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Abstract. A first order progress rate is derived for the intermediate
multi-recombinative Evolution Strategy (µ/µI , λ)-ES on the highly mul-
timodal Rastrigin test function. The progress is derived within a lin-
earized model applying the method of so-called noisy order statistics. To
this end, the mutation-induced variance of the Rastrigin function is deter-
mined. The obtained progress approximation is compared to simulations
and yields strengths and limitations depending on mutation strength
and distance to the optimizer. Furthermore, the progress is iterated using
the dynamical systems approach and compared to averaged optimization
runs. The property of global convergence within given approximation is
discussed. As an outlook, the need of an improved first order progress
rate as well as the extension to higher order progress including positional
fluctuations is explained.
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1 Introduction

Evolution Strategies (ES) [13,14] are well-recognized Evolutionary Algorithms
suited for real-valued non-linear optimization. State-of-the-art ES such as the
CMA-ES [9] or its simplification [6] are also well-suited for locating global op-
timizers in highly multimodal fitness landscapes. While the CMA-ES was orig-
inally mainly intended for non-differentiable optimization problems, but yet re-
garded as a locally acting strategy, it was already in [8] observed that using a
large population size can make the ES a strategy that is able to locate the global
optimizer among a huge number of local optima. This is a surprising observa-
tion when considering the ES as a strategy that acts mainly local in the search
space following some kind of gradient or natural gradient [4,7,12]. As one can
easily check using standard (highly) multimodal test functions such as Rastrigin,
Ackley, and Griewank to name a few, this ES property is not intimately related
to the covariance matrix adaptation (CMA) ES which generates non-isotropic
correlated mutations, but can also be found in (µ/µI , λ)-ES with isotropic mu-
tations. Therefore, if one wants to understand the underlying working principles
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how the ES locates the global optimizer, the analysis of the (µ/µI , λ)-ES should
be the starting point.

The question regarding why and when optimization algorithms – originally
designed for local search – are able to locate global optima has gained atten-
tion in the last few years. A recurring idea comes from relaxation procedures
that transform the original multimodal optimization problem into a convex op-
timization problem called Gaussian continuation [10]. Gaussian continuation is
nothing else but a convolution of the original optimization problem with a Gaus-
sian kernel. As has been shown in [11], using the right Gaussian, Rastrigin-like
functions can be transformed into a convex optimization problem, thus making
it accessible to gradient following strategies. However, this raises the question
how to perform the convolution efficiently. One road followed in [15] uses high-
order Gauss-Hermite integration in conjunction with a gradient descent strategy
yielding surprisingly good results. The other road coming to mind is approximat-
ing the convolution by Gaussian sampling. This resembles the procedure ES do:
starting from a parental state, offspring are generated by Gaussian mutations.
The problem is, however, that in order to get a reliable gradient, a huge number
of samples, i.e. offspring in ES must be generated in order to get reliable convolu-
tion results. The number of offspring needed to get reliable estimates seems much
larger than the offspring population size needed in ES experiments conducted
in [8] showing approximately a linear relation between problem dimension N
and population size for the Rastrigin function. Therefore, understanding the ES
performance from viewpoint of Gaussian relaxation does not seem to help much.

The approach followed in this paper will incorporate two main concepts,
namely a progress rate analysis as well as its application within the so-called
evolution equations modeling the transition dynamics of the ES [3]. The progress
rate measure yields the expected positional change in search space between two
generations depending on location, strategy and test function parameters. Aim-
ing to investigate and understand the dynamics of globally converging ES runs,
the progress rate is an essential quantity to model the expected evolution dy-
namics over many generations.

This paper provides first results of a scientific program that aims at an ana-
lysis of the performance of the (µ/µI , λ)-ES on Rastrigin’s test function based
on a first order progress rate. After a short introduction of the (µ/µI , λ)-ES, the
N -dimensional first order progress will be defined and an approximation will be
derived resulting in a closed form expression. The predictive power and its lim-
itations will be checked by one-generation experiments. The progress rate will
then be used to simulate the ES dynamics on Rastrigin using difference equa-
tions. This simulation will be compared with real runs of the (µ/µI , λ)-ES. In a
concluding section a summary of the results and outlook of the future research
will be given.



