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Abstract

A first and second order progress rate analysis was conducted for the intermediate multi-recombinative
Evolution Strategy (µ/µI , λ)-ES with isotropic scale-invariant mutations on the highly multimodal Ras-
trigin test function. Closed-form analytic solutions for the progress rates are obtained in the limit of
large dimensionality and large populations. The first order results are able to model the one-generation
progress including local attraction phenomena. Furthermore, a second order progress rate is derived
yielding additional correction terms and further improving the progress model. The obtained results
are compared to simulations and show good agreement, even for moderately large populations and di-
mensionality. The progress rates are applied within a dynamical systems approach, which models the
evolution using difference equations. The obtained dynamics are compared to real averaged optimiza-
tions runs and yield good agreement. The results improve further when dimensionality and population
size are increased. Local and global convergence is investigated within given model showing that large
mutations are needed to maximize the probability of global convergence, which comes at the expense of
efficiency. An outlook regarding future research goals is provided.
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1 Introduction

The theoretical analysis of the performance of Evolution Strategies (ES) [5] optimizing functions f(y) in
real-valued N -dimensional search spaces y ∈ RN is a challenge. This is due to the probabilistic nature of
these algorithms allowing up to now the dynamic progress analysis only on simple test functions such as
the sphere model, the ridge function class [9], and the ellipsoid model [4]. These test functions are simple
w.r.t. their optimization landscape (also referred to as fitness landscape) in that they have at most one
optimizer (i.e. the location y of the optimum). Analyzing the dynamical behavior of ES on more complex
and multimodal test functions appears to be even more demanding. However, ES and other evolutionary
algorithms are especially designated to optimize such problems. There is empirical evidence that ES are able
to globally optimize highly multimodal optimization problems [7] with in N exponential number of local
optima. The question arises how and when these ES are able to locate the global optimizer. It is the long
term goal to find conditions the ES must fulfill to not get trapped in the vast amount of local optimizers.
Ideally, a theoretical analysis should provide the answers regarding the success probability PS (of locating
the global optimum) depending on the ES parameters such as the population size λ and the test function to
be optimized. Furthermore, one is interested in the computational complexity of the optimization process.

One approach successfully applied to the analysis of the ES-performance on simple unimodal test functions
mentioned above is the dynamical systems approach [3] which is based on progress rate analysis. The
progress rate is a measure of expected positional change in search space between two generations depending
on location, strategy and test function parameters. It will be shown in this paper that this approach can be
extended to the highly multimodal Rastrigin test function

f(y) =

N∑
i=1

fi(yi) =

N∑
i=1

y2i +A(1− cos(αyi)), (1)

where y ∈ RN , with oscillation amplitude A and frequency parameter α. Depending on A and α a finite
number of local minima M can be observed for each component i. Therefore the overall number of local
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minima is scaling as MN posing a highly multimodal minimization problem with the global optimizer located
at ŷ = 0. An exemplary optimization landscape of the Rastrigin function is shown in Fig. 1.

Figure 1: The heat map shows the optimization landscape for A = 1, α = 2π, and N = 2. The global
minimizer located at the origin (dark blue) is surrounded by multiple local minima. On the right side the
same parameter set is shown for N=1. For increasing y the oscillation contribution is decreasing.

The remarkable observation is that ES – unlike classical nonlinear optimization algorithms (e.g. BFGS) –
do not follow the local gradient or Hessian ending in one of the MN−1 local optimizers. That is, ES perform
a rather global search. A deeper understanding of this behavior is still missing. Recently, attempts have
been made to analyze the problem from the viewpoint of relaxation using kernel smoothing [10]. However,
the sampling process needed to transform the original problem into a convex optimization problem is still
lacking a link to the ES.

In this paper the scale-invariant (µ/µI , λ)-ES is analyzed, see Alg. 1. It consists of a population of
µ parents and λ offspring (µ < λ). The selection (truncation) ratio is denoted by ϑ = µ/λ and will be
an essential quantity for the progress rate results in the limit of infinite populations. For each generation
increment g → g + 1, isotropic Gaussian mutations x ∼ σN (0,1) with mutation strength σ are applied
to the parent recombinant y(g) and λ candidate solutions are obtained. The best m = 1, ..., µ individuals
are selected as the new parent generation. Then, using intermediate recombination with equal weights the
update y(g+1) is obtained. In the following, subscript “m;λ” can be read as the m-th best solution out of λ
candidate solutions. Algorithm 1 operates with given constant normalized mutation σ∗ using the spherical
normalization with

∥∥y(g)
∥∥ = R(g) as

σ∗ =
σ(g)N∥∥y(g)

∥∥ =
σ(g)N

R(g)
. (2)

This property ensures scale invariance and therefore global convergence of the algorithm, as the mutation
strength σ(g) decreases if and only if the residual distance R(g) decreases. The quantity σ∗ is unknown
during black-box optimizations, but it is very useful for theoretical investigations to obtain scale-invariant
mutations strengths.

Algorithm 1 (µ/µI , λ)-ES with constant σ∗

1: g ← 0
2: y(0) ← y(init)

3: σ(0) ← σ∗
∥∥y(0)

∥∥/N
4: repeat
5: for l = 1, ..., λ do
6: x̃l ← σ(g)Nl(0,1)
7: ỹl ← y(g) + x̃l

8: f̃l ← f(ỹl)
9: end for

10: (ỹ1;λ, . . . , ỹµ;λ)← sort
(
ỹ w.r.t. ascending f̃

)
11: y(g+1) ← 1

µ

∑µ
m=1 ỹm;λ

12: σ(g+1) ← σ∗
∥∥y(g+1)

∥∥/N
13: g ← g + 1
14: until termination criterion

The remainder of this paper is organized as follows. In the next Section the local performance measures
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will be introduced being the basis for both the progress rate analysis and the dynamical systems approach.
Section 3 is devoted to the determination and evaluation of the first order progress rate. Section 4 sketches
the derivation of the second order progress rate. The details of the lengthy derivations are provided in
the Appendices A, B, C, and D. Section 5 uses the local performance measures to establish the evolution
equations that govern the dynamical behavior of the ES. Experiments will be presented to show the usefulness
of the approach. In the final Section 6 conclusions will be drawn and being based on open problems the
further research direction will be outlined.

2 Local Performance Measures and Quality Gain Distribution

The performance of an ES between two generations can be evaluated in both fitness and search space. The
quality gain Qy(x) of fitness f at a position y(g) due to an isotropic mutation x ∼ σN (0,1) is defined as

Qy(x) := f
(
y(g) + x

)
− f

(
y(g)

)
, (3)

and yields in the case of fitness improvement (minimization considered) a negative value Qy < 0. For
independent components it is decomposed using (Qy(x))i = Qi and (y)i = yi as

Qy(x) =

N∑
i=1

Qi(xi) =

N∑
i=1

fi

(
y
(g)
i + xi

)
− fi

(
y
(g)
i

)
. (4)

That is, the quality gain corresponds to the difference between fitness values before and after the mutation
application. A probabilistic model for the distribution of quality values will be presented below. It will be
important for the subsequent progress rate derivations, as selection is based on fitness values.

Analyzing the progress towards the optimizer in search space, the first order progress rate on the Rastrigin
function has already been investigated in [11] as a first approach. In this paper, a new approach is presented
which significantly improves the prediction quality. The first order progress rate between two generations
for the parental component yi is defined as

φi := E
[
y
(g)
i − y

(g+1)
i

∣∣y(g), σ(g)
]
, (5)

given parental position y(g) and mutation strength σ(g) at generation g. It is a measure of positional difference

in search space and defined to be positive if y
(g)
i > y

(g+1)
i . Assuming (w.l.o.g.) that y

(g)
i > 0 and y

(g+1)
i > 0,

φi > 0 corresponds to progressing towards the optimizer ŷi = 0. This assumption is only valid as long as

the sign of y
(g+1)
i does not change, i.e., for small mutations compared to the residual distance. Therefore φi

has limited applicability when studying the convergence behavior in the vicinity of the optimizer. As has
been shown in [4] regarding the performance analysis on the ellipsoid model, a second order progress rate is
needed. It is defined as

φII
i := E

[(
y
(g)
i

)2
−
(
y
(g+1)
i

)2 ∣∣y(g), σ(g)

]
. (6)

Squaring the positions yields φII
i > 0 independent of the sign, if the distance to ŷi = 0 decreases. Additionally,

the derivation will yield expressions containing a progress gain and loss part, which is necessary for a more
accurate model of convergence.

Both progress rates will be expressed using integral equations for the expected values and approximations
will be necessary to find closed-form solutions. In a second step the progress rates can be applied within
difference equations to model the expected dynamics over many generations in order to investigate the global
convergence behavior.

Quality Gain Distribution The selection of individuals is based on the attained fitness values. The
quality gain measures the fitness change according to (3). When the progress rate of an ES is modeled,
the quality gain cumulative distribution function (CDF) PQ(q) is needed as a function of the location and
mutation strength. Obtaining an exact CDF for Qy(x) is not feasible at this point and also not necessary.

Instead, the approach is to model the sum Qy(x) =
∑N

i=1 Qi over N independently distributed variables as
normally distributed in the limit N →∞ due to the Central Limit Theorem (CLT) as

Qy(x) =

N∑
i=1

Qi(xi)
N→∞∼ N (E [Qy(x)] ,Var [Qy(x)]). (7)
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This is justified by Lyapunov’s condition for the CLT provided that there are no dominating terms within
the sum. The following quantities are defined as abbreviations

EQ := E [Qy(x)] =

N∑
i=1

E [Qi] (8)

D2
Q := Var [Qy(x)] =

N∑
i=1

Var [Qi] . (9)

Now Eq. (7) can be rewritten using a standardized random variate Z

Z =
Qy(x)− EQ

DQ

N→∞∼ N (0, 1). (10)

Therefore variate Z converges to a standard normal distribution, such that PQ(q) and pQ(q) =
dPQ(q)

dq can

be given in terms of the CDF of the normal distribution Φ(·), and the probability density function (PDF)
of the normal distribution according to

PQ(q) = Φ

(
q − EQ

DQ

)
(11)

pQ(q) =
1√

2πDQ

exp

[
−1

2

(
q − EQ

DQ

)2
]

(12)

Within the normal approximation (11) the inverse P−1
Q (p) given some probability p can be easily obtained

by using the quantile function Φ−1(p) of the normal distribution. This relation will be used later to obtain
a quality gain for some given probability p using

q = EQ +DQΦ
−1(p). (13)

For the derivation of the i-th component progress rate the conditional distribution function PQ(q|xi) of the
quality gain is needed for a given component xi. In this case expected value and variance are given by

EQ|xi
:= E [Qy(x)|xi] = Qi(xi) +

∑
j ̸=i

E [Qj ] (14)

D2
i := Var [Qy(x)|xi] =

∑
j ̸=i

Var [Qj ] , (15)

where the sum j ̸= i is taken for fixed i over the remaining N − 1 components. Analogously applying (10),
the conditional CDF and PDF read

PQ(q|xi) = Φ

(
q − EQ|xi

Di

)
(16)

pQ(q|xi) =
1√
2πDi

exp

[
−1

2

(
q − EQ|xi

Di

)2
]

(17)

Having defined the distribution functions of the quality gain, the quantities E [Qi] and Var [Qi] remain to
be determined. As the components are independent, it is sufficient to consider a single component and then
perform the summation. Starting from definition (4), one can evaluate the quality gain of a single component
Qi(xi). After applying trigonometric identity cos (α(yi + xi)) = cos (αyi) cos (αxi)− sin (αyi) sin (αxi), one
gets

Qi(xi) = fi(yi + xi)− fi(yi) (18)

= x2
i + 2yixi +A cos (αyi)−A cos (αyi) cos (αxi) +A sin (αyi) sin (αxi), (19)

of which E [Qi] is evaluated for xi ∼ N (0, σ2) in Eq. (A.1) yielding result (A.6) as

EQ =

N∑
i=1

σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
. (20)
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As Var [Qi] = E
[
Q2

i

]
− E [Qi]

2
, the respective squared quantities also need to be evaluated, see Ap-

pendix (A.2). The final result (A.7) reads

D2
Q =

N∑
i=1

2σ4 + 4y2i σ
2 +

A2

2

[
1− e−(ασ)2

] [
1− cos(2αyi)e

−(ασ)2
]

+ 2Aασ2e−
1
2 (ασ)

2
[
ασ2 cos(αyi) + 2yi sin(αyi)

]
.

(21)

The quantities EQ|xi
from (14) and from D2

i (15) are given analogously by summing over N −1 components.
Expressions EQ and DQ could be inserted into (11), and EQ|xi

with Qi(xi) and Di into (16). However, it is
omitted at this point for better readability.

As an important remark, expression (18) can be linearized w.r.t. mutation xi to obtain analytically
solvable progress rate integrals, see also discussion after Eq. (31). Taylor-expanding fi around yi for small
xi gives fi(yi + xi) = fi(yi) +

∂fi
∂yi

xi +O
(
x2
i

)
, such that after setting f ′

i :=
∂fi
∂yi

and evaluating the derivative
one has

Qi(xi) = fi(yi + xi)− fi(yi) = f ′
ixi +O

(
x2
i

)
= (2yi + αA sin (αyi))xi +O

(
x2
i

)
= (ki + di)xi +O

(
x2
i

)
,

(22)

with following definitions applied to (22)

f ′
i := ki + di, with ki := 2yi, and di := αA sin (αyi). (23)

Component ki is the derivative of the quadratic term y2i , cf. Eq. (1), which follows the global quadratic
structure of the function. Conversely, derivative di follows the local oscillation, such that it will be very
important for the model of local attraction during the progress rate derivations in Secs. 3 and 4.

