
Object Detection of PLC Modules Using
CAD-Based Synthetic Data Improved With
GANs

Master Thesis
to obtain the academic degree

Master of Science in Engineering (MSc)

Vorarlberg University of Applied Sciences
Computer Science

Supervised by
DI Dr. techn. Sebastian Hegenbart

Submitted by
Lukas Lins, BSc

Dornbirn, July 2023

Abstract

Programmable Logic Controller (PLC) modules are used in industrial settings
to control and monitor various manufacturing processes. Detecting these mod-
ules can be helpful during installation and maintenance. However, the lim-
ited availability of real annotated images to train an object detector poses a
challenge. This thesis aims to research object detection of these modules on
real images by using synthetic data during training. The synthetic images are
generated from CAD models and improved with Generative Adversarial Net-
works (GANs).

The CAD models are rendered in different scenes, and perfectly annotated
images are automatically saved. A technique called domain randomization
is applied during rendering. It renders the modules in different poses with
constantly changing backgrounds. As the CAD models do not visually resemble
the real modules, it is necessary to improve the synthetic images. This project
researches StarGAN and CycleGAN for the task of image-to-image translation.
A GAN is trained with real and synthetic images and can then translate between
these domains.

YOLOv8 and Faster R-CNN are tested for object detection. The best mean
Average Precision (mAP) is achieved when training with a synthetic dataset
where 50% of the images were improved with StarGAN. When trained with
YOLOv8 and evaluated on a real dataset, it achieves a mAP of 84.4%. Overall,
the accuracy depends on the quality of the CAD models. Using a GAN improves
the detection rate for all modules, but especially for unrealistic CAD models.

2

Kurzreferat

PLC Module werden in der Industrie zur Steuerung und Überwachung ver-
schiedener Maschinen und Anlagen eingesetzt. Während der Installation und
Wartung kann eine Objekterkennung dieser Module sehr hilfreich sein. Dies
wird jedoch erschwert, da für deren Training kaum reale Bilder zur Verfügung
stehen. Diese Masterarbeit untersucht daher das Trainieren einer Objekterken-
nung anhand von synthetischen Daten. Mit CAD Modellen werden synthetis-
che Bilder generiert, die dann anschließend mit GANs (Generative Adversarial
Networks) verbessert werden.

Die CAD Modelle werden in verschiedenen Szenen gerendert und als gela-
belte Bilder gespeichert. Während dem Rendering wird Domain Randomiza-
tion angewendet. Mit dieser Methode werden die Modelle in verschiedenen
Posen und unterschiedlichen Hintergründen gerendert. Weil die gerenderten
Bilder aber weiterhin nicht realistisch sind, werden sie anschließend mit GANs
verbessert. Dazu werden StarGAN und CycleGAN verwendet. Ein GAN wird
mit realen und synthetischen Bildern trainiert und kann anschließend Bilder
zwischen diesen Domänen umwandeln.

Für die Objekterkennung werden YOLOv8 und Faster R-CNN untersucht.
Die beste Genauigkeit wird beim Training mit einem synthetischen Datensatz
erreicht, der zu 50% mit StarGAN verbessert wurde. YOLOv8 erreicht dort bei
der Evaluierung mit realen Bildern einen mAP (mean Average Precision) von
84.4%. Generell ist die Genauigkeit bei der Objekterkennung von der Qual-
ität des CAD Modells abhängig. Die Verwendung eines GANs verbessert die
Genauigkeit bei allen Modulen, besonders aber bei denen mit unrealistischen
CAD Modellen.

3

Contents

1 Introduction 6
1.1 Problem Statement . 6
1.2 Aim of the Work . 7
1.3 State of the Art . 8

1.3.1 GANs . 8
1.3.2 Object Detectors . 10

2 Experiments 13
2.1 Initial Data . 13
2.2 Synthetic Image Generation . 16

2.2.1 Rendering Engine . 16
2.2.2 CAD Model Conversion 18
2.2.3 Image Generation . 19

2.3 Image Enhancement With GANs 24
2.3.1 Experiments . 25
2.3.2 Implementation . 31

2.4 Object Detection . 37
2.4.1 YOLO . 37
2.4.2 Faster R-CNN . 38
2.4.3 Real Validation Dataset 39

3 Results 41
3.1 Overview of Results . 41
3.2 GANs . 44
3.3 Object Detectors . 46

4 Summary and Outlook 48
4.1 Summary . 48
4.2 Outlook . 50

4

Bibliography 51

List of Acronyms 55

List of Figures 56

List of Tables 57

5

1 Introduction

Programmable Logic Controller (PLC) modules are part of a PLC system
specifically designed to control and monitor machinery and processes in in-
dustrial settings. They consist of different modules put onto the wall in a rack
or chassis. Object detection can be very useful for detecting these modules
during installation and troubleshooting.

However, this task is difficult as the modules are used in many application
areas. For example, depending on the application, the modules are mounted
onto different surfaces with different cables plugged into them. These cables
also cover part of the module, making identifying them difficult.

Object detectors require thousands of images during training. Creating and
labeling real images for all different scenarios is time-consuming. But for PLC
modules, Computer-Aided Design (CAD) models are always available as they
are used during development and assembly. This thesis aims to research object
detection based on these CAD models without the need for real labeled images.

1.1 Problem Statement

Computer vision projects require vast amounts of training data. Creating these
datasets is an expensive and time-consuming task. Images must be collected
and labeled by human annotators. It also brings various challenges related to a
possible bias in the dataset. For example, creating variations that only rarely
occur in the real world can be very difficult. In addition, datasets are often
created for a specific domain and require new data when transferred to another
domain.

An alternative to a real dataset is training based on synthetic data. A virtual
environment is used to create images in different scenarios. These scenarios can
be created in a controllable and customizable manner. As an advantage, thou-
sands of images can be created within minutes and are labeled automatically.

Synthetic image data is mostly based on realistic 3D models. However, in
the area of mechanical engineering, realistic 3D models are often not available.
Instead, CAD models are commonly used during development and assembly.
These are technical models with the correct dimensions but do not always look
like the real object as visualized in Figure 1.1.

6

(a) CAD models (b) Real image

Figure 1.1: Example PLC modules

For example, CAD models often have different levels of detail, and text
printed on the surface is not drawn on the CAD model. Some models have
the same surface color as the actual module but do not include any surface
textures.

Additionally, PLC modules have different ports and connectors. For example,
they can have connectors for power, USB, Ethernet, or various analog outputs.
In the real world, different cables are plugged into them depending on the
application. These cables or plugs are not drawn in the CAD model and may
covert parts of the module on a real image.

1.2 Aim of the Work

This thesis aims to research 2D object detection of PLC modules with deep
learning methods based on synthetic data. Initially, CAD files of different PLC
modules are used to create a synthetic dataset. The CAD models have different
detail levels and are not photo-realistic. Therefore, generative approaches are
researched to improve the realism of the dataset. These methods require a
set of real data during training to improve the quality and make the synthetic
images more realistic.

Additionally, the real images have PLC modules with plugs and cables plugged
into them. During development, it is unknown which connectors have cables
plugged in. As they will occlude part of the module on an actual image, it
should be considered that parts of the module may not be visible.

In the end, an object detector is trained using the generated dataset. The
goal is to annotate real images with bounding boxes and labels.

7

1.3 State of the Art

Overall, object detection algorithms are primarily trained on real data. How-
ever, there is some research in the field of synthetic data. Most authors use
realistic 3D models, which is not available for this project: [1], [2], [3]. Some
papers use CAD models, but the used objects mostly have no textures and
monochrome surfaces in CAD and reality: [4], [5], [6].

No direct state-of-the-art methods exist for the entire use case of this project.
However, the project will use GANs to make synthetic images more realistic
and object detectors to detect the modules in an image. The algorithms and
models used in this project are described in the following paragraphs.

1.3.1 GANs

Generative Adversarial Networks (GANs) are deep learning models capable of
learning representations and patterns to generate new data instances. A GAN
typically consists of two components: a generator and a discriminator. The
generator aims to create images that resemble a given target domain. The
discriminator differentiates between a real and generated image. Based on the
feedback of the discriminator, the generator learns how well it translated the
image. Repeating this process, the generator constantly learns to generate
better images.

Various papers have conducted research in GANs to convert images between
two domains. Pix2Pix [7] is the best-known paper for paired image-to-image
translation. It requires exactly the same images from two different domains.
Others allow for an unpaired image-to-image translation. The most known are
CycleGAN [8] and StarGAN [9].

CycleGAN and StarGAN are used for this project. Their architecture and
functionality are described in the following paragraphs.

CycleGAN

CycleGAN was introduced in 2017 as the first model to perform image-to-image
translation without paired data [8]. It supports only two domains and translates
an image from an input to an output domain.

The CycleGAN model [8] has two generators G and F and two discriminators
DX and DY for the domains X and Y . Illustrated in Figure 1.2a are the two
mapping functions: G : X− > Y and F : Y− > X. Discriminator DX learns to
distinguish between image x and translated image x̂, discriminator DY between
y and ŷ.

8

Figure 1.2: Overview of the CycleGAN model (source: [8])

The model uses cycle-consistency to ensure the resulting image looks similar
to the original image. Figure 1.2b displays the forward cycle-consistency loss.
Image x is passed to the generator, which generates image ŷ. ŷ is then passed
to generator F which results in a cycled image x̂. The cycle-consistency loss is
then calculated as the mean absolute error between X and X̂. The same process
is calculated vice-versa for the backward cycle-consistency loss in Figure 1.2c

StarGAN

StarGAN is a type of GAN designed for multi-domain image-to-image trans-
lation tasks. Unlike CycleGAN, it allows for translation between multiple do-
mains using a single unified model. The first version of StarGAN [9] was pub-
lished in 2017. The successor StarGANv2 [10] was published in 2020 and is
used for this project. It improved the architecture by adding two new mod-
ules: A mapping network and a domain-specific style encoder. Besides minor
improvements, this leads to better image quality and fewer artifacts [10].

Figure 1.3: Overview of the StarGANv2 modules (source: [10])

9

The StarGANv2 architecture consists of four main modules, visualized in
Figure 1.3. The goal is to train one generator G to generate images for different
domains, visualized in Figure 1.3a. It translates an input image to an output
image which includes the domain-specific style code.

The mapping network F in Figure 1.3b transforms latent code into style code
for multiple domains. During training, one style code is randomly selected.

The style encoder E in Figure 1.3c extracts the style code of an image. The
generator randomly selects one style code to perform reference-guided image
synthesis. In Figure 1.3d, the discriminator D distinguishes between real and
fake images.

