guard

against unauthorized users or user groups of deleting or committing code unexpectedly

on the git branches. Additionally, the code that was committed might have passwords,

API keys, or other programming secrets hardcoded in. These code secrets might wind

up in repositories, despite typically being placed there for testing and then forgotten. It

thus has the potential to result in a data leak. Also, developers who have write access

may push incompatible changes, delete signi�cant branches, or erase the commit history,

which needs to be prevented. Additionally, code that is pushed could be untested, contain

coding secrets, and ignite a security nightmare [84].

Therefore, it is suggested to use branch protection rules to safeguard the branches to

prevent all of this. In GitHub this can be achieved by pressing Settings on a repository

and then navigating to Branches tab and then specify rules for speci�c branches such as

the primary branch master (See [84]). As shown in Figure5.6 it is then possible to have

di�erent kind of con�gurations, such as:

1. All commits must be made to a non-protected branch and submitted via a pull

68

request before they can be merged into a branch that matches this rule and that

no direct commits to that protected branch are possible.

2. Pull requests must be approved by atleast a required amount of people, in order to

be able to merge the pull request

3. Pull requests must be approved by code owners (See below).

Figure 5.6: Branch Protection

Code Owners

While thorough code review is critical to the success of any project, it is not always

evident who should review changes. Using code owners, repository administrators may

specify which individuals and teams must evaluate projects. When a pull request modi�es

any owned �les, this functionality automatically asks reviews from the code owners.

Additionally, when protected branches are enabled, a code owner must leave a review

for each owned �le before anybody may merge a pull request to that branch. To specify

code owners, create a �le named CODEOWNERS in the repository's root directory (See [7]).

Once this is implemented and a pull request is opened GitHub demands a review of code

owners, as seen in Figure 5.7.

69

Figure 5.7: Pull Requests with Code Owners

5.4 Artifactory as Artifact Management Server

With GitHub source and con�guration �les of software applications are under version

control, yet often this is not everything what projects need in order to compile, build

and run. As stated in section 2.5, software applications often have a dependency to other

binaries, open-source software, test data or libraries. Since these artifacts are updated

irregularly and are consumed by not one single software application, but many others, it

is recommended to have these data versioned in a di�erent place as source code in order

to avoid downloading arbitrarily large �les and directories only to get access to source

code [87] and this di�erent place may be an artifact management server.

For this purpose this thesis recommends the use of Artifactory (See 2.5), because Arti-

factory supports the C++ package manager Conan (See 5.5) out of the box [42], which is

useful for the software applications in this thesis and the installation is straightforward

(See [93]) and since Artifactory supports wast amount of other binary and package types

[15].

Data Version Control

With Artifactory it is clear where to upload and download binaries and test data, but

not how to version the data. Certainly it is possible to do it manually with the web

user-interface of Artifactory [16], yet if it is wanted to process, track, save and switch

between versions of data �les or datasets the same way as code within Git, a tool which

70

can be executed as part of automation scripts is preferable.

For this reason it is suggested to utilize Data Version Control(DVC)[53]. DVC is com-

patible with any common Git server or provider and runs on top of any Git repository

(GitHub, GitLab, etc). DVC supports lock-free local branching, versioning, and all the

other bene�ts of a distributed version control system [53].

To setup everything properly the following steps have to be applied, after the installation

of DVC (See [90]):

1. It is needed to initialize DVC inside a Git repository, which needs access to data

from Artifactory. The initialization is done with the command dvc init. This

creates a .dvc folder and internal �les.

2. Next it is necessary to tell dvc where the needed test data are with the command

dvc remote add artifactory <URL to test data> �default. This alternates

the config �le inside the .dvc folder with the url of the remote artifact management

server.

3. Supplementary, if authentication is needed, so that dvc can access Artifactory, it

is necessary to add the line auth = basic under the remote tag, which indicates

that whenever access is requested by DVC, username and password needs to be

entered for Artifactory.

4. Following that the config �le has to look like Figure 5.8.

5. To utilize all these commands for everyone who accesses the Git repository, all

these changes need to be pushed on to the Git repository with git push.

6. To setup the computers of new developers to use DVC, they need to execute the

following two commands once: dvc remote modify �local artifactory user

<USERNAME> and dvc remote modify �local artifactory user <PASSWORD>. These

commands set the credentials for Artifactory and the �local option is to makes

sure the credentials are stored locally and not commited to the repository.

7. After that, whenever it is wanted to download the test data, the command dvc

pull will be su�cient.

71

Figure 5.8: DVC Remote Settings

As mentioned above DVC is build on top of Git. That is why the versioning of data is

the same as the versioning of source code with branches. Whenever test data needs to

be versioned for a speci�c branch or release, it is done parallel to the source code, which

will be explained with the following example. The test data of Application-A consists of

many xml �les. These �les may change from release to release. In order to keep track

of the states of the test data for each release, it is necessary to version them, which will

be done parallel to the long living release branches within GitFlow. In this example, the

following steps will version the test data data.xml inside the data folder, for the release

version 1.0.0 of Application-A:

1. With dvc status it is displayed that the data.xml �le has been changed for the

release/1.0.0 branch as shown in Figure5.9.

2. The changed test data �le needs to be uploaded to the DVC repository in Artifac-

tory with dvc add data\data.xml followed by dvc push.

3. The command dvc add data\data.xml in the previous step also modi�ed the

data\data.xml.dvc �le, which needs to be pushed to the Git repository on the

release/1.0.0 branch with git push.

4. With these steps the current state of the test data is associated with the according

release and whenever the state of the source code needs to be run with the according

test data, developers only have to checkout that particular branch and use the dvc

pull command.

Figure 5.9: Application-A DVC Status

72

5.5 Conan as Package Manager

In the beginning of this chapter it was stated that in the current state of the applications,

dependencies like C++ open-source libraries needed to be download manually and fur-

thermore that the projects con�guration and include directories needed to be manually

con�gured in order to use these libraries. These cumbersome processes can be passed

over to a package manager tool.

A package manager maintains track of what software is installed on a computer and

makes it simple to install new software, update software to newer versions, or delete

previously installed software and o�ers capabilities to publish own packages [157][119].

As for this thesis, Conan (See [34]), will be the package manager of choice, since it is the

preferred C++ package manager in Artifactory and supports Conan repositories out of

the box without any additional con�guration needed [97].

Managing Build Dependencies

When a Conan repository is created on Artifactory and the needed open-source libraries

are uploaded as conan packages (See [42]) it is then possible to utilize it as a single source

of truth for all the needed dependencies development wide. As mentioned in section

2.5 this cuts down on the time and risk associated with downloading dependencies from

public repositories. A universal artifact and depedency location helps development teams

avoid inconsistencies by making it simple to locate the correct version of an artifact and

dependency [87] [12].

After the installation of Conan is done (See [91]), it is then possible to utilize Conan

for software projects. The following steps will describe how to set up Conan package

dependencies for a Visual Studio C++ software application in the Git repository:

1. By default conan searches for packages on conan.io, therefore it is needed to

change the remote settings to the own conan repository in Artifactory. This is

done by the command conan remote add remote-name remote-url (See [41]).

This con�guration is local, which means that it needs to be done on every computer

which wants to utilize conan for this purpose.

2. Then it is necessary to create a conanfile.py �le (See [43]) in the root folder of

the project. This �le is an instruction for installing and creating conan packages.

In this case it will be used in order to manage dependencies for Application-A,

which are the open-source libraries xerces and yaml-cpp.

73

3. In Figure 5.10 it is illustrated how the conanfile.py has to look like in order to

get these two dependencies. generators = "visual studio" describes for which

kind of a project the dependencies are needed, which in our case is a visual studio

project and the requirements function contains the name of the libraries which

are needed.

4. Afterwards the command conan install . has to be executed in the root direc-

tory where the Visual Studio solution, with the .sln extension, and the conanfile.py

�le is. This downloads all the required dependencies and generates a conanbuildinfo.props

�le, which needs to be added to the Visual Studio project via the Property Manager

of Visual Studio (See [115]). Doing so, adds a reference to the location where the

Conan package are downloaded and stored with the $(ConanIncludeDirectories)

variable as seen in Figure 5.11.

5. Thereafter a project �le with the extension .vcxproj will be created, this �le

includes the changes to the dependency directories which were done in the previous

step and needs to be pushed to the Git repository.

6. Once this �le is in the repository, everyone who uses this software application can

simply download all the C++ dependencies with the command conan install .

in the root project folder and the whole application is able to compile.

Figure 5.10: Application-A conan�le.py

74

Figure 5.11: Application-A Project Properties

Figure 5.12: Application-A Project Property File

5.6 TeamCity as Automation Build Tool

Up until this point the updated infrastructure has a uni�ed place for automatically au-

diting and continuously integrating source code, a single source where all binaries and li-

braries can be stored, downloaded and continuously deployed, yet to complete the CI/CD

work�ow it is necessary to have a build automation system (See 2.6) which continuously

compiles and builds source code, continuously tests the implemented changes and the

over-all integration of all components and continuously deploys when it is demanded.

Why TeamCity?

When looking into both tools which were mentioned in section 2.6, the fact that Team-

City audits user and build history without the need of any con�guration and the fact

that most features and functionalities are usable out of the box, unlike the open-source

75

approach of Jenkins, where a lot of functionalities are based on third-party open-source

plugins like GitHub integration or the a customizable dashboard view, were decisive rea-

sons for TeamCity.

TeamCity Terminology

Here will be the di�erent terms for TeamCity explained, in order to understand the

following topics and sections [72][82]:

1. Build: A process that completes a certain CI/CD task. The majority of builds

consist of numerous sequential build steps that each carry out a speci�c action. A

build is executed according to the settings speci�ed in its build con�guration.

2. Build Chain: A series of builds coupled by snapshot dependencies that form a

pipeline.

3. Build Con�guration: A build con�guration in TeamCity is a set of settings utilized

to start a build or a sequence of builds as part of a build chain. A list of all recent

builds is displayed on a build con�guration's home page. Checking out source

code, running integration tests, building artifacts, preparing release deployments

and "nightly" builds are a few examples of build con�guration.