3 First Order Progress Rate

While the first order progress rate (5) does not suffice to completely describe the convergence behavior of
the ES on Rastrigin, it is a necessary step in the calculation of the second order progress rate in Sec. 4.

Given definition (5) and the parental location y(g), one has to find the expected value over the i-component

location E
[
y
(g+1)
i

]
. The positional update y(g) → y(g+1) performed by the ES is realized by consecutively

applying mutation, selection and recombination, see also Alg. 1, such that one can write

y(g+1) =
1

µ

µ∑
m=1

(y(g) + xm;λ) = y(g) +
1

µ

µ∑
m=1

xm;λ, (24)

where xm;λ denotes the mutation vector of the m-th best offspring after selection. Considering the i-th
component of Eq. (24), abbreviating the mutation component as xm;λ := (xm;λ)i, and taking the expected
value thereof yields

E
[
y
(g+1)
i

∣∣y(g), σ(g)
]
= y

(g)
i +

1

µ

µ∑
m=1

E
[
xm;λ

∣∣y(g), σ(g)
]
. (25)

The progress rate can therefore be evaluated by inserting (25) into (5) giving

φi = −
1

µ

µ∑
m=1

E
[
xm;λ

∣∣y(g), σ(g)
]
. (26)

From now on the conditional dependency on y(g) and σ(g) will be implicitly assumed as given for better
readability of the equations. The expected value of the i-th mutation component xm;λ after selection can be
expressed as an integration over the order statistic density pm;λ(xi) of the m-th best individual, such that

φi = −
1

µ

µ∑
m=1

∫ ∞

−∞
xi pm;λ(xi) dxi . (27)

The subsequent task will be to derive the density pm;λ as a function of mutation and quality gain distributions.
Mutations are distributed normally with zero mean and variance σ2 according to the normal density

px(xi) =
1√
2πσ

exp

[
−1

2

(xi

σ

)2]
. (28)
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Given mutation xi (and implicitly position y), a random quality gain value Q is distributed according to a
conditional probability density pQ(q|xi), see Eq. (17). Given that the m-th best individual attains a quality
gain within [q, q + dq], there must be m − 1 better individuals having a smaller quality value with proba-

bility [Pr{Q ≤ q}]m−1
= [PQ(q)]

m−1
, and λ −m individuals having a larger value with [Pr{Q > q}]λ−m

=

[1− PQ(q)]
λ−m

. To account for all relevant combinations one has λ!
(m−1)!(λ−m)! , where 1/(m − 1)! and

1/(λ − m)! exclude the irrelevant combinations among the two groups of better and worse individuals,
respectively. The conditional density for the m-th individual as a function of the quality gain q yields

pQ;m;λ(q|xi) =
λ!

(m− 1)!(λ−m)!
pQ(q|xi)PQ(q)

m−1[1− PQ(q)]
λ−m. (29)

By integrating (29) over all attainable quality gain values q ∈ [ql, qu], one arrives at the density

pm;λ(xi) = px(xi)
λ!

(m− 1)!(λ−m)!

∫ qu

ql

pQ(q|xi)PQ(q)
m−1[1− PQ(q)]

λ−m dq . (30)

Inserting the order statistic density from (30) into the progress rate (27), one obtains the intermediate result

φi = −
1

µ

µ∑
m=1

λ!

(m− 1)!(λ−m)!

∫ ∞

−∞
xipx(xi)

∫ qu

ql

pQ(q|xi)PQ(q)
m−1[1− PQ(q)]

λ−m dq dxi . (31)

A few important remarks can be made regarding Eq. (31). A closed-form analytic solution cannot be
obtained without applying further approximations. It can be approached in an analogous way to the φi-
derivation of the Ellipsoid in [8] to obtain a solution in terms of the well-known progress coefficient cµ/µ,λ
[3, p. 216]. However, a closed-form solution with this approach requires a linear relation of Qi w.r.t. xi,
see relation (22). The effect of a linearized quality gain on the progress rate of the Rastrigin function was
already studied in [11] and showed that the progress due to local attraction is not modeled correctly, as the
oscillation terms have to be either dropped or linearized for small xi.

Therefore a different approach is followed here assuming the infinite population limit, an approach which
was applied within the analysis of functions with noise-induced multi-modality [6]. Additionally, large
dimensionality N will be assumed to simplify the resulting equations. The approach will yield correction
terms including the effects of the trigonometric terms from (19), in contrast to only taking linearized terms

from (22). Furthermore, an expression for the so-called asymptotic generalized progress coefficients ea,bϑ is
derived in Appendix B giving

ea,bϑ =

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]a [
−Φ−1(ϑ)

]b
. (32)

These are characteristic coefficients describing the progress in the limit (µ, λ)→∞ with constant truncation
ratio ϑ = µ/λ, and are related to the generalized progress coefficients [3, Eq. (5.112)]. These coefficients will
reappear during the derivation of φi and φII

i .
The details of the following derivations are in Appendix C.1. Starting from (31) the sum is transformed

into an additional integral, which will enable the application of the large population identity. Furthermore,
the integration orders are exchanged and the quality gain integral is solved. Then, applying identity (B.1)
one arrives at the following intermediate result derived in Appendix C.1, Eq. (C.15), giving

φi
µ→∞
≃ − 1

ϑ

∫ ∞

−∞
xipx(xi)PQ

(
P−1
Q (ϑ)

∣∣xi

)
dxi . (33)

Now the normal approximation of the quality gain distribution is applied by using the conditional normal

distribution function Φ
(

q−EQ|xi

Di

)
, see (16), and its inverse q = EQ + DQΦ

−1(p), see (13), evaluated at

probability p = ϑ. Additionally, EQ|xi
from (14) with Qi-result (19) is reformulated according to

EQ|xi
= Qi(xi) +

∑
j ̸=i

E [Qj ] = kixi + δi(xi) + Ei, (34)

using ki = 2yi, δi(xi) = x2
i + A cos (αyi)−A cos (αyi) cos (αxi)+A sin (αyi) sin (αxi), and Ei =

∑
j ̸=i E [Qi]

as abbreviations. The expression δi(xi) can be regarded as a non-linear perturbation term w.r.t. term kixi.
Now integral (33) yields

φi = −
1

ϑ

∫ ∞

−∞
xipx(xi)Φ

(
EQ +DQΦ

−1(ϑ)− (kixi + δi(xi) + Ei)

Di

)
dxi . (35)
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A closed form solution of (35) cannot be obtained with Φ(δi(xi)) containing non-linear terms in xi. Therefore,
an approximate solution is necessary by decomposing the argument as Φ(g(xi) + h(xi)) into g(xi) being a
linear function, and h(xi) a non-linear function of xi, which are defined in (C.20) and (C.21), respectively.
Then, a Taylor expansion of Φ(g + h) is done up to first order assuming small perturbations h scaling with
1/
√
N , such that

Φ (g + h) =

∞∑
k=0

1

k!

dkΦ

dgk
hk = Φ(g) +

e−
1
2 g

2

√
2π

h+O

(
1

N

)
. (36)

The resulting two integrals are solvable analytically. Within the results, the function g(xi) being dependent
on ki will give progress contributions of the sphere function, while h(xi) can be regarded as a perturbation
of the sphere containing A and α dependencies. The two integrals after Taylor expansion are given in (C.25)
and are successively solved in the Appendix. The resulting expressions can be further simplified assuming
large dimensionality N in (C.45) and afterwards the asymptotic progress coefficient is recovered.

Finally, the result is given in terms of derivative components ki and di, see (23), quality gain variance
D2

Q from (20) and cϑ = e1,0ϑ from (32) by applying the limits N → ∞ and (µ, λ) → ∞ (constant ϑ = µ/λ)
as

φi = cϑ
σ2

DQ

(
ki + e−

1
2 (ασ)

2

di

)
= cϑ

σ2

DQ

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)
.

(37)

The expressions for cϑ and DQ were not inserted in order to improve readability. Result (37) shows very
interesting properties compared to [11, Eq. (26)], where a linearized quality gain approximation resulted in

φi,lin = cµ/µ,λ
σ2√

(f ′
iσ)

2 +D2
i

f ′
i . (38)

First note that the progress coefficient was replaced by its asymptotic form cµ/µ,λ → cϑ. The difference for
the variance terms in the denominators of (37) and (38) is negligible for large N with D2

Q ≈ D2
i + (f ′

iσ)
2,

see also (C.45). However, the most notable difference lies between the derivative term f ′
i = ki + di, see

definition (23), and the newly obtained term ki + e−
1
2 (ασ)

2

di. It contains an unchanged sphere-dependent
term ki and an exponentially decaying Rastrigin-specific term di. This characteristic form will be discussed
in the subsequent part.

One-generation experiments At this point one-generation experiments can be performed and compared
to result (37). To this end, a random position vector y is initialized isotropically with ∥y∥ = R given some
residual distance R. Then, repeated simulations are performed and quantity (5) is averaged over 106 trials.
The issue with the choice of R is that the “interesting” region with high density of local minima scales with
N , such that a relation R(N) is needed. The following argumentation can be given. Assuming w.l.o.g. y > 0
and that all components of the parental position are at some given local minimum denoted by ŷ(j). Index
j identifies the local attractor along the half-axis, e.g. j ∈ {1, 2, 3} in Fig. 1 on the right side. For N = 1
one has y = [ŷ(j)] and therefore R2 = (ŷ(j))2. Having N components at the same j-th local minimum yields
y = [ŷ(j), ŷ(j), ..., ŷ(j)], such that R2 = N(ŷ(j))2. A scaling R = O(

√
N) is therefore needed to stay within a

certain region of local attractors when N is increased.
The progress rates of two exemplary components for a single experiment are shown in Fig. 2. For both

plots σ ∈ [0, 1] was chosen in order to investigate the effects of the oscillation as α = 2π. On the left,
one observes enhanced progress for moderate σ-values due to local attraction, as both local and global
attractor are aligned along the same direction. On the right, there is negative progress for moderate σ,
as the local attractor is driving the ES away from the global attractor. For larger σ, the overall spherical
shape is dominating and both exhibit positive progress. A decomposition of the progress rate in terms of
φi = φi(di, ki)|ki=0 + φi(di, ki)|di=0 is displayed in Fig. 2. It shows the large-scale behavior of the ki-term,
dashed cyan, and limited range of the di-term, dotted green. As ki = ∂(y2i )/∂yi, its progress term models the

global quadratic structure of Rastrigin, see derivative definitions (23). The second term e−
1
2 (ασ)

2

di models
the Rastrigin-specific local oscillation having limited range depending on the mutation strength σ (or α).

By defining scale-invariant mutations using (2) with σ = σ∗R/N , the oscillations vanish via e−
1
2 (ασ

∗R/N)2

for large residual distance R, where the sphere function is recovered. This model significantly improves the
progress rate formula (38) from [11].

As a note, changing one of the fitness parameters A or α directly affects Fig. 2. The change of amplitude A
rescales both the (local) peak and dip heights accordingly, increasing the effects of local attraction for larger
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A. Increasing frequency α has mostly short-range effects as the overall range is reduced due to suppression
via e−

1
2 (ασ)

2

of (37). In the subsequent parts, the progress rate is investigated for A = 1 and α = 2π as an
example.

In Figs. 3 and 4 the progress rate is evaluated over scale-invariant σ∗ for two different N -values and
population sizes. One can see that the approximation quality improves for larger N and µ, as expected from
the applied approximations. The overall agreement between simulation and approximation is good for larger
and smaller residual distances R, see left and right plots, respectively. The σ∗-range was chosen large enough,
such that the progress rate of the corresponding sphere function [3, Eq. (6.54)] reaches negative values due
to mutations being too large. This boundary directly translates to Rastrigin, as the global structure is
the same. However, due to φi being first order, no negative progress occurs even for large σ∗. Therefore
the second order progress rate φII

i needs to be derived in Sec. 4, where loss terms will provide additional
correction terms.

Figure 2: One-generation experiments with (10/10, 40)-ES for N = 20, A = 10, α = 2π at randomly chosen
∥y∥ = R =

√
N . The results for φi of Eq. (37) are shown for the exemplary components i = 2 with yi = 1.16

(left) and i = 12 with yi = 0.78 (right) to illustrate the effect of local attraction on the progress rate. The
plots show additionally Eq. (37) with φi(ki) = φi(di, ki)|di=0 [cyan, dashed] and φi(di) = φi(di, ki)|ki=0

[green, dotted], respectively.

Figure 3: Progress rate φi as a function of the normalized mutation σ∗ for (10/10, 40)-ES with N = 20,
A = 1, α = 2π, at two residual distances R = 10

√
N with yi = 11.6 (left) and R = 0.1

√
N with yi = 0.116

(right). As in Fig. 2, black dots depict the simulation, while the red line shows result (37). The error bars
are very small and therefore not visible.

Figure 4: Progress rate φi as a function of the normalized mutation σ∗ for (100/100, 200)-ES with N = 100,
A = 1, α = 2π, at two residual distances R = 10

√
N with yi = 11.9 (left) and R = 0.1

√
N with yi = 0.119

(right). The approximation quality improves compared to Fig. 3 and shows very good agreement.
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4 Second Order Progress Rate

The second order progress rate (6) requires the evaluation of E
[
(y

(g+1)
i )2

]
. Starting again with (24), referring

to the i-th component and squaring yields

(
y
(g+1)
i

)2
=

(
y
(g)
i +

1

µ

µ∑
m=1

xm;λ

)2

=
(
y
(g)
i

)2
+ 2y

(g)
i

1

µ

µ∑
m=1

xm;λ +
1

µ2

(
µ∑

m=1

xm;λ

)2

.