1.3.2 Object Detectors

The state-of-the-art object detectors can be categorized into two main methods:
one-stage and two-stage. One-stage methods directly predict bounding boxes
and labels in a single pass over the image. They are designed to prioritize speed
and enable real-time object detection. The most popular implementation of this
method is YOLO.

Two-stage methods are also known as region-based detectors and consist of
two stages. The first stage generates a set of potential object regions. The
second stage then classifies the proposed object regions. The most popular
implementation of a two-stage method is Faster R-CNN.

YOLO and Faster R-CNN are used for this project and will be described in
more detail in the following paragraphs.

YOLO

The first You Only Look Once (YOLO) model was introduced in 2015 as a real-
time object detection system [11]. YOLO is a one-stage algorithm predicting
bounding boxes and class probabilities with a single neural network, making it
extremely fast.

Over the years, the YOLO family was constantly improved with new versions:
YOLOv2 (2016) [12], YOLOv3 (2018) [13], YOLOv4 (2020) [14], YOLOv5
(2020) [15], YOLOv6 (2022) [16], YOLOv7 (2022) [17], and YOLOv8 (2023)
[18]. Most improvements are incremental and do not change the fundamental
ideal of the algorithm. For a detailed history and review of different YOLO ver-
sions, see [19]. All versions focus on balancing speed and accuracy, constantly
improving them and minimizing the tradeoff between these two factors.

This project uses YOLOv8 [18], the newest version of YOLO. It is developed
by Ultralytics, the same company that developed YOLOv5. It was released
in January 2023, but no detailed paper has been released yet. YOLOv8 is

10

still under active development as of July 2023, but mainly for the semantic
segmentation model, which is not used in this project.

As no official paper has been released, it is difficult to mention the differences
compared to previous versions. The authors of [20] explain the new architecture
in detail. The improvements result in higher accuracy, with a slightly slower
CPU inference speed but a higher GPU speed. The authors of [21] compare
YOLOv5, YOLOv7, and YOLOv8 and confirm the improved accuracy.

Figure 1.4: YOLO model (source: [11])

Figure 1.4 provides an overview of the YOLO model and its fundamental
architecture [11]. An input image is divided into an S × S grid of cells. Each
cell predicts bounding boxes with a confidence score, as shown in the top middle
image in Figure 1.4. This score indicates if the grid cell contains an object and
the accuracy of the predicted box.

Additionally, each cell predicts conditional probabilities Pr(Classi|Object)
for all classes. These predict the probability of an object belonging to each
class, displayed in the middle bottom image in Figure 1.4.

The conditional class probabilities and individual bounding box confidence
scores are multiplied, resulting in class-specific confidence scores for each box.
These scores are the final detections, displayed in the right image in Figure
1.4. They indicate the presence of a class within the bounding box and the
predicted accuracy of how well the predicted box fits the actual object.

11

Faster R-CNN

Faster R-CNN [22] was developed in 2016 as a real-time object detection net-
work. It is a two-stage algorithm and uses a Region Proposal Network (RPN).

The first predecessor of the Region-based Convolutional Neural Network
(R-CNN) family was released in 2014 as R-CNN [23], which invented the re-
gion proposal method. Fast R-CNN [24] followed in 2015, improving the per-
formance and simplifying the algorithm. Faster R-CNN was published in 2016
and significantly improved the object detection speed.

Since then, newer versions have been released for semantic segmentation,
for example, Mask R-CNN [25], and Cascade R-CNN [26]. These are built
on Faster R-CNN but added and improved the semantic segmentation. This
project does not require semantic segmentation, so the original Faster R-CNN
model is used.

Figure 1.5: Faster R-CNN model (source: [22])

The Faster R-CNN model is composed of two stages, displayed in Figure
1.5. The first stage consists of an Convolutional Neural Network (CNN) that
extracts feature maps from an input image. These features are then used by
the RPN to generate object proposals. The proposals include an objectiveness
score used to measure the likelihood of the region containing an object.

The second stage is then responsible for object classification and refinement.
It takes the region proposals, classifies the objects within each region, and
predicts the final bounding boxes.

12

2 Experiments

This chapter describes the experiments conducted for the various aspects of this
project. The first section starts by having a look at the used PLC modules. It
compares the visual differences between the CAD and real models. The next
section then describes the process of generating pure synthetic images. This
includes converting a CAD to a 3D model and rendering the objects in different
scenarios.

As the CAD models do not always visually reflect the real module, improving
the quality and realism of synthetic images is necessary. Therefore, the next
section discusses the enhancement of images with GANs. The idea is to learn
the style of real images with a GAN and transfer the synthetic images to make
them more realistic. In the end, the object detection task is described in detail
using two real-time object detectors: YOLO and Faster R-CNN.

2.1 Initial Data

The PLC modules are available as CAD files with different levels of detail.
Computer-Aided Design (CAD) is used during manufacturing to construct me-
chanical objects with precise measurements. They are technical drawings where
the dimensions and measurements have the highest priority.

However, this means they are not photo-realistic due to missing details, as
the visual appearance is not that important. For example, textures are often
missing entirely, or the color of the CAD model does not correspond with the
color of the real module.

13

Bachmann
MX213

Bachmann
DO232

Siemens
ET200SP

Beckhoff
CX5010

Beckhoff
CX1100

Omron
CJ2M

B&R
X20

Figure 2.1: CAD and real images of used PLC modules

For this thesis, seven PLC modules with different levels of detail were chosen,
displayed in Figure 2.1. All modules have slightly different surface textures on
the actual module, as CAD models do not contain any rendering information.
For example, the surface of a CAD model may have the same color, but it does
not contain any information on how the surface reflects the light and if it should
be shiny, reflective, or matt.

The Bachmann MX213, Bachmann DO232, and Siemens ET200SP CAD
models have the highest detail level, only missing some text and imprints on
the surface.

The Beckhoff CX5010 and Beckhoff CX1100 modules have less detailed CAD

14

models. The CAD objects miss text printed on the surface, and connectors are
not fully modeled. The colors are slightly off. The actual module has a white
surface, whereas the CAD model is slightly gray.

Omron CJ2M and B&R X20 have the worst detailed CAD models, with
missing text on the surface. The Omron module has the correct dimensions,
but the CAD model lacks the ethernet connector. Additionally, the color of the
CAD model is gray, whereas the actual object has different black levels with
various reflections. The B&R module has the worst detail level. The orange
coverings are missing entirely on the CAD model. In addition, the surface of the
real module is partly see-through, whereas the CAD model has a solid surface.

The real images will also contain various connectors and cables plugged into
the modules. These may occlude parts of the modules and are not available as
CAD models. To still detect the module, other techniques will be used when
generating the images, as described in the next section.

15

2.2 Synthetic Image Generation

The PLC modules are used to generate large annotated image datasets. Using
CAD files instead of realistic 3D models brings some challenges. The models
must be rendered in a scene, saved, and annotated with labels. These steps
are impossible with CAD programs and require a separate rendering engine,
as described in the following sections. An additional plugin will be required to
convert CAD models to 3D models to be used in a rendering engine.

During rendering, a technique called domain randomization will be applied
[3]. It randomizes different parameters to simulate varying environments. The
idea is that the object detector detects the objects on a real image and sees it
as another variation of an environment it has been trained on.

2.2.1 Rendering Engine

The purpose of CAD software is to create and edit CAD models and not to
render images. A separate rendering engine is required to render the modules
in different scenarios. The engine renders the objects with different positions,
rotations, background objects, and other factors. It has knowledge of all objects
in a scene and can generate images with perfect annotations. Different rendering
engines could be chosen for this project. The most popular ones are Blender,
Unreal Engine, and Unity.

Blender

Blender1 is made for 3D modeling and rendering and is used in [5] and [27].
Its main purpose is to render large scenes and animations. However, it lacks
support for CAD files, and they would have to be converted using standalone
software. Additionally, there are no existing plugins for image generation and
labeling. Creating different scenes would require many custom scripts, and
every functionality must be manually implemented. An advantage of Blender
is rendering photo-realistic scenes with high resolutions. As this project works
with CAD files that are not realistic in the first place, this is not necessary.

Unreal Engine

Unreal Engine2 is mainly a game engine and could be chosen for the work
of this thesis. It has plugins to import CAD files [28] and various computer
vision tasks, such as automatic annotations [29]. Its primary purpose is to

1https://www.blender.org/
2https://www.unrealengine.com/

16

https://www.blender.org/
https://www.unrealengine.com/

render games with high frame rates, so it performs faster than Blender. This
is especially noticeable as this work requires rendering thousands of different
scenes.

Unity

Unity3 is a game engine and the main competitor to Unreal Engine. Unity
has support for plugins to import CAD files and computer vision tasks. For
example, the Unity computer vision team developed the Perception Package4, a
framework for domain randomization to generate large-scale synthetic datasets.
In Unity, the scene and the behavior of individual components are controlled
using scripts. They can be written in different languages, such as C#, C++,
and JavaScript.

Rendering Engine Selection

The ideal rendering engine was selected based on two main factors: Support
for CAD files and the work required to generate synthetic datasets.

Blender was no option due to the missing support for CAD files and the
lack of plugins for computer vision tasks. As mentioned above, some papers
use Blender, but it requires many custom scripts to be implemented manually.
And with the time frame of this thesis, it is easier to choose a rendering engine
with an existing toolset to build on.

Unity and Unreal Engine have plugins to import CAD files with the same
features. However, in the end, Unity was chosen as it has a clear advantage
when considering the plugin to generate synthetic datasets.

The UnrealCV5 plugin is the most popular computer vision plugin for Unreal
Engine. But the last update for the plugin was in July 2019. Based on issues on
the GitHub project page, there are many bugs, and most importantly, it lacks
support for newer versions of the Unreal Engine [30]. Using an older version is
possible, but it lacks many features and is not future-proof.

Unity is therefore used for this project in combination with the Perception
Package. Its last update was in November 2022, with the first release of a
preview version. The plugin has some bugs and is not perfect either, but it
provides a framework to build on. It provides a toolset to generate and export
annotated images. The scene layout to generate the images must be manually
implemented using scripts. The plugin is written in C#, and the same language

3https://www.unity.com/
4https://github.com/Unity-Technologies/com.unity.perception
5https://github.com/unrealcv/unrealcv

17

https://www.unity.com/
https://github.com/Unity-Technologies/com.unity.perception
https://github.com/unrealcv/unrealcv

is used for the scripts of this project, which makes it easier to adapt and extend
the plugin.

2.2.2 CAD Model Conversion

Game engines are made for 3D models and support different types of 3D files,
but they have no built-in support for CAD files. CAD models are technical
drawings with the correct dimensions and measurements of the real object.
In contrast, in 3D computer graphics, 3D models are created with a process
called polygonal modeling. The models are commonly only used in digital
environments like animations or video games. Compared to CAD models, they
mostly have detailed and, in some cases, even photo-realistic textures.

