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Abstract

Evaluation of visual inspection tests via object detection.

This thesis evaluates the feasibility of conducting visual inspection tests on
power industry constructions using object detection techniques. The intro-
duction provides an overview of this field’s state-of-the-art technologies and
approaches. For the implementation, a case study is then conducted, which is
done in collaboration with the partner company OMICRON Electronics GmbH,
focusing on power transformers as an example. The objective is to develop an
inspection test using photographs to identify power transformers and their sub-
components and detect existing rust spots and oil leaks within these compo-
nents. Three object detection models are trained: one for power transformers
and sub-components, one for rust detection, and one for oil leak detection. The
training process utilizes the implementation of the YOLOv5 algorithm on a
Linux-based workstation with an NVIDIA Quadro RTX 4000 GPU. The power
transformer model is trained on a dataset provided by the partner company,
while open-source datasets are used for rust and oil leak detection. The study
highlights the need for a more powerful GPU to enhance training experiments
and utilizes an Azure DevOps Pipeline to optimize the workflow. The perfor-
mance of the power transformer detection model is satisfactory but influenced
by image angles and an imbalance of certain sub-components in the dataset.
Multi-angle video footage is a proposed solution for the inspection test to ad-
dress this limitation and increase the size of the dataset, focusing on reducing
the imbalance. The models trained on open-source datasets demonstrate the
potential for rust and oil leak detection but lack accuracy due to their generic
nature. Therefore, the datasets must be adjusted with case-specific data to
achieve the desired accuracy for reliable visual inspection tests. The results of
the case study have been well-received by the partner company’s management,
indicating future development opportunities. This case study will likely be a
foundation for implementing visual inspection tests as a product.
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Kurzreferat

Evaluierung von visueller Inspektionsprüfung durch
Objekterkennung.

In dieser Arbeit wird die Durchführbarkeit von visuellen Inspektionstests an
Konstruktionen der Energiewirtschaft mit Hilfe von Objekterkennungstechniken
evaluiert. In der Einleitung wird ein Überblick über den Stand der Tech-
nik und die Ansätze in diesem Bereich gegeben. Für die Umsetzung wird
dann eine Fallstudie durchgeführt, die in Zusammenarbeit mit dem Partner-
Unternehmen OMICRON Electronics GmbH am Beispiel von Leistungstrans-
formatoren durchgeführt wird. Ziel ist es, einen Inspektionstest zu entwick-
eln, der anhand von Fotos Stromtransformator und deren Bestandteile identi-
fiziert, um dann vorhandene Roststellen und Öllecks in diesen Komponenten
zu erkennen. Es werden drei Objekterkennungsmodelle trainiert: eines für
Stromtransformator und deren Bestandteile, eines für die Rosterkennung und
eines für die Erkennung von Öllecks. Der Trainingsprozess nutzt die Implemen-
tierung des YOLOv5-Algorithmus auf einer Linux-basierten Maschine, die mit
einer NVIDIA Quadro RTX 4000 GPU ausgerüstet ist. Das Modell für den
Stromtransformator wird anhand eines vom Partnerunternehmen bereitgestell-
ten Datensatzes trainiert, während für die Erkennung von Rost und Öllecks
Open-Source-Datensätze verwendet werden. Die Studie unterstreicht den Be-
darf einer leistungsfähigeren GPU zur Verbesserung der Trainingsexperimente
und nutzt eine Azure DevOps Pipeline zur Optimierung des Arbeitsablaufs. Die
Leistung des Modells zur Erkennung von Stromtransformatoren ist zufrieden-
stellend, wird jedoch durch Bildwinkel und ein Ungleichgewicht bestimmter
Unterkomponenten im Datensatz beeinflusst. Die Verwendung von Videoma-
terial mit mehreren Blickwinkeln ist eine vorgeschlagene Lösung für den In-
spektionstest, um diese Einschränkung zu beheben, sowie die Vergrößerung
des Datensatzes mit Schwerpunkt auf die Verringerung des Ungleichgewichts.
Die Modelle, die auf Open-Source-Datensätzen trainiert wurden, zeigen das
Potenzial für die Erkennung von Rost und Öllecks, sind aber aufgrund ihrer
allgemeinen Natur nicht präzise genug. Daher müssen die Datensätze mit fall-
spezifischen Daten angepasst werden, um die gewünschte Genauigkeit für zu-
verlässige visuelle Inspektionstests zu erreichen. Die Ergebnisse der Fallstudie
wurden von der Geschäftsleitung des Partnerunternehmens positiv aufgenom-
men, was auf zukünftige Entwicklungsmöglichkeiten hindeutet. Diese Fallstudie
wird wahrscheinlich eine Grundlage für die Einführung von visuellen Inspek-
tionstests als Produkt sein.
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1 Introduction

In recent years, the rapid advancement of artificial intelligence (AI) has pro-
pelled the field to new heights. AI has become increasingly powerful and ver-
satile, with significant breakthroughs in machine learning algorithms and the
availability of vast datasets. This thesis focuses on object detection, a crucial
task within computer vision. The case study aims to evaluate the capability of
performing visual inspection tests via object detection, using power transform-
ers as a specific example.