Progress Rate of (µ/µI , λ)-ES on Rastrigin Function 3

2 Rastrigin Function and Local Quality Change

The real-valued minimization problem defined for an N -dimensional search vec-
tor y = (y1, ..., yN ) is performed on the Rastrigin test function f given by

f(y) =

N∑
i=1

fi(yi) =

N∑
i=1

y2i +A−A cos(αyi), (1)

with A denoting the oscillation amplitude and α = 2π the corresponding fre-
quency. The quadratic term with superimposed oscillations yields a finite number
of local minima M for each dimension i, such that the overall number of minima
scales exponentially as MN posing a highly multimodal minimization problem.
The global optimizer is at ŷ = 0.

For the progress rate analysis in Sec. 4 the local quality function Qy(x) at
y due to mutation vector x = (x1, ..., xN ) is needed. In order to reuse results
from noisy progress rate theory it will be formulated for the maximization case
of F (y) = −f(y) with Fi(yi) = −fi(yi), such that local quality change yields

Qy(x) = F (y + x)− F (y) = f(y)− f(y + x). (2)

Qy(x) can be evaluated for each component i independently giving

Qy(x) =

N∑
i=1

Qi(xi) =

N∑
i=1

fi(yi)− fi(yi + xi) (3)

=

N∑
i=1

−
(
x2
i + 2yixi +A cos (αyi)(1− cos (αxi)) +A sin (αyi) sin (αxi)

)
. (4)

A closed form solution of the progress rate appears to be obtainable only for a
linearized expression of Qi(xi). A first approach taken in this paper is based on
a Taylor expansion for the mutation xi and discarding higher order terms

Qi(xi) = Fi(yi + xi)− Fi(yi) =
∂Fi

∂yi
xi +O(x2

i ) (5)

≈ (−2yi − αA sin (αyi))xi =: −f ′
ixi, (6)

using the following derivative terms

ki = 2yi and di = αA sin(αyi), such that
∂fi
∂yi

= f ′
i = ki + di. (7)

A second approach is to consider only the linear term of Eq. (4) and neglect all
non-linear terms denoted by δ(xi) according to

Qi(xi) = −2yixi − x2
i −A cos (αyi)(1− cos (αxi))−A sin (αyi) sin (αxi) (8)

= −2yixi + δ(xi) ≈ −2yixi = −kixi. (9)

The linearization using f ′
i is a local approximation of the function incorporat-

ing oscillation parameters A and α. Using only ki (setting di = 0) discards
oscillations by approximating the quadratic term via ki = ∂(y2i )/∂yi = 2yi with
negative sign due to maximization. Both approximations will be evaluated later.
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3 The (µ/µI, λ)-ES with Normalized Mutations

The Evolution Strategy under investigation consists of a population of µ parents
and λ offspring (µ < λ) per generation g. Algorithm 1 is presented below and
offspring variables are denoted with overset “∼”.

Population variation is achieved by applying an isotropic normally distributed
mutation x ∼ σN (0,1) with strength σ to the parent recombinant in Lines 6
and 7. The recombinant is obtained using intermediate recombination of all µ
parents equally weighted in Line 11. Selection of the m = 1, ..., µ best search
vectors ym;λ (out of λ) according to their fitness is performed in Line 10.

Note that the ES in Algorithm 1 operates under constant normalized muta-
tion σ∗ in Lines 3 and 12 using the spherical normalization

σ∗ =
σ(g)N∥∥y(g)

∥∥ =
σ(g)N

R(g)
. (10)

This property ensures global convergence of the algorithm as the mutation
strength σ(g) decreases if and only if the residual distance

∥∥y(g)
∥∥ = R(g) de-

creases. While σ∗ is not known during black-box optimizations, it is used here
to investigate the dynamical behavior of the ES using the first order progress
rate approach to be developed in this paper. Incorporating self-adaptation of σ
or cumulative step-size adaptation remains for future research.

Algorithm 1 (µ/µI , λ)-ES with constant σ∗

1: g ← 0
2: y(0) ← y(init)

3: σ(0) ← σ∗
∥∥∥y(0)

∥∥∥/N
4: repeat
5: for l = 1, ..., λ do
6: x̃l ← σ(g)Nl(0,1)
7: ỹl ← y(g) + x̃l

8: f̃l ← f(ỹl)
9: end for

10: (ỹ1;λ, . . . , ỹµ;λ)← sort
(
ỹ w.r.t. ascending f̃

)
11: y(g+1) ← 1

µ

∑µ
m=1 ỹm;λ

12: σ(g+1) ← σ∗
∥∥∥y(g+1)

∥∥∥/N
13: g ← g + 1
14: until termination criterion
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4 Progress Rate

4.1 Definition

Having introduced the Evolution Strategy, we are interested in the expected
one-generation progress of the optimization on the Rastrigin function (1) before
investigating the dynamics over multiple generations.