4. Build Parameter: A name-value pair, which can be de�ned by users and can be used

in builds. They enable to �exibly share settings and values to pass them to build

steps, which can be accessed by two percentage signs inside build con�gurations.

5. Build Runner: A TeamCity module that enables integration with a particular tool,

such as Gradle, the Command Line,.NET, Kotlin Script. Each build step speci�es

the execution runner that will be used.

6. Build Step: A job that a build runner will carry out. Multiple build steps can be

included in a single build con�guration.

7. Environment Parameter: A type of build parameter that is passed into a build

process. De�ned by the env. pre�x.

8. Project: Is a collection of build con�gurations. A project may be a software project,

a particular version or release of a project or any other logical set of build con�g-

urations. For each of its build con�gurations, a project sets common settings.

76

9. VCS Root: TeamCity must establish a connection to the VCS and whenever it

needs to obtain the source code, VCS Root has to be con�gured. With it TeamCity

keeps track of VCS changes and obtains the sources needed for a particular build

con�guration.

10. Root project: A default project at the top of the complete project hierarchy. Its

settings are available to all the other projects. It is created by default and cannot

be deleted.

11. Snapshot dependency: A connection between build settings that enables the as-

signment of numerous builds to the same source revision (commit), ensuring that

the same project �les are used across all building phases.

Project Con�guration

After the installation and setup of TeamCity (See [92]), it is then feasible to create a

project con�gurations. As displayed in Figure 5.13 a project for Application-A is created.

Figure 5.13: Application-A TeamCity Project Creation

5.7 Build Con�guration Strategy

Inside that project it is possible to create di�erent build con�gurations. As mentioned

above, many build con�gurations can be created for many di�erent reasons and serve

di�erent purposes even for one repository. For example it is possible to have a dedicated

build con�guration which only compiles and executes the unit tests of a source code,

another build con�guration may be dedicated to test the application with di�erent test

77

data for the same source code. Since a project is created in the previous step it is then

possible to create all the di�erent build con�guration for a speci�c project or repository

in there. In order to do that, it is necessary to set up a VCS Root for the particular

repository, which can be reused by every build con�guration afterwards. Like shown

in Figure 5.14 in order to create a VCS Root it is needed to set the URL to the Git

repository of the project and since GitFlow is used for the Application-A repository the

default branch, which should be monitored is the develop. An important thing to notice

is also the :* in the Branch specification setting, which indicates that every other

branch should also be monitored(for a more detailed explanation See [147] [49]).

Figure 5.14: Application-A VCS Root

After that it is possible to con�gure and add build steps to a build con�guration.

The following subsections will describe and show build con�gurations which will cover

general use cases.

78

Build Con�guration: Build and Test

The �rst build con�guration is responsible to build and run unit test whenever changes

are made in Git repository.

This is done with the following build steps and con�gurations:

Since Application-A has build dependencies which need to be present in order to compile

the application it is necessary to download these dependencies. However, since previously

Conan is con�gured for Application-A to automatically handle the build dependencies it

is simple for TeamCity to use it as it is for developers. As stated in subsection Managing

Build Dependencies in order to download the dependencies with conan the remote conan

repository, which is this case Artifactory, and the credentials for it has to be con�gured

and then the command conan install . has to be executed from the command line.

Therefore the �rst build step has the have a Command Line Build Runner which uses a

common CLI. For this reasons the �rst build steps looks like the following Figure 5.15.

As it can be seen, user name and password for Artifactory are con�gured in environment

parameters in order to not have them in written in clear text inside build con�gurations

(See [46] [72]).

Figure 5.15: Conan Build Con�guration Setup

With the previous build step getting all the necessary build dependencies it is then

possible to build and compile Application-A. Since Application-A is a Visual Studio

79

project, TeamCity allows to use the .NET Build Runner (See [1]), which enables to build

.NET projects. It is important to notice that the Projects option in the build step

includes the name of project solution �le of Application-A as shown in Figure 5.16.

Figure 5.16: .NET Compile Build Con�guration

After building the software application successfully, indicating that there are no compile

errors in the code, it is then wanted to run software tests in order to be sure that changes

do not introduce unwanted behaviour or bugs. Since the test data is versioned and

managed with DVC it is necessary to also con�gure DVC for the build con�guration,

in order to run the test with the test data. Therefore, according to the DVC setup in

section Data Version Control, the next build steps looks like the following Figure 5.17:

80

Figure 5.17: DVC Build Con�guration

To run software unit tests it is again needed to use the .NET Build Runner with the

test command, as seen in Figure 5.18.

Figure 5.18: .NET Test Build Con�guration

With all this con�gurations, this build con�guration is then triggered to build whenever

a change has been committed to a branch in the Git repository, as shown in Figure

5.19 and the code will be compiled and the unit tests will be run. The result of this

81

con�guration is demonstrated in Figure 5.20.

Figure 5.19: Application-A Build and Test Overview

82

Figure 5.20: Application-A Build and Test

Build Con�guration: On Pull Request

With the preceding build con�guration every change done to Application-A is checked

automatically, yet to prevent, that unstable and bug contained code is getting merged to

the primary branch, GitHub and TeamCity introduced the Pull Request feature. The Pull

Requests build feature enables to automatically load pull request data and source code

and run builds on the pull request branches in GitHub on speci�c build con�gurations

(See [123]). Additionally, in order to receive the outcome of the triggered pull request

build, there is the Commit Status Publisher feature (See [40]).

When both features are con�gured, TeamCity instantly starts a build whenever a pull

request is created and the result is getting forward to the pull request on the VCS

repository. As shown in Figure 5.21 a pull request was opened and the Build and

Test build con�guration of Application-A is run successfully, indicating that the changes

compiled and the software unit tests run successfully, but since the approval of a code

83

owner is still missing, GitHub does not allow the pull request to be merged.

Figure 5.21: Application-A Pull Request Status

Build Con�guration: Nightly Build

As mentioned in Nightly Builds completely building and testing larger projects with a big

amount of test data can be time consuming, which is a problem when the time consuming

task blocks an entire build agent for multiple hours during the day, meaning no other

builds can be run on that agent. Therefore, following the recommendation of [27], a

possibility is to run the complete builds with all the test data during the night. For this

purpose TeamCity has the feature Schedule Trigger, which allows to schedule builds

based on time [48]. Utilizing this feature enables to create a new build con�guration

which is dedicated to build every night at a speci�c time, for example every day at 11pm

as shown in Figure 5.22.

84

Figure 5.22: Application-A Schedule Trigger

Build Con�guration: Publish and Deploy

After implementing and introducing features and the software application is in a deploy-

able state, so that it can be used in the test or production environment, it is possible

to have a dedicated build con�guration to deploy and deliver the current state of soft-

ware applications. However, before doing that it is recommended to �gure out when the

software application will be used in a test environment and when in production, since

according to [87] the build, deployment and test process that is applied to the software

application change is the validation whether the current state of a project is a release

candidate or not.

Therefore, the following build con�guration will build the whole application when there

are changes introduced to the primary development branch develop and with the con�g-

uration which were done until now, e.g. code owner and pull request checks, the branch

should be always stable. After the building and compiling of the application the build

con�guration will then deploy that state of the project as a test release to Artifactory,

so that the applications and builds which depend on that will be able to consume and

test it, in order to determine if that state is a release candidate or not. Additionally,

whenever a release is created on GitHub (See [107]), the build con�guration will build

and deploy the release version with the given version number to Artifactory, so it can be

used in the test and production environment.

For the new build con�guration, it must be de�ned which branches it should monitor. In

this case it will the develop branch and whenever releases are created. Since this build

con�guration is using the same VCS Root as the one at the beginning of this section,

which monitors all the branches, the already monitored branches have to be �ltered.

85

This is done by excluding all the branches which are monitored by the VCS Root and

including develop and refs/tags/(*) (See [49]), as shown in Figure 5.23.

Figure 5.23: Application-A Branch Filter for Deployment

The �rst couple of build steps are the same as the "Build and Test" build con�guration,

since it is wanted to build and test the application before deploying and making it public.

The last build step however, will create a conan package out of the application and then

deploy it to Artifactory, which has to look like the following Figure 5.24. Since the remote

conan repository is set in the �rst build step under the alias artifactory, it can also be

used in this build step as the target remote repository for the deployment. Additionally,

the package will be versioned the branch name,

Figure 5.24: Application-A Package and Deploy

With this con�guration in place, the "Build and Deploy" build con�guration, will always

86

run whenever a commit is done on the develop branch or a release is created, as shown in

Figure 5.25, which ultimately creates and deploys the package according to the TeamCity

Build Branch name.

Figure 5.25: Application-A Build And Deploy Builds

The result of these builds is that Artifactory then contains the correct versioned conana

packages, as displayed in Figure 5.26, which are ready to be consumed by other applica-

tions and builds. It is important to notice that the package names match accordingly to

the versions of the releases and whereas the develop package get overridden whenever

a new change is done to the develop branch, which means that this package always

represents the most current state of the application.

87

Figure 5.26: Conan Packages in Artifactory

5.8 Integration-Testing

As mentioned at the beginning of section 5.1 Application-B has a dependency on Application-

A in order to build and compile properly. Which means that it must be continuously

ensured that whenever a change is done to the primary branch of Application-A, that

Application-B is still able to compile and use Application-A. Therefore a build con�g-

uration will be created, as part of a build-chain, which will always be built, whenever

the "Build and Deploy" con�guration is triggered. After the "Build and Deploy" has

successfully deployed a new develop conan package, the new Application-B build con-

�guration will then pull the new package and compile Application-B.

The �rst thing which needs to be done is to con�gure the conan.py �le of Application-B,

so that it uses the develop conan package of Application-A, as illustrated in Figure 5.27.

Secondly, the build steps of the new build con�guration for Application-B are the same

as the "Build and Test" of Application-A, but with one addition. A snapshot dependency

has to be con�gured to the "Build and Deploy" con�guration of Application-A, in order

to create build-chain, so that the new con�guration is build always after the "Build and

Deploy". Within TeamCity then it is possible to illustrate the build chain, as shown in

Figure.