(39)

Squaring the last term can be evaluated by separating the sum into equal and unequal indices(
µ∑

m=1

xm;λ

)2

=

(
µ∑

k=1

xk;λ

)(
µ∑

l=1

xl;λ

)
=

µ∑
m=1

(xm;λ)
2
+
∑
k ̸=l

xk;λxl;λ

=

µ∑
m=1

(xm;λ)
2
+ 2

µ∑
l=2

l−1∑
k=1

xk;λxl;λ.

(40)

Inserting (40) into (39) and taking the expected value (conditional variables y(g) and σ(g) are implicitly
assumed to be given) yields

E

[(
y
(g+1)
i

)2]
=
(
y
(g)
i

)2
+ 2y

(g)
i

1

µ

µ∑
m=1

E [xm;λ] +
1

µ2

µ∑
m=1

E
[
(xm;λ)

2
]
+

2

µ2

µ∑
l=2

l−1∑
k=1

E [xk;λxl;λ] . (41)

Noting that φi = − 1
µ

∑µ
m=1 E [xm;λ], see Eq. (26), and using (41) in φII

i -definition (6) yields the second
order i-th component progress rate

φII
i = 2y

(g)
i φi −

1

µ2
E(2) − 2

µ2
E(1,1), (42)

for which the two following expected values need to be determined

1

µ2
E(2) :=

1

µ2

µ∑
m=1

E
[
(xm;λ)

2
]

(43)

1

µ2
E(1,1) :=

1

µ2

µ∑
l=2

l−1∑
k=1

E [xk;λxl;λ] . (44)

The solution of (43) is presented in Appendix C.2.1. It uses order statistic density (30) for the m-th
individual, large population identity (B.1), and the expansion of the normal CDF (36) up to first order. The
resulting two integrations can then be solved analytically and within the limit N → ∞ the results simplify
significantly. Finally, the asymptotic generalized progress coefficient definition (32) is applied and the result
yields

1

µ2
E(2) =

σ2

µ

{
1 + e1,1ϑ

(2yi)
2σ2

D2
Q

− cϑ
DQ

[
3σ2 +A cos (αyi)

(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]}

. (45)

The solution of the second expected value (44) is shown in Appendix C.2.2. For this purpose, the joint
probability density pk,l;λ for two individuals k and l is derived assuming 1 ≤ k < l ≤ λ, i.e., k yielding
a smaller (better) quality value than l out of λ individuals. Then, the resulting five-fold integration is
restructured and successively solved. Interestingly, the final integral can be related to (squared) first order
progress integral (33), which is a remarkably simple result for E(1,1) in terms of φi. Thereafter, result (37)
for φi can be inserted and c2ϑ = e2,0ϑ , see (32), is identified. One gets

1

µ2
E(1,1) ≃ 1

2

µ− 1

µ
φ2
i

=
1

2

σ2

µ
(µ− 1)e2,0ϑ

σ2

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2

.
(46)
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Using expressions (45) and (46), the result for the second order progress rate (42) yields

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)

− σ2

µ

{
1 + e1,1ϑ

(2yi)
2σ2

D2
Q

− cϑ
DQ

[
3σ2 +A cos (αyi)

(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]

+ (µ− 1)e2,0ϑ

σ2

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2}

.

(47)

For future investigations of the convergence and step-size adaption properties of the (µ/µI , λ)-ES, a simpler
expression than (47) will be needed. As the limit N → ∞ was assumed throughout the derivation, it can
be applied once more to simplify the loss term within {·} of (47) significantly. The motivation stems also
from φII

i -investigations done on the ellipsoid function [4], where the loss term could be successfully simplified
without large degradation of approximation quality.

The analysis of the loss-term N -scaling behavior is shown in Appendix C.2.3. It yields that in {·} of
(47) all terms except “1” are vanishing for large N as long as µ(N) scales sub-linearly. Theoretical results
concerning population sizing, i.e., choosing the necessary µ(N) to achieve high global convergence probability
PS (success probability), are not available at this point. It is one of the main future goals of the current
research project. Note that treating µ as a constant is also not satisfactory, since for large N an increase
of µ is necessary to maintain a high success rate on a highly multimodal problem. However, experimental
investigations on the Rastrigin function including step-size adaption have shown a sub-linear relation, which
validates the approximation.

Finally, expression (47) is simplified applying the argumentation above to intermediate result (C.124),
such that one obtains the second order progress rate for the limits N → ∞ and (µ, λ) → ∞ with constant
ϑ = µ/λ and µ = o (N) as

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)
− σ2

µ
. (48)

The expressions for cϑ = e1,0ϑ in (32) and DQ in (21) were not inserted to improve readability. The result of
(48) can be mapped to the Evolutionary Progress Principle [3] as it contains a progress gain and loss term,
respectively. Here, the gain part scales with cϑ and it is a yi-dependent expression. Hence, depending on
the sign of yi sin (αyi) it may also yield negative contributions due to local attraction moving the ES away
from the global optimizer, cf. Fig. 2. The loss term −σ2/µ is characteristic for intermediate recombination.
It introduces significant loss for large σ, but can be decreased using a larger µ due to recombination effects.

One-generation experiments Results of one-generation experiments are presented in Figs. 5 and 6
by evaluating (6) over 106 trials (black dots with vanishing error bars) and comparing with the obtained
approximations. The red dash-dotted line is showing simplified result (48), while the blue dashed line is
showing (47). The positions y were initialized randomly (given R) and kept constant over all repetitions.

First thing to note is that the loss terms now predict negative progress for large σ∗, which was not the
case for φi. The approximation quality is relatively consistent varying R (left and right, respectively) and
improves significantly for larger N and µ in Fig. 6, which was expected. Simplified expression φII

i from
(48) [red, dash-dotted] yields good results compared to (47) [blue, dashed], with (47) giving slightly better
results for smaller σ∗ and (48) better results at larger σ∗. This indicates that additional terms of the Taylor
expansion (36) would be needed to further improve the results of (47). However, this would make the
expression more involved. Furthermore, the results of Fig. 5 are relatively good considering that a rather
small population (10/10, 40)-ES was used at low dimensionality N = 20.

One can conclude that (48) yields very good results considering its “simplicity”. It will therefore be used
in Sec. 5 to investigate the dynamical behavior of the ES. It should be noted that DQ from (21) is still
a relatively complex expression and does not allow for an easy interpretation of the y-dependence on the
overall variance. However, for σ →∞ (equivalent to R→∞ setting σ = σ∗R/N with constant σ∗ and N),
the exponential factors are vanishing and the term NA2/2 is negligible, see Eqs. (A.8) and (A.9). In this
limit the sphere variance D2

Q(R) = 4R2σ2 + 2Nσ4 is recovered, where Rastrigin-specific oscillation effects

are vanishing. Investigations to simplify D2
Q(y) or to provide an R-dependent (average) formulation D2

Q(R)
are part of future research. Furthermore, at this point there is no aggregated progress measure over all N
components, such as the R-dependent sphere progress rate. Given some y(g) one can evaluate all i = 1, ..., N
values for φII

i and obtain a progress vector, but the overall effect on R(g) → R(g+1) is not known. This
will also be part of future research. However, the cumulative effect of all N progress rates can be evaluated
within a dynamical systems model to be shown in the next chapter.
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Figure 5: Second order progress rate φII
i as a function of σ∗ for (10/10, 40)-ES with N = 20, A = 1, α = 2π,

at two residual distances R = 10
√
N with yi = 11.6 (left) and R = 0.1

√
N with yi = 0.116 (right).

Figure 6: Second order progress rate φII
i as a function of σ∗ for (100/100, 200)-ES with N = 100, A = 1,

α = 2π, at two residual distances R = 10
√
N with yi = 11.9 (left) and R = 0.1

√
N with yi = 0.119 (right).

5 Evolution Equations

In the previous sections one-generation experiments were conducted and compared against progress rate
results (37) and (48). In order to have an aggregated measure over all components and many generations,
φi and φII

i will be used within the so-called evolution equations and compared to real optimization runs of
Alg. 1. Using this method the (mean) global convergence behavior can be investigated.

Given definitions for first and second order progress (5) and (6), the expressions can be reformulated as
stochastic iterative mappings between two generations g → g + 1 according to

y
(g+1)
i = y

(g)
i − φi(σ

(g),y(g)) + ϵ(1)(σ(g),y(g)) (49)(
y
(g+1)
i

)2
=
(
y
(g)
i

)2
− φII

i (σ
(g),y(g)) + ϵ(2)(σ(g),y(g)). (50)

The two terms ϵ(1) and ϵ(2) can be interpreted as fluctuations w.r.t. the expected values (provided by φi

and φII
i ), such that condition E

[
ϵ(1)
]
= 0 = E

[
ϵ(2)
]
is necessary. However, the exact transition densities for

g → g + 1 are not known at this point. In principle, they could be approximated using a finite number of
higher order moments (or cumulants) to model the fluctuations [3, Ch. 7]. At this point, for a first study of
the progress rate results on the dynamics, the fluctuations are neglected setting ϵ(1) = 0 = ϵ(2). One arrives
at the (deterministic) equations describing the mean-value dynamics of the position coordinates

y
(g+1)
i = y

(g)
i − φi(σ

(g),y(g)) (51)(
y
(g+1)
i

)2
=
(
y
(g)
i

)2
− φII

i (σ
(g),y(g)), (52)

with constant normalized mutation strength σ∗ from Eq. (2) giving

σ(g) = σ∗
∥∥∥y(g)

∥∥∥/N. (53)

Two important issues need to be discussed. Firstly, the positional iterations are defined for a single com-
ponent i. For large N it is not feasible to analyze each component individually and global convergence is
achieved for all components vanishing at the same time. While the components will be iterated separately,
the dynamics will be presented as a function of the residual distance R =

∥∥y(g)
∥∥. Secondly, for the evaluation
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of φII
i being a function of y(g), the square root of the components (y

(g)
i )2 has to be taken after iteration

giving two solutions ±y(g)i . As the corresponding terms of φII
i and D2

Q(y) are even in y
(g)
i , both solutions

are equivalent.

Dynamic experiments In the following, the deterministic iterations (51) and (52) using mutation rescal-
ing (53) are compared to real optimization runs. For the initialization, y(0) is chosen randomly such that∥∥y(0)

∥∥ = R(0) for a given R(0). The starting position is kept constant for consecutive runs of the same

experiment. For the magnitude of R(0) it is ensured that the strategy starts far enough away from the local
minima landscape. Given Fig. 1 with A = 1, the farthermost local minimizer is at yi ≈ 3 with resulting
R = 3

√
N for N -components, such that R(0) = 20

√
N > 3

√
N is chosen.

Considering the choice of σ∗ one observes in experiments that larger mutation strengths increase the
success probability PS of individual trials to converge to the global optimizer. This is due to the fact that
large steps tend to overcome local attraction more easily. However, this comes at the expense of efficiency,
since large steps are often overshooting the global optimizer. Therefore in Fig. 7, σ∗ is chosen larger than the
sphere-optimal value σ̂∗

sph, which can be obtained by numerically solving [3, Eq. (6.54)], but small enough
to prevent negative progress. The aim was to obtain PS ≈ 1.

In order to aggregate the R(g)-data of multiple dynamic experiments, the median has shown to be a
suitable measure of central tendency. The main issue is that due to fluctuations the R(g)-values of distinct
runs may differ by orders of magnitude, such that the mean yields biased results due to a skewed distribution.
The median is more suitable in this case and a more stable measure.

In Fig. 7 one can observe three phases within the dynamics. First, linear convergence is observed for
large R(g)-values, where the sphere function dominates. Then, a slow down is observed due to increasing
effects of local attraction. For small R(g)-values, the ES descends into the global attractor basin and linear
convergence can be observed again. One can see that the φi-iteration (blue) shows by far too much progress
compared to φII

i -iteration. This is due to the first order model, which does not include loss terms and
overestimates the progress significantly, see also discussion of result (37). Iteration via φII

i (red) shows good
results compared to the median curve, especially for larger µ and N (right plot). Better agreement for large
populations is also due to reduced fluctuation effects, which were neglected at the beginning of Sec. 5.

In Fig. 8 the effect of reduced σ∗ is investigated, which increases the probability of local convergence. The
left plot shows σ∗ = 5 with no globally converging runs, as the mutation strength is too low. Technically,
for constant σ∗ there is no local convergence as the algorithm never stops if R is not decreasing. Still, the
experiments are stopped after some g-threshold is reached. The stagnating behavior of the ES around some
R(g) can be illustrated using Fig. 2. For σ = 0.2 one has σ∗ = σN/R ≈ 0.9, which is small compared
to σ̂∗

sph ≈ 5.7. Both left and right progress components of Fig. 2 are significantly influenced by the local
attraction region at σ = 0.2. While some components may be improved (positive value left), others are
worsened (negative value right) resulting in a cumulative effect of R(g)-stagnation. One way out can be
increasing σ (or equivalently σ∗). However, the local minima landscape changes with changing R and
arbitrary σ∗-increase is not possible. Stagnation may appear at higher σ∗ for different R(g)-values, if the
Rastrigin function is hard to optimize for given ES parameters. For an active step-size adaption, changing
σ appropriately – without converging locally – also poses a major challenge.

In the central plot of Fig. 8 roughly half of the runs are globally converging at increased σ∗ = σ̂∗
sph. In

this case the deterministic iteration follows a single converging path, as no fluctuations are modeled. The
residual distance of the locally converging runs is reduced compared to σ∗ = 5. Note that the convergence
speed is faster (steeper negative slope) for the globally converging runs compared to σ∗ = 30 of Fig. 7 due to
sphere-optimal σ̂∗

sph. However, this comes with the disadvantage of a lower PS , as more trials are converging
locally. The right plot with σ∗ = 25 is similar to σ∗ = 30 of Fig. 7, but with several not converging runs.
Again, the ES convergence speed is faster closer to σ̂∗

sph, but shows a slightly reduced PS-value. The overall
prediction quality of the iteration is good and the results affirm the expectation, that large mutations are
favorable to maximize PS on the Rastrigin function.