The subsequent chapters delve into the problem statement, delimitation, and
business objective, followed by an exploration of the state-of-the-art techniques,
ranging from the fundamental concepts of neurons to the YOLO algorithm. The
report further outlines the implementation and experimental setting, describ-
ing the technologies used and the conducted experiments for the implementa-
tion. Subsequently, the experimental results are presented, providing a detailed
overview of the outcomes obtained from the implementation. These results are
then critically discussed, evaluating their implications and addressing potential
limitations. Finally, the thesis concludes with a summary of the findings and
an outlook for future research and development.

1.1 Partner company

This case study is undertaken in collaboration with OMICRON Electronics
GmbH. This company has developed a keen interest in projects related to arti-
ficial intelligence (AI) as the field has witnessed significant advancements. The
company develops test equipment for testing, protection, and measurement
devices in the power industry. The power industry, or the energy industry, en-
compasses various activities related to generating, transmitting, distributing,
and utilizing electrical power. It plays a vital role in meeting the energy de-
mands of societies, powering homes, businesses, industries, and infrastructure
worldwide. OMICRON’s offerings consist of hardware and software products,
and they are recognized for their extensive market presence, selling their prod-
ucts in over 160 countries across the globe.
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An exemplary product in this context is the Primary Test Manager (PTM), de-
signed as a comprehensive management tool for testing various assets, including
power transformers, circuit breakers, and current transformers. It serves as a
control system for automated test procedures and streamlines the testing pro-
cess by providing step-by-step guidance to users through test workflows. The
PTM is a software suite and can be used with various test systems, including
the CPC 100, as shown in Figure 1.1. The CPC 100 is a hardware solution for
diagnostic tests on multiple assets. While tests can be performed directly on
the CPC 100, leveraging the PTM simplifies the testing process and provides
additional features.

When using the PTM, users can generate test plans specific to their require-
ments. These test plans outline the steps and procedures for conducting tests,
ensuring a systematic approach. Additionally, the PTM generates compre-
hensive reports that provide detailed insights and analysis of the test results.
This helps users understand the performance and condition of the tested assets.

Furthermore, the PTM facilitates the integration of asset data into a central-
ized database. This allows for easy access and management of the test data,
providing a comprehensive view of the assets’ testing history and enabling effi-
cient tracking of any changes or trends over time.

In summary, the PTM software suite enhances the testing process when used
in conjunction with devices, such as the CPC 100 test system. It simplifies
testing by providing customized test plans, generating comprehensive reports,
and integrating asset data into a database for better management and analysis.

Figure 1.1: CPC 100
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1.2 Problem

The energy industry is experiencing significant changes, with the growing use
of renewable energy sources leading to a distributed approach to energy gener-
ation, distribution, and transmission. In recent years, there has been a surge
in the construction of small substations, with more anticipated, while existing
substations require maintenance and extension to meet future expectations.
Furthermore, the industry faces a talent gap, with many engineers approaching
retirement and difficulty attracting new talent to manage the energy transition.

Effective maintenance of individual assets in the power system requires suf-
ficient data to plan and execute maintenance activities. In addition to oper-
ational data, monitoring data (online data) and offline data are needed. Two
primary approaches to asset maintenance exist; the time-based approach, which
involves carrying out tests, revisions, and repairs on assets within predefined
time windows, and the event-based approach, which consists of planning tests,
overhauls, and repairs based on online measured data from monitoring devices.
Visual inspection carried out regularly plays a vital role in maintenance activi-
ties. It involves checking if the equipment behaves appropriately and identifying
signs of corrosion, oil leakage, burn marks, or other issues. Infrared cameras are
often used to identify hot spots on equipment. Visual inspection is subjective
and often based on a classification task, with a key ranging from one to five or
a traffic light system.