88

Figure 5.27: Application-B ConanFile.py

Figure 5.28: TC Build Chain

89

6 Conclusion

This thesis examined recent literature in the �eld of software engineering that is focused

on modern software practices and infrastructures for software development. The research

covered numerous sources and summarized essential information about Continuous In-

tegration and Delivery, Software Con�guration Management, di�erent branching and

versioning strategies, dependency management and build and test automation. After

the comprehensive literature study a thorough implementation strategy for transitioning

from old systems and applications to a postmodern software infrastructure was presented,

by including most of the technologies, strategies and practices which were concluded by

the thorough research.

The suggested strategy incorporated the four major components of software con�gu-

ration management, by introducing di�erent practices and technologies to cover all four

of them.

Firstly with Con�guration Identi�cation, by enabling to identify and divide projects into

smaller, easier to manage subsystems. Which was done with Git repositories for source

code and con�guration �les and with Artifactory for binaries and dependencies.

Then with Con�guration Status Accounting by enabling to keep track of when, why and

who made changes to the di�erent components of a software application. Which was

done with Git for source code changes, with DVC for test data and by utilizing GitFlow

which provided meaningful branching names in order to have an overview of changes and

their purpose.

Following that with Con�guration Auditing, by permitting to track of advancement with

the change history log of GitHub and build history log of TeamCity.

Then with Con�guration Change Control by allowing to organize the access of team

members to project components so unwanted and unauthorized changes are not per-

formed, which was done with Git code owners and branch protection.

90

Furthermore, the proof of concept includes a strategy for dependency management of

C++ libraries, by using Conan as a package manager and Artifactory for hosting and

administration. In addition the presented proof of concept includes a fully working Con-

tinuous Integration / Continuous Delivery infrastructure with Continuous Testing on top

of it.

Yet, the infrastructure with the suggested combination of the technologies and work�ows,

is as mentioned a proof of concept, which worked for the presented situation and use case.

However, when the implemented strategy might not be su�cient enough, depending on

the demands and needs, an alternative technology stack may be more compatible. Al-

ternatively, for example, when dealing with vast amount of binary �les, such as in the

video game industry, Perforce might be a more reasonable choice as a VCS, since it is

capable of managing binary �les better then Git, therefore getting rid of Artifactory.

Additionally, Perforce allows to partially checkout repositories, which is more ideal when

having extensive amount of data which do not have to be downloaded all the time.

Seeing that how many di�erent technologies, best practices, strategies and aspects to

take care of, throughout the research, the formulating of a functioning strategy and the

implementation of these, elucidated the challenges and hesitation of companies to switch

to more modern software development strategies. The investigation of which practice

may assist for which stumbling block was a challenge in itself, since keeping an overview

about the vast amount of information was an extraordinarily obstacle, over and above

that comprehending and implementing all the theoretical aspects was indeed a di�cult

task. Since even seemingly small approaches and details such as branching strategies had

a bigger impact after all.

91

Bibliography

[1] .NET | TeamCity On-Premises. en-US. url: https://www.jetbrains.com/

help/teamcity/net.html (visited on 07/02/2022).

[2] 10 Risks of Keeping a Legacy Software. en. Apr. 2021. url: https://relevant.

software / blog / 10 - risks - of - keeping - a - legacy - software/ (visited on

05/30/2022).

[3] 7 Best Practices for Managing Open Source Components. en-US. url: https:

//www.altexsoft.com/blog/engineering/5-best-practices-for-managing-

open-source-components/ (visited on 05/31/2022).

[4] 7 Reasons Why Software Testing is Important. en-US. Apr. 2021. url: https://

www.indiumsoftware.com/blog/why-software-testing/ (visited on 05/31/2022).

[5] 9 Types Of Software Testing In Software Engineering. en-US. Sept. 2019. url:

https://theqalead.com/topics/types-of-software-testing/ (visited on

05/31/2022).

[6] A successful Git branching model. en. url: http://nvie.com/posts/a-successful-

git-branching-model/ (visited on 05/31/2022).

[7] About code owners. en. url: https : / / ghdocs - prod . azurewebsites . net /

en/repositories/managing- your- repositorys- settings- and- features/

customizing-your-repository/about-code-owners (visited on 06/30/2022).

[8] Advantages and Disadvantages of Jenkins. url: https://www.tutorialandexample.

com/advantages-and-disadvantages-of-jenkins (visited on 05/31/2022).

[9] Anti Patterns of Continuous Integration | HackerNoon. url: https://hackernoon.

com/anti-patterns-of-continuous-integration-e1cafd47556d (visited on

05/31/2022).

[10] Anti-patterns You Should Avoid in Your Code. en. Nov. 2020. url: https://

www.freecodecamp.org/news/antipatterns-to-avoid-in-code/ (visited on

05/31/2022).

92

https://www.jetbrains.com/help/teamcity/net.html
https://www.jetbrains.com/help/teamcity/net.html
https://relevant.software/blog/10-risks-of-keeping-a-legacy-software/
https://relevant.software/blog/10-risks-of-keeping-a-legacy-software/
https://www.altexsoft.com/blog/engineering/5-best-practices-for-managing-open-source-components/
https://www.altexsoft.com/blog/engineering/5-best-practices-for-managing-open-source-components/
https://www.altexsoft.com/blog/engineering/5-best-practices-for-managing-open-source-components/
https://www.indiumsoftware.com/blog/why-software-testing/
https://www.indiumsoftware.com/blog/why-software-testing/
https://theqalead.com/topics/types-of-software-testing/
http://nvie.com/posts/a-successful-git-branching-model/
http://nvie.com/posts/a-successful-git-branching-model/
https://ghdocs-prod.azurewebsites.net/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://ghdocs-prod.azurewebsites.net/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://ghdocs-prod.azurewebsites.net/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-code-owners
https://www.tutorialandexample.com/advantages-and-disadvantages-of-jenkins
https://www.tutorialandexample.com/advantages-and-disadvantages-of-jenkins
https://hackernoon.com/anti-patterns-of-continuous-integration-e1cafd47556d
https://hackernoon.com/anti-patterns-of-continuous-integration-e1cafd47556d
https://www.freecodecamp.org/news/antipatterns-to-avoid-in-code/
https://www.freecodecamp.org/news/antipatterns-to-avoid-in-code/

[11] Approaches to C++ Dependency Management, or Why We Built Buckaroo | Hack-

erNoon. en. url: https://hackernoon.com/approaches-to-c-dependency-

management-or-why-we-built-buckaroo-26049d4646e7 (visited on 05/31/2022).

[12] Artifact management overview. en. url: https://cloud.google.com/artifact-

management/docs/overview (visited on 05/31/2022).

[13] Artifact management overview. en. url: https://docs.cloudbees.com/docs/

cloudbees-cd/latest/automation-platform/artifactmgmt (visited on 05/31/2022).

[14] Artifact Management Overview | JFrog Platform. en-US. url: https://jfrog.

com/artifact-management/ (visited on 05/31/2022).

[15] Artifactory - Universal Artifact Management. en-US. url: https://jfrog.com/

artifactory/ (visited on 05/31/2022).

[16] Artifactory: How to upload a folder (with its content) to Artifactory. en-US. url:

https : / / jfrog . com / knowledge - base / artifactory - how - to - upload - a -

folder-with-its-content-to-artifactory/ (visited on 06/25/2022).

[17] Atlassian. Continuous Delivery Pipeline 101. en. url: https://www.atlassian.

com/continuous-delivery/principles/pipeline (visited on 05/31/2022).

[18] Atlassian. Continuous integration vs. delivery vs. deployment. en. url: https:

/ / www . atlassian . com / continuous - delivery / principles / continuous -

integration-vs-delivery-vs-deployment (visited on 04/24/2022).

[19] Atlassian. Git Feature Branch Work�ow | Atlassian Git Tutorial. en. url: https:

/ / www . atlassian . com / git / tutorials / comparing - workflows / feature -

branch-workflow (visited on 05/31/2022).

[20] Atlassian. Git�ow Work�ow | Atlassian Git Tutorial. en. url: https://www.

atlassian.com/git/tutorials/comparing- workflows/gitflow- workflow

(visited on 05/30/2022).

[21] Atlassian. Perforce to Git - why to make the move | Atlassian Git Tutorial. en.

url: https://www.atlassian.com/git/tutorials/perforce-git (visited on

05/08/2022).

[22] Atlassian. Trunk-based Development. en. url: https://www.atlassian.com/

continuous-delivery/continuous-integration/trunk-based-development

(visited on 05/30/2022).

[23] Atlassian. What is Continuous Integration. en. url: https://www.atlassian.

com/continuous-delivery/continuous-integration (visited on 06/27/2022).

93

https://hackernoon.com/approaches-to-c-dependency-management-or-why-we-built-buckaroo-26049d4646e7
https://hackernoon.com/approaches-to-c-dependency-management-or-why-we-built-buckaroo-26049d4646e7
https://cloud.google.com/artifact-management/docs/overview
https://cloud.google.com/artifact-management/docs/overview
https://docs.cloudbees.com/docs/cloudbees-cd/latest/automation-platform/artifactmgmt
https://docs.cloudbees.com/docs/cloudbees-cd/latest/automation-platform/artifactmgmt
https://jfrog.com/artifact-management/
https://jfrog.com/artifact-management/
https://jfrog.com/artifactory/
https://jfrog.com/artifactory/
https://jfrog.com/knowledge-base/artifactory-how-to-upload-a-folder-with-its-content-to-artifactory/
https://jfrog.com/knowledge-base/artifactory-how-to-upload-a-folder-with-its-content-to-artifactory/
https://www.atlassian.com/continuous-delivery/principles/pipeline
https://www.atlassian.com/continuous-delivery/principles/pipeline
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/perforce-git
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.atlassian.com/continuous-delivery/continuous-integration/trunk-based-development
https://www.atlassian.com/continuous-delivery/continuous-integration
https://www.atlassian.com/continuous-delivery/continuous-integration

[24] Atlassian.What is Git: become a pro at Git with this guide | Atlassian Git Tutorial.

en. url: https://www.atlassian.com/git/tutorials (visited on 05/02/2022).