To confirm the expectation that the approximation quality increases further for larger µ and N , exper-
iments are shown in Fig. 9. First thing to notice is that positional fluctuations of the ES trials decrease
further, such that nearly all runs follow a similar path in R-space. This is related to the intermediate re-
combination, see Eq. (24), as position y(g+1) is obtained by averaging over a large number of individuals.
One can see good agreement, but for the left plot there is still some room for improvement. This is related
to truncation ratio ϑ = 1/4, such that the Taylor expansion point in Eq. (36) via function g(xi) is shifted
by Φ−1(ϑ). For ϑ = 1/2 and even larger N and µ (right plot), very good agreement is observed.
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Figure 7: Comparison of real optimization runs with mean value dynamics using progress rates φi via (49)
[dashed blue] and φII

i via (50) [dash-dotted red]. Gray lines show all 100 successful runs of Alg. 1 and the
black line shows the median thereof. The left plot shows (10/10, 40)-ES for N = 20 with σ∗ = 7 (σ̂∗

sph = 5.7)
and the right one (100/100, 200)-ES for N = 100 with σ∗ = 30 (σ̂∗

sph = 18.3). For both experiments A = 1,
and α = 2π are chosen. The resulting success probability PS = 1.

Figure 8: Variation of σ∗ for (100/100, 200)-ES for N = 100, A = 1, and α = 2π. From left to right
σ∗ = {5, 18.3, 25}, with σ̂∗

sph = 18.3, and success rate PS = {0, 0.45, 0.97}. The experiment with σ∗ = 30
(PS = 1) was already shown in Fig. 7. Globally converging trials are shown in gray, and non-converging
runs in light-orange. The median is taken over the globally converging runs, except for the left plot where
none exist, in which the median over all unsuccessful runs is taken.

Figure 9: The left plot shows (1000/1000, 4000)-ES with σ∗ = 110 for N = 1000, A = 1, and α = 2π. The
right plot shows (10000/10000, 20000)-ES with σ∗ = 400 for N = 10000 (same α and A), evaluated for 50
trials due to CPU resource restrictions.
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6 Conclusion and Outlook

In this paper the full first and second order progress rate analysis of the (µ/µI , λ)-ES has been presented. In
order to obtain closed-form expressions for φi and φII

i it was necessary to consider the asymptoticN →∞ and
the large population assumption. While the latter does not present a serious issue because large populations
are needed to ensure global convergence, it was the key prerequisite to simplify the expected value integrals.
As the experiments have shown, the approximation quality of the progress rate expressions is rather good
even for N as small as 20 and comparably small populations of µ = 10. For larger N and µ the approximation
quality improves further, as expected . The first order progress rate result is able to model the local attraction
effects on the Rastrigin function. This is a very important step, as all subsequent investigations in this paper
are based on φi-results. The second order progress rate derivation was needed to obtain additional loss
terms improving the progress model further, especially for larger mutation strengths and close to the global
optimizer.

Using the progress rate expressions, the dynamics of the evolution process have been investigated. There
is a good agreement between the iterations and real ES-runs using median aggregation of the residual
distance R to the global optimizer. As has been shown, depending on the choice of the normalized mutation
strength, one can model global as well as local convergence behavior. Additionally, one observes a trade-off
between efficiency and success rate, as relatively large mutations have to be chosen to maximize the success
probability. The conducted experiments assume scale-invariance, i.e., the mutation strength is controlled by
the residual distance R. This is in contrast to the full self-adaptive ES where σ evolves during the ES run
either by mutative self-adaptation, cumulative step-size adaptation or Meta-ES.

The incorporation of the self-adaptation process will be the next step completing the analysis of the
(µ/µI , λ)-ES on Rastrigin. To this end, the self-adaptation response (SAR) function must be derived. Com-
bining N progress rates with the SAR function yields N +1 evolution equations. In order to get manageable
expressions that allow for analytic population sizing and expected runtime investigations, additional aggre-
gation is needed. One possible approach would be the aggregation of individual parental yi components into
the parental distance R modeling the expected progress as a function of the residual distance. This would
reduce the number of evolution equations to two and making further analytic treatment more accessible.

Finally, the presented approach to model the ES-dynamics is based on mean value considerations. That
is, fluctuations are not considered so far. Whether the approach presented can be extended to allow for the
calculation of the global attractor convergence probability as a function of strategy and fitness parameters
remains an open question.
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Appendix A Expected Value and Variance of Quality Gain

The derivation of D2
i was already published in the supplementary material of [11]. For the sake of complete-

ness, its derivation is sketched again and the results are applied to obtain EQ and D2
Q (and analogously

EQ|xi
and D2

i ) needed in Sec. 2. The results are also needed during the progress rate derivation. As a

remark, terms containing moments of x ∼ N (0, σ2), i.e. E
[
xk
]
with k ≥ 1, are silently evaluated as they are

assumed to be widely known.
Starting with E [Qi] applied to (19) yields the intermediate result

E [Qi] = σ2 −A cos (αyi) E [cos (αxi)] , (A.1)

where odd powers of E
[
xk
]
= 0, which also yields E [sin (αxi)] = 0. Analogously, evaluating Var [Qi] yields

after collecting terms

Var [Qi] = E
[
Q2

i

]
− E [Qi]

2

= 2σ4 + 4y2i σ
2 +A2 sin2 (αyi)Var [sin (αxi)]

+A2 cos2 (αyi)Var [cos (αxi)]− 2A cos (αyi) E
[
x2 cos (αxi)

]
+ 2Aσ2 cos (αyi) E [cos (αxi)] + 4Ayi sin (αyi) E [x sin (αxi)] .

(A.2)

In the general case, expectations of the form E
[
xk cosαx

]
and E

[
xk sinαx

]
for k ≥ 0 can be obtained

by using the definition of the characteristic function χ of x ∼ N (µ, σ2) and its known result [1]

χx(α) = E
[
eiαx

]
= eiαµ−

1
2α

2σ2

= e−
1
2α

2σ2

[cos (αµ) + i sin (αµ)]. (A.3)
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Now the k-th derivatives with respect to α can be applied to both sides

dk

dαk
E
[
eiαx

]
= E

[
dk

dαk
eiαx

]
= E

[
dk

dαk
cos(αx)

]
+ iE

[
dk

dαk
sin(αx)

]
!
=

dk

dαk

[
e−

(ασ)2

2 [cos (αµ) + i sin (αµ)]

]
,

(A.4)

such that corresponding real and imaginary parts can be identified. Given µ = 0 for k = {0, 1, 2} the
required expectations of trigonometric terms can be derived. Additionally, trigonometric identities cos2(x) =
1/2 + cos(2x)/2 and sin2(x) = 1/2− cos(2x)/2 are used. The results are

E [cos (αx)] = e−
(ασ)2

2 , E
[
cos2 (αx)

]
=

1

2
+

1

2
e−

(2ασ)2

2

E
[
sin2 (αx)

]
=

1

2
− 1

2
e−

(2ασ)2

2 , E [x sin (αx)] = ασ2e−
(ασ)2

2

E
[
x2 cos (αx)

]
= (σ2 − α2σ4)e−

(ασ)2

2 , Var [(·)] = E
[
(·)2
]
− E [(·)]2 .

(A.5)

Inserting relations (A.5) into (A.1) and (A.2), summing over all N components and collecting the resulting
terms one obtains the expected value and variance of the Rastrigin quality gain as

EQ =

N∑
i=1

σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
(A.6)

D2
Q =

N∑
i=1

2σ4 + 4y2i σ
2 +

A2

2

[
1− e−(ασ)2

] [
1− cos(2αyi)e

−(ασ)2
]

+ 2Aασ2e−
1
2 (ασ)

2
[
ασ2 cos(αyi) + 2yi sin(αyi)

]
.

(A.7)

Variance expression (A.7) can be simplified to some extent by first performing the summation over the first
two terms applying

∑
i y

2
i = R2. Additionally, for large σ (or equivalently large R with σ = σ∗R/N using

normalization (2)) the exponential terms are vanishing and the term NA2/2 is negligible. One gets

D2
Q = 2Nσ4 + 4R2σ2 +

N∑
i=1

A2

2

[
1− e−(ασ)2

] [
1− cos(2αyi)e

−(ασ)2
]

+ 2Aασ2e−
1
2 (ασ)

2
[
ασ2 cos(αyi) + 2yi sin(αyi)

] (A.8)

≃ 2Nσ4 + 4R2σ2. (A.9)

Expression (A.9) recovers the well-known variance of the sphere function [3, Ch. 4].

Appendix B Large Population Identity

Solving the expected value integrals of progress rates φi and φII
i for large populations requires the evaluation

of subsequent integral (B.1). The identity will be proven by Taylor expanding the integrand around the
(sharp) maximum of the population-dependent term. It is shown that in the limit of infinitely large popu-
lations and constant truncation ratio only the 0-th order term yields relevant contributions. In the end, the
obtained result can also be applied to derive the asymptotic generalized progress coefficients in (B.30).

Theorem. Let λ > µ+ 1 and µ > a with a ≥ 1 and ϑ = µ/λ with 0 < ϑ < 1, such that tλ−µ−1(1− t)µ−a

exhibits its maximum on (0, 1) and vanishes at t ∈ {0, 1}. Furthermore, let f(t) be a function defined and
differentiable on (0, 1), and let B(·, ·) be the beta function. For infinitely large (µ, λ) → ∞ and constant
ϑ = µ/λ the asymptotic equality holds

Iaµ,λ[f ] =
1

B(λ− µ, µ)

∫ 1

0

f(t)tλ−µ−1(1− t)µ−a dt ≃ f(1− ϑ)

ϑa−1
, (B.1)

with higher order terms vanishing with O(1/µ) and O(1/λ).

Proof. Given the definition above it can be observed that tλ−µ−1(1 − t)µ−a exhibits a single increasingly
sharp maximum on the interval (0, 1) given a fixed truncation ratio as the population size tends to infinity,
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Figure B.1: Integrand I(t) = 1
B(λ−µ,µ) t

λ−µ−1(1− t)µ−1 plotted for a = 1, λ = 20 (left) and λ = 200 (right)

for two different truncation ratios ϑ = 1/4 and ϑ = 1/2. The peak’s sharpness increases with growing λ and
the factor 1/B(λ− µ, µ) rescales the peak heights.

see also Fig. B.1. This observation suggests performing a Taylor series expansion of the function f(t) around
the sharp peak located at t̂ defined by

t̂ = argmax
t∈[0,1]

[
tλ−µ−1(1− t)µ−a

]
. (B.2)

The first terms of the series should already yield a good approximation for large populations. The maximum
of the sharp peak can be obtained by setting the first derivative to zero

d

dt
[tλ−µ−1(1− t)µ−a]

!
= 0 (B.3)

⇒ t̂ =
λ− µ− 1

λ− a− 1
= 1− µ− a

λ− a− 1
= 1− µ(1− a/µ)

λ(1− a/λ− 1/λ)
. (B.4)

Looking at the limit of infinitely large populations it can be observed that the maximizer approaches a
constant value. Setting µ/λ = ϑ one gets

lim
(µ,λ)→∞
ϑ=const.

t̂ = 1− ϑ. (B.5)

Taylor-expanding f(t) around t̂ yields

f(t) =

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

(t− t̂)k, (B.6)

such that integral (B.1) is expressed as

Iaµ,λ[f ] =
1

B(λ− µ, µ)

∫ 1

0

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

(t− t̂)ktλ−µ−1(1− t)µ−a dt

=

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a(t− t̂)k dt

=

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

C(k).

(B.7)

The introduced coefficients C(k) are defined as

C(k) :=
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a(t− t̂)k dt . (B.8)

It will be shown that only the 0-th order coefficient C(0) will yield significant contributions and all higher
orders k ≥ 1 will vanish with O(1/λ) for large populations.
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Starting with k = 0 the coefficient can be evaluated using relations between beta function B, gamma

function Γ and factorial, namely B(x, y) =
∫ 1

0
tx−1(1− t)y−1 dt, B(x, y) = Γ(x) Γ(y)

Γ(x+y) and Γ(n) = (n− 1)!, such

that

C(0) =
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a dt

=
B(λ− µ, µ− a+ 1)

B(λ− µ, µ)
=

Γ(λ− µ) Γ(µ− a+ 1)

Γ(λ− a+ 1)

Γ(λ)

Γ(λ− µ) Γ(µ)

=
(λ− µ− 1)!(µ− a)!

(λ− a)!

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
(λ− 1)!(µ− a)!

(λ− a)!(µ− 1)!
=

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=

a−1∏
n=1

λ

µ

1− n/λ

1− n/µ

=

{
1 for a = 1,

1
ϑa−1

∏a−1
n=1

1−n/λ
1−n/µ . for a > 1.

(B.9)

It was used that for a > 1 one has

(λ− 1)!

(λ− a)!
=

a−1∏
n=1

(λ− n) and
(µ− a)!

(µ− 1)!
=

1∏a−1
n=1(µ− n)

. (B.10)

Therefore the limit yields for any a ≥ 1 and k = 0

lim
(µ,λ)→∞
ϑ=const.