A first order progress rate φi for the i-th component between two generations
g → g + 1 can be defined as the expectation value over the positional difference
of the parental components

φi = E
[
y
(g)
i − y

(g+1)
i

∣∣σ(g),y(g)
]
= y

(g)
i − E

[
y
(g+1)
i

∣∣σ(g),y(g)
]
, (11)

given mutation strength σ(g) and the position y(g). First, an expression for y(g+1)

is needed, see Alg. 1, Line 11. It is the result of mutation, selection and recom-
bination of the m = 1, ..., µ offspring vectors yielding the highest fitness, such
that y(g+1) = 1

µ

∑µ
m=1 ỹm;λ = 1

µ

∑µ
m=1(y

(g) +x)m;λ. Considering the i-th com-
ponent, noting that y(g) is the same for all offspring and setting (xm;λ)i = xm;λ

one has

y
(g+1)
i =

1

µ

µ∑
m=1

(y
(g)
i + xm;λ) = y

(g)
i +

1

µ

µ∑
m=1

xm;λ. (12)

Taking the expectation E
[
y
(g+1)
i

]
, setting x = σz = σN (0, 1) and inserting the

expression back into (11) yields

φi = − 1

µ
E

[
µ∑

m=1

xm;λ

∣∣∣∣σ(g),y(g)

]
= −σ

µ
E

[
µ∑

m=1

zm;λ

∣∣∣∣σ(g),y(g)

]
. (13)

Therefore progress can be evaluated by averaging over the expectations of µ
selected mutation contributions. In principle this task can be solved by deriv-
ing the induced order statistic density pm;λ for the m-th best individual and
subsequently solving the integration over the i-th component

φi = − 1

µ

µ∑
m=1

∫ ∞

−∞
xi pm;λ(xi|σ(g),y(g)) dxi . (14)

However, the task of computing expectations of sums of order statistics under
noise disturbance has already been discussed and solved by Arnold in [2]. There-
fore the problem of Eq. (13) will be reformulated in order to apply the solutions
provided by Arnold.
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4.2 Expectations of Sums of Noisy Order Statistics

Let z be a random variate with density pz(z) and zero mean. The density is
expanded into a Gram-Charlier series by means of its cumulants κi (i ≥ 1)
according to [2, p. 138, D.15]

pz(z) =
1√
2πκ2

e−
z2

2κ2

(
1 +

γ1
6

He3

(
z

√
κ2

)
+

γ2
24

He4

(
z

√
κ2

)
+ ...

)
, (15)

with expectation κ1 = 0, variance κ2, skewness γ1 = κ3/κ
3/2
2 , excess γ2 = κ4/κ

2
2

(higher order terms not shown) and Hek denoting the k-th order probabilist’s
Hermite polynomials. For the problem at hand, see Eq. (13), the mutation variate
z ∼ N (0, 1) with κ2 = 1 and κi = 0 for i ̸= 2 yielding a standard normal density.

Furthermore, let ϵ ∼ N (0, σ2
ϵ ) model additive noise disturbance, such that

resulting observed values are v = z + ϵ. Selection of the m-th largest out of λ
values yields

vm;λ = (z +N (0, σ2
ϵ ))m;λ, (16)

and the distribution of selected source terms zm;λ follows a noisy order statistic
with density pm;λ. Given this definition and a linear relation between zm;λ and
vm;λ the method of Arnold is applicable.

In our case the i-th mutation component xm;λ of Eq. (13) is related to selec-
tion via the quality change defined in Eq. (3). Maximizing the fitness Fi(yi+xi)
conforms to maximizing quality Qi(xi) with Fi(yi) being a constant offset.