[25] Atlassian. What is version control | Atlassian Git Tutorial. en. url: https://

www.atlassian.com/git/tutorials/what-is-version-control (visited on

05/02/2022).

[26] Audit Con�guration - an overview | ScienceDirect Topics. url: https://www.

sciencedirect.com/topics/computer-science/audit-configuration (visited

on 04/24/2022).

[27] Arnon Axelrod. Complete Guide to Test Automation: Techniques, Practices, and

Patterns for Building and Maintaining E�ective Software Projects. en. Berkeley,

CA: Apress, 2018. isbn: 978-1-4842-3831-8 978-1-4842-3832-5. url: http://link.

springer.com/10.1007/978-1-4842-3832-5 (visited on 06/12/2022).

[28] Best Practices for Successful CI/CD | TeamCity CI/CD Guide. en. url: https:

//www.jetbrains.com/teamcity/ci- cd- guide/ci- cd- best- practices/

(visited on 05/31/2022).

[29] bliki: DarkLaunching. url: https://martinfowler.com/bliki/DarkLaunching.

html (visited on 05/31/2022).

[30] bliki: FeatureBranch. url: https://martinfowler.com/bliki/FeatureBranch.

html (visited on 05/31/2022).

[31] Branching Content Hub. en. url: https://www.perforce.com/resources/vcs/

version-control-branching (visited on 05/03/2022).

[32] Build Automation - Your Guide to an Automated Build Process | Buildd.co. url:

https://buildd.co/product/build-automation (visited on 05/31/2022).

[33] Build Automation: How it Works and Which Tools to Use. en-US. url: https:

//www.altexsoft.com/blog/build-automation/ (visited on 05/31/2022).

[34] C/C++ Open Source Package Manager. url: https://conan.io/ (visited on

06/26/2022).

[35] Centralized vs Distributed Version Control: Which One Should We Choose? en-

us. Aug. 2019. url: https : / / www . geeksforgeeks . org / centralized - vs -

distributed-version-control-which-one-should-we-choose/ (visited on

05/30/2022).

94

https://www.atlassian.com/git/tutorials
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.atlassian.com/git/tutorials/what-is-version-control
https://www.sciencedirect.com/topics/computer-science/audit-configuration
https://www.sciencedirect.com/topics/computer-science/audit-configuration
http://link.springer.com/10.1007/978-1-4842-3832-5
http://link.springer.com/10.1007/978-1-4842-3832-5
https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-practices/
https://www.jetbrains.com/teamcity/ci-cd-guide/ci-cd-best-practices/
https://martinfowler.com/bliki/DarkLaunching.html
https://martinfowler.com/bliki/DarkLaunching.html
https://martinfowler.com/bliki/FeatureBranch.html
https://martinfowler.com/bliki/FeatureBranch.html
https://www.perforce.com/resources/vcs/version-control-branching
https://www.perforce.com/resources/vcs/version-control-branching
https://buildd.co/product/build-automation
https://www.altexsoft.com/blog/build-automation/
https://www.altexsoft.com/blog/build-automation/
https://conan.io/
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/
https://www.geeksforgeeks.org/centralized-vs-distributed-version-control-which-one-should-we-choose/

[36] Lianping Chen. �Continuous Delivery: Huge Bene�ts, but Challenges Too�. en.

In: IEEE Softw. 32.2 (Mar. 2015), pp. 50�54. issn: 0740-7459. doi: 10.1109/MS.

2015.27. url: http://ieeexplore.ieee.org/document/7006384/ (visited on

04/24/2022).

[37] Luke Chen. SemVer and CalVer � 2 popular software versioning schemes. en.

Nov. 2020. url: https : / / nehckl0 . medium . com / semver - and - calver - 2 -

popular-software-versioning-schemes-96be80efe36 (visited on 05/31/2022).

[38] CI/CD pipelines explained: Everything you need to know. en. url: https://

www.techtarget.com/searchsoftwarequality/CI-CD-pipelines-explained-

Everything-you-need-to-know (visited on 04/24/2022).

[39] CM-03 Con�guration Change Control. url: https://www.opensecurityarchitecture.

org/cms/library/08_02_control-catalogue/154-08_02_CM-03 (visited on

04/24/2022).

[40] Commit Status Publisher | TeamCity On-Premises. en-US. url: https://www.

jetbrains.com/help/teamcity/commit-status-publisher.html (visited on

07/02/2022).

[41] conan remote � conan 1.46.2 documentation. url: https://docs.conan.io/

en/1.46/reference/commands/misc/remote.html (visited on 06/27/2022).

[42] Conan Repositories - JFrog - JFrog Documentation. url: https://www.jfrog.

com/confluence/display/JFROG/Conan+Repositories (visited on 06/21/2022).

[43] conan�le.py � conan 1.49.0 documentation. url: https://docs.conan.io/en/

latest/reference/conanfile.html (visited on 06/26/2022).

[44] Con�guration Identi�cation - an overview | ScienceDirect Topics. url: https://

www.sciencedirect.com/topics/engineering/configuration-identification

(visited on 04/24/2022).

[45] Con�guration Status Accounting | Engineering360. url: https://www.globalspec.

com/reference/71660/203279/5-4-configuration-status-accounting (vis-

ited on 04/24/2022).

[46] Con�guring Build Parameters | TeamCity On-Premises. en-US. url: https://

www.jetbrains.com/help/teamcity/configuring-build-parameters.html

(visited on 07/02/2022).

[47] Con�guring Build Triggers | TeamCity On-Premises. en-US. url: https://www.

jetbrains.com/help/teamcity/configuring-build-triggers.html (visited

on 05/31/2022).

95

https://doi.org/10.1109/MS.2015.27
https://doi.org/10.1109/MS.2015.27
http://ieeexplore.ieee.org/document/7006384/
https://nehckl0.medium.com/semver-and-calver-2-popular-software-versioning-schemes-96be80efe36
https://nehckl0.medium.com/semver-and-calver-2-popular-software-versioning-schemes-96be80efe36
https://www.techtarget.com/searchsoftwarequality/CI-CD-pipelines-explained-Everything-you-need-to-know
https://www.techtarget.com/searchsoftwarequality/CI-CD-pipelines-explained-Everything-you-need-to-know
https://www.techtarget.com/searchsoftwarequality/CI-CD-pipelines-explained-Everything-you-need-to-know
https://www.opensecurityarchitecture.org/cms/library/08_02_control-catalogue/154-08_02_CM-03
https://www.opensecurityarchitecture.org/cms/library/08_02_control-catalogue/154-08_02_CM-03
https://www.jetbrains.com/help/teamcity/commit-status-publisher.html
https://www.jetbrains.com/help/teamcity/commit-status-publisher.html
https://docs.conan.io/en/1.46/reference/commands/misc/remote.html
https://docs.conan.io/en/1.46/reference/commands/misc/remote.html
https://www.jfrog.com/confluence/display/JFROG/Conan+Repositories
https://www.jfrog.com/confluence/display/JFROG/Conan+Repositories
https://docs.conan.io/en/latest/reference/conanfile.html
https://docs.conan.io/en/latest/reference/conanfile.html
https://www.sciencedirect.com/topics/engineering/configuration-identification
https://www.sciencedirect.com/topics/engineering/configuration-identification
https://www.globalspec.com/reference/71660/203279/5-4-configuration-status-accounting
https://www.globalspec.com/reference/71660/203279/5-4-configuration-status-accounting
https://www.jetbrains.com/help/teamcity/configuring-build-parameters.html
https://www.jetbrains.com/help/teamcity/configuring-build-parameters.html
https://www.jetbrains.com/help/teamcity/configuring-build-triggers.html
https://www.jetbrains.com/help/teamcity/configuring-build-triggers.html

[48] Con�guring Schedule Triggers | TeamCity On-Premises. en-US. url: https://

www.jetbrains.com/help/teamcity/configuring-schedule-triggers.html

(visited on 05/31/2022).

[49] Con�guring VCS Settings | TeamCity On-Premises. en-US. url: https://www.

jetbrains.com/help/teamcity/configuring-vcs-settings.html (visited on

05/31/2022).

[50] Rajesh Kumar Mentor for DevOps-DevSecOps- SRE- Cloud- Container et al.

What is TeamCity and How it works? An Overview and Its Use Cases. en-US. Apr.

2022. url: https://www.devopsschool.com/blog/what-is-teamcity-and-

how-it-works-an-overview-and-its-use-cases/ (visited on 05/31/2022).

[51] Continuous Integration. url: https://martinfowler.com/articles/continuousIntegration.

html (visited on 05/31/2022).

[52] Continuous Integration Patterns and Anti-Patterns - DZone Refcardz. en. url:

https://dzone.com/refcardz/continuous-integration (visited on 05/31/2022).

[53] Data Version Control · DVC. en. url: https://dvc.org/ (visited on 06/22/2022).

[54] Dependency Hell. What is Software Dependency Issues. en. url: https://www.

boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-

avoid-it (visited on 05/31/2022).

[55] Dependency Management: 3 Tips to Keep You Sane. en-US. Mar. 2020. url:

https://www.mend.io/free-developer-tools/blog/dependency-management/

(visited on 05/31/2022).

[56] Design Patterns and Refactoring. en. url: https://sourcemaking.com (visited

on 05/31/2022).

[57] Di�erences between Functional and Non-functional Testing. en-us. May 2019. url:

https://www.geeksforgeeks.org/differences-between-functional-and-

non-functional-testing/ (visited on 05/31/2022).

[58] Suemayah Eldursi. A Guide to Semantic Versioning | Baeldung on Computer

Science. en-US. Mar. 2021. url: https://www.baeldung.com/cs/semantic-

versioning (visited on 05/31/2022).