C(0) =
1

ϑa−1
, (B.11)

with O(1/µ) and O(1/λ).
The analysis of C(k) with k ≥ 1 is slightly more involved. Noting that (t− t̂)k = (−t̂)k(1− t/t̂)k one has

C(k) =
(−t̂)k

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a

(
1− t

t̂

)k

dt . (B.12)

By applying the binomial theorem the expression can be reformulated

C(k) =
(−t̂)k

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a
k∑

i=0

(
k

i

)
1k−i

(
− t

t̂

)i

dt

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)i

(
1

t̂

)i
1

B(λ− µ, µ)

∫ 1

0

titλ−µ−1(1− t)µ−a dt

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)iF i,a

1 F i,a
2 ,

(B.13)

with additional treatment needed for the factors F i,a
1 and F i,a

2

F i,a
1 :=

(
1

t̂

)i

(B.14)

F i,a
2 :=

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1+i(1− t)µ−a dt . (B.15)

Factor F i,a
1 is easily evaluated using (B.4) and yields

F i,a
1 =

(
1

t̂

)i

=

(
λ− a− 1

λ− µ− 1

)i

=

(
1− a/λ− 1/λ

1− ϑ− 1/λ

)i

. (B.16)

Factor F i,a
2 yields after applying the beta function definition

F i,a
2 =

B(λ− µ+ i, µ− a+ 1)

B(λ− µ, µ)

=
(λ− µ− 1 + i)!(µ− a)!

(λ− a+ i)!

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
(λ− µ− 1 + i)!

(λ− µ− 1)!

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!
. (B.17)
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The first ratio of (B.17) yields

(λ− µ− 1 + i)!

(λ− µ− 1)!
=

i∏
j=1

(λ− µ− 1 + j) = λi
i∏

j=1

(1− ϑ− 1/λ+ j/λ). (B.18)

For the second ratio of (B.17) one can use (B.10) and write (λ− 1)! = (λ− a)!
∏a−1

n=1(λ− n), such that

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!

a>1
=

(λ− a)!

(λ− a+ i)!

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=
1∏i

j=1(λ− a+ j)

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=
1

λi
∏i

j=1(1− a/λ+ j/λ)

λa−1
∏a−1

n=1 1− n/λ

µa−1
∏a−1

n=1 1− n/µ
,

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!

a=1
=

1

λi
∏i

j=1(1− 1/λ+ j/λ)
.

(B.19)

The result of (B.19) for a > 1 is also valid for a = 1 when defining the product over n with no elements as∏0
n=1(·) = 1, which is assumed for the following derivations.

Using (B.18) and (B.19) factor F i,a
2 therefore yields for a ≥ 1

F i,a
2 =

λi
∏i

j=1(1− ϑ− 1/λ+ j/λ)

λi
∏i

j=1(1− a/λ+ j/λ)

λa−1
∏a−1

n=1(1− n/λ)

µa−1
∏a−1

n=1(1− n/µ)

=
1

ϑa−1

i∏
j=1

(1− ϑ− 1/λ+ j/λ)

(1− a/λ+ j/λ)

a−1∏
n=1

(1− n/λ)

(1− n/µ)
.

(B.20)

Finally the result for C(k) from (B.13) can be evaluated using (B.16) and (B.20)

C(k) = (−t̂)k
k∑

i=0

(
k

i

)
(−1)iF i,a

1 F i,a
2

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)i (1− a/λ− 1/λ)

i

(1− ϑ− 1/λ)
i

1

ϑa−1

i∏
j=1

(1− ϑ− 1/λ+ j/λ)

(1− a/λ+ j/λ)

a−1∏
n=1

(1− n/λ)

(1− n/µ)

=
(−t̂)k

ϑa−1

a−1∏
n=1

(1− n/λ)

(1− n/µ)

k∑
i=0

(
k

i

)
(−1)i

i∏
j=1

(1− ϑ− 1/λ+ j/λ)(1− a/λ− 1/λ)

(1− ϑ− 1/λ)(1− a/λ+ j/λ)
. (B.21)

In the second line of (B.21) factors F i,a
1 and F i,a

2 were inserted and independent terms of i were moved out

of the sum. Additionally the factors (1− a/λ− 1/λ)
i
and 1/ (1− ϑ− 1/λ)

i
were moved into the product

over j = 1, ..., i which is important for the following limit consideration.
Applying the limit (µ, λ)→∞ significantly simplifies (B.21), as the population dependent terms vanish

with O(1/µ) and O(1/λ), respectively. The two products yield asymptotically one. Using the property that
the sum of alternating binomial coefficients yields zero for any k ≥ 1, one obtains the limit

lim
(µ,λ)→∞
ϑ=const.

C(k) =
(−t̂)k

ϑa−1

k∑
i=0

(
k

i

)
(−1)i = 0, for k ≥ 1. (B.22)

Now the results can be collected. Having established the large population limit of C(k) in (B.11) and (B.22)
one can return to the Taylor expansion of (B.7) and evaluate corresponding expressions. Noting that t̂ = 1−ϑ
from (B.5) the result is

lim
(µ,λ)→∞
ϑ=const.

Iaµ,λ[f ] = lim
(µ,λ)→∞
ϑ=const.

[ ∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

C(k)

]

=
1

ϑa−1
f(1− ϑ),

(B.23)

with higher order terms vanishing as O(1/µ) and O(1/λ). Therefore within the large population limit it is
sufficient to consider only the 0-th order term of the Taylor expansion evaluated at the integrand maximum
t̂. All these considerations hold provided that the derivatives of f(t) are well defined at t̂. □
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Generalized Progress Coefficient An important application emerges investigating the generalized progress
coefficients introduced in [3, Eq. (5.112)]

ea,bµ,λ =
λ− µ

(2π)
a+1
2

(
λ

µ

)∫ ∞

−∞
xbe−

a+1
2 x2

[Φ(x)]
λ−µ−1

[1− Φ(x)]
µ−a

dx , (B.24)

for which asymptotic properties can be derived assuming large populations. The population depend prefac-
tors are rewritten as

(λ− µ)

(
λ

µ

)
=

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!
=

1

ϑ

1

B(λ− µ, µ)
. (B.25)

Introducing the substitution t = Φ(x) with x = Φ−1(t), dx =
√
2πex

2/2 dt, and changing the bounds
0 ≤ t ≤ 1, the progress coefficients yields

ea,bµ,λ =
1

ϑ

1

B(λ− µ, µ)

1

(2π)
a/2

∫ 1

0

[
Φ−1(t)

]b
e−

a
2 [Φ

−1(t)]
2

tλ−µ−1(1− t)µ−a dt . (B.26)

Comparing (B.26) with identity (B.1) the function fa,b(t) (with a and b in superscript emphasizing the
parameter dependence) can be identified as

fa,b(t)
∣∣
t=1−ϑ

=
[
Φ−1(t)

]b
e−

a
2 [Φ

−1(t)]
2
∣∣∣∣
t=1−ϑ

=
[
Φ−1(1− ϑ)

]b
e−

a
2 [Φ

−1(1−ϑ)]
2

.

(B.27)

Therefore the coefficients can be expressed as

ea,bµ,λ =
1

ϑ

1

(2π)
a/2

Iaµ,λ
[
fa,b

]
≃ 1

ϑ

1

(2π)
a/2

fa,b(1− ϑ)

ϑa−1

=
1

(2π)
a/2

1

ϑa

[
Φ−1(1− ϑ)

]b
e−

a
2 [Φ

−1(1−ϑ)]
2

=

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]a [
−Φ−1(ϑ)

]b
.

(B.28)

In the first line the asymptotic equality is used and in the second line expression (B.27). For the last line
the properties Φ−1(1 − ϑ) = −Φ−1(ϑ), [Φ−1(1 − ϑ)]2 = [Φ−1(ϑ)]2 are applied and all factors being powers
of a and b are collected. Defining the asymptotic generalized progress coefficient as

ea,bϑ := lim
(µ,λ)→∞
ϑ=const.

ea,bµ,λ, (B.29)

the final result yields

ea,bϑ =

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]a [
−Φ−1(ϑ)

]b
. (B.30)

Appendix C Derivation of the Progress Rates

C.1 First Order Progress Rate

The first order progress rate is derived starting from Eq. (31). Moving the sum and the m-dependent
prefactors into the innermost integration yields

φi = −
λ!

µ

∫ ∞

−∞
xipx(xi)

∫ qu

ql

pQ(q|xi)

µ∑
m=1

PQ(q)
m−1[1− PQ(q)]

λ−m

(m− 1)!(λ−m)!
dq dxi . (C.1)

Now a transformation can be applied for the sum
∑

m(·) yielding an expression as a function of the regularized
incomplete beta function [3, p. 147]. This will later enable the application of the large population identity
shown in Appendix B. One has

µ∑
m=1

P (q)m−1[1− P (q)]λ−m

(m− 1)!(λ−m)!

=
1

(λ− µ− 1)!(µ− 1)!

∫ 1−P (q)

0

tλ−µ−1(1− t)µ−1 dt .

(C.2)
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Furthermore, one can rewrite the population dependent factor as follows

λ!

µ

1

(λ− µ− 1)!(µ− 1)!
=

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!
=

λ

µ

Γ(λ)

Γ(λ− µ) Γ(µ)
=

λ

µ

1

B(λ− µ, µ)
, (C.3)

where we have used the property of the Gamma function Γ(n) = (n − 1)! (for any integer n > 0) and the

known relation between Gamma and Beta functions Γ(x) Γ(y)
Γ(x+y) = B(x, y). These replacements will be useful

later. After replacing the sum and refactoring we arrive at the following progress rate integral

φi = −
λ

µ

1

B(λ− µ, µ)

∫ xi=∞

xi=−∞
xipx(xi)

∫ q=qu

q=ql

pQ(q|xi)

∫ t=1−PQ(q)

t=0

tλ−µ−1(1− t)µ−1 dtdq dxi . (C.4)

Now the integration order of t and q will be exchanged. This will enable an analytically closed form for the
quality gain integration q. The current integral consists of following integration ranges

ql ≤ q ≤ qu, 0 ≤ t ≤ 1− PQ(q). (C.5)

Defining the inverse transformation q = P−1
Q (1− t) and integrating over t first, one obtains the new ranges

as
0 ≤ t ≤ 1, ql ≤ q ≤ P−1

Q (1− t). (C.6)

The progress rate changes to

φi = −
λ

µ

1

B(λ− µ, µ)

∫ xi=∞

xi=−∞
xipx(xi)

∫ t=1

t=0

tλ−µ−1(1− t)µ−1

∫ q=P−1
Q (1−t)

q=ql

pQ(q|xi) dq dtdxi . (C.7)

Now the innermost integral can be solved∫ P−1
Q (1−t)

ql

pQ(q|xi) dq =
[
PQ(q|xi)

]P−1
Q (1−t)

ql
(C.8)

= PQ(P
−1
Q (1− t)|xi)− PQ(ql|xi) (C.9)

= PQ(P
−1
Q (1− t)|xi) (C.10)

=: f(t, xi). (C.11)

where the probability PQ(ql|xi) = Pr(Q ≤ ql|xi) = 0 for any lower bound value ql. For better readability
the function f(t, xi) was introduced. Thus, we arrive at the following progress rate integral

φi = −
λ

µ

∫ xi=∞

xi=−∞
xipx(xi)

1

B(λ− µ, µ)

∫ t=1

t=0

tλ−µ−1(1− t)µ−1f(t, xi) dtdxi . (C.12)

Large Population Approximation Unfortunately a closed form solution of (C.12) is not possible due to
the factor f(t, xi) = PQ(P

−1
Q (1− t)|xi). But within the large-population limit with (µ, λ)→∞ and constant

truncation ratio ϑ = µ/λ, a solution for the t-integration can be given using the results of Appendix B.
Comparing (C.12) with identity (B.1), one can identify integral Iaµ,λ[f ] with parameters a = 1 and b = 0
giving

φi = −
λ

µ

∫ xi=∞

xi=−∞
xipx(xi)I

1
µ,λ[f ] dxi . (C.13)

Evaluating function f(t, xi) at t = 1− ϑ gives

f(t, xi)|t=1−ϑ = PQ(P
−1
Q (1− t)|xi)

∣∣
t=1−ϑ

= PQ(P
−1
Q (ϑ)|xi). (C.14)

Applying I1µ,λ[f ] ≃ PQ(P
−1
Q (ϑ)|xi) to integral (C.13) yields

φi ≃ −
1

ϑ

∫ ∞

−∞
xipx(xi)PQ(P

−1
Q (ϑ)|xi) dxi , (C.15)

which now consists only of a single integration over the i-th mutation component xi.
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At this point expressions for the quality gain CDF and its inverse are needed in (C.15). The normal
approximation for the quality gain distribution from Sec. 2 is used with

PQ(q|xi) = Φ

(
q − EQ|xi

Di

)
q = P−1

Q (ϑ) = EQ +DQΦ
−1(ϑ)

PQ(P
−1
Q (ϑ)|xi) = Φ

(
EQ +DQΦ

−1(ϑ)− EQ|xi

Di

)
.