Because they are used in different environments, they use different tech-
nologies. CAD formats use mathematical functions to define the structure of
surfaces. This allows for perfect accuracy of the surface, independently of the
scale but requires more computation for rendering. In comparison, polygonal
models consist of a mesh that consists of many connected polygons.

Tessellation

To convert the CAD models into polygonal meshes, a process called tessellation
is used. It converts the CAD surface into a tesselated mesh composed of many
small polygons [31].

(a) CAD model (b) Low tessellation (c) High tessellation

Figure 2.2: Different tessellation detail levels

The detail of the 3D model varies depending on the number of polygons,
illustrated in Figure 2.2. It has to be chosen manually according to the object
size and resolution of the rendered images. A lower tessellation level can lead
to rough curves. In combination with light and reflections, an object can look
very differently compared to using a higher detail level. However, this leads to
worse performance and needs more time to render.

18

Pixyz Plugin

To import the CAD models into Unity, the Pixyz Plugin6 is used. Different
tools could be used, but none have the same level of integration into Unity.
Pixyz supports all commonly used CAD file formats and a variety of import
settings. For example, different quality levels for the tessellation process.

Due to the integration in Unity, it supports the import of surface colors. It
imports the colors and converts them into Unity texture materials. However,
they still consist of only one color, about the same as the one used in the CAD
model. They could be edited manually to further reflect the actual object by
changing the color or light reflection settings. But during the work of this
thesis, the materials were not edited manually after import.

2.2.3 Image Generation

When using synthetic data to train an object detection algorithm, a so-called
reality gap exists between the real and synthetic domains. This gap describes
the visual differences between real and synthetic images. If this gap is too big,
the object detector learns from synthetic data during training but then fails to
detect objects on real images.

The authors in [3] explore a solution called domain randomization. It ad-
dresses the reality gap by exposing the object detector to different environments
during training. The idea is by simulating various parameters, the variability
of the generated data is so large that it includes the real world. If the object
detector then sees a real image, it may think that it is just another variation.

The Perception Package for Unity is used as a framework to apply domain
randomization. It is used to generate a synthetic dataset by randomizing vari-
ous parameters.

Perception Package

The Perception Package7 is a plugin developed by the Unity computer vision
team to generate large-scale synthetic datasets. It provides a framework for
domain randomization. At runtime, it uses a set of randomizers that are called
for each frame. These randomizers are scripts that interact with objects in the
scene. After calling all scripts, an image of the scene is taken and saved. The
objects of all PLC modules are identified with a tag. The package uses this tag
to identify and label them automatically. Thus, in the end, an image with an
associated annotation file is saved for each frame.

6https://www.pixyz-software.com/plugin/
7https://github.com/Unity-Technologies/com.unity.perception

19

https://www.pixyz-software.com/plugin/
https://github.com/Unity-Technologies/com.unity.perception

In Unity, parameters used in a script can be configured in the Unity Editor
without opening an external IDE to edit the script. This makes it easier to test
and research different randomizer configurations.

The parameters can have different types depending on the use case, even
complex ones. For example, some randomizable parameters are defined using
a parametric definition. This allows the selection of a random value from a set
of normal, uniform, or binomial distributions.

The package provides some basic randomizers8 that were used and modified.
More complex ones were implemented for this project.

(a) Side view of the Unity scene (b) Output image

Figure 2.3: Example frame and side view of the Unity scene

A scene is composed of different layers, shown in Figure 2.3a from right to
left: Background Layer, Foreground Layer, and Occlusion Layer. The camera
icon in the left part of the figure indicates the position of the camera. This
camera takes and stores an image of the scene. Besides these layers, some
postprocessing is applied to the entire scene.

The final image, displayed in Figure 2.3b, is saved with a separate meta-
data file. The metadata file includes the annotations for the individual image.
This includes the class, position, and size of a bounding box for each module.
Additionally, each layer is saved as an individual image with a transparent back-
ground. The individual layers will be used later when improving a synthetic
image with a GAN.

8https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/
Randomization/RandomizerLibrary.html

20

https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Randomization/RandomizerLibrary.html
https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Randomization/RandomizerLibrary.html

Background Layer

The background of an actual image is unknown and has to be simulated. The
idea is to generate a unique random background for each image. The object
detector should not learn any correlations between the modules and their back-
ground [2].

For this project, a set of 10 different shapes with 529 textures are used. They
were imported from a Unity object detection sample project: SynthDet9. The
shapes are different variations of cubes, cylinders, and spheres. Combined with
the textures, they can create more than 5000 different objects.

The authors in [2] place background objects until every pixel is covered. For
this project, their idea was adapted. First, the size of a background object is
set relative to the size of the foreground objects (the PLC modules). Then, a
random position is selected that is not within a minimum separation distance
from other objects. This process is repeated until the surface is covered and
no more objects can be added. Due to the minimum separation distance, it
is possible to get empty spots between two objects. To prevent this, multiple
layers of background objects are stacked in front of one another.

The size of each background object is relative to the median size of all fore-
ground objects with an additional scaling factor. The authors of [2] researched
the effect of the background object size on the final object detection results in
more detail. They achieve the best results when scaling the background objects
with a factor between 0.9 and 1.5 relative to the size of the foreground objects.
These parameters are also used for this project, and each background object is
scaled relatively with a randomized factor within the given range.

Foreground Layer

The foreground layer places the PLC modules that will be labeled. It selects
several objects and places them in a random position. A minimum of 0 and
a maximum of 5 objects can be shown simultaneously. As in the background
layer, a minimum separation distance parameter can be set. Objects can overlap
slightly but not be directly in front of each other.

After placing the objects, their scale and rotation are randomized. The
rotation is uniformly randomized between -40 and 40 degrees for the x and
y-axis and 0 to 360 degrees for the z-axis. The PLC modules will always be
visible from the front as they are mounted with the back side onto a wall. In
addition, many modules can not be identified from the side. Therefore, this
range of degrees was selected for the viewing angle. It should cover all viewing

9https://github.com/Unity-Technologies/SynthDet/tree/master/SynthDet/Assets

21

https://github.com/Unity-Technologies/SynthDet/tree/master/SynthDet/Assets

angles that occur in an actual image. Figure 2.4 displays some example poses
of a PLC module.

Figure 2.4: Example poses of a PLC module

Occlusion Layer

The purpose of the occlusion layer is to hide part of the modules during training.
In an actual image, the occlusion layer is represented by cables plugged into
a module or minor differences where the real module may look different. This
layer uses the same shapes and textures as the background layer. They are
placed at a random position with a random rotation.

The scale of the individual occluder objects is slightly randomized but much
smaller than the foreground objects. Figure 2.5 displays example images with
and without the occlusion layer.

(a) Background and foreground layer (b) All layers

Figure 2.5: Synthetic image with and without the occlusion layer

22

Postprocessing

After assembling the scene and its layers, some randomized postprocessing is
applied to the entire scene: [2]

• A hue offset to simulate different lighting environments

• The red, green, blue, and alpha values of all colors are changed slightly.
This simulates different surface colors, as the color of the CAD model
may not correspond with the one on a real module.

• Changing the brightness to simulate darker and lighter environments

• Adding a blur effect

Figure 2.6 displays some generated example images with their bounding box
annotations. The annotation is stored in a separate file and not drawn in the
saved image.

Unity exports the dataset in the Synthetic Optimized Labeled Objects (SOLO)
format [32]. This format is Unity specific and can not be used to train an object
detection system. Therefore, a converter imports the SOLO format and exports
the images and annotations in the Common Objects in Context (COCO) format
[33]. Microsoft developed COCO, which is used in this project as an interme-
diate format. It will later be converted into the specific format required by the
object detector.

Figure 2.6: Example synthetic images

23

2.3 Image Enhancement With GANs

GANs are used for this project for the task of image-to-image translation. The
idea is to train a GAN with real and synthetic images of the individual PLC
modules. After training, it can translate images between these two domains.
This process is especially useful in cases where the CAD model does not resem-
ble the real PLC module. For example, a synthetic image of a model with an
incorrect surface color can be translated to reflect a more realistic image.

For image translation tasks, there are two main methods:

• Paired image-to-image translation (e.g., Pix2Pix [7]): This process re-
quires corresponding image pairs from both domains during training.
However, pairing synthetic images with perfectly matching real images
is challenging and almost impossible for this project. Real and synthetic
images would have to be created where the PLC module is visible with
precisely the same position, rotation, and size.

• Unpaired image-to-image translation: This process does not require cor-
responding image pairs. It only needs a set of images from different
domains.

For this project, unpaired image-to-image translation is chosen using Cycle-
GAN and StarGANv2. CycleGAN allows translation between two domains,
and StarGANv2 between multiple domains. Experiments are conducted for
both GANs, as described in the following sections. In the end, the trained
GANs convert synthetic images in an image processing pipeline. This pipeline
takes the synthetic images as input, translates the PLC modules with a GAN,
and outputs a more realistic image.

For CycleGAN, the official implementation10 from the CycleGAN paper is
used, for StarGAN the official tensorflow implementation11.

10https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
11https://github.com/clovaai/stargan-v2-tensorflow

24

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
https://github.com/clovaai/stargan-v2-tensorflow

2.3.1 Experiments

The following experiments aim to test the capabilities and behavior of the
GANs without the full complexity of a generated synthetic image. Initial ex-
periments were conducted with multiple different PLC modules visible in one
image. Both GANs generated output images without any clearly recognizable
objects. Sometimes they generate contours of an object, but the texture of
the generated object is not identifiable with any PLC module. Therefore, the
GANs can not be used to translate a synthetic image directly, and the images
are simplified so that only one module is visible per image.

The following paragraphs describe the findings related to the training data.
These apply to StarGAN and CycleGAN, and both GANs use the same images
during training. In the end, the specific experiments for the training of both
GANs are mentioned.

Training Data

To begin with, initial tests showed that synthetic images could not contain the
randomized background and occlusion layer. Otherwise, both GANs generate
unusable images with objects either not visible at all or without any clear edges.
The reason is most likely that the GANs get distracted by the randomized
background that differs for each image. The same applies to the occlusion
layer, which prevents them from learning the texture of an object, as occluder
objects randomly cover some parts.

To prevent this issue, synthetic images are generated without the background
and occlusion layer. The same applies to real images, and they are taken on
a single-colored background (e.g., a table) without cables or other distracting
objects. Figure 2.7 displays example training images for some modules.

Figure 2.7: Example GAN training images

25

Further experiments showed that the PLC modules displayed in the images
must have approximately the same pose in both datasets. Otherwise, the GAN
learns a bias towards a specific characteristic more present in one dataset. To
control these parameters, the dataset must be created considering the following
rules for the position, rotation, and size of an object in an image.