With the energy network’s rapid expansion, finding and retaining talent for
visual inspection is expected to become increasingly difficult. Additionally,
visual inspection is inherently subjective, making obtaining consistent and ob-
jective results challenging. However, object detection technology can address
these issues by providing more objective outcomes. By employing object de-
tection techniques, a visual inspection can be enhanced, leading to improved
objectivity in the results obtained. The primary goal is to support the decisions
made by test engineers and mitigate wrong choices rather than fully automate
the testing process. Complete automation would demand high accuracy and
compliance with legal requirements, which can be complex and challenging.
However, it is essential to note that human expertise and judgment are still
crucial in the decision-making process, as certain factors may require subjec-
tive interpretation.

The following part of this section gives an overview of the power industry’s
critical components used in this study.
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The power transformer is an essential asset in electrical energy distribution and
transport. It has the task of transforming the voltage generated by the power
plants to a higher voltage level for transport. It also transforms the voltage for
the distribution and the consumers to a lower voltage level. Furthermore, the
power transformer often has the highest criticality rating compared to the other
assets in the electrical power grid. These other assets are mainly current trans-
formers, voltage transformers, and circuit breakers. Figure 1.2 shows the main
components of a power transformer. Here, a three-phase two-winding trans-
former is shown, which has a tap changer (6) in detail. Three-phase means
that the transformer has a three-leg core (1). Two-winding in this context
means the transformer has a primary (3) and a secondary (2) winding. The
low voltage side has the low voltage bushings (4), and the high voltage side
has the high voltage bushings (5). In addition, this transformer has an ex-
pansion tank for the oil. Finally, this transformer has a cooling system (8), in
this example, even with radiators [1]. There are several cooling methods for

Figure 1.2: Three-phase Two-winding Power Transformer. (Source: [1])

liquid-immersed power transformers available. A four-letter code describes the
cooling class in more detail [2].
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First letter: Internal cooling medium:

• O: mineral oil or synthetic insulating liquid with fire point below 300 °C

• K: insulating liquid with fire point > 300 °C

• L: insulating liquid with no measurable fire point

Second letter: Circulation mechanism for internal cooling medium:

• N: natural thermosiphon flow through cooling equipment and in windings

• F: forced circulation through cooling equipment, thermosiphon flow in
windings

• D: forced circulation through cooling equipment, directed from the cooling
equipment into at least the main windings

Third letter: External cooling medium:

• A: air

• W: water

Fourth letter: Circulation mechanism for external cooling medium:

• N: natural convection

• F: forced circulation (fans, pumps)

1.3 Delimitation

The main aim of this study is to conduct an image-based visual inspection
focusing on power transformers, which are critical components in the energy
industry for power transmission and distribution. The study aims to identify
various features of power transformers, including bushings, surge arresters, oil
expansions, and cooling systems within photographs. Additionally, it aims to
detect two specific potential flaws: oil leaks and corrosion. The objective is to
demonstrate the feasibility of object detection for visual inspection tests with-
out initially requiring high precision. Any specific restrictions or requirements
regarding picture conditions, such as weather, time of day, or angles, have not
been imposed, as the available photos were not acquired specifically for this
project but were collected from various sources. However, if this study reveals
that such conditions significantly impact the results, they may be considered
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requirements for future development.

Upon discussing the desired outcome with the partner company, it has been
determined that a traffic light system will suffice as an initial evaluation for
the visual inspection tests. This system categorizes the inspection results into
green, yellow, and red levels, representing good condition, potential issues, and
clear failures. By employing this simplified and intuitive approach, quick de-
cisions can be made based on the categorized levels while acknowledging that
further analysis may still be required in some instances.

1.4 Business Objective

The business objective of this project is to develop a web service that offers
image-based visual inspection classification as a service. The service is intended
to receive images from clients, resulting in documentation of the classified data
and a test report. The primary purpose of this service is to achieve objectivity,
standardization, and documentation of the visual inspection task, ultimately
providing clients with reliable and consistent results.

15



2 State of the Art

This chapter presents a comprehensive overview of the current state of the art
in machine learning applied to visual inspection tests. It is divided into several
subchapters, each focusing on a key aspect relevant to visual inspection. The
subchapters cover various topics, including an exploration of different types of
machine learning approaches, an introduction to the importance of data la-
beling and data augmentation, and the significance of monitoring. Next, the
chapter delves into neural networks, followed by recurrent neural networks and
convolutional neural networks, widely used for object detection. Lastly, the
popular YOLO (You Only Look Once) algorithm and its evolution from the
first to the fifth version are introduced.