(C.16)

Now EQ|xi
from (14) with Qi-result (19) is reformulated according to

EQ|xi
= Qi(xi) +

∑
j ̸=i

E [Qj ] = kixi + δi(xi) + Ei, (C.17)

with following definitions

ki := 2yi

δi(xi) := x2
i +A cos (αyi)(1− cos (αxi)) +A sin (αyi) sin (αxi)

Ei :=
∑
j ̸=i

E [Qi] .
(C.18)

These definitions are used as abbreviations to distinguish the (non-linear) perturbation term δ(xi) from the
linear term kixi. Inserting relation (C.17) into (C.16) and the result into (C.15) yields

φi = −
1

ϑ

∫ ∞

−∞
xipx(xi)Φ

(
EQ +DQΦ

−1(ϑ)− (kixi + δi(xi) + Ei)

Di

)
dxi . (C.19)

To obtain a function of the form Φ(g(xi) + h(xi)) and apply the Taylor expansion (36), the functions g and
h are defined as

g(xi) := −
ki
Di

xi +
EQi

+DQΦ
−1(ϑ)

Di
(C.20)

h(xi) := −
δ(xi)

Di
, (C.21)

with g being a linear function of xi and h a non-linear function thereof. Additionally, the abbreviation
EQi

= EQ−Ei = E [Qi], cf. Eq. (8), is used to denote the expected value of the i-th summand of the quality
gain (4). For the expansion of Φ(g+h) in Eq. (C.19), the definition of the probabilist’s Hermite polynomials

will be useful. They are defined in terms of the standard normal density dΦ(x)/dx = ϕ(x) = 1√
2π

e−x2/2 as

dnϕ(x)

dxn
= (−1)n Hen (x)ϕ(x). (C.22)

Using (C.22), Taylor expansion (36) can therefore be written as

Φ(g + h) =

∞∑
n=0

1

n!

dnΦ

dgn
hn = Φ(g) + ϕ(g)h+

∞∑
n=1

1

(n+ 1)!

dnϕ

dgn
hn+1

= Φ(g) + ϕ(g)h+

∞∑
n=1

(−1)n

(n+ 1)!
Hen (g)ϕ(g)h

n+1. (C.23)

Plugging (C.23) into integral (C.19) yields

φi = −
1

ϑ

∫ ∞

−∞
xipx(xi)

[
Φ(g(xi)) + ϕ(g(xi))h(xi) + ϕ(g(xi))

∞∑
n=1

(−1)n

(n+ 1)!
Hen (g(xi))h(xi)

n+1

]
dxi . (C.24)

The zeroth order term in [·] of (C.24) will yield a closed form solution due to g(xi) being linear w.r.t. xi.
The first order term can be solved by applying quadratic completion to the Gaussian product px(xi)ϕ(g(xi))
yielding an expected value over a normal density. The sum in (C.24) will be neglected in the limit N →∞
compared to the first order term. First, note that function h of (C.21) models the perturbation of a single
component divided by Di, which scales with

√
N − 1 ≈

√
N for N → ∞, see variance (15). The term

Hen (g(xi)) yields an n-th order polynomial in g(xi), see (C.20). The first term of g(xi) is vanishing for
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N → ∞ and therefore not critical. For the second term of g(xi) ratio EQi/Di = O(1/
√
N) is vanishing

and the asymptotic equality DQ ≃ Di holds, see more detailed discussion of Eq. (C.45). As Hen (g) is
asymptotically constant in the limit N →∞, one can conclude the scaling of the sum as O(h2) = O(1/N).
Hence, Eq. (C.24) can be expressed in terms of two integrals I0i and I1i and higher order negligible terms as

φi = I0i + I1i +O

(
1

N

)
, with (C.25)

I0i := − 1

ϑ

∫ ∞

−∞
xipx(xi)Φ(g(xi)) dxi , and (C.26)

I1i := − 1

ϑ

∫ ∞

−∞
xih(xi)px(xi)ϕ(g(xi)) dxi . (C.27)

Solving integral I0i Starting with (C.26) and using definition (C.20), the equation can be rewritten as

I0i = − 1

ϑ

∫ ∞

−∞
xipx(xi)Φ

(
− ki
Di

xi +
EQi +DQΦ

−1(ϑ)

Di

)
dxi . (C.28)

Inserting the mutation density px(xi) from Eq. (28) and applying the substitution z = xi/σ one gets

I0i = − σ√
2πϑ

∫ ∞

−∞
ze−

1
2 z

2

Φ

(
−kiσ

Di
z +

EQi
+DQΦ

−1(ϑ)

Di

)
dz . (C.29)

At this point the following integral identity [3, Eq. (A.12)] can be applied∫ ∞

−∞
te−

1
2 t

2

Φ(at+ b) dt =
a√

1 + a2
exp

[
−1

2

b2

1 + a2

]
. (C.30)

The corresponding coefficients can be identified as

a = −kiσ

Di
(C.31)

b =
EQi +DQΦ

−1(ϑ)

Di
. (C.32)

Evaluating the factor a/
√
1 + a2 from (C.30) gives

a√
1 + a2

= −
kiσ
Di√

D2
i

D2
i
+ (kiσ)2

D2
i

= − kiσ√
D2

i + (kiσ)2
= −kiσ

D+
, (C.33)

where following definition was introduced

D2
+ := D2

i + (kiσ)
2. (C.34)

The factor exp
[
−b2/2(1 + a2)

]
in (C.30) yields

exp

[
−1

2

b2

1 + a2

]
= exp

−1

2

(
EQi

+DQΦ
−1(ϑ)

Di

)2
1

D2
i

D2
i
+ (kiσ)2

D2
i


= exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
.

(C.35)

Inserting results (C.33) and (C.35) into identity relation (C.30), the integral (C.29) yields

I0i =
1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
kiσ

2

D+
. (C.36)

Solving integral I1i The second progress rate integral (C.27) with density px(x) from (28) and ϕ(g) =
1√
2π

e−
1
2 g(xi)

2

yields

I1i = − 1√
2πϑ

∫ ∞

−∞
xih(xi)px(xi)e

− 1
2 g(xi)

2

dxi (C.37)

= − 1√
2πϑ

∫ ∞

−∞
xih(xi)

1√
2πσ

e−
1
2 (

xi
σ )

2

e−
1
2 g(xi)

2

dxi . (C.38)
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The product of two Gaussian functions can be rewritten as a single Gaussian with a scaling factor C and
resulting mean m and variance s2, such that

I1i
!
= − C

2πϑσ

∫ ∞

−∞
xih(xi)e

− 1
2 (

xi−m

s )
2

dxi , (C.39)

which will be determined using quadratic completion. Recalling h(xi)-definition (C.21) and perturbation
term δ(xi) from (C.18) we have

h(xi) = −
δ(xi)

Di
= −x2

i +A cos (αyi)(1− cos (αxi)) +A sin (αyi) sin (αxi)

Di
. (C.40)

Using this relation, the integral (C.38) will be reformulated later as an expected value of the function xih(xi)
over the normal density N

(
m, s2

)
. Returning to quadratic completion, one demands

e−
1
2

x2
i

σ2 e−
1
2 g(xi)

2 !
= Ce−

1
2

(xi−m)2

s2 . (C.41)

The calculation thereof is straightforward and the details are omitted here. Using definition (C.34) with
D2

+ := D2
i + (kiσ)

2, the mean value m and standard deviation s, respectively, yield

m =
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

(C.42)

s =
Diσ

D+
. (C.43)

The prefactor C from (C.41) is evaluated as

C = exp

[
−1

2

(
EQi +DQΦ

−1(ϑ)

D+

)2
]
. (C.44)

The result is the same exponential factor as in I0i from Eq. (C.36), which will later be related to the
asymptotic progress coefficient e1,0ϑ .

Large dimensionality approximation Now the large dimensionality approximation can be applied to
further simplify m, s, and C. This will also simplify the expected value calculation of the involved trigono-
metric terms in (C.39) considerably.

The variance quantitiesD2
Q, D

2
i , andD2

+ differ only by a single component, the i-th component. Assuming
that the contribution of the i-th component is not dominating the overall variance of the remaining N − 1
components, its contribution is negligible in the limit N →∞. Using Eqs. (9), (15), and (C.34) for D2

Q, D
2
i ,

and D2
+, respectively, therefore yields asymptotically

D2
Q =

N∑
i=1

Var [Qi] ≃
∑
j ̸=i

Var [Qj ] ≃
∑
j ̸=i

Var [Qj ] + (kiσ)
2. (C.45)

Hence, the following asymptotic equalities hold

D2
i ≃ D2

Q, and D2
+ ≃ D2

Q. (C.46)

Using relation (C.46), m from Eq. (C.42) and s from Eq. (C.43) are evaluated as

m ≃
(
EQi +DQΦ

−1(ϑ)
)
kiσ

2

D2
Q

=

(
EQi

D2
Q

+
Φ−1(ϑ)

DQ

)
kiσ

2 (C.47)

s ≃ DQ

DQ
σ = σ. (C.48)

Since Eq. (C.47) contains DQ and D2
Q in its denominator (where a sum over N terms is taken), it can

further be simplified for large N . From the variance result in Appendix (A.7) we observe that D2
Q scales

with the number of components N , such that DQ scales with
√
N . Within (·) of Eq. (C.47), the first term

EQi
= EQ −Ei = E [Qi], cf. Eq. (8), is just the quality gain expectation of a single component. The second
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term Φ−1(ϑ) diverges only for ϑ = 0 and ϑ = 1, which are not useful truncation ratios. Both terms are
suppressed by N and

√
N , respectively, and the infinite dimension limit can be evaluated as

lim
N→∞

m(N) = lim
N→∞

(
EQi

D2
Q

+
Φ−1(ϑ)

DQ

)
kiσ

2 = 0, (C.49)

which is valid for any finite σ. The approximations (C.46) and (C.49) also change the exponential factor
(C.44) as follows

C = exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
≃ exp

[
−1

2
Φ−1(ϑ)2

]
. (C.50)

The obtained results for N →∞ are summarized as

s ≃ σ, and m ≃ 0, (C.51)

which changes the density of xi ∼ N
(
m, s2

)
to the density xi ∼ N

(
0, σ2

)
in Eq. (C.39). The expected value

of terms in xih(xi) containing odd powers of xi is therefore zero, such that only one term being a function
of xi sin (αxi) needs to be evaluated. Collecting all approximation results and inserting for xih(xi) the term
−A sin (αyi)xi sin (αxi)/DQ (with Di ≃ DQ), integral (C.39) is therefore evaluated as

I1i =
exp

[
− 1

2Φ
−1(ϑ)2

]
A sin (αyi)

2πϑσDQ

∫ ∞

−∞
xi sin (αxi)e

− 1
2 (

xi
σ )

2

dxi (C.52)

=
exp

[
− 1

2Φ
−1(ϑ)2

]
√
2πϑ

A sin (αyi)

DQ

1√
2πσ

∫ ∞

−∞
xi sin (αxi)e

− 1
2 (

xi
σ )

2

dxi (C.53)

= cϑ
A sin (αyi)

DQ
E [xi sin (αxi)] (C.54)

= cϑ
A sin (αyi)

DQ
ασ2e−

1
2 (ασ)

2

(C.55)

= cϑ
diσ

2

DQ
e−

1
2 (ασ)

2

. (C.56)

using (C.50) and (C.51) in the first line, rearranging the terms in the second line, applying definition (32)
for e1,0ϑ = cϑ and the definition of the expected value of the term xi sin (αxi) in the third line, evaluating the
expectation using (A.5) in the fourth line, and finally recognizing the derivative di = αA sin (αyi) from (23)
in the last line.

Analogously, the large dimensionality approximation can be applied to I0i from (C.36) with e1,0ϑ = cϑ
giving

I0i =
1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
kiσ

2

D+
≃ cϑ

kiσ
2

DQ
. (C.57)

Collecting results (C.57) and (C.56), and inserting them back into progress rate (C.25), the final result for
the first order progress rate is obtained with derivative components ki = 2yi and di = αA sin (αyi) in the
limits N →∞ and (µ, λ)→∞ with constant ϑ = µ/λ as

φi = I0i + I1i

= cϑ
σ2

DQ

(
ki + e−

1
2 (ασ)

2

di

)
= cϑ

σ2

DQ

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)
.

(C.58)

C.2 Second Order Progress Rate

C.2.1 Expectation of E(2)

Starting from (43) and applying the order statistic density from (27) one has

1

µ2
E(2) =

1

µ2

µ∑
m=1

E
[
x2
m;λ

]
=

1

µ2

µ∑
m=1

∫ ∞

−∞
x2
i pm;λ(xi) dxi . (C.59)

Both (27) and (C.59) have the same structure after inserting the order statistic density pm;λ(xi) from (30)
and the integration over the squared mutation component is performed as the last step. The results of
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Appendix C.1 can therefore be applied to Eq. (C.59). Starting from Eq. (C.1) one arrives at intermediate
result (C.12) with squared mutation component, such that (C.59) yields

1

µ2
E(2) =

1

µ

[
1

µ

µ∑
m=1

∫ ∞

−∞
x2
i pm;λ(xi|y) dxi

]

=
1

µ

[
λ

µ

∫ xi=∞

xi=−∞
x2
i px(xi)

1

B(λ− µ, µ)

∫ t=1

t=0

tλ−µ−1(1− t)µ−1PQ(P
−1
Q (1− t)|xi) dtdxi

]
.