Position: For each image, exactly one object must be visible, and it has to
be positioned roughly in the center of the image. This can easily be controlled
when capturing real images and generating synthetic images.

Rotation: The PLC modules must be horizontal in the image, with the bottom
of the object pointing to the bottom of the image. Images should be taken from
slightly different angles, but the modules can not rotate around the z-axis. For
the synthetic dataset, this is controlled by reducing the possible ranges for the z-
axis to [-5; 5] degrees. The rotations around the other axes are still randomized
with the same ranges as during the generation of the synthetic dataset. This
allows for the same object poses as during the full synthetic data generation,
except for the z-axis.

Figure 2.8: Example GAN training images for B&R X20

Figure 2.8 displays example images for one module. The object is placed in
the center, but the images are shot from different viewing angles. Both GANs
generate images with objects roughly in the same pose as on the input image.
In an ideal scenario, both datasets display the module overall in the same set of
poses. Due to the small dataset size of 73 real and 73 synthetic images per PLC
module, this is not perfectly achieved in this project. Using a larger dataset
could improve the correspondence between the datasets and, consequently, the
translation. It may generate better images but most likely will not affect the
overall object detection performance. And as the idea behind this project is to
use as few real images as possible, the dataset size was not increased.

26

Size: Controlling the size is the most challenging task as the objects are easily
a bit larger in one dataset. The GANs then start to generate slightly larger
objects in one domain. This leads to issues when replacing the object on the
synthetic image. When the scaling is slightly off, the original bounding boxes
are no longer correct, leading to problems during object detection.

However, having the exact same object size is nearly impossible to control for
both training datasets. This will be addressed in the image processing pipeline
before transferring the object back onto the original foreground image.

Two datasets are created for each PLC module: One with real images and
another with synthetic images. A dataset contains 73 images, split into 60
training and 13 test images. The default resolution of both GANs is used for the
image size, which is 512x512 pixels. The following experiments for CycleGAN
and StarGAN are performed on an NVIDIA RTX A4500 with 20GB of GPU
memory.

CycleGAN Experiments

Besides the experiments described above, an additional experiment was con-
ducted for CycleGAN. The idea is to test whether one CycleGAN can be trained
for all PLC modules using one domain for all synthetic images and the second
domain for real images. The theory behind this experiment is that all modules
have in common that they are either real images or synthetic images generated
from CAD models.

However, this experiment failed as CycleGAN generated images with objects
that are visually a combination of all modules. It is not able to learn a mapping
between the individual modules. The underlying problem is that the difference
between the CAD and real objects varies for each module, especially between
manufacturers. For example, the surface color of the real and CAD objects
matches on some modules but is entirely different on others.

The final solution for CycleGAN is to train a separate GAN for each PLC
module with one synthetic and one real domain of the specific module. Figure
2.9 displays example translations for the Siemens ET200SP and Omron CJ2M
modules. Each figure displays the input image on the left and the output image
from the GAN on the right.

27

(a) Siemens ET200SP (b) Omron CJ2M

Figure 2.9: CycleGAN example translations

Figure 2.10 displays the graphs of the cycle-consistency losses for the two PLC
modules. Cycle_a is the loss calculated for the translation between synthetic-
real-synthetic, and cycle_b is the loss calculated for real-synthetic-real. Both
cycle_a losses indicate that CycleGAN overall easier translates real images to
synthetic ones, which is unfortunately not required for this project.

When looking at cycle_b for both graphs, the model manages to translate
the Siemens ET200SP module faster to a better quality. The Siemens module
has a realistic CAD model, whereas the CAD of the Omron module is less
detailed.

(a) Siemens ET200SP (b) Omron CJ2M

Figure 2.10: Comparison between cycle-consistency losses of CycleGAN

28

As an individual GAN has to be trained for each module, the GANs were
trained to different epochs. Modules with a lower CAD quality were trained
longer than others. Table 2.1 displays the final training time and cycle-consistency
loss for all GANs. Only the cycle_b loss is displayed as the cycle_a does not
change much and is not that relevant for this project.

There is no clear indicator of when CycleGAN training is finished. For this
project, the training was stopped when the cycle_b loss reached about 0.2.
With the visual inspection of the results, this seemed to be a suitable metric.
Especially as the improvements for the cycle-consistency loss slowed down, and
minimal improvements would require significantly more training.

Overall, the more realistic CAD modules took about 1000 epochs, whereas
others were trained for 2000 epochs. Combining the training times for all GANs
requires about 40 hours of training.

PLC Module Epochs Training Time Cycle_B Loss
Bachmann MX213 1000 4h 0.20
Bachmann DO232 1000 4h 0.20
Siemens ET200SP 1000 4h 0.16
Beckhoff CX5010 1000 4h 0.19
Beckhoff CX1100 2000 8h 0.19
Omron CJ2M 2000 8h 0.18
B&R X20 2000 8h 0.22

Table 2.1: CycleGAN training times

StarGAN Experiments

StarGAN uses the same training data as CycleGAN. But it supports multiple
domains, so only one GAN is trained for all modules. Each module gets an
individual real and synthetic domain. For the 7 modules, this results in 14
domains which is quite a large and complex GAN to be trained. This is no
issue for this project but could lead to issues when using many more modules.

StarGANv2 supports two modes for the task of image translation: latent-
guided synthesis and reference-guided synthesis [10]. Latent-guided synthesis
translates source images with randomly generated sample latent codes to a
target domain. Reference-guided synthesis requires at least one additional ref-
erence image. It then translates the source image to the target domain and
reflects the style of the given reference image.

29

The authors of StarGANv2 evaluated both methods, and reference-guided
synthesis scores a lower Frechet Inception Distance (FID) value [10]. FID is an
indicator that calculates the difference between the real and generated images
[34]. Lower scores mostly correlate with a higher-quality image translation,
although this metric does not always correspond to the visual perception of the
human eye.

Both methods are tested for this project, and no visual difference is visible
to the human eye, although no exact FID values are calculated. Both methods
translate images where the object on the output image has roughly the same
pose but a more realistic surface texture.

In the end, reference-guided synthesis is used due to the better performance
observed by the authors of StarGANv2. A real image from the training dataset
is used during the translation for the reference image.

(a) Reference-guided synthesis (b) Latent-guided synthesis

Figure 2.11: StarGAN image synthesis results

Figure 2.11 displays an example of reference-guided and latent-guided syn-
thesis. Figure 2.11a displays the reference-guided synthesis with a reference
image from the training dataset on the top, the input image on the left, and
the output (translated) image on the bottom right. Figure 2.11b displays the
latent-guided synthesis with the input image on the left and the output on the
right.

StarGAN allows the translation from one domain to all other domains. The-
oretically, a synthetic image of one PLC module could be translated to a real
image of another PLC module. For example, a synthetic image of a Bachmann
DO232 can be translated to a real image of a Siemens ET200SP. This was
tested, and the GAN produced good images for the other domains. However,

30

the images are visually better when translating from the synthetic to the real
domain of the same module. Therefore, the GAN is only used to translate
between domains of the same module for this project.

The used StarGANv2 implementation automatically exports images for all
domains. An additional option was implemented to specify the target domain
and only export the image for that domain. This significantly improved the
performance of the GAN as thousands of images were converted for this project.

StarGAN does have training losses, but they are not comparable with Cycle-
GAN due to the different architectures. The training was stopped after 3 days
at 75000 epochs when visually acceptable results were achieved for all modules,
and the improvements during each epoch slowed down.

2.3.2 Implementation

This section covers the implementation of the image processing pipeline that
translates the synthetic images with a GAN. CycleGAN and StarGAN are
implemented for comparison, and one is selected for the individual tests. For
the GANs, the trained models from the previous section are used.

Image Processing Pipeline

In the generated synthetic dataset, most images contain multiple PLC modules
of different types. However, a GAN can only convert entire images from one
domain to another.

To solve this issue, a pipeline was developed to convert images with multiple
different modules. In the beginning, it extracts the objects from the synthetic
image. They are then individually translated with a GAN, and, in the end,
pasted back onto the synthetic image. This process is the same for CycleGAN
and StarGAN, except for the GAN used to translate the individual images.

31

CycleGAN
Class_A

CycleGAN
Class_BStarGAN

Foreground Layer Background Layer Occlusion Layer

2

3a

4

5 6

3b

1

Figure 2.12: GAN image processing pipeline

32

Figure 2.12 illustrates the process of translating the entire foreground image.
Depending on the use case, this process is repeated for every image in the
generated synthetic dataset or only for a part of the dataset.

1. The process starts with the image of the foreground layer. It contains the
PLC modules without any background and occluders.

2. Images of individual modules are extracted from the foreground image.

During the generation of the synthetic dataset, a separate metadata file
is stored for each image. It includes the bounding box, class, and rotation
around the z-axis for each object. The bounding box and rotation data
are used to cut out the object and revert the rotation during this step.
Only the rotation around the z-axis is reverted as the GAN was trained
with the object being horizontal in the image but with slightly different
viewing angles. In the end, a separate image is exported for each module.
This includes the class of the module.

3. The images are translated individually with StarGAN (3a) or CycleGAN
(3b). The class of the specific module defines the current and target
domains.

a) For StarGAN, one GAN is used to translate images for all domains.
The real domain of the current module is chosen for the target do-
main.

b) For CycleGAN, an individual GAN was trained for each PLC mod-
ule. The correct GAN is selected based on the type of the module
and then used to translate the image.

4. The GANs output the fake real images. These images display the objects
in slightly different positions, rotations, and sizes, as already found during
previous experiments.

5. The objects are then pasted back onto the original image of the foreground
layer. The background is removed during this process, and the objects
are rotated and resized to their original position. A complex process is
required to ensure that the bounding boxes are still perfect, described in
detail later.

6. The last step combines the individual layers into one image. The fore-
ground layer is layered onto the background layer with the occlusion layer
on top of it. The resulting image is then used to train the object detector.

33

Transferring the GAN Output Image

The experiments for both GANs showed that it is impossible to translate an
image while keeping the exact position, rotation, and size of an object. The
objects on a translated image always have slightly different dimensions. As the
GAN cannot output any bounding boxes, it is difficult to determine the exact
position and scale of an object in the image. Additionally, the object is often
distorted and does not have clear edges or contours.

This process aims to extract the module from the GAN output image, copy
it onto the synthetic image of the foreground layer, and use the existing anno-
tations and bounding boxes. Three options are researched to implement this
process and ensure the original bounding boxes are still correct for each pixel.
Figure 2.13 displays examples of these options, and they are described in de-
tail in the following paragraphs. Removing the background and cutting out
the module from the GAN output image is necessary for all options. For this
process, the Rembg tool12 is used.