Aiming at an expression of form (16) and starting with (3), we first isolate
component Qi from the remaining N−1 components denoted by

∑
j ̸=i Qj . Then,

approximations are applied to both terms yielding

Qy(x) = Qi(xi) +
∑
j ̸=i

Qj(xj) (17)

≈ −f ′
ixi +N (Ei, D

2
i ), (18)

with linearization (6) applied to Qi(xi). Additionally,
∑

j ̸=i Qj ≃ N (Ei, D
2
i ), as

the sum of independent random variables asymptotically approaches a normal
distribution in the limit N → ∞ due to the Central Limit Theorem. This is
ensured by Lyapunov’s condition provided that there are no dominating com-
ponents within the sum due to largely different values of yj . The corresponding
Rastrigin quality variance D2

i = Var
[∑

j ̸=i Qj(xj)
]

is calculated in the Ap-
pendix. As the expectation Ei = E

[∑
j ̸=i Qj(xj)

]
is only an offset to Qy(x) it

has no influence on the selection and its calculation can be dropped.
Using xi = σzi and f ′

i = sgn (f ′
i) |f ′

i |, expression (18) is reformulated as

Qy(x) = − sgn (f ′
i) |f ′

i |σzi + Ei +N (0, D2
i ) (19)

Qy(x)− Ei

|f ′
i |σ

= sgn (−f ′
i) zi +N

(
0,

D2
i

(f ′
iσ)

2

)
. (20)

The decomposition using sign function and absolute value is needed for correct
ordering of selected values w.r.t. zi in (20).
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Given result (20), one can define the linearly transformed quality measure
vi := (Qy(x) − Ei)/|f ′

i |σ and noise variance σ2
ϵ := (Di/f

′
iσ)

2, such that the
selection of mutation component sgn (−f ′

i) zi is disturbed by a noise term due
to the remaining N − 1 components. A relation of the form (16) is obtained up
to the sign function.

In [2] Arnold calculated the expected value of arbitrary sums SP of products
of noisy ordered variates containing ν factors per summand

SP =
∑

{n1,...,nν}

zp1

n1;λ
· · · zpν

nν ;λ
, (21)

with random variate z introduced in Eqs. (15) and (16). The vector P = (p1, ..., pν)
denotes the positive exponents and distinct summation indices are denoted by
the set {n1, ..., nν}. The generic result for the expectation of (21) is provided in
[2, p. 142, D.28] and was adapted to account for the sign difference between (16)
and (20) resulting in possible exchanged ordering. Performing simple substitu-
tions in Arnold’s calculations in [2] and recalling that in our case γ1 = γ2 = 0,
the expected value yields

E [SP ] = sgn (−f ′
i)

∥P∥1
√
κ2

∥P∥1
µ!

(µ− ν)!

ν∑
n=0

∑
k≥0

ζ
(P )
n,0 (k)h

ν−n,k
µ,λ . (22)

Note that expression (22) deviates from Arnold’s formula only in the sign in
front of

√
κ2. The coefficients ζ

(P )
n,0 (k) are defined in terms of a noise coefficient

a according to

a =

√
κ2

κ2 + σ2
ϵ

with ζ
(P )
n,0 (k) = Polynomial(a), (23)

for which tabulated results are presented in [2, p. 141]. The coefficients hi,k
µ,λ are

numerically obtainable solving

hi,k
µ,λ =

λ− µ√
2π

(
λ

µ

)∫ ∞

−∞
Hek (x) e

− 1
2x

2

[ϕ(x)]i[Φ(x)]λ−µ−1[1− Φ(x)]µ−i dx . (24)

Now we are in the position to calculate expectation (13) using (22). Since
z ∼ N (0, 1), it holds κ2 = 1. Identifying P = (1), ∥P∥1 = 1 and ν = 1 yields

E

[
µ∑

m=1

zm;λ

]
= sgn (−f ′

i)
µ!

(µ− 1)!

1∑
n=0

∑
k≥0

ζ
(1)
n,0(k)h

1−n,k
µ,λ

= sgn (−f ′
i)µζ

(1)
0,0(0)h

1,0
µ,λ = − sgn (f ′

i)µacµ/µ,λ,

(25)

with ζ
(1)
1,0(k) = 0 for any k, and ζ

(1)
0,0(k) ̸= 0 only for k = 0 yielding a. The expres-

sion h1,0
µ,λ is equivalent to the progress coefficient definition cµ/µ,λ [3, p. 216]. In-

serting (25) back into (13), using a =
√
1/(1 + (Di/f ′

iσ)
2) = |f ′

i |σ/
√
(f ′

iσ)
2 +D2

i
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with the requirement a > 0, and noting that f ′
i = sgn (f ′

i) |f ′
i | one finally obtains

for the i-th component first order progress rate

φi(σ,y) = cµ/µ,λ
f ′
i(yi)σ

2√
(f ′

i(yi)σ)
2 +D2

i (σ, (y)j ̸=i)
. (26)

The population dependency is given by progress coefficient cµ/µ,λ. The fitness
dependent parameters are contained in f ′

i , see (7), and in D2
i calculated in (33).