(C.60)

Solving the t-integration in Eq. (C.60), the large population identity (B.1) is applied with a = 1 and the
integrand PQ(P

−1
Q (1− t)|xi) evaluated at t̂ = 1− ϑ. This yields

1

µ2
E(2) ≃ 1

µ

1

ϑ

∫ ∞

−∞
x2
i px(xi)PQ(P

−1
Q (ϑ)|xi) dxi , (C.61)

which is analogous to (C.15). Inserting the normal approximation of the quality gain (C.16) into (C.61)
leads again to an analytically not solvable integration due to non-linear terms in xi within Φ(·). Applying
the expansion (C.23) of the normal CDF and using 0-th and first order terms yields

1

µ2
E(2) =

1

µ

[
1

ϑ

∫ ∞

−∞
x2
i px(xi)Φ(g(xi)) dxi +

1√
2πϑ

∫ ∞

−∞
x2
i px(xi)h(xi)e

− 1
2 g(xi)

2

dxi

]
=: I0i + I1i ,

(C.62)

with the two integrals abbreviated as I0i and I1i , which are evaluated now.
Starting with the first integration I0i , it is rewritten analogously to (C.29) using g(xi) from (C.20) and

the substitution z = xi/σ giving

I0i =
1

µϑ

∫ ∞

−∞
x2
i px(xi)Φ(g(xi)) dxi =

σ2

√
2πµϑ

∫ ∞

−∞
z2e−

1
2 z

2

Φ

(
−kiσ

Di
z +

EQi
+DQΦ

−1(ϑ)

Di

)
dz . (C.63)

At this point the result of integral identity (D.1) is needed to solve (C.63). Defining the coefficients

a = −kiσ

Di
, b =

EQi
+DQΦ

−1(ϑ)

Di
, (C.64)

expressions needed for (D.1) are evaluated as

(1 + a2)1/2 =

√
D2

i

D2
i

+

(
kiσ

Di

)2

=

√
D2

+

D2
i

=
D+

Di

a2b

(1 + a2)3/2
=

(kiσ)
2

D2
+

EQi
+DQΦ

−1(ϑ)

D+

e
− 1

2
b2

1+a2 = exp

[
−1

2

(
EQi +DQΦ

−1(ϑ)

D+

)2
]
,

(C.65)

using D2
+ = D2

i + (kiσ)
2 from (C.34). Applying the large dimensionality approximation from (C.46) and

limit (C.49), the expression (C.65) simplifies as

(1 + a2)1/2 ≃ 1

a2b

(1 + a2)3/2
≃ (kiσ)

2

D2
Q

Φ−1(ϑ)

e
− 1

2
b2

1+a2 ≃ exp

[
−1

2

[
Φ−1(ϑ)

]2]
.

(C.66)

Now integral identity (D.1) can be evaluated using (C.66) and yields the result for integral (C.63)

I0i ≃
σ2

µϑ

[
Φ
(
Φ−1(ϑ)

)
− 1√

2π

(kiσ)
2

D2
Q

Φ−1(ϑ) exp

[
−1

2

[
Φ−1(ϑ)

]2]]

=
σ2

µ

[
1− Φ−1(ϑ)

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]
(kiσ)

2

D2
Q

]
.

(C.67)
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Given (C.67), the asymptotic generalized progress coefficient definition e1,1ϑ from (B.30) can be applied with
parameters a = 1 and b = 1

e1,1ϑ =
[
−Φ−1(ϑ)

] [e− 1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]
. (C.68)

This leads to following result for the first integral I0i

I0i =
σ2

µ

[
1 + e1,1ϑ

(kiσ)
2

D2
Q

]
. (C.69)

Second integration I1i from (C.62) is defined as

I1i =
1√
2πµϑ

∫ ∞

−∞
x2
i px(xi)h(xi)e

− 1
2 g(xi)

2

dxi (C.70)

with g(xi) and h(xi) defined in (C.20) and (C.21), respectively. Quadratic completion for the Gaussians of
(C.70) was already evaluated in Eq. (C.39) with parameters m, s, and C given in (C.42), (C.43), and (C.44),
respectively. Again, the large dimensionality approximation is applied to simplify the lengthy expressions
and the results of (C.50) and (C.51) are applicable with

m ≃ 0, s ≃ σ, C ≃ exp

[
−1

2

[
Φ−1(ϑ)

]2]
. (C.71)

Therefore integral (C.70) with quadratic completion (C.39) assuming large N yields

I1i =
1

µ

C

2πϑσ

∫ ∞

−∞
x2
ih(xi)e

− 1
2 (

xi−m

s )
2

dxi

≃ 1

µ

e−
1
2 [Φ

−1(ϑ)]
2

√
2πϑ

1√
2πσ

∫ ∞

−∞
x2
ih(xi)e

− 1
2

x2
i

σ2 dxi .

(C.72)

Given (C.72), one can compare coefficients with the asymptotic generalized progress coefficient from (B.30)
and identify following expression using a = 1 and b = 0

e−
1
2 [Φ

−1(ϑ)]
2

√
2πϑ

= e1,0ϑ = cϑ, (C.73)

Additionally in (C.72), the definition of the expected value of x2
ih(xi) w.r.t. xi ∼ N (0, σ2) can be applied.

Inserting h(xi) from (C.40) with Di ≃ DQ, expression (C.72) is reformulated

I1i = − cϑ
µDQ

(
E
[
x4
i

]
+A sin (αyi) E

[
x2
i sin (αxi)

]
+A cos (αyi) E

[
x2
i

]
−A cos (αyi) E

[
x2
i cos (αxi)

])
.

(C.74)

One has E
[
x4
i

]
= 3σ4 and E

[
x2
i

]
= σ2. Using results from Appendix A the remaining expected values read

E
[
x2
i sin (αxi)

]
= 0

E
[
x2
i cos (αxi)

]
= (σ2 − α2σ4)e−

1
2 (ασ)

2

.
(C.75)

Therefore one gets

I1i = − cϑσ
2

µDQ

[
3σ2 +A cos (αyi)

(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]

. (C.76)

Collecting the results (C.69) and (C.76) with ki = 2yi and inserting them back into (C.62) the expectation
value reads

1

µ2
E(2) =

σ2

µ

{
1 + e1,1ϑ

(2yi)
2σ2

D2
Q

− cϑ
DQ

[
3σ2

+A cos (αyi)
(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]}

.

(C.77)
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C.2.2 Expectation of E(1,1)

The expectation value to be evaluated is given in Eq. (44) by

1

µ2
E(1,1) =

1

µ2

µ∑
l=2

l−1∑
k=1

E [xk;λxl;λ] . (C.78)

The derivation includes the following steps. First, a joint order statistic density has to be derived for the
expected value. Second, the double sum of (C.78) is converted into a single integration using a known
identity. Then, the resulting five-fold integration is restructured by exchanging bounds and successively
solved. A remarkably simple intermediate result will be obtained in Eq. (C.105) within the limit of µ→∞.
Finally, the previously derived φi-result can be applied.

The double sum in (C.78) includes mixed contributions from the k-th and l-th best elements of the i-th
mutation component. To avoid confusion with the summation indices k and l, the integration variables
associated with k-th element will be denoted as x1 (mutation) and q1 (quality), while the l-th element is
integrated over x2 and q2. The ordering 1 ≤ k < l ≤ λ is assumed with k yielding a smaller (better) quality
value q1 < q2. Calculating (C.78) the joint probability density pk,l;λ(x1, x2) is needed, such that the expected
value can be formulated as

1

µ2
E(1,1) =

1

µ2

µ∑
l=2

l−1∑
k=1

∫ ∞

−∞

∫ ∞

−∞
x1x2pk,l;λ(x1, x2) dx2 dx1 . (C.79)

The mutation densities are independent and denoted by px(x1) and px(x2), respectively. Given mutation
components x1 and x2, the conditional density obtaining the quality values q1 and q2 is pQ(q1|x1) and
pQ(q2|x2), respectively. Given q1 and q2, one has k − 1 values smaller than q1, l − k − 1 values between q1
and q2 and λ− l values larger than q2 with probabilities

Pr{Q ≤ q1}k−1
= PQ(q1)

k−1

Pr{q1 ≤ Q ≤ q2}l−k−1
= [PQ(q2)− PQ(q1)]

l−k−1

Pr{Q > q2}λ−l
= [1− PQ(q2)]

λ−l,

(C.80)

and PQ(q) denoting the quality gain CDF. The joint probability density can therefore be written as

pk,l;λ(x1, x2) = px(x1)px(x2)

∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

× λ!
PQ(q1)

k−1[PQ(q2)− PQ(q1)]
l−k−1[1− PQ(q2)]

λ−l

(k − 1)!(l − k − 1)!(λ− l)!
dq2 dq1 ,

(C.81)

with integration ranges qmin ≤ q1 < ∞ and q1 < q2 < ∞ as k < l. Lower bound qmin denotes the smallest
possible quality value, which is resolved later. The factorials exclude the irrelevant combinations among the
three groups given in (C.80). Plugging (C.81) into (C.79) and moving the sum into the integration one gets

1

µ2
E(1,1) =

λ!

µ2

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

×
µ∑

l=2

l−1∑
k=1

PQ(q1)
k−1[PQ(q2)− PQ(q1)]

l−k−1[1− PQ(q2)]
λ−l

(k − 1)!(l − k − 1)!(λ− l)!
dq2 dq1 dx2 dx1 .

(C.82)

The double sum of (C.82) over the PQ-values will be exchanged by an integration. This can be done using
an identity from [2, p. 113]. Setting ν = 2 and identifying the indices as i1 = l and i2 = k, the evaluated
identity yields

µ∑
l=2

l−1∑
k=1

Qλ−l
1 [Q2 −Q1]

l−k−1[1−Q2]
k−1

(λ− l)!(l − k − 1)!(k − 1)!
=

1

(λ− µ− 1)!(µ− 2)!

∫ Q1

0

tλ−µ−1(1− t)µ−2 dt , (C.83)

for real values Q1 and Q2, with integers ν ≤ µ < λ. Now the substitution Q1 = 1−PQ(q2), Q2 = 1−PQ(q1)
can be performed and the double sum of (C.82) can be recognized by comparing with (C.83). Applying the
identity therefore yields

µ∑
l=2

l−1∑
k=1

[1− PQ(q2)]
λ−l[PQ(q2)− PQ(q1)]

l−k−1[PQ(q1)]
k−1

(λ− l)!(l − k − 1)!(k − 1)!

=
1

(λ− µ− 1)!(µ− 2)!

∫ 1−PQ(q2)

0

tλ−µ−1(1− t)µ−2 dt .

(C.84)
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Hence, Eq. (C.82) is evaluated as

1

µ2
E(1,1) =

λ!

µ2

1

(λ− µ− 1)!(µ− 2)!

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×
∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

∫ 1−PQ(q2)

0

tλ−µ−1(1− t)µ−2 dtdq2 dq1 dx2 dx1 .

(C.85)

The prefactor of Eq. (C.85) can be evaluated as

λ!

µ2

1

(λ− µ− 1)!(µ− 2)!
=

λ(λ− 1)!(µ− 1)

µ2(λ− µ− 1)!(µ− 1)!
=

λ

µ

µ− 1

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
1

ϑ

µ− 1

µ

1

B(λ− µ, µ)
,

(C.86)

which will be useful during subsequent calculations.
Now the integration order will be exchanged twice in (C.85). First the order between t and q2 is exchanged.

Then the order between t and q1 is exchanged, such that both q-integrations are performed before the t-
integration enabling the application of the large population identity of Appendix B. Starting with integration
bounds

q1 ≤ q2 <∞, 0 ≤ t ≤ 1− PQ(q2), (C.87)

and using the inverse function P−1
Q with q2 = P−1

Q (1− t) the exchanged bounds between t and q2 are given
by

0 ≤ t ≤ 1− PQ(q1), q1 ≤ q2 ≤ P−1
Q (1− t). (C.88)

Using factor (C.86) and exchanged bounds (C.88), the expression (C.85) is reformulated as

1

µ2
E(1,1) =

1

ϑ

µ− 1

µ

1

B(λ− µ, µ)

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×
∫ ∞

qmin

pQ(q1|x1)

∫ 1−PQ(q1)

0

tλ−µ−1(1− t)µ−2

∫ P−1
Q (1−t)

q1

pQ(q2|x2) dq2 dtdq1 dx2 dx1 .

(C.89)

Now the integration order between t and q1 is exchanged starting from

qmin ≤ q1 <∞, 0 ≤ t ≤ 1− PQ(q1), (C.90)

yielding exchanged bounds

0 ≤ t ≤ 1, qmin ≤ q1 ≤ P−1
Q (1− t). (C.91)

Therefore, one arrives at the following integral to be solved (beta function has been moved inside as it will
be evaluated during the t-integration)

1

µ2
E(1,1) =

1

ϑ

µ− 1

µ

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×

(
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2

×

[∫ P−1
Q (1−t)

qmin

pQ(q1|x1)

{∫ P−1
Q (1−t)

q1

pQ(q2|x2) dq2

}
dq1

]
dt

)
dx2 dx1 .

(C.92)

Now the integrals in (C.92) will be successively solved. Starting with integral {·} over q2 one has∫ P−1
Q (1−t)

q1

pQ(q2|x2) dq2 =
[
PQ(q2|x2)

]P−1
Q (1−t)

q1
= PQ(P

−1
Q (1− t)|x2)− PQ(q1|x2). (C.93)

The q1-integration within [·] using (C.93) yields∫ P−1
Q (1−t)

qmin

pQ(q1|x1)
(
PQ(P

−1
Q (1− t)|x2)− PQ(q1|x2)

)
dq1 (C.94)

= PQ(P
−1
Q (1− t)|x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1) dq1 (C.95)

−
∫ P−1

Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 (C.96)
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First integral (C.95) is easily evaluated, as the conditional density is integrated over its support giving

PQ(P
−1
Q (1− t)|x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1) dq1 = PQ(P
−1
Q (1− t)|x2)

[
PQ(q1|x1)

]P−1
Q (1−t)

qmin

= PQ(P
−1
Q (1− t)|x2)PQ(P

−1
Q (1− t)|x1)

(C.97)

with PQ(qmin|x1) = Pr{Q ≤ qmin|x1} = 0. Note that the resulting factors are equal up to the conditional
variables x1 and x2.

The second integral (C.96) will be simplified using integration by parts. Thereafter, one can exchange
the x1 and x2 variables to find a significantly simpler expression for the original integral. Integration by
parts yields∫ P−1

Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1

= PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2)−

∫ P−1
Q (1−t)

qmin

PQ(q1|x1)pQ(q1|x2) dq1 .