[59] Nicole Forsgren and Jez Humble. The Role of Continuous Delivery in IT and

Organizational Performance. en. SSRN Scholarly Paper 2681909. Rochester, NY:

Social Science Research Network, Oct. 2015. doi: 10.2139/ssrn.2681909. url:

https://papers.ssrn.com/abstract=2681909 (visited on 04/20/2022).

96

https://www.jetbrains.com/help/teamcity/configuring-schedule-triggers.html
https://www.jetbrains.com/help/teamcity/configuring-schedule-triggers.html
https://www.jetbrains.com/help/teamcity/configuring-vcs-settings.html
https://www.jetbrains.com/help/teamcity/configuring-vcs-settings.html
https://www.devopsschool.com/blog/what-is-teamcity-and-how-it-works-an-overview-and-its-use-cases/
https://www.devopsschool.com/blog/what-is-teamcity-and-how-it-works-an-overview-and-its-use-cases/
https://martinfowler.com/articles/continuousIntegration.html
https://martinfowler.com/articles/continuousIntegration.html
https://dzone.com/refcardz/continuous-integration
https://dvc.org/
https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it
https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it
https://www.boldare.com/blog/software-dependency-hell-what-is-it-and-how-to-avoid-it
https://www.mend.io/free-developer-tools/blog/dependency-management/
https://sourcemaking.com
https://www.geeksforgeeks.org/differences-between-functional-and-non-functional-testing/
https://www.geeksforgeeks.org/differences-between-functional-and-non-functional-testing/
https://www.baeldung.com/cs/semantic-versioning
https://www.baeldung.com/cs/semantic-versioning
https://doi.org/10.2139/ssrn.2681909
https://papers.ssrn.com/abstract=2681909

[60] C. D. Foundation. CI/CD Patterns and Practices. en-US. Sept. 2020. url: https:

/ / cd . foundation / blog / 2020 / 09 / 17 / ci - cd - patterns - and - practices/

(visited on 04/24/2022).

[61] Four Principles of Low-Risk Software Releases | Principle 1: Low-Risk Releases

Are Incremental | InformIT. url: https : / / www . informit . com / articles /

article.aspx?p=1833567 (visited on 05/31/2022).

[62] Robert T. Futrell, Donald F. Shafer, and Linda Isabell Shafer. Quality Software

Project Management, Two Volume Set. 1st. Pearson., Jan. 2002. isbn: 978-0-

13-091297-8. url: https://www.informit.com/store/quality- software-

project-management-two-volume-set-9780130912978?w_ptgrevartcl=How+

You+Can+Benefit+from+Software+Configuration+Management_26858 (visited

on 07/03/2022).

[63] Jackie Garcia. Build Automation 101: Your Guide to an Automated Build Process.

en. url: https://www.perforce.com/blog/vcs/build-automation (visited on

05/31/2022).

[64] Getting Started - TeamCity 6.5.x Documentation - Con�uence. url: https://

confluence.jetbrains.com/display/tcd65/getting+started#GettingStarted-

TeamCityArchitecture (visited on 06/23/2022).

[65] Getting Started With GIT - Studytonight. en. url: https://www.studytonight.

com/git-guide/getting-started-with-git (visited on 05/30/2022).

[66] Git - SCM. url: https://git-scm.com/book/en/v2 (visited on 05/02/2022).

[67] Git | TeamCity On-Premises. en-US. url: https://www.jetbrains.com/help/

teamcity/git.html (visited on 06/18/2022).

[68] Git Branching Strategies vs. Trunk-Based Development - LaunchDarkly. en. url:

https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-

based-development/ (visited on 05/31/2022).

[69] Git Branching Strategies: GitFlow, Github Flow, Trunk Based... en-US. Mar. 2022.

url: https://www.flagship.io/git- branching- strategies/ (visited on

05/30/2022).

[70] Git vs. Perforce: How to Choose (and When to Use Both). en. url: https://www.

perforce.com/blog/vcs/git-vs-perforce-how-choose-and-when-use-both

(visited on 05/08/2022).

[71] GitLab vs GitHub: Explore Their Major Di�erences and Similarities. en-US. Mar.

2021. url: https://kinsta.com/blog/gitlab-vs-github/ (visited on 06/19/2022).

97

https://cd.foundation/blog/2020/09/17/ci-cd-patterns-and-practices/
https://cd.foundation/blog/2020/09/17/ci-cd-patterns-and-practices/
https://www.informit.com/articles/article.aspx?p=1833567
https://www.informit.com/articles/article.aspx?p=1833567
https://www.informit.com/store/quality-software-project-management-two-volume-set-9780130912978?w_ptgrevartcl=How+You+Can+Benefit+from+Software+Configuration+Management_26858
https://www.informit.com/store/quality-software-project-management-two-volume-set-9780130912978?w_ptgrevartcl=How+You+Can+Benefit+from+Software+Configuration+Management_26858
https://www.informit.com/store/quality-software-project-management-two-volume-set-9780130912978?w_ptgrevartcl=How+You+Can+Benefit+from+Software+Configuration+Management_26858
https://www.perforce.com/blog/vcs/build-automation
https://confluence.jetbrains.com/display/tcd65/getting+started#GettingStarted-TeamCityArchitecture
https://confluence.jetbrains.com/display/tcd65/getting+started#GettingStarted-TeamCityArchitecture
https://confluence.jetbrains.com/display/tcd65/getting+started#GettingStarted-TeamCityArchitecture
https://www.studytonight.com/git-guide/getting-started-with-git
https://www.studytonight.com/git-guide/getting-started-with-git
https://git-scm.com/book/en/v2
https://www.jetbrains.com/help/teamcity/git.html
https://www.jetbrains.com/help/teamcity/git.html
https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development/
https://launchdarkly.com/blog/git-branching-strategies-vs-trunk-based-development/
https://www.flagship.io/git-branching-strategies/
https://www.perforce.com/blog/vcs/git-vs-perforce-how-choose-and-when-use-both
https://www.perforce.com/blog/vcs/git-vs-perforce-how-choose-and-when-use-both
https://kinsta.com/blog/gitlab-vs-github/

[72] Glossary | TeamCity On-Premises. en-US. url: https://www.jetbrains.com/

help/teamcity/glossary.html (visited on 07/02/2022).

[73] Thomas Hamilton. Functional Testing Vs Non-Functional Testing: What's the

Di�erence? en-US. Mar. 2020. url: https://www.guru99.com/functional-

testing-vs-non-functional-testing.html (visited on 05/31/2022).

[74] Thomas Hamilton. What is Jenkins? Why Use Continuous Integration (CI) Tool?

en-US. Jan. 2020. url: https : / / www . guru99 . com / jenkin - continuous -

integration.html (visited on 05/31/2022).

[75] Thomas Hamilton. What is Scalability Testing? Learn with Example. en-US. Feb.

2020. url: https://www.guru99.com/scalability-testing.html (visited on

05/31/2022).

[76] Thomas Hamilton. What is Software Testing? De�nition, Basics & Types in Soft-

ware Engineering. en-US. Jan. 2020. url: https://www.guru99.com/software-

testing-introduction-importance.html (visited on 05/31/2022).

[77] Brad Hart. The Best Branching Strategies For High-Velocity Development. en.

url: https://www.perforce.com/blog/vcs/best-branching-strategies-

high-velocity-development (visited on 05/03/2022).

[78] Brad Hart. Trunk Based Development or Feature Driven Development � What's

Better For Your Team? en. url: https://www.perforce.com/blog/vcs/trunk-

based-development-or-feature-driven-development (visited on 05/30/2022).

[79] Ansible Hat Red. Ansible is Simple IT Automation. en-us. url: https://www.

ansible.com (visited on 07/08/2022).

[80] Helix Core Visual Client (P4V) Guide (2022.1). url: https://www.perforce.

com/manuals/p4v/Content/P4V/Home-p4v.html (visited on 05/08/2022).

[81] How Can Enterprises Enhance Software Development by Test Automation Ser-

vices? en-US. Jan. 2022. url: https://www.matellio.com/blog/how-can-

enterprises-enhance-software-development-by-test-automation-services/

(visited on 07/01/2022).

[82] How To Build CI/CD Pipeline With TeamCity For Selenium Test Automation.

en-US. June 2021. url: https://www.lambdatest.com/blog/ci-cd-pipeline-

with-teamcity-for-selenium-test-automation/ (visited on 06/23/2022).

[83] How To Maintain an Open-Source Library. en. url: https://segment.com/blog/

tips-for-maintaining-an-open-source-library/ (visited on 05/31/2022).

98

https://www.jetbrains.com/help/teamcity/glossary.html
https://www.jetbrains.com/help/teamcity/glossary.html
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://www.guru99.com/functional-testing-vs-non-functional-testing.html
https://www.guru99.com/jenkin-continuous-integration.html
https://www.guru99.com/jenkin-continuous-integration.html
https://www.guru99.com/scalability-testing.html
https://www.guru99.com/software-testing-introduction-importance.html
https://www.guru99.com/software-testing-introduction-importance.html
https://www.perforce.com/blog/vcs/best-branching-strategies-high-velocity-development
https://www.perforce.com/blog/vcs/best-branching-strategies-high-velocity-development
https://www.perforce.com/blog/vcs/trunk-based-development-or-feature-driven-development
https://www.perforce.com/blog/vcs/trunk-based-development-or-feature-driven-development
https://www.ansible.com
https://www.ansible.com
https://www.perforce.com/manuals/p4v/Content/P4V/Home-p4v.html
https://www.perforce.com/manuals/p4v/Content/P4V/Home-p4v.html
https://www.matellio.com/blog/how-can-enterprises-enhance-software-development-by-test-automation-services/
https://www.matellio.com/blog/how-can-enterprises-enhance-software-development-by-test-automation-services/
https://www.lambdatest.com/blog/ci-cd-pipeline-with-teamcity-for-selenium-test-automation/
https://www.lambdatest.com/blog/ci-cd-pipeline-with-teamcity-for-selenium-test-automation/
https://segment.com/blog/tips-for-maintaining-an-open-source-library/
https://segment.com/blog/tips-for-maintaining-an-open-source-library/

[84] How to set up Git branch protection rules. en-US. July 2021. url: https://

spectralops.io/blog/how- to- set- up- git- branch- protection- rules/

(visited on 06/30/2022).