For better readability the derivative f ′
i and variance D2

i are not inserted into
(26). An exemplary evaluation of D2

i as a function of the residual distance R
using normalization (10) is shown in the supplementary material in Fig. 4.

4.3 Comparison of Simulation and Approximation

Figure 1 shows an experimentally obtained progress rate compared to the re-
sult of (26). Due to large N one exemplary φi-graph is shown on the left, and
corresponding i = 1, ..., N errors are shown on the right.

The left plot shows the progress rate over a σ-range of [0, 1]. This magnitude
was chosen in order to study the oscillation, as the frequency α = 2π. The initial
position was chosen randomly to be on the sphere surface R = 10.

The red dashed curve uses f ′
i as linearization, while the blue dash-dotted

curve assumes f ′
i = ki (with di = 0), see also (7). As f ′

i approximates the
quality change locally, agreement for the progress is given only for very small
mutations σ. For larger σ very large deviation may occur, depending on the local
derivative.

The blue curve φi(ki) neglects the oscillation (di = 0) and therefore follows
the progress of the quadratic function f(y) =

∑
i y

2
i for large σ with very good

agreement. Due to a linearized form of Qi(xi) in (6) neither approximation can
reproduce the oscillation for moderately large σ.

To verify the approximation quality, the error between (26) and simulation
is displayed on the right side of Fig. 1 for all i = 1, ..., N . It was done for small
σ = 0.1 and large σ = 1. The deviations are very similar in magnitude for all i,
given randomly chosen yi. Note that for σ = 1 the red points show very large
errors compared to blue, which was expected.

Figure 2 shows the progress rate φi over σ∗, for i = 2 as in Fig. 1, with y
randomly on the surface radii R = {100, 10, 1, 0.1}. Using σ∗ the mutation σ
is normalized by the residual distance R with spherical normalization (10). Far
from the origin with R = {100, 10} the quadratic terms are dominating giving
better results using φi(ki). Reaching R = 1 local minima are more relevant and
mixed results are obtained with φi(f

′
i) better for smaller σ∗ and φi(ki) for larger

σ∗. Within the global attractor R = 0.1 the local structure dominates and φi(f
′
i)

yields better results. These observations will be relevant analyzing the dynamics
in Fig. 3 where both approximations show strengths and weaknesses.
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Fig. 1. One-generation experiments with (150/150, 300)-ES, N = 100, A = 10 are
performed and quantity (11) is measured averaging over 105 runs. Left: φi over σ for
i = 2 at position y2 ≈ 1.19, where y was chosen randomly such that ∥y∥ = R = 10.
Right: error measure φi−φi,sim between (26) and simulation for i = 1, ..., N evaluated
at σ = {0.1, 1}. The colors are set according to the legend.

Fig. 2. One-generation progress φi (i = 2) over normalized mutation σ∗ for
(150/150, 300)-ES, N = 100, A = 1 and R = {100, 10, 1, 0.1}. Simulations are av-
eraged over 105 runs. These experiments are preliminary investigations related to the
dynamics shown in Fig. 3 with σ∗ = 30. Given a constant σ∗ the approximation quality
varies over different magnitudes of R.
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5 Evolution Dynamics

As we are interested in the dynamical behavior of the ES, averaged real opti-
mization runs from Algorithm 1 will be compared to the iterated dynamics using
progress result (26) by applying the dynamical systems approach [3]. Neglecting
fluctuations, i.e., y(g+1)

i = E
[
y
(g+1)
i

∣∣σ(g),y(g)
]

the mean value dynamics for the

mapping y
(g)
i → y

(g+1)
i immediately follows from (11) giving

y
(g+1)
i = y

(g)
i − φi(σ

(g),y(g)). (27)

The control scheme of σ(g) was introduced in Eq. (10) and yields simply

σ(g) = σ∗
∥∥∥y(g)

∥∥∥/N. (28)

Equations (27) and (28) describe a deterministic iteration in search space and
rescaling of mutations according to the residual distance. For a convergence
analysis, we are interested in the dynamics of R(g) =

∥∥y(g)
∥∥ rather than the

actual position values y(g). Hence in Fig. 3 the R(g)-dynamics of the conducted
experiments is shown.