(C.98)

Equation (C.98) inserted into (C.92) has to be integrated over x1 and x2, of which the order can be exchanged.
For the following step the t-integration and the prefactors of (C.92) have no influence, such that they are
dropped for better readability. Integrating both sides of (C.98) yields∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 dx2 dx1

=

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1

−
∫ ∞

−∞
x2px(x2)

∫ ∞

−∞
x1px(x1)

∫ P−1
Q (1−t)

qmin

PQ(q1|x2)pQ(q1|x1) dq1 dx1 dx2 ,

(C.99)

where in the last line the integration order of x1 and x2 was exchanged, such that an expression equivalent to
the left-hand side of (C.99) is obtained with given arguments for pQ and PQ. Collecting the terms, Eq. (C.99)
can be formulated as∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 dx2 dx1

=
1

2

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1 .

(C.100)

Noting that the right-hand side of result (C.100) is one half of the first integration result (C.97) after
x-integration and noting the minus sign in (C.96), one gets for (C.94) the expression∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)
(
PQ(P

−1
Q (1− t)|x2)− PQ(q1|x2)

)
dq1 dx2 dx1

=

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

(
1− 1

2

)
PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1 .

(C.101)

Including prefactors and integration over t again, the result within [·] of (C.92) simplifies significantly giving

1

µ2
E(1,1) =

1

2

1

ϑ

µ− 1

µ

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×

(
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dt

)
dx2 dx1 .

(C.102)

For the integral in (·) of Eq. (C.102) the large population identity of (B.1) can be applied for (µ, λ) → ∞
with constant ϑ. Identifying a = 2 and evaluating PQ(P

−1
Q (1 − t)|x1)PQ(P

−1
Q (1 − t)|x2) at the integrand’s

maximum location t̂ = 1− ϑ yields

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dt

≃ 1

ϑ
PQ(P

−1
Q (ϑ)|x1)PQ(P

−1
Q (ϑ)|x2).

(C.103)
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Using asymptotic equality (C.103) and noting that the terms containing x1 and x2 can be separated accord-
ingly, Eq. (C.102) becomes

1

µ2
E(1,1) ≃ 1

2

1

ϑ2

µ− 1

µ

∫ ∞

−∞
x1px(x1)PQ(P

−1
Q (ϑ)|x1) dx1

∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (ϑ)|x2) dx2

=
1

2

µ− 1

µ

[
1

ϑ

∫ ∞

−∞
xipx(xi)PQ(P

−1
Q (ϑ)|xi) dxi

]2 (C.104)

where the integration variable is now denoted as xi referring to the i-th mutation component. Additionally,
the factor 1/ϑ was moved into [·].

Remarkably, the expression within [·] can now be identified as the (negative) first order progress rate −φi

within the large population limit derived in Eq. (C.15). The result of (C.104) can therefore be expressed as

1

µ2
E(1,1) ≃ 1

2

µ− 1

µ
φ2
i . (C.105)

Now the result for φi from (C.58) can be inserted into (C.105) giving

1

µ2
E(1,1) ≃ 1

2

µ− 1

µ
φ2
i

=
1

2

µ− 1

µ

(
cϑ

σ2

DQ

(
ki + e−

1
2 (ασ)

2

di

))2

=
1

2

µ− 1

µ
e2,0

σ4

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2

,

(C.106)

using ki = 2yi and di = αA sin (αyi) to obtain the last line. Additionally, squaring the asymptotic progress
coefficient yields c2ϑ = e2,0ϑ using (B.30) according to

c2ϑ =
(
e1,0ϑ

)2
=

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]2
= e2,0ϑ . (C.107)

The final result for the expected value of E(1,1) (for large populations and dimensionality) is

1

µ2
E(1,1) =

1

2

σ2

µ
(µ− 1)e2,0ϑ

σ2

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2

. (C.108)

C.2.3 Investigation of Loss Terms

The main goal is to further simplify φII
i -result from Eq. (47) by investigating the loss term within {·} in the

limit N →∞. The terms are abbreviated according to their respective factors as e1,1ϑ , cϑ/DQ and e2,0ϑ . As
the φII

i -approximation shall be valid for constant normalized mutations σ∗ given some residual distance R,
the transformed mutation is given by

σ =
σ∗R

N
, (C.109)

and will be expanded within the exponential functions of (47) for N → ∞. Within this limit attention
must be paid considering the relation R(N), as the (interesting) R-range with high density of local minima
increases as well. This can also be observed experimentally in Fig. 9 as the transition region shifts to larger
R. Therefore the expansion orders will be displayed as functions of R/N for the following derivations. To
the end, the two cases R = const. and R = O(

√
N) will be investigated. The scaling R = O(

√
N) was

already motivated in Sec. 3 presenting the experimental setup.
First the variance (21) is analyzed. The exponentials are expanded using

e−c(ασ∗ R
N )

2

= 1− c

(
ασ∗ R

N

)2

+O

(
R4

N4

)
, (C.110)

with c ∈ {1/2, 1}. Using (C.109) in (21) the variance as a function of σ∗ yields

D2
Q =

N∑
i=1

2

(
σ∗ R

N

)4

+ 4y2i

(
σ∗ R

N

)2

+
A2

2

(
1− e−(ασ

∗ R
N )

2)(
1− cos (2αyi) e

−(ασ∗ R
N )

2)
+ 2αA

(
σ∗ R

N

)2

e−
1
2 (ασ

∗ R
N )

2

(
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)
.

(C.111)
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Applying expansion (C.110) and collecting higher order terms one gets

D2
Q =

N∑
i=1

4y2i

(
σ∗ R

N

)2

+O

(
R4

N4

)

+
A2

2

(
1−

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])(
1− cos (2αyi)

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

+ 2αA

(
σ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)](
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)
.

(C.112)

The summand with prefactor A2/2 of (C.112) yields

A2

2

(
1−

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])(
1− cos (2αyi)

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

=
A2

2

((
ασ∗ R

N

)2

+O

(
R4

N4

))(
1− cos (2αyi) + cos (2αyi)

(
ασ∗ R

N

)2

+O

(
R4

N4

))

=
A2

2

(
ασ∗ R

N

)2

(1− cos (2αyi)) +O

(
R4

N4

)
=

(
Aασ∗ R

N

)2

sin2(αyi) +O

(
R4

N4

)
.

(C.113)

For the last line of (C.113) it was used that 1− cos 2x = 2 sin2 x. The last summand of (C.112) yields

2αA

(
σ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)](
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)

= 2αA

(
σ∗ R

N

)2

2yi sin (αyi) +O

(
R4

N4

)
.

(C.114)

Collecting results (C.113) and (C.114) the variance simplifies

D2
Q =

N∑
i=1

4y2i

(
σ∗ R

N

)2

+ 2αA

(
σ∗ R

N

)2

2yi sin (αyi) +

(
σ∗ R

N

)2

(αA sin(αyi))
2
+O

(
R4

N4

)

=

(
σ∗ R

N

)2 N∑
i=1

(2yi + αA sin (αyi))
2
+

N∑
i=1

O

(
R4

N4

)

=

(
σ∗ R

N

)2 N∑
i=1

(f ′
i)

2
+O

(
R4

N3

)
.

(C.115)

using definition (23) for the derivative f ′
i . Given (C.115), the scaling of

∑N
i=1 (f

′
i)

2
w.r.t. N and R can

be deduced applying the triangle inequality. Considering the positional vector y and definition sin (αy) :=
sin (αy1)e1 + sin (αy2)e2 + ...+ sin (αyN )eN with ei being the i-th unit vector, one has

N∑
i=1

(f ′
i)

2
= ∥2y + αA sin (αy)∥2. (C.116)

Using inequality ∥a+ b∥ ≤ ∥a∥ + ∥b∥ and therefore ∥a+ b∥2 ≤ (∥a∥ + ∥b∥)2, and using ∥y∥2 = R2, an
upper bound for expression (C.116) can be given as

∥2y + αA sin (αy)∥2 ≤ 4∥y∥2 + 4αA∥y∥∥sin (αy)∥+ (αA)2∥sin (αy)∥2

= 4R2 + 4αAR

√√√√ N∑
i=1

sin2 (αyi) + (αA)2
N∑
i=1

sin2 (αyi)

≤ 4R2 + 4αAR
√
N + (αA)2N = (2R+ αA

√
N)2.

(C.117)

From (C.116) and (C.117) one can deduce the (upper bound) scaling
∑N

i=1 (f
′
i)

2
= O (N), which is valid for

both constant R and R = O(
√
N). Applying the scaling to the result of (C.115), one obtains the scaling
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relation of D2
Q for large N by neglecting higher orders as

D2
Q ≃

(σ∗R)2

N
. (C.118)

Having obtained the scaling of D2
Q, the terms within {·} of (47) are investigated. The term with e1,1ϑ is

easily evaluated. Inserting relation (C.118) for D2
Q and σ = σ∗R/N one gets

e1,1ϑ

σ2

D2
Q

(2yi)
2 = e1,1ϑ

(
σ∗ R

N

)2
(σ∗R)2

N

(2yi)
2 = e1,1ϑ

(2yi)
2

N
= O

(
1

N

)
. (C.119)

The second term with cϑ/DQ is evaluated using normalization (C.109) and expansion (C.110) as

cϑ
DQ

{
3

(
σ∗ R

N

)2

+A cos (αyi)

(
1−

[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)]

+

(
ασ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)])}

=
cϑ
DQ

{
3

(
σ∗ R

N

)2

+A cos (αyi)

(
1

2

(
ασ∗ R

N

)2

+

(
ασ∗ R

N

)2

+O

(
R4

N4

))}

= cϑ

(
σ∗ R

N

)2
DQ

{
3 +

3

2
α2A cos (αyi) +O

(
R2

N2

)}
.

(C.120)

Inserting DQ ≃ σ∗R/
√
N from (C.118) into (C.120) yields

cϑ

(
σ∗ R

N

)2
σ∗R√

N

{
3 +

3

2
α2A cos (αyi) +O

(
R2

N2

)}

= O

(
R

N3/2

)
=

{
O
(

1
N3/2

)
if R = const.

O
(

1
N

)
if R = O(

√
N).

(C.121)

The last term containing e2,0ϑ yields after expansion

(µ− 1)e2,0ϑ

(
σ∗ R

N

)2
D2

Q

(
2yi + αA sin (αyi)

[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)])2

= (µ− 1)e2,0ϑ

(
σ∗ R

N

)2
D2

Q

(
2yi + αA sin (αyi) +O

(
R2

N2

))2

.

(C.122)

Using scaling (C.118) for D2
Q and writing µ(N) to denote the (unknown) population dependency on N one

gets

(µ− 1)e2,0ϑ

(
σ∗ R

N

)2
(σ∗R)2

N

(
2yi + αA sin (αyi) +O

(
R2

N2

))2

= µ(N)O

(
1

N

)
=

{
O
(

1
N

)
if µ(N) = const.

O
(

µ(N)
N

)
else.

(C.123)

Finally, inserting the scaling results for the three terms (C.119), (C.121), and (C.123) back into {·} of
the quadratic progress rate (47), one gets for large dimensionality N → ∞ and residual distance scaling
R = O(

√
N) the relation

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)
− σ2

µ

{
1 +O

(
1

N

)
+O

(
µ(N)

N

)}
. (C.124)

Provided that the population size µ = o (N), i.e. increasing sub-linearily with N , all terms except “1” can be
neglected for N →∞. Recalling that (µ, λ)→∞ with constant ϑ = µ/λ and the aforementioned conditions,
the final result yields

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)
− σ2

µ
. (C.125)
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Appendix D Identities

Identity. For real parameters a and b it holds

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

Φ(at+ b) dt = Φ

(
b

(1 + a2)1/2

)
− 1√

2π

a2b

(1 + a2)3/2
e
− 1

2
b2

1+a2 . (D.1)

Proof. It can be proven starting from the known identity [3, Eq. (A.9)]

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

e−
1
2 (at+b)2 dt =

1 + a2 + a2b2

(1 + a2)5/2
e
− 1

2
b2

1+a2 . (D.2)

Both sides can be integrated with respect to b, such that

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

∫ b′

−∞
e−

1
2 (at+b)2 dbdt =

∫ b′

−∞

[
1 + a2

(1 + a2)5/2
+

a2b2

(1 + a2)5/2

]
e
− 1

2
b2

1+a2 db (D.3)

Integration of left-hand side yields simply

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

∫ b′

−∞
e−

1
2 (at+b)2 dbdt =

∫ ∞

−∞
t2e−

1
2 t

2

Φ(at+ b′) dt , (D.4)

which is the left side of (D.1) by renaming b = b′, up to constant 1/
√
2π. Considering the right-hand side

the first term yields

1

(1 + a2)3/2

∫ b′

−∞
e
− 1

2
b2

1+a2 db =

√
2π

1 + a2
Φ

(
b′

(1 + a2)1/2

)
. (D.5)

For the second term on the right-hand side following integral is used∫
xe−

1
2

x2

s2 dx =

∫
x
s2

x
e−ydy = −s2e−y = −s2e−

1
2

x2

s2 , (D.6)

using the substitution y = x2

2s2 with dx = s2 dy /x. The second term of right-hand side of (D.3) is partially
integrated using (D.6), such that

a2

(1 + a2)5/2

∫ b′

−∞
b

[
be

− 1
2

b2

1+a2

]
db

=
a2

(1 + a2)5/2

{[
−b(1 + a2)e

− 1
2

b2

1+a2

]b′
−∞

+

∫ b′

−∞
(1 + a2)e

− 1
2

b2

1+a2 db

}

= − a2b′

(1 + a2)3/2
e
− 1

2
b′2

1+a2 + a2
√
2π

1 + a2
Φ

(
b′

(1 + a2)1/2

)
.

(D.7)

Adding results (D.5) and (D.7) for the right-hand side, renaming b = b′ and dividing by
√
2π yields the

result (D.1). The results can be verified by differentiating (D.1) with respect to b and showing that (D.2) is
obtained again. □
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