[85] How to Use Git Branches & Buddy to Organize Project Code - SitePoint. en. July

2019. url: https://www.sitepoint.com/use-git-branches-buddy/ (visited

on 05/31/2022).

[86] Jez Humble. What is Continuous Delivery? - Continuous Delivery. url: https:

//continuousdelivery.com/ (visited on 04/20/2022).

[87] Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases

through Build, Test, and Deployment Automation. 1st. Addison-Wesley Profes-

sional. Part of the Addison-Wesley Signature Series (Fowler) series., July 2010.

isbn: 978-0-321-60191-9. url: https://www.informit.com/store/continuous-

delivery-reliable-software-releases-through-9780321601919?ranMID=

24808 (visited on 04/15/2022).

[88] ILZE. 4 Reasons Why Software Testing is Important. en-US. July 2018. url:

https://www.testdevlab.com/blog/2018/07/03/importance-of-software-

testing/ (visited on 05/31/2022).

[89] Sonatype Inc. Software Supply Chain Security - DevSecOps Governance | Sonatype.

en-us. url: https://www.sonatype.com (visited on 05/31/2022).

[90] Install. en. url: https://dvc.org/doc/install (visited on 06/22/2022).

[91] Install � conan 1.46.2 documentation. url: https://docs.conan.io/en/1.46/

installation.html (visited on 06/26/2022).

[92] Install and Start TeamCity Server | TeamCity On-Premises. en-US. url: https:

/ / www . jetbrains . com / help / teamcity / install - and - start - teamcity -

server.html (visited on 06/23/2022).

[93] Installing Artifactory - JFrog - JFrog Documentation. url: https://www.jfrog.

com/confluence/display/JFROG/Installing+Artifactory (visited on 06/22/2022).

[94] Jenkins. en. url: https://www.jenkins.io/ (visited on 05/31/2022).

[95] JFrog Artifactory. en-US. url: https://jfrog.com/solution-sheet/jfrog-

artifactory/ (visited on 05/31/2022).

[96] JFrog Artifactory | ASERVO. url: https : / / www . aservo . com / en / tools /

configuration-management/jfrog-artifactory-en (visited on 05/31/2022).

99

https://spectralops.io/blog/how-to-set-up-git-branch-protection-rules/
https://spectralops.io/blog/how-to-set-up-git-branch-protection-rules/
https://www.sitepoint.com/use-git-branches-buddy/
https://continuousdelivery.com/
https://continuousdelivery.com/
https://www.informit.com/store/continuous-delivery-reliable-software-releases-through-9780321601919?ranMID=24808
https://www.informit.com/store/continuous-delivery-reliable-software-releases-through-9780321601919?ranMID=24808
https://www.informit.com/store/continuous-delivery-reliable-software-releases-through-9780321601919?ranMID=24808
https://www.testdevlab.com/blog/2018/07/03/importance-of-software-testing/
https://www.testdevlab.com/blog/2018/07/03/importance-of-software-testing/
https://www.sonatype.com
https://dvc.org/doc/install
https://docs.conan.io/en/1.46/installation.html
https://docs.conan.io/en/1.46/installation.html
https://www.jetbrains.com/help/teamcity/install-and-start-teamcity-server.html
https://www.jetbrains.com/help/teamcity/install-and-start-teamcity-server.html
https://www.jetbrains.com/help/teamcity/install-and-start-teamcity-server.html
https://www.jfrog.com/confluence/display/JFROG/Installing+Artifactory
https://www.jfrog.com/confluence/display/JFROG/Installing+Artifactory
https://www.jenkins.io/
https://jfrog.com/solution-sheet/jfrog-artifactory/
https://jfrog.com/solution-sheet/jfrog-artifactory/
https://www.aservo.com/en/tools/configuration-management/jfrog-artifactory-en
https://www.aservo.com/en/tools/configuration-management/jfrog-artifactory-en

[97] JFrog Artifactory CE | Your Conan C/C++ package manager repository. en-US.

Mar. 2018. url: https://jfrog.com/blog/announcing-jfrog-artifactory-

community-edition-c-c/ (visited on 06/26/2022).

[98] JFrog Artifactory Vs. Sonatype Nexus. en-US. Feb. 2021. url: https://jfrog.

com/blog/artifactory-vs-nexus-integration-matrix/ (visited on 05/31/2022).

[99] Eva Johnson. CVCS & DVCS: The Needs That Version Control Systems Serve.

en-us. July 2014. url: https://content.intland.com/blog/sdlc/the-needs-

that-version-control-systems-serve (visited on 05/06/2022).

[100] Eva Johnson. Pros and Cons: Is Git Better Than Mercurial? en-us. Jan. 2015.

url: https://content.intland.com/blog/sdlc/why-is-git-better-than-

mercurial (visited on 05/02/2022).

[101] Kayly Lange. Release Management in DevOps. en-US. url: https://www.bmc.

com/blogs/devops-release-management/ (visited on 05/31/2022).

[102] Legacy System Modernization Approaches | A Rackspace Guide. en. Dec. 2020.

url: https : / / www . rackspace . com / blog / brief - guide - legacy - system -

modernization (visited on 07/07/2022).

[103] Legacy System Modernization: How to Transform the Enterprise for Digital Fu-

ture. en-US. url: https://www.altexsoft.com/whitepapers/legacy-system-

modernization-how-to-transform-the-enterprise-for-digital-future/

(visited on 07/07/2022).

[104] Rafal Leszko. Continuous delivery with Docker and Jenkins: delivering software

at scale. en. First published. Birmingham Mumbai: Packt Publishing, 2017. isbn:

978-1-78712-523-0.

[105] Rafal Leszko. Continuous delivery with Docker and Jenkins: delivering software

at scale. en. First published. Birmingham Mumbai: Packt Publishing, 2017. isbn:

978-1-78712-523-0.

[106] Matt Mackall. �Towards a Better SCM: Revlog and Mercurial�. en. In: (), p. 8.

[107] Managing releases in a repository. en. url: https://ghdocs-prod.azurewebsites.

net/en/repositories/releasing-projects-on-github/managing-releases-

in-a-repository (visited on 07/03/2022).

[108] Managing the Open Source Dependency. url: https://www.computer.org/csdl/

magazine/co/2020/02/08996108/1hmvEWqZ8Vq (visited on 05/31/2022).

100

https://jfrog.com/blog/announcing-jfrog-artifactory-community-edition-c-c/
https://jfrog.com/blog/announcing-jfrog-artifactory-community-edition-c-c/
https://jfrog.com/blog/artifactory-vs-nexus-integration-matrix/
https://jfrog.com/blog/artifactory-vs-nexus-integration-matrix/
https://content.intland.com/blog/sdlc/the-needs-that-version-control-systems-serve
https://content.intland.com/blog/sdlc/the-needs-that-version-control-systems-serve
https://content.intland.com/blog/sdlc/why-is-git-better-than-mercurial
https://content.intland.com/blog/sdlc/why-is-git-better-than-mercurial
https://www.bmc.com/blogs/devops-release-management/
https://www.bmc.com/blogs/devops-release-management/
https://www.rackspace.com/blog/brief-guide-legacy-system-modernization
https://www.rackspace.com/blog/brief-guide-legacy-system-modernization
https://www.altexsoft.com/whitepapers/legacy-system-modernization-how-to-transform-the-enterprise-for-digital-future/
https://www.altexsoft.com/whitepapers/legacy-system-modernization-how-to-transform-the-enterprise-for-digital-future/
https://ghdocs-prod.azurewebsites.net/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://ghdocs-prod.azurewebsites.net/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://ghdocs-prod.azurewebsites.net/en/repositories/releasing-projects-on-github/managing-releases-in-a-repository
https://www.computer.org/csdl/magazine/co/2020/02/08996108/1hmvEWqZ8Vq
https://www.computer.org/csdl/magazine/co/2020/02/08996108/1hmvEWqZ8Vq

[109] Matthew Martin. Software Con�guration Management in Software Engineering.

en-US. Section: Business Analyst. Mar. 2020. url: https://www.guru99.com/

software-configuration-management-tutorial.html (visited on 04/24/2022).

[110] Joseph Mathenge. Deploying vs Releasing Software: What's The Di�erence? en-

US. url: https://www.bmc.com/blogs/software-deployment-vs-release/

(visited on 05/31/2022).

[111] Mercurial SCM. url: https://www.mercurial-scm.org/ (visited on 05/02/2022).

[112] Mercurial vs. Git: why Mercurial? en-US. Feb. 2012. url: https://www.atlassian.

com/blog/software- teams/mercurial- vs- git- why- mercurial (visited on

05/06/2022).

[113] Modernizing Legacy Systems: A complete guide. en-US. url: https://headspring.

com/modernizing-legacy-systems/ (visited on 05/30/2022).

[114] Tomomi Uchida Molin. Why is software testing so important? en-gb. url: https:

//www.theiceway.com/blog/why-is-software-testing-so-important (vis-

ited on 05/31/2022).

[115] MSBuild (Visual Studio) � conan 1.49.0 documentation. url: https://docs.

conan.io/en/latest/integrations/build_system/msbuild.html#msbuild-

integration (visited on 06/27/2022).

[116] Quang Nguyen.Git-Flow vs GitHub-Flow. en. Sept. 2021. url: https://quangnguyennd.

medium.com/git-flow-vs-github-flow-620c922b2cbd (visited on 05/31/2022).

[117] Nightly / Daily build. en. Apr. 2022. url: https://iq.opengenus.org/nightly-

build/ (visited on 06/12/2022).

[118] Bryan O'Sullivan. �Distributed revision control with Mercurial�. In: (), p. 201.

[119] Package management basics - Learn web development | MDN. en-US. url: https:

//developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_

client-side_tools/Package_management (visited on 06/26/2022).

[120] David Pearce. 5 Risks of Legacy Technology. en-us. url: https://www.rutter-

net.com/blog/5-risks-of-legacy-technology (visited on 05/30/2022).