(a) Option 1: GAN
objects only

(b) Option 2: GAN and
synthetic objects

(c) Option 3: GAN
objects as texture

Figure 2.13: Options to transfer the objects from the GAN output image

12https://github.com/danielgatis/rembg

34

https://github.com/danielgatis/rembg

Option 1: Replace the objects on the synthetic image with those from the
GAN output image.

First of all, the background is removed. Each object is then rotated to the
same rotation as in the synthetic image and scaled to fit the original bounding
boxes. The new object is placed in the same position and replaces the object
in the original synthetic image.

This option is not ideal, as the GAN sometimes outputs distorted objects
without clear edges. An example is displayed in Figure 2.13a, where the object
is distorted, and the tool to remove the background fails to clearly distinguish
the object from the background. If the tool cuts away too little of the object,
the bounding box includes some background pixels. If it cuts away too much,
the object may get a different shape.

The different shapes will lead to issues later during object detection. The
object detector does not exactly know where to place the bounding box as it
varies depending on the image.

Option 2: Layer the GAN output objects on top of the original objects with
adjustable opacity.

The idea is to use Option 1 but keep the synthetic object in the background
and layer the new image on top of the synthetic object with a customizable
opacity. Theoretically, the opacity could be randomized, and the object detec-
tor could then learn different variations of the surface colors.

The issue with this option is that the object on the output image does not
perfectly align with the object on the input image, as shown in Figure 2.13b.
Additionally, it has the same issues as Option 1 regarding the different sizes of
the cut foreground object. This idea is still mentioned as it theoretically could
be a solution if the GAN outputs an image with exactly the same object pose
as on the input and if it is clearly distinguishable from the background.

Option 3: Using the GAN output objects as a texture for the original objects.
The idea for the third option is to use the output image from the GAN as a

texture that is put on top of the synthetic objects. Compared to Option 2, the
difference is that the contour and surface area of the synthetic objects is kept
the same.

For this process, each object is cut out, rotated, and resized to fit the original
bounding box on the synthetic image. The original synthetic object is kept,
and all non-transparent pixels from the synthetic object are then replaced with
corresponding pixels from the GAN object. An example is displayed in Figure
2.13c. This option works in favor of domain randomization. The texture of

35

the 3D model is changed partially, but the contours of the object are always
the same. As this process is repeated for every image, the surface is constantly
generated slightly differently. Over the entire dataset, the whole surface of an
object is covered at least once. This favors domain randomization as the object
detector detects the real object in an image as it may think the surface of the
specific object is just another variation.

Option 3 is selected for this project as it should achieve the best results. It is
the only option with always correct contours and bounding boxes. The surface
texture changes slightly for every object, which favors domain randomization
as this process is repeated for thousands of images.

36

2.4 Object Detection

The object detection task aims to predict the position and type of one or
more objects in an image. It consists of two main objectives: localization and
classification. The localization predicts the position and size of an object in the
image, typically by drawing a bounding box around the object. Classification
predicts the type of object in the form of a class label.

For this project, YOLO and Faster R-CNN are implemented for comparison,
as described in the following sections. Both use the same training datasets,
consisting of 15000 images with different variations of pure synthetic images
and images refined by a GAN. Of these 15000 images, 80% of images are used
for training, 10% for testing, and 10% for validation. The synthetic images are
generated with a resolution of 640x640 pixels. The same resolution is used to
train, test, and validate both object detectors.

A validation dataset of real images is created to evaluate the object detectors,
as described in the last section.

2.4.1 YOLO

For YOLO, the newest version YOLOv8 is used from the Ultralytics GitHub
repository13.

A pre-trained YOLOv8 model14 is selected for training. Ultralytics pro-
vides five different pre-trained models with different sizes: YOLOv8n (nano),
YOLOv8s (small), YOLOv8m (medium), YOLOv8l (large), and YOLOv8x
(extra large). All models are pre-trained on the COCO val2017 dataset15.
YOLOv8n is the smallest model with the fewest parameters (weights and bi-
ases), and according to Ultralytics, it is the fastest but least accurate. YOLOv8x
is the largest and most accurate but, at the same time, the slowest model. The
YOLOv8n, YOLOv8m, and YOLOv8l models are used for this project.

The following hyperparameters were changed during training:

• Disabled image scaling, rotation, and mirroring in all directions. During
the generation of synthetic images, the objects are already scaled and
rotated in all desired directions. It is easier to generate images differently
in the first place than during object detection.

13https://github.com/ultralytics/ultralytics
14https://github.com/ultralytics/ultralytics/#Models
15https://cocodataset.org/

37

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics/#Models
https://cocodataset.org/

• Disabled mosaic augmentation. This new feature in YOLOv8 combines
multiple images into a single mosaic image. It forces the model to learn
objects with different neighboring pixels in different locations and helps
it see some variations of the training images. Again, these parameters are
already randomized during the data generation and are therefore deacti-
vated here.

Disabling the data augmentation features ensures that YOLO and Faster
R-CNN are trained with the same images for a fair comparison. For exam-
ple, Faster R-CNN has no mosaic augmentation feature. Tests also showed
that changing these parameters slightly improved the detection performance
for YOLO. For the other arguments and hyperparameters, the values are left
default16. During training, the batch size is set to 16 for the optimal utilization
of the GPU.

2.4.2 Faster R-CNN

For Faster R-CNN, the implementation from the Detectron2 library [35] is
used. This implementation supports different backbones and pre-trained mod-
els. These are listed in the Model Zoo collection17. For this project, the FPN
and C4 backbones are tested. FPN uses a ResNET+ FPN backbone which
should obtain the best tradeoff between speed and accuracy. C4 is the origi-
nal backbone described in the Faster R-CNN paper and uses a ResNet conv4
backbone with a conv5 head.

The parameters during training and testing are mostly left default18. As for
YOLO, the hyperparameters to flip and crop the image randomly are deacti-
vated. The images are already flipped, cropped, and rotated during the dataset
generation with domain randomization.

16https://docs.ultralytics.com/modes/train/#arguments
17https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
18https://github.com/facebookresearch/detectron2/blob/main/detectron2/

config/defaults.py

38

https://docs.ultralytics.com/modes/train/#arguments
https://github.com/facebookresearch/detectron2/blob/main/MODEL_ZOO.md
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py
https://github.com/facebookresearch/detectron2/blob/main/detectron2/config/defaults.py

2.4.3 Real Validation Dataset

A real validation dataset was created to evaluate the performance of YOLO
and Faster R-CNN. This dataset is not used during the training of the object
detectors and only for validation after training is finished.

The goal of this dataset is to represent different real-world scenarios. There-
fore, the following parameters are constantly changed for each image. Figure
2.14 displays some example images from this dataset.

• Combinations of different modules with different positions in the image

• Images are shot from different angles, closer and further away from the
modules

• Backgrounds that are entirely different from the ones used during the
GAN training

• Lighting conditions, e.g., well illuminated but also with shadows from the
side

• Cables plugged into the modules and in front of the modules

Figure 2.14: Example images from the real validation dataset

39

The dataset consists of 1345 manually labeled images. Table 2.2 lists the
overall instances of the individual modules. A minimum of 0 and a maximum
of 5 modules are displayed per image.

PLC Module Instances
Bachmann MX213 351
Bachmann DO232 296
Siemens ET200SP 303
Beckhoff CX5010 383
Beckhoff CX1100 277
Omron CJ2M 324
B&R X20 304

Table 2.2: Distribution of instances in the real validation dataset

40

3 Results

Different combinations of GANs and object detectors are tested to evaluate the
performance. The next section provides an overview of all results. The following
sections explain the results for the GANs and object detectors individually in
more detail.

The models for all tests are trained on the same synthetic dataset of 15000
images, split into sets of 80% training, 10% testing, and 10% validation. Gener-
ating these 15000 synthetic images and converting them to the specific YOLO
or Faster R-CNN formats takes about 3 hours.

If a GAN is used, a percentage of this dataset is translated with the corre-
sponding GAN. Translating all 15000 images takes about 6 hours, the same
for CycleGAN and StarGAN. However, this implementation is not performance
optimized and could be further improved.

The trained models are then evaluated on the real dataset from the previous
chapter. All tests are performed on an NVIDIA RTX A4500 with 20GB of
GPU memory.

3.1 Overview of Results

Figure 3.1 displays example images with the predicted bounding boxes using
a YOLOv8m model, trained for 100 epochs with 50% of the synthetic images
translated with StarGAN.

The runs are evaluated with the mean Average Precision (mAP). It is calcu-
lated as the mean average precision over all classes. The Average Precision (AP)
is calculated using precision values across different recall levels for one class.
It computes the area under the precision-recall curve, representing precision
across various recall levels. The recall measures the true positive rate, the rate
of correctly identified objects.

To define if a predicted region is considered true or false positive, the Intersection
over Union (IoU) is used. It is calculated by taking the overlap between the
ground truth and the predicted bounding box and dividing them by the union
of these boxes.

41

Figure 3.1: Example YOLO object detection images

The mAP50 and mAP50−95 are used for evaluation. mAP50 is the mean
average precision with an IoU of 0.5. This is the most important metric for this
project, as the goal is to detect the modules, but the bounding boxes do not
have to match exactly. The mAP50−95 is displayed as an additional metric. It
is defined by the average mAP over different IoUs thresholds between 0.5 and
0.95 with steps of 0.05.

YOLOv8m Faster R-CNN
Training Data mAP50 mAP50−95 mAP50 mAP50−95

synthetic 55.7 45.1 43.2 18.4
25% StarGAN 83.8 69.5 64.6 31.0
50% StarGAN 84.4 68.1 77.6 40.3
75% StarGAN 83.1 66.6 72.3 32.6
100% StarGAN 64.8 47.7 80.1 40.0
25% CycleGAN 67.3 51.6 54.2 24.7
50% CycleGAN 66.0 52.2 60.0 28.4
75% CycleGAN 62.9 47.6 56.9 25.8
100% CycleGAN 36.8 26.6 48.8 22.0

Table 3.1: Overview of the YOLO and Faster R-CNN results

42

Table 3.1 lists an overview of the object detection results evaluated on the
real evaluation dataset. StarGAN performs overall better than CycleGAN, but
CycleGAN is better than using a pure synthetic dataset.

Synthetic data is still essential as translating a higher percentage of a dataset
with a GAN decreased the performance. StarGAN performed roughly the same
at 25%, 50%, and 75%, but the mAP gets worse when translating all images.
This is also reflected in CycleGAN, where the best results are at 25% and 50%.
The mAP decreases when translating more than 75%.