Fig. 3. Comparing average of 100 optimization runs of Algorithm 1 (black, solid) with
iterated dynamics from Eq. (27) under constant σ∗ = 30 for A = 1 and N = 100.
Large populations sizes are chosen to ensure global convergence (left: µ = 150; right:
µ = 1500; constant µ/λ = 0.5). Iteration using progress (26) is performed for both f ′

i =
ki+di (red/orange dashed) and f ′

i(di=0) = ki (blue dash-dotted) using Equations (27)
and (28). The orange dashed iteration was initialized with R(0) = 0.1 and translated
to the corresponding position of the simulation for easier comparison. The evaluation
of quality variance D2

i (R) is shown in Fig. 4 in the Appendix.

In Fig. 3, all runs of Algorithm 1 exhibit global convergence with the black
line showing the average. The left and right plots differ by population size.
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Iteration φi(ki), blue dash-dotted curve, also converges globally, though very
slowly and therefore not shown entirely. The convergence behavior of iteration
φi(f

′
i), red and orange dashed curves, strongly depends on the initialization and

is discussed below.
Three phases can be observed for the simulation. It shows linear convergence

at first being followed by a slow-down due to local attractors. Reaching the
global attractor the convergence speed increases again. Iteration φi(ki) is able
to model the first two phases to some degree. Within the global attractor the
slope information di is missing such that the progress is largely underestimated.

Iteration φi(f
′
i) converges first, but yields a stationary state with Rst ≈ 20

when the progress φi becomes dominated by derivative term di. Starting from
R(0) = 102 the stationary ysti are either fixed or alternating between coordinates
depending on σ, Di, ki, and di. This effect is due to attraction of local minima
and due to the deterministic iteration disregarding fluctuations. It occurs also
with varying initial positions. Initialized at R(0) = 10−1 orange iteration φi(f

′
i)

is globally converging.
It turns out that the splitting point of the two approximations in Fig. 3 occurs

at a distance R to the global optimizer where the ES approaches the attractor
region of the “first” local minima. For the model parameters considered in the
experiment this is at about R ≈ 28.2 – the distance of the farest local minimizer
to the global optimizer (obtained by numerical analysis).

Plots in Fig. 3 differ by population size. The convergence speed, i.e. the
slopes, show better agreement for large populations, which can be attributed to
the fluctuations neglected in (27). Investigations on unimodal funtions Sphere
[3] and Ellipsoid [5] have shown that progress is decreased by fluctuations due to
a loss-term scaling with 1/µ, which agrees with Fig. 3. On the left the iterated
progress is faster due to neglected but present fluctuations, while on the right
better agreement is observed due to insignificant fluctuations. These observations
will be investigated in future research.

6 Summary and Outlook

A first order progress rate φi was derived for the (µ/µI , λ)-ES by means of
noisy order statistics in (26) on the Rastrigin function (1). To this end, the
mutation induced variance of the quality change D2

i is needed. Starting from
(4) a derivation yielding D2

i in (33) has been presented in the Appendix. Fur-
thermore, the approximation quality of φi was investigated using Rastrigin and
quadratic derivatives f ′

i and ki, respectively, by comparing with one-generation
experiments.

Linearization f ′
i shows good agreement for small-scale mutations, but very

large deviations for large mutations. Conversely, linearization ki yields signifi-
cantly better results for large mutations as the quadratic fitness term dominates.
A progress rate modeling the transition between the regimes is yet to be deter-
mined. First numerical investigations of (14) including all terms of (4) indicate
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that nonlinear terms are needed for a better progress rate model, which is an
open challenge and part of future research.

The obtained progress rate was used to investigate the dynamics by iterat-
ing (27) using (28) and comparing with ES runs. Iteration via f ′

i only converges
globally if initialized close to the optimizer, since local attraction is strongly dom-
inating. Dynamics via ki converges globally independent of initialization, but the
observed rate matches only for the initial phase and for very large populations.
This confirms the need for a higher order progress rate modeling the effect of
fluctuations, especially when function evaluations are expensive and small popu-
lations must be used. Additionally, an advanced progress rate formula is needed
combining effects of global and local attraction to model all three phases of the
dynamics correctly.