[121] Perforce vs Git | Choosing the Right Version Control Systems. en-US. June 2020.

url: https://www.educba.com/perforce-vs-git/ (visited on 05/08/2022).

[122] DevOps Professional. Continuous Delivery Best Practices. en-US. June 2019. url:

https://www.devonblog.com/continuous-delivery/continuous-delivery-

best-practices/ (visited on 05/31/2022).

101

https://www.guru99.com/software-configuration-management-tutorial.html
https://www.guru99.com/software-configuration-management-tutorial.html
https://www.bmc.com/blogs/software-deployment-vs-release/
https://www.mercurial-scm.org/
https://www.atlassian.com/blog/software-teams/mercurial-vs-git-why-mercurial
https://www.atlassian.com/blog/software-teams/mercurial-vs-git-why-mercurial
https://headspring.com/modernizing-legacy-systems/
https://headspring.com/modernizing-legacy-systems/
https://www.theiceway.com/blog/why-is-software-testing-so-important
https://www.theiceway.com/blog/why-is-software-testing-so-important
https://docs.conan.io/en/latest/integrations/build_system/msbuild.html#msbuild-integration
https://docs.conan.io/en/latest/integrations/build_system/msbuild.html#msbuild-integration
https://docs.conan.io/en/latest/integrations/build_system/msbuild.html#msbuild-integration
https://quangnguyennd.medium.com/git-flow-vs-github-flow-620c922b2cbd
https://quangnguyennd.medium.com/git-flow-vs-github-flow-620c922b2cbd
https://iq.opengenus.org/nightly-build/
https://iq.opengenus.org/nightly-build/
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Package_management
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Package_management
https://developer.mozilla.org/en-US/docs/Learn/Tools_and_testing/Understanding_client-side_tools/Package_management
https://www.rutter-net.com/blog/5-risks-of-legacy-technology
https://www.rutter-net.com/blog/5-risks-of-legacy-technology
https://www.educba.com/perforce-vs-git/
https://www.devonblog.com/continuous-delivery/continuous-delivery-best-practices/
https://www.devonblog.com/continuous-delivery/continuous-delivery-best-practices/

[123] Pull Requests | TeamCity On-Premises. en-US. url: https://www.jetbrains.

com/help/teamcity/pull-requests.html (visited on 07/02/2022).

[124] Salt Project � Salt Open Source. en-US. url: https://saltproject.io/ (visited

on 07/08/2022).

[125] Brent Schiestl. Code Branching De�nition � What Is a Branch? en. url: https:

//www.perforce.com/blog/vcs/branching-definition-what-branch (visited

on 05/03/2022).

[126] Nishant Sharma. How to set up a build pipeline on JetBrains TeamCity? en. Dec.

2021. url: https://medium.com/testvagrant/how- to- set- up- a- build-

pipeline-on-jetbrains-teamcity-41a1b0a67d76 (visited on 05/31/2022).

[127] Software Con�guration Management - an overview | ScienceDirect Topics. url:

https://www.sciencedirect.com/topics/computer- science/software-

configuration-management (visited on 04/24/2022).

[128] Sonatype Nexus Repository Managers | ASERVO. url: https://www.aservo.

com/en/tools/configuration- management/sonatype- nexus- repository-

managers-en (visited on 05/31/2022).

[129] Stack Over�ow Developer Survey 2020. url: https://insights.stackoverflow.

com/survey/2020/?utm_source=social- share&utm_medium=social&utm_

campaign=dev-survey-2020 (visited on 06/19/2022).

[130] SVN Tutorial - Javatpoint. en. url: https://www.javatpoint.com/svn (visited

on 05/02/2022).

[131] SVN vs Git - Javatpoint. en. url: https://www.javatpoint.com/svn-vs-git

(visited on 05/02/2022).

[132] Apica Systems. Automated vs Manual Testing: Which Should You Use, and When?

en-US. July 2017. url: https://www.apica.io/difference-between-automated-

manual-testing/ (visited on 05/31/2022).

[133] Test Automation Bene�ts: 12 Reasons to Automate in 2020. en-US. Nov. 2019.

url: https://www.testim.io/blog/test-automation-benefits/ (visited on

06/05/2022).

[134] Testing Legacy Software without Documents | Brainbox. en-US. May 2020. url:

https://www.brainbox.consulting/blogs-news/software-testing-blog/

testing-legacy-software-without-documents/ (visited on 05/30/2022).

102

https://www.jetbrains.com/help/teamcity/pull-requests.html
https://www.jetbrains.com/help/teamcity/pull-requests.html
https://saltproject.io/
https://www.perforce.com/blog/vcs/branching-definition-what-branch
https://www.perforce.com/blog/vcs/branching-definition-what-branch
https://medium.com/testvagrant/how-to-set-up-a-build-pipeline-on-jetbrains-teamcity-41a1b0a67d76
https://medium.com/testvagrant/how-to-set-up-a-build-pipeline-on-jetbrains-teamcity-41a1b0a67d76
https://www.sciencedirect.com/topics/computer-science/software-configuration-management
https://www.sciencedirect.com/topics/computer-science/software-configuration-management
https://www.aservo.com/en/tools/configuration-management/sonatype-nexus-repository-managers-en
https://www.aservo.com/en/tools/configuration-management/sonatype-nexus-repository-managers-en
https://www.aservo.com/en/tools/configuration-management/sonatype-nexus-repository-managers-en
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://insights.stackoverflow.com/survey/2020/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2020
https://www.javatpoint.com/svn
https://www.javatpoint.com/svn-vs-git
https://www.apica.io/difference-between-automated-manual-testing/
https://www.apica.io/difference-between-automated-manual-testing/
https://www.testim.io/blog/test-automation-benefits/
https://www.brainbox.consulting/blogs-news/software-testing-blog/testing-legacy-software-without-documents/
https://www.brainbox.consulting/blogs-news/software-testing-blog/testing-legacy-software-without-documents/

[135] TestProject. What Are The Bene�ts of Having Nightly Builds. en-US. Oct. 2019.

url: https://blog.testproject.io/2019/10/14/what-are-the-benefits-

of-having-nightly-builds/ (visited on 06/12/2022).

[136] The bene�ts of a distributed version control system. en. url: https://about.

gitlab . com / topics / version - control / benefits - distributed - version -

control-system/ (visited on 05/02/2022).

[137] The Only Guide to Dark Launching You'll Ever Need - LaunchDarkly. en. url:

https://launchdarkly.com/blog/guide- to- dark- launching/ (visited on

05/31/2022).

[138] The Software Con�guration Management Process: 5 Steps. en-US. May 2021. url:

https : / / theqalead . com / topics / software - configuration - management -

process/ (visited on 05/02/2022).

[139] The Ultimate Guide to Performance Testing and Software Testing: Testing Types,

Performance Testing Steps, Best Practices, and More. en-US. Apr. 2021. url:

https://stackify.com/ultimate-guide-performance-testing-and-software-

testing/ (visited on 05/31/2022).

[140] Top 10 BEST Build Automation Tools To Speed Up Deployment Process. en-US.

url: https : / / www . softwaretestinghelp . com / best - build - automation -

software-tools/ (visited on 05/31/2022).

[141] Top 10 Build Automation Tools. en-US. Apr. 2021. url: https://lightrun.com/

dev-tools/top-10-build-automation-tools/ (visited on 05/31/2022).

[142] Types of Software Testing: Di�erent Testing Types with Details. en-US. Aug. 2007.

url: https://www.softwaretestinghelp.com/types-of-software-testing/

(visited on 05/31/2022).

[143] Types of Software Testing: Di�erent Testing Types with Details. en. url: https:

//hackr.io/blog/types-of-software-testing (visited on 05/31/2022).

[144] Understanding Subversion (SVN) - Here's Why Your Hosting Choice Is Important.

en-US. url: https://digital.com/best-web-hosting/subversion/ (visited

on 05/05/2022).

[145] Understanding the CI/CD Pipeline: What It Is, Why It Matters. en-US. Mar.

2019. url: https://www.plutora.com/blog/understanding-ci-cd-pipeline

(visited on 04/24/2022).

[146] UnderstandingMercurial - Mercurial. url: https://www.mercurial-scm.org/

wiki/UnderstandingMercurial (visited on 05/06/2022).

103

https://blog.testproject.io/2019/10/14/what-are-the-benefits-of-having-nightly-builds/
https://blog.testproject.io/2019/10/14/what-are-the-benefits-of-having-nightly-builds/
https://about.gitlab.com/topics/version-control/benefits-distributed-version-control-system/
https://about.gitlab.com/topics/version-control/benefits-distributed-version-control-system/
https://about.gitlab.com/topics/version-control/benefits-distributed-version-control-system/
https://launchdarkly.com/blog/guide-to-dark-launching/
https://theqalead.com/topics/software-configuration-management-process/
https://theqalead.com/topics/software-configuration-management-process/
https://stackify.com/ultimate-guide-performance-testing-and-software-testing/
https://stackify.com/ultimate-guide-performance-testing-and-software-testing/
https://www.softwaretestinghelp.com/best-build-automation-software-tools/
https://www.softwaretestinghelp.com/best-build-automation-software-tools/
https://lightrun.com/dev-tools/top-10-build-automation-tools/
https://lightrun.com/dev-tools/top-10-build-automation-tools/
https://www.softwaretestinghelp.com/types-of-software-testing/
https://hackr.io/blog/types-of-software-testing
https://hackr.io/blog/types-of-software-testing
https://digital.com/best-web-hosting/subversion/
https://www.plutora.com/blog/understanding-ci-cd-pipeline
https://www.mercurial-scm.org/wiki/UnderstandingMercurial
https://www.mercurial-scm.org/wiki/UnderstandingMercurial

[147] VCS Root | TeamCity On-Premises. en-US. url: https://www.jetbrains.com/

help/teamcity/vcs-root.html (visited on 07/01/2022).

[148] Ravi Verma. Centralized vs Distributed Version Control Systems [CVCS vs DVCS].

en-us. May 2014. url: https://devopsbuzz.com/centralized-vs-distributed-

version-control-systems/ (visited on 05/30/2022).