The R50-FPN-3x backbone is used for Faster R-CNN, and the YOLOv8m
model for YOLO as they achieve the best results. When comparing YOLO with
Faster R-CNN, YOLO achieves higher mAP values in almost all categories.
This will be described later in more detail.

YOLOv8m - mAP50

Training Data A
ll

C
la

ss
es

B
ac

h
m

an
n

M
X

21
3

B
ac

h
m

an
n

D
O

23
2

S
ie

m
en

s
E
T

20
0S

P

B
ec

kh
off

C
X

50
10

B
ec

kh
off

C
X

11
00

O
m

ro
n

C
J2

M

B
&

R
X

20

synthetic 55.7 67.1 54.3 70.8 94.2 54.9 40.1 8.2
25% StarGAN 83.8 88.9 87.1 90.5 96.6 86.7 84.5 52.4
50% StarGAN 84.4 91.3 87.0 92.9 96.6 82.3 83.5 57.1
25% CycleGAN 67.3 84.9 83.6 74.6 91.9 57.6 37.0 41.2
50% CycleGAN 66.0 74.9 76.9 72.7 93.9 85.9 12.3 45.4

Table 3.2: Detailed mAP50 results for all PLC modules

Table 3.2 lists the detailed class metrics for all modules. The YOLOv8m
model was trained for 100 epochs with different datasets and then evaluated on
the real dataset.

All modules have a higher mAP when adding a GAN, but the best improve-
ment is seen with low-quality CAD models. The low-quality ones are listed as
the columns towards the right in Table 3.2. The B&R X20 module has a grey
surface on the CAD model but is black and orange in reality. Adding a GAN
improved the detection rate from a mAP50 of 8.2% with pure synthetic data to
57.1% when translating 50% with StarGAN. Another module with poor CAD
quality is the Omron CJ2M. Using only synthetic data, the mAP50 is 40.1%
but improved to 84.5% with 25% StarGAN.

An example of a minor improvement is the Beckhoff CX5010. It already

43

reaches a mAP50 of 94.2% using pure synthetic data. Adding 25% StarGAN
improves the mAP50 to 96.6%. The reason is most likely due to the unique red
stripe on the front surface of the module that is present in CAD and reality.

Additional tests were conducted regarding the size of the dataset. Using less
than 15000 images decreased the object detection performance, whereas more
images did not improve it either. However, this heavily depends on the number
of objects and domain randomization parameters. For example, if the objects
should be detected from all sides, including the rear side, more images will be
necessary to show all different pose variations.

3.2 GANs

This section aims to evaluate the effect and purpose of StarGAN and Cycle-
GAN. To research them, a comparison with a baseline of real images is required.
Due to the limited amount of real data, the real dataset created for the eval-
uation is split for the following tests. It includes about 290 images where the
modules are on the wall but without any cables in front of them. These images
are extracted into a separate smaller real dataset, used for the training in Table
3.3. The rest of the dataset, about 1050 images, is used for evaluation.

All tests in Table 3.3 are conducted with a YOLOv8m model. The results
are overall slightly worse compared to previous tests where the same tests were
conducted but with the entire real evaluation dataset. This is due to YOLO
better detecting objects with no cables in front of them. But as these images
are used during training with the smaller real dataset, they are missing in the
evaluation dataset, which results in slightly worse results.

YOLOv8m
Training Data Epochs Training Time mAP50 mAP50−95

synthetic 100 12h 50.9 41.6
real 50 1.5h 50.2 34.1

synthetic + real 100 + 100 12h + 3.5h 72.0 54.5
50% StarGAN 100 12h 82.3 64.4
50% CycleGAN 100 12h 62.7 47.7

Table 3.3: Results evaluated on a smaller real dataset, trained with and
without the use of GANs

Training YOLOv8m directly with the small real dataset reaches a mAP50

of 50.2%. This is roughly the same as when using pure synthetic data. The
training was stopped at 50 epochs because the model no longer improved.

44

For the second test, a model is trained on pure synthetic data and fine-tuned
for 100 more epochs on the small real dataset (synthetic + real). It then reaches
a mAP50 of 72%, indicating that the individual synthetic and real models detect
partially different images.

Overall, translating 50% of the images with StarGAN still performs better
than fine-tuning a synthetic model with real images. CycleGAN, on the other
hand, performs worse. In a direct comparison between StarGAN and Cycle-
GAN, StarGAN achieves higher mAP values overall.

The training times listed in Table 3.3 are only for YOLO and do not include
the time to train the GANs. The training of StarGAN took about 3 days, and
all CycleGAN models together took a bit less than 2 days.

CycleGAN performs worse but has an advantage when adding a domain after
finishing the GAN training, as only one GAN needs to be trained and added.
Additionally, each GAN can be trained individually to the point it translates
images well. In contrast, the entire GAN must be retrained for StarGAN, which
requires more training time.

(a) Pure synthetic dataset (b) Synthetic dataset with 50% StarGAN

Figure 3.2: Precision-recall curves for YOLOv8m with and without GAN

Figure 3.2 displays the Precision-Recall (PR) curves to visualize the purpose
of StarGAN compared to the pure synthetic dataset. Both examples were
trained for 100 epochs on the YOLOv8m model and evaluated on the full real
validation dataset.

A PR curve visualizes the relationship and the trade-off between precision
and recall. The precision metric shows the accuracy and indicates the number
of true positive predictions out of all positive predictions. The recall focuses
on finding all positive examples and measures the proportion of true positive
predictions out of all positive examples.

45

Generally, a model with a better, and therefore higher, PR curve is closer to
the upper-right corner. Figure 3.2b clearly shows the improvement when using
StarGAN compared to the pure synthetic dataset in Figure 3.2a.

The curve also shows the detection of the B&R X20 module, which is in both
cases worse detected than the other modules. With 50% StarGAN, the recall
reaches a maximum of about 0.45, suggesting that the model is missing many
positive examples. This is confirmed after a visual inspection of the predictions.
The module is either predicted with high confidence or not at all. This explains
the line for the B&R X20 in Figure 3.2b, as there are no more precisions for a
recall over 0.45.

3.3 Object Detectors

This section aims to compare different YOLO and Faster R-CNN models. All
YOLO models were trained for 100 epochs, Faster R-CNN for 1000 epochs.
Training them for some more epochs did not increase or decrease the accuracy.

mAP50

Model E
p
oc

h
s

T
ra

in
in

g
T

im
e

In
fe

re
n
ce

T
im

e
(m

s
p
er

im
ag

e)

A
ll

C
la

ss
es

B
ac

h
m

an
n

M
X

21
3

B
ac

h
m

an
n

D
O

23
2

S
ie

m
en

s
E
T

20
0S

P

B
ec

kh
off

C
X

50
10

B
ec

kh
off

C
X

11
00

O
m

ro
n

C
J2

M

B
&

R
X

20

Y
O

LO

YOLOv8n 100 6h 2 79.1 88.1 82.7 90.2 95.3 64.5 85.8 50.0
YOLOv8m 100 12h 7 84.4 91.3 87.0 92.9 96.6 82.3 83.5 57.1
YOLOv8l 100 16h 11 82.7 90.4 87.6 93.4 96.0 66.7 84.9 59.7

Fa
st

er
R

-C
N

N

R50-C4-1x 1000 45min 1040 69.4 55.8 68.6 87.1 92.9 61.7 66.3 53.7
R50-C4-3x 1000 50min 1065 69.4 72.5 69.5 80.7 92.0 53.1 68.6 49.7

R50-FPN-1x 1000 20min 438 73.1 74.5 75.9 85.3 93.9 71.4 75.9 36.2
R50-FPN-3x 1000 20min 468 77.6 69.1 77.6 82.9 93.8 80.7 76.1 62.7

Table 3.4: Results of different YOLO and Faster R-CNN models, 50% of the
training dataset translated with StarGAN

46

YOLO achieves better results than Faster R-CNN as listed in Table 3.4.
YOLOv8m reaches an overall mAP50 of 84.4% for all classes, whereas Faster R-
CNN with the R50-FPN-3x backbone only reaches a mAP50 of 77.6%. However,
training Faster R-CNN is significantly faster with about 20 minutes, compared
to the 12 hours of YOLOv8m.

When comparing the inference time, YOLO clearly has a faster detection per-
formance than Faster R-CNN due to its one-stage algorithm predicting bound-
ing boxes and labels in a single pass. The smallest model (YOLOv8n) detects
objects with an interference time of 2ms per image, and the largest tested
model (YOLOv8l) takes about 11ms. The Faster R-CNN R50-C4 backbone
takes about 1050ms, and the R50-FPN backbone is faster but still takes about
450ms.

The YOLOv8m (medium) model achieves the best results when comparing
different YOLO models. YOLOv8n (nano) achieves a lower mAP but took only
half of the training time compared to YOLOv8m and has the fastest inference
time. YOLOv8l (large) is the largest model, and the accuracy is lower than
YOLOv8m. This may be because the model is too complex for this use case.
When training the smallest YOLOv8n model for a longer duration, the mAP
values did not increase or decrease.

For Faster R-CNN, the R50-FPN-3x backbone has the best performance.
It has a 3x learning rate schedule, compared to R50-FPN-1x, which uses the
same R50-FPN backbone but with a 1x learning rate schedule. The R50-C4
backbone is the original one from the Faster R-CNN and performs worse than
the R50-FPN backbone.

47

4 Summary and Outlook

The results of this project demonstrate that training an object detector based
on CAD files is possible without using real labeled images. Real images are
required to improve the synthetic images with a GAN, but these do not have
to be annotated with bounding boxes and are less time-consuming to be made.

The following section will provide a short summary of the conducted ex-
periments and the results. The last section provides an outlook with possible
improvements and some concluding remarks.

4.1 Summary

The conducted experiments started with the generation of synthetic images.
The initial data is based on CAD files of the PLC modules, which have to
be converted to usable 3D models. These can then be rendered in a rendering
engine, for which Unity was chosen in combination with the Perception Package.
This provides a toolset to generate perfectly annotated images.

Due to the data being initially available as CAD files, the 3D models do not
contain any information on how the texture should be rendered. When directly
rendering them in a scene, they do not look as photo-realistic as the real objects.
To overcome this issue, images are generated with domain randomization. The
idea is to generate images in different scenarios. The object detector should
then learn different representations of the modules and detect the modules on
a real image as it sees the real image as another variation it has been trained
on.

In Unity, custom scripts were developed to control the task of domain ran-
domization. A new scene is generated for each image, composed of three layers.
A background layer is generated with constantly changing objects and tex-
tures. This prevents the object detector from learning any correlation between
the background and the PLC module. A foreground layer displays the PLC
modules in all possible positions with different rotations and sizes. An oc-
clusion layer is put on top of the other layers with randomly generated small
objects. This covers part of the PLC module to learn scenarios where not the
entire module is visible. In a real image, this simulates the cables plugged into
or occluding part of the module.