The investigations done so far are a first step towards a full dynamical ana-
lysis of the ES on the multimodal Rastrigin function. Future investigations must
also include the complete dynamical modeling of the mutation strength control.
One aim is the tuning of mutation control parameters such that the global con-
vergence probability is increased while still maintaining search efficiency. Our
final goal will be the theoretical analysis of the full evolutionary process yield-
ing also recommendations regarding the choice of the minimal population size
needed to converge to the global optimizer with high probability.
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Appendix

In the Appendix, the derivation of the quality variance D2
i =

∑
j ̸=i Var

[
Qj(xj)

]
introduced in Eq. (18) is explained for random mutations x ∼ N (0, σ2). Only
the main steps are presented in a concise manner.

A single component j can be evaluated and summed over due to mutual
independence. Noting that E

[
x2

]
= σ2, E

[
x4

]
= 3σ4, E

[
xk

]
= 0 for odd k, and

Var [(·)] = E
[
(·)2

]
− E [(·)]2, the variance of Qj using Eq. (4) is evaluated as

Var [Qj ] = E
[
Q2

j

]
− E [Qj ]

2

= 2σ4 + 4y2jσ
2 +A2 sin2 (αyj)Var [sin (αxj)]

+A2 cos2 (αyj)Var [cos (αxj)]− 2A cos (αyj) E
[
x2 cos (αxj)

]
+ 2Aσ2 cos (αyj) E [cos (αxj)] + 4Ayj sin (αyj) E [x sin (αxj)] .

(29)

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Obtaining (29) it was used that for x ∼ N (0, σ2) we have E
[
xk sin (αx)

]
= 0

for even k and E
[
xk cos (αx)

]
= 0 for odd k, which is due to odd sine and even

cosine function, respectively.
In the general case, expectations of the form E

[
xk cosαx

]
and E

[
xk sinαx

]
for k ≥ 0 can be obtained by using the definition of the characteristic function
χ of x ∼ N (µ, σ2) and its known result [1]

χx(α) = E
[
eiαx

]
= eiαµ−

1
2α

2σ2

= e−
1
2α

2σ2

[cos (αµ) + i sin (αµ)]. (30)

Then, the k-th derivatives with respect to α can be applied to both sides

dk

dαk
E
[
eiαx

]
= E

[
dk

dαk
eiαx

]
= E

[
dk

dαk
cos(αx)

]
+ iE

[
dk

dαk
sin(αx)

]
!
=

dk

dαk

[
e−

(ασ)2

2 [cos (αµ) + i sin (αµ)]

]
,

(31)

such that corresponding real and imaginary parts can be identified. Given µ = 0
for k = {0, 1, 2} the required quantities of (29) can be derived. Additionally,
trigonometric identities cos2(x) = 1/2+cos(2x)/2 and sin2(x) = 1/2−cos(2x)/2
are used. The results are

E [cos (αx)] = e−
(ασ)2

2 , E
[
cos2 (αx)

]
=

1

2
+

1

2
e−

(2ασ)2

2

E
[
sin2 (αx)

]
=

1

2
− 1

2
e−

(2ασ)2

2 , E [x sin (αx)] = ασ2e−
(ασ)2

2

E
[
x2 cos (αx)

]
= (σ2 − α2σ4)e−

(ασ)2

2 , Var [(·)] = E
[
(·)2

]
− E [(·)]2 .

(32)

Inserting relations (32) into (29), summing over N−1 components and collecting
the resulting terms the Rastrigin quality variance is obtained

D2
i =

∑
j ̸=i

2σ4 + 4y2jσ
2 +

A2

2

[
1− e−(ασ)2

]
+

A2

2
e−(ασ)2 cos(2αyj)

[
e−(ασ)2 − 1

]
+ 2Aασ2e−

1
2 (ασ)

2
[
ασ2 cos(αyj) + 2yj sin(αyj)

]
.

(33)
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Fig. 4. Quality variance of (33) as a function of R for A = 1, σ∗ = 30 and N =
100 (excluding the i-th component) with σ obtained using normalization (10). The
parameters were chosen according to the dynamic experiments in Fig. 3 and D2

i (R)
shows the variance over different magnitudes of R. Positions y were randomly initialized
with ∥y∥ = R. Variance fluctuations due to different cartesian realizations of the same
R are negligible for large N . Similar to Fig. 3, a transition region can be observed.
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