[149] Version Control Systems Popularity in 2016. url: https://rhodecode.com/

insights/version-control-systems-2016 (visited on 06/18/2022).

[150] Versioning Strategy. en-US. May 2018. url: https://flowcanon.com/software/

versioning-strategy/ (visited on 05/31/2022).

[151] Visual Studio: IDE und Code-Editor für Softwareentwickler und -teams. de-DE.

url: https://visualstudio.microsoft.com/ (visited on 06/26/2022).

[152] Stephen Watts. What is the Canary Deployment & Release Process? en-US. url:

https : / / www . bmc . com / blogs / canary - deployment - release/ (visited on

05/31/2022).

[153] What Are Automation Testing Tools? 9 Types & Examples. en-US. Apr. 2021.

url: https://theqalead.com/topics/what-are-automation-testing-tools/

(visited on 05/31/2022).

[154] What Are Some of the Advantages of Continuous Delivery? What Are the Common

Barriers? en. url: https://www.zend.com/blog/continuous- delivery-

benefits-and-barriers (visited on 04/24/2022).

[155] What is a centralized version control system. en. url: https://about.gitlab.

com/topics/version- control/what- is- centralized- version- control-

system/ (visited on 05/02/2022).

[156] What is a Legacy System? - Talend. en. url: https : / / www . talend . com /

resources/what-is-legacy-system/ (visited on 04/24/2022).

[157] What is a package manager? url: https://www.debian.org/doc/manuals/

aptitude/pr01s02.en.html (visited on 06/26/2022).

[158] What is a software release? en. url: https://www.techtarget.com/searchsoftwarequality/

definition/release (visited on 05/31/2022).

[159] What is Automated Testing and How Does it Work? en. url: https://www.

techtarget.com/searchsoftwarequality/definition/automated-software-

testing (visited on 06/05/2022).

104

https://www.jetbrains.com/help/teamcity/vcs-root.html
https://www.jetbrains.com/help/teamcity/vcs-root.html
https://devopsbuzz.com/centralized-vs-distributed-version-control-systems/
https://devopsbuzz.com/centralized-vs-distributed-version-control-systems/
https://rhodecode.com/insights/version-control-systems-2016
https://rhodecode.com/insights/version-control-systems-2016
https://flowcanon.com/software/versioning-strategy/
https://flowcanon.com/software/versioning-strategy/
https://visualstudio.microsoft.com/
https://www.bmc.com/blogs/canary-deployment-release/
https://theqalead.com/topics/what-are-automation-testing-tools/
https://www.zend.com/blog/continuous-delivery-benefits-and-barriers
https://www.zend.com/blog/continuous-delivery-benefits-and-barriers
https://about.gitlab.com/topics/version-control/what-is-centralized-version-control-system/
https://about.gitlab.com/topics/version-control/what-is-centralized-version-control-system/
https://about.gitlab.com/topics/version-control/what-is-centralized-version-control-system/
https://www.talend.com/resources/what-is-legacy-system/
https://www.talend.com/resources/what-is-legacy-system/
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://www.debian.org/doc/manuals/aptitude/pr01s02.en.html
https://www.techtarget.com/searchsoftwarequality/definition/release
https://www.techtarget.com/searchsoftwarequality/definition/release
https://www.techtarget.com/searchsoftwarequality/definition/automated-software-testing
https://www.techtarget.com/searchsoftwarequality/definition/automated-software-testing
https://www.techtarget.com/searchsoftwarequality/definition/automated-software-testing

[160] What is blue green deployment? en. url: https://www.redhat.com/en/topics/

devops/what-is-blue-green-deployment (visited on 05/31/2022).

[161] What is Build Automation? en-US. url: https://flexagon.com/what- is-

build-automation/ (visited on 05/31/2022).

[162] What Is CI/CD and How Does It Work? | Synopsys. en. url: https://www.

synopsys.com/glossary/what-is-cicd.html (visited on 07/07/2022).

[163] What is CI/CD Pipeline? | Katalon Platform. en. url: https://katalon.com/

resources-center/blog/ci-cd-pipeline (visited on 07/07/2022).

[164] What Is CI/CD? Continuous Integration & Continuous Delivery Explained. en-

US. url: https://www.bmc.com/blogs/what-is-ci-cd/ (visited on 06/27/2022).

[165] What is CI/CD/CD? The Di�erences & Bene�ts & DevOps Application. en-CA.

Jan. 2021. url: https://www.indellient.com/blog/whats-the-difference-

between-continuous-integration-continuous-delivery-and-continuous-

deployment/ (visited on 04/24/2022).

[166] What is Continuous Testing and How Does it Work? | Synopsys. en. url: https:

//www.synopsys.com/glossary/what-is-continuous-testing.html (visited

on 06/09/2022).

[167] What is Continuous Testing? en-US. url: https : / / www . tricentis . com /

products/what-is-continuous-testing/ (visited on 06/09/2022).

[168] What is Jenkins? | Jenkins For Continuous Integration. en-US. Nov. 2016. url:

https://www.edureka.co/blog/what-is-jenkins/ (visited on 05/31/2022).

[169] What is Performance Testing? en. url: https://www.techtarget.com/searchsoftwarequality/

definition/performance-testing (visited on 05/31/2022).

[170] What is Release Management? (All That You Need To Know). en-US. url: https:

//www.plutora.com/software- release- management/what- is- release-

management (visited on 05/31/2022).

[171] What is Scalability Testing? How to Test the Scalability of an Application. en-

US. url: https://www.softwaretestinghelp.com/what-is-scalability-

testing/ (visited on 05/31/2022).

[172] What is Software Testing and How Does it Work? | IBM. en-us. url: https:

//www.ibm.com/topics/software-testing (visited on 05/31/2022).

[173] What Is SVN (Subversion)? en. url: https://www.perforce.com/blog/vcs/

what-svn (visited on 05/02/2022).

105

https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://www.redhat.com/en/topics/devops/what-is-blue-green-deployment
https://flexagon.com/what-is-build-automation/
https://flexagon.com/what-is-build-automation/
https://www.synopsys.com/glossary/what-is-cicd.html
https://www.synopsys.com/glossary/what-is-cicd.html
https://katalon.com/resources-center/blog/ci-cd-pipeline
https://katalon.com/resources-center/blog/ci-cd-pipeline
https://www.bmc.com/blogs/what-is-ci-cd/
https://www.indellient.com/blog/whats-the-difference-between-continuous-integration-continuous-delivery-and-continuous-deployment/
https://www.indellient.com/blog/whats-the-difference-between-continuous-integration-continuous-delivery-and-continuous-deployment/
https://www.indellient.com/blog/whats-the-difference-between-continuous-integration-continuous-delivery-and-continuous-deployment/
https://www.synopsys.com/glossary/what-is-continuous-testing.html
https://www.synopsys.com/glossary/what-is-continuous-testing.html
https://www.tricentis.com/products/what-is-continuous-testing/
https://www.tricentis.com/products/what-is-continuous-testing/
https://www.edureka.co/blog/what-is-jenkins/
https://www.techtarget.com/searchsoftwarequality/definition/performance-testing
https://www.techtarget.com/searchsoftwarequality/definition/performance-testing
https://www.plutora.com/software-release-management/what-is-release-management
https://www.plutora.com/software-release-management/what-is-release-management
https://www.plutora.com/software-release-management/what-is-release-management
https://www.softwaretestinghelp.com/what-is-scalability-testing/
https://www.softwaretestinghelp.com/what-is-scalability-testing/
https://www.ibm.com/topics/software-testing
https://www.ibm.com/topics/software-testing
https://www.perforce.com/blog/vcs/what-svn
https://www.perforce.com/blog/vcs/what-svn

[174] What Is The Bene�t of Test Automation and Why Should We Do It? url: https:

//smartbear.com/solutions/automated-testing/ (visited on 06/05/2022).

[175] What is versioning and how does it work? en. url: https://www.techtarget.

com/searchsoftwarequality/definition/versioning (visited on 05/31/2022).

[176] Why Use Version Control? en. url: https://www.git- tower.com/learn/

git/ebook/en/desktop-gui/basics/why-use-version-control (visited on

05/30/2022).

[177] Shanika Wickramasinghe. DevOps Branching Strategies Explained. en-US. url:

https://www.bmc.com/blogs/devops- branching- strategies/ (visited on

05/03/2022).

106

https://smartbear.com/solutions/automated-testing/
https://smartbear.com/solutions/automated-testing/
https://www.techtarget.com/searchsoftwarequality/definition/versioning
https://www.techtarget.com/searchsoftwarequality/definition/versioning
https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/why-use-version-control
https://www.git-tower.com/learn/git/ebook/en/desktop-gui/basics/why-use-version-control
https://www.bmc.com/blogs/devops-branching-strategies/

	Abbildungsverzeichnis
	Introduction
	Modern Software Engineering Infrastructure
	Legacy System

	Software Configuration Management
	Version Control Systems
	Centralized Version Control System and Distributed Version Control System
	Git
	Mercurial
	Subversion
	Perforce - Helix Core

	Branching
	Trunk Based Development
	Release Branching Strategy
	Develop Branch Strategy
	Feature Branching Strategy
	Gitflow

	Versioning
	Semantic Versioning
	Other Versioning Strategies

	Dependency/Package Management
	Artifact Management Server
	Build Automation
	TeamCity
	Jenkins

	Continuous Integration and Continuous Delivery/ Deployment
	Continuous Integration (CI)
	Continuous Integration Workflow
	CI Practices and Patterns
	CI Antipatterns

	Continuous Delivery / Deployment
	CD Practices and Patterns
	CD Antipatterns

	Release Managment

	Software Testing
	Implementation
	The Legacy System's Current State
	Desired State
	Git as Version Control System
	Re-platforming to Git
	GitFlow as Branching Strategy

	Artifactory as Artifact Management Server
	Conan as Package Manager
	TeamCity as Automation Build Tool
	Build Configuration Strategy
	Integration-Testing

	Conclusion
	Bibliography