48

Training the object detector directly on the synthetic data only works when
using high-quality and realistic CAD models. However, some modules of this
project have a big visual difference between the digital and real objects. An
example is the B&R X20 module, which has a CAD model with a gray surface
with correct dimensions, but the real module is black and orange. The object
detector fails to detect this module in a real image when trained on synthetic
data only.

The next experiments researched GANs for the task of image-to-image trans-
lation. They are trained with real and synthetic images of individual modules
and can then translate images between these two domains. CycleGAN was
tested as a GAN that only supports two domains, and a separate GAN must
be trained for each module. Additionally, StarGAN was implemented, which
supports multiple domains and allows the training of one GAN for all PLC
modules.

Using a GAN brought new challenges as the GAN outputs images without
bounding boxes. Since the modules on the output image do not have precisely
the same position and dimension as on the input image, they can not be directly
pasted onto the synthetic image. To ensure this process works for every object,
a pipeline was developed to paste objects back onto the synthetic image by
keeping the exact dimensions and bounding boxes.

When directly comparing CycleGAN and StarGAN, StarGAN achieves better
results and higher accuracy during object detection. CycleGAN struggles with
translating unrealistic CAD models. Overall, translating all images of a dataset
with a GAN results in worse detection accuracy than only translating a part of
the dataset. Translating about 50% of the images of a synthetic dataset with
StarGAN achieves the best results. This also demonstrates the importance of
synthetic data as it is still required and has a positive effect.

Tests then compared the use of a GAN with fine-tuning the synthetic dataset
on real labeled images, and StarGAN still achieves a higher mAP. Only a
small dataset of real images was used for fine-tuning, and a larger dataset
may improve the results. However, this comes with the significant overhead of
needing real and labeled images. The GANs also require real images, but the
images do not have to be annotated with bounding boxes or show the modules
in completely different scenarios.

Different YOLO and Faster R-CNN models were tested and evaluated for
the object detection task. YOLOv8, the newest version of YOLO, achieves
the highest mAP. It detects almost all objects with a mAP50 of 84.4% when
translating 50% of the dataset with StarGAN. It detects most modules even
better than that except the B&R X20 module with a mAP50 of only 57.1%.
This module has the worst CAD quality and is rarely detected without a GAN.

49

Objects with a higher-quality CAD model generally achieve better results than
low-quality ones. Adding a GAN improves the detection rate for all modules,
as all CAD models are missing photo-realistic textures.

When comparing YOLO with Faster R-CNN, YOLOv8 achieves better mAP
values. In addition, YOLO is extremely fast, with an inference time of below 10
milliseconds per image, compared to the over 400 milliseconds with the fastest
Faster R-CNN model. However, it requires more training time, about 12 hours
compared to the 20 minutes for Faster R-CNN. Still, YOLOv8 is the preferred
object detection algorithm for this project.

4.2 Outlook

This thesis demonstrates that object detection with CAD-based synthetic data
is possible. Combined with GANs and some real images, it is a clear alternative
to using only real images during training, even if the CAD models are not photo-
realistic. Generating thousands of synthetic images is significantly cheaper than
creating and labeling real images.

Still, there may be some improvements with further research. The pipeline
to translate synthetic images with a GAN could be further optimized for larger
datasets. The current implementation translates all objects in one image simul-
taneously but not multiple synthetic images at the same time, which is not that
performance optimized. This could be improved by translating larger batches
with a GAN or introducing multithreading. This was no issue for this project,
but it will lead to performance issues when using way more data.

The solution implemented in this project works for PLC modules but could
also be used in other areas. The generation of synthetic images is independent
of the type of object and can easily be adapted. Additionally, not only CAD
models but almost any type of 3D model could be used.

50

Bibliography

[1] S. Borkman, A. Crespi, S. Dhakad, et al., Unity Perception: Generate
Synthetic Data for Computer Vision, arXiv:2107.04259 [cs], Jul. 2021.
doi: 10.48550/arXiv.2107.04259. [Online]. Available: http://arxiv.
org/abs/2107.04259 (visited on 03/23/2023).

[2] S. Hinterstoisser, O. Pauly, H. Heibel, M. Marek, and M. Bokeloh, An
Annotation Saved is an Annotation Earned: Using Fully Synthetic Train-
ing for Object Instance Detection, arXiv:1902.09967 [cs], Feb. 2019. doi:
10.48550/arXiv.1902.09967. [Online]. Available: http://arxiv.org/
abs/1902.09967 (visited on 03/23/2023).

[3] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, Do-
main Randomization for Transferring Deep Neural Networks from Sim-
ulation to the Real World, arXiv:1703.06907 [cs], Mar. 2017. doi: 10.
48550/arXiv.1703.06907. [Online]. Available: http://arxiv.org/abs/
1703.06907 (visited on 04/03/2023).

[4] P. Tang, Y. Guo, H. Li, Z. Wei, G. Zheng, and J. Pu, “Image dataset
creation and networks improvement method based on CAD model and
edge operator for object detection in the manufacturing industry,” Ma-
chine Vision and Applications, vol. 32, Sep. 2021. doi: 10.1007/s00138-
021-01237-y.

[5] I. G. B. Sampaio, L. Machaca, J. Viterbo, and J. Guérin, A novel
method for object detection using deep learning and CAD models,
arXiv:2102.06729 [cs], Feb. 2021. doi: 10.48550/arXiv.2102.06729.
[Online]. Available: http://arxiv.org/abs/2102.06729 (visited on
03/17/2023).

[6] C. Manettas, N. Nikolakis, and K. Alexopoulos, “Synthetic datasets for
Deep Learning in computer-vision assisted tasks in manufacturing,” en,
Procedia CIRP, 9th CIRP Global Web Conference – Sustainable, re-
silient, and agile manufacturing and service operations : Lessons from
COVID-19, vol. 103, pp. 237–242, Jan. 2021, issn: 2212-8271. doi: 10.
1016 / j . procir . 2021 . 10 . 038. [Online]. Available: https : / / www .
sciencedirect.com/science/article/pii/S2212827121008799 (vis-
ited on 04/03/2023).

51

https://doi.org/10.48550/arXiv.2107.04259
http://arxiv.org/abs/2107.04259
http://arxiv.org/abs/2107.04259
https://doi.org/10.48550/arXiv.1902.09967
http://arxiv.org/abs/1902.09967
http://arxiv.org/abs/1902.09967
https://doi.org/10.48550/arXiv.1703.06907
https://doi.org/10.48550/arXiv.1703.06907
http://arxiv.org/abs/1703.06907
http://arxiv.org/abs/1703.06907
https://doi.org/10.1007/s00138-021-01237-y
https://doi.org/10.1007/s00138-021-01237-y
https://doi.org/10.48550/arXiv.2102.06729
http://arxiv.org/abs/2102.06729
https://doi.org/10.1016/j.procir.2021.10.038
https://doi.org/10.1016/j.procir.2021.10.038
https://www.sciencedirect.com/science/article/pii/S2212827121008799
https://www.sciencedirect.com/science/article/pii/S2212827121008799

[7] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, Image-to-Image Translation
with Conditional Adversarial Networks, arXiv:1611.07004 [cs], Nov. 2018.
doi: 10.48550/arXiv.1611.07004. [Online]. Available: http://arxiv.
org/abs/1611.07004 (visited on 03/23/2023).

[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, Unpaired Image-
to-Image Translation using Cycle-Consistent Adversarial Networks,
arXiv:1703.10593 [cs], May 2017. doi: 10.48550/arXiv.1703.10593.
[Online]. Available: http://arxiv.org/abs/1703.10593 (visited on
03/23/2023).

[9] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, Star-
GAN: Unified Generative Adversarial Networks for Multi-Domain
Image-to-Image Translation, arXiv:1711.09020 [cs], Sep. 2018. doi:
10.48550/arXiv.1711.09020. [Online]. Available: http://arxiv.org/
abs/1711.09020 (visited on 03/23/2023).

[10] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha, StarGAN v2: Diverse Image
Synthesis for Multiple Domains, arXiv:1912.01865 [cs], Apr. 2020. doi:
10.48550/arXiv.1912.01865. [Online]. Available: http://arxiv.org/
abs/1912.01865 (visited on 05/19/2023).

[11] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, You Only Look Once:
Unified, Real-Time Object Detection, arXiv:1506.02640 [cs], May 2016.
doi: 10.48550/arXiv.1506.02640. [Online]. Available: http://arxiv.
org/abs/1506.02640 (visited on 05/17/2023).

[12] J. Redmon and A. Farhadi, YOLO9000: Better, Faster, Stronger,
arXiv:1612.08242 [cs], Dec. 2016. doi: 10.48550/arXiv.1612.08242.
[Online]. Available: http://arxiv.org/abs/1612.08242 (visited on
05/29/2023).

[13] J. Redmon and A. Farhadi, YOLOv3: An Incremental Improvement,
arXiv:1804.02767 [cs], Apr. 2018. doi: 10.48550/arXiv.1804.02767.
[Online]. Available: http://arxiv.org/abs/1804.02767 (visited on
05/29/2023).

[14] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, YOLOv4: Optimal Speed
and Accuracy of Object Detection, arXiv:2004.10934 [cs, eess], Apr. 2020.
[Online]. Available: http://arxiv.org/abs/2004.10934 (visited on
05/29/2023).

[15] Ultralytics, YOLOv5, May 2020. doi: 10.5281/zenodo.3908559. [On-
line]. Available: https://github.com/ultralytics/yolov5 (visited on
05/29/2023).

52

https://doi.org/10.48550/arXiv.1611.07004
http://arxiv.org/abs/1611.07004
http://arxiv.org/abs/1611.07004
https://doi.org/10.48550/arXiv.1703.10593
http://arxiv.org/abs/1703.10593
https://doi.org/10.48550/arXiv.1711.09020
http://arxiv.org/abs/1711.09020
http://arxiv.org/abs/1711.09020
https://doi.org/10.48550/arXiv.1912.01865
http://arxiv.org/abs/1912.01865
http://arxiv.org/abs/1912.01865
https://doi.org/10.48550/arXiv.1506.02640
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1506.02640
https://doi.org/10.48550/arXiv.1612.08242
http://arxiv.org/abs/1612.08242
https://doi.org/10.48550/arXiv.1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/2004.10934
https://doi.org/10.5281/zenodo.3908559
https://github.com/ultralytics/yolov5

[16] C. Li, L. Li, H. Jiang, et al., YOLOv6: A Single-Stage Object Detection
Framework for Industrial Applications, arXiv:2209.02976 [cs], Sep. 2022.
doi: 10.48550/arXiv.2209.02976. [Online]. Available: http://arxiv.
org/abs/2209.02976 (visited on 05/29/2023).

[17] C.-Y. Wang, A. Bochkovskiy, and H.-Y. M. Liao, YOLOv7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,
arXiv:2207.02696 [cs], Jul. 2022. doi: 10.48550/arXiv.2207.02696.
[Online]. Available: http://arxiv.org/abs/2207.02696 (visited on
05/29/2023).

[18] Ultralytics, YOLOv8, May 2023. [Online]. Available: https://github.
com/ultralytics/ultralytics (visited on 05/29/2023).

[19] J. Terven and D. Cordova-Esparza, A Comprehensive Review of YOLO:
From YOLOv1 and Beyond, arXiv:2304.00501 [cs], May 2023. doi: 10.
48550/arXiv.2304.00501. [Online]. Available: http://arxiv.org/abs/
2304.00501 (visited on 05/29/2023).

[20] J. Solawetz and Francesco, What is YOLOv8? The Ultimate Guide. en,
Jan. 2023. [Online]. Available: https://blog.roboflow.com/whats-
new-in-yolov8/ (visited on 05/29/2023).

[21] A. Aboah, B. Wang, U. Bagci, and Y. Adu-Gyamfi, Real-time Multi-Class
Helmet Violation Detection Using Few-Shot Data Sampling Technique
and YOLOv8, arXiv:2304.08256 [cs], Apr. 2023. doi: 10.48550/arXiv.
2304.08256. [Online]. Available: http://arxiv.org/abs/2304.08256
(visited on 05/29/2023).

[22] S. Ren, K. He, R. Girshick, and J. Sun, Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks, arXiv:1506.01497
[cs], Jan. 2016. doi: 10.48550/arXiv.1506.01497. [Online]. Available:
http://arxiv.org/abs/1506.01497 (visited on 06/09/2023).

[23] R. Girshick, J. Donahue, T. Darrell, and J. Malik, Rich feature hierarchies
for accurate object detection and semantic segmentation, arXiv:1311.2524
[cs], Oct. 2014. doi: 10.48550/arXiv.1311.2524. [Online]. Available:
http://arxiv.org/abs/1311.2524 (visited on 06/09/2023).

[24] R. Girshick, Fast R-CNN, arXiv:1504.08083 [cs], Sep. 2015. doi: 10 .
48550/arXiv.1504.08083. [Online]. Available: http://arxiv.org/abs/
1504.08083 (visited on 06/09/2023).

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick, Mask R-CNN,
arXiv:1703.06870 [cs], Jan. 2018. doi: 10.48550/arXiv.1703.06870.
[Online]. Available: http://arxiv.org/abs/1703.06870 (visited on
06/09/2023).

53

https://doi.org/10.48550/arXiv.2209.02976
http://arxiv.org/abs/2209.02976
http://arxiv.org/abs/2209.02976
https://doi.org/10.48550/arXiv.2207.02696
http://arxiv.org/abs/2207.02696
https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
https://doi.org/10.48550/arXiv.2304.00501
https://doi.org/10.48550/arXiv.2304.00501
http://arxiv.org/abs/2304.00501
http://arxiv.org/abs/2304.00501
https://blog.roboflow.com/whats-new-in-yolov8/
https://blog.roboflow.com/whats-new-in-yolov8/
https://doi.org/10.48550/arXiv.2304.08256
https://doi.org/10.48550/arXiv.2304.08256
http://arxiv.org/abs/2304.08256
https://doi.org/10.48550/arXiv.1506.01497
http://arxiv.org/abs/1506.01497
https://doi.org/10.48550/arXiv.1311.2524
http://arxiv.org/abs/1311.2524
https://doi.org/10.48550/arXiv.1504.08083
https://doi.org/10.48550/arXiv.1504.08083
http://arxiv.org/abs/1504.08083
http://arxiv.org/abs/1504.08083
https://doi.org/10.48550/arXiv.1703.06870
http://arxiv.org/abs/1703.06870

[26] Z. Cai and N. Vasconcelos, Cascade R-CNN: High Quality Object Detec-
tion and Instance Segmentation, arXiv:1906.09756 [cs], Jun. 2019. doi:
10.48550/arXiv.1906.09756. [Online]. Available: http://arxiv.org/
abs/1906.09756 (visited on 06/09/2023).

[27] A. Jabbar, L. Farrawell, J. Fountain, and S. K. Chalup, “Training Deep
Neural Networks for Detecting Drinking Glasses Using Synthetic Images,”
en, in Neural Information Processing, D. Liu, S. Xie, Y. Li, D. Zhao, and
E.-S. M. El-Alfy, Eds., ser. Lecture Notes in Computer Science, Cham:
Springer International Publishing, 2017, pp. 354–363, isbn: 978-3-319-
70096-0. doi: 10.1007/978-3-319-70096-0_37.

[28] U. Engine, Datasmith, en-US, 2023. [Online]. Available: https://www.
unrealengine.com/en-US/datasmith (visited on 05/01/2023).

[29] UnrealCV, UnrealCV, original-date: 2016-09-08T18:03:51Z, Jul. 2019.
[Online]. Available: https://github.com/unrealcv/unrealcv (visited
on 03/23/2023).

[30] UnrealCV, UnrealCV - Issues, original-date: 2016-09-08T18:03:51Z, Apr.
2023. [Online]. Available: https://github.com/unrealcv/unrealcv/
issues (visited on 05/01/2023).

[31] U. Technologies, About Tessellation, en, 2022. [Online]. Available: https:
//www.pixyz-software.com/documentations/html/2021.1/studio/
AboutTessellation.html (visited on 04/01/2023).

[32] U. Technologies, Synthetic Optimized Labeled Objects (SOLO) Dataset
Schema, 2022. [Online]. Available: https : / / docs . unity3d . com /
Packages/com.unity.perception@1.0/manual/Schema/SoloSchema.
html (visited on 04/07/2023).

[33] T.-Y. Lin, M. Maire, S. Belongie, et al., Microsoft COCO: Common
Objects in Context, arXiv:1405.0312 [cs], Feb. 2015. [Online]. Available:
http://arxiv.org/abs/1405.0312 (visited on 04/07/2023).

[34] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “GANs Trained by a Two Time-Scale Update Rule Converge
to a Local Nash Equilibrium,” in Advances in Neural Information
Processing Systems, vol. 30, Curran Associates, Inc., 2017. [Online].
Available: https : / / papers . nips . cc / paper _ files / paper / 2017 /
hash / 8a1d694707eb0fefe65871369074926d - Abstract . html (visited
on 05/31/2023).

[35] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, Detectron2,
2019. [Online]. Available: https://github.com/facebookresearch/
detectron2.

54

https://doi.org/10.48550/arXiv.1906.09756
http://arxiv.org/abs/1906.09756
http://arxiv.org/abs/1906.09756
https://doi.org/10.1007/978-3-319-70096-0_37
https://www.unrealengine.com/en-US/datasmith
https://www.unrealengine.com/en-US/datasmith
https://github.com/unrealcv/unrealcv
https://github.com/unrealcv/unrealcv/issues
https://github.com/unrealcv/unrealcv/issues
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://www.pixyz-software.com/documentations/html/2021.1/studio/AboutTessellation.html
https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Schema/SoloSchema.html
https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Schema/SoloSchema.html
https://docs.unity3d.com/Packages/com.unity.perception@1.0/manual/Schema/SoloSchema.html
http://arxiv.org/abs/1405.0312
https://papers.nips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://papers.nips.cc/paper_files/paper/2017/hash/8a1d694707eb0fefe65871369074926d-Abstract.html
https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2

List of Acronyms

AP Average Precision

CAD Computer-Aided Design

CNN Convolutional Neural Network

COCO Common Objects in Context

FID Frechet Inception Distance

GAN Generative Adversarial Network

IoU Intersection over Union

YOLO You Only Look Once

mAP mean Average Precision

PLC Programmable Logic Controller

PR Precision-Recall

R-CNN Region-based Convolutional Neural Network

RPN Region Proposal Network

SOLO Synthetic Optimized Labeled Objects

55

List of Figures

1.1 Example PLC modules . 7
1.2 Overview of the CycleGAN model (source: [8]) 9
1.3 Overview of the StarGANv2 modules (source: [10]) 9
1.4 YOLO model (source: [11]) . 11
1.5 Faster R-CNN model (source: [22]) 12

2.1 CAD and real images of used PLC modules 14
2.2 Different tessellation detail levels 18
2.3 Example frame and side view of the Unity scene 20
2.4 Example poses of a PLC module 22
2.5 Synthetic image with and without the occlusion layer 22
2.6 Example synthetic images . 23
2.7 Example GAN training images 25
2.8 Example GAN training images for B&R X20 26
2.9 CycleGAN example translations 28
2.10 Comparison between cycle-consistency losses of CycleGAN . . . 28
2.11 StarGAN image synthesis results 30
2.12 GAN image processing pipeline 32
2.13 Options to transfer the objects from the GAN output image . . 34
2.14 Example images from the real validation dataset 39

3.1 Example YOLO object detection images 42
3.2 Precision-recall curves for YOLOv8m with and without GAN . . 45

56

List of Tables

2.1 CycleGAN training times . 29
2.2 Distribution of instances in the real validation dataset 40

3.1 Overview of the YOLO and Faster R-CNN results 42
3.2 Detailed mAP50 results for all PLC modules 43
3.3 Results evaluated on a smaller real dataset, trained with and

without the use of GANs . 44
3.4 Results of different YOLO and Faster R-CNN models, 50% of

the training dataset translated with StarGAN 46

57

Statuatory Declaration

I declare that I have developed and written the enclosed work completely by
myself, and have not used sources or means without declaration in the text.
Any thoughts from others or literal quotations are clearly marked. This Master
Thesis was not used in the same or in a similar version to achieve an academic
degree nor has it been published elsewhere.

Dornbirn, July 08, 2023 Lukas Lins

58

	Introduction
	Problem Statement
	Aim of the Work
	State of the Art
	GANs
	Object Detectors

	Experiments
	Initial Data
	Synthetic Image Generation
	Rendering Engine
	CAD Model Conversion
	Image Generation

	Image Enhancement With GANs
	Experiments
	Implementation

	Object Detection
	YOLO
	Faster R-CNN
	Real Validation Dataset

	Results
	Overview of Results
	GANs
	Object Detectors

	Summary and Outlook
	Summary
	Outlook

	Bibliography
	List of Acronyms
	List of Figures
	List of Tables

		2023-07-08T11:04:27+0200
	Lukas Lins