By examining these different areas, this chapter establishes a strong foundation
and understanding of the latest advancements and methodologies in machine
learning for visual inspection tests. This chapter serves as a vital foundation
for the subsequent chapters, as successfully implementing the visual inspection
tests relies on the knowledge presented here. Understanding state of the art
in machine learning techniques, data labeling, data augmentation, monitoring,
neural networks (including recurrent neural networks and convolutional neural
networks), and the YOLO algorithm is essential for conducting effective visual
inspection tests. The necessary knowledge to delve into the practical applica-
tion of visual inspection in the following chapters is provided by comprehending
the concepts and methodologies discussed in this chapter.

2.1 Machine Learning Types

Machine learning can be broadly classified into two main types: supervised
and unsupervised. In supervised learning, algorithms learn to predict outputs
by observing labeled data, making it valuable for classification, regression, and
prediction tasks. On the other hand, unsupervised learning algorithms operate
on unlabeled data, which contains features utilized to discover patterns, rela-
tionships, and structures within the data [3, p. 104-105]. In this case study,
there is access to labeled data specifically for object detection, which makes
supervised learning the primary focus of this thesis.
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2.2 Data Labeling

For the implementation of this case study, labeled data is available. Therefore,
this chapter gives a comprehensive introduction to the data labeling process.

Data labeling is an essential pre-processing step for training a supervised ma-
chine learning model. This process involves annotating the available data for
training and validation by adding bounding boxes or other annotations to pro-
vide the necessary context for the models. The most common formats for an-
notating data are JSON, Pascal VOC, which stores the annotations in an XML
file, and YOLO, which stores annotations in a text file. Although data labeling
may seem straightforward, training a high-quality machine learning model re-
quires significant effort, particularly for large datasets. Different approaches for
companies to perform data labeling with different benefits are presented below.

• Internal Labeling - Internal experts label the data, which provides
high-quality labels but requires a lot of time and resources.

• Synthetic Labeling - New labeled data is generated from existing datasets
which is time efficient but requires extensive computing power.

• Programmatic Labeling - Scripts are used to label data which reduces
the required time but must be verified by quality insurance to detect
technical errors.

• Outsourcing - A common way is to outsource the process to freelancers,
which still can take time but saves internal resources.

• Crowd-sourcing - This is distributed web-based and is a quick approach
to label data which is also cost-effective but can lack in quality of the
labels. Recaptcha is the most famous example of crowd-sourcing, where
users identify images with a certain asset to prove that they are not a
bot.

The most significant trade-off in data labeling is between label quality, which
affects model accuracy, and the associated costs and time required for imple-
mentation [4]. The data for this case study has been labeled by domain experts
from the partner company.

2.3 Data Augmentation

Data augmentation techniques were applied to enhance the performance of the
models employed in this case study. Consequently, this chapter presents an
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introduction to data augmentation.

Insufficient training data can lead to overfitting in machine learning models.
More precisely, overfitting occurs when a machine learning model excessively
tailors itself to the training data, reducing generalization performance on un-
seen data. Data augmentation is a method that artificially increases the amount
of available data by applying random transformations to the existing data. By
introducing such modifications, each image is essentially altered and rendered
unique, reducing the likelihood of overfitting and improving the model’s gener-
alization ability.

Frequently used data augmentation methods in machine learning include rotat-
ing, flipping, cropping, scaling, adjusting brightness, saturation, and contrast,
manipulating color schemes, and introducing noise. Rotating images at differ-
ent angles helps capture object orientation variations, and flipping enhances
the model’s ability to generalize across different object orientations. Cropping
allows for diverse viewpoints and focuses on specific object features. Scaling
helps the model handle objects of various sizes, and adjusting brightness, sat-
uration, and contrast enables better recognition under different lighting condi-
tions. Manipulating color schemes and introducing noise improve the model’s
ability to handle variations in color, texture, and background noise encountered
in real-world scenarios. These techniques augment the dataset, enhance model
performance, and increase robustness. It is worth noting that data augmenta-
tion offers a wide range of possibilities beyond these techniques [5, p. 138-142].

2.4 Monitoring

Monitoring the machine learning training process is a critical aspect of model
development. It involves closely observing and analyzing the model’s perfor-
mance and behavior during training. Callback functions provide the required
information to receive feedback on the model’s learning state. This feedback
helps to improve the model’s training, as many things can not be predicted
from the start.

One frequently used callback function to optimize training time is "early stop-
ping." This function interrupts the training process if the validation loss fails
to improve for a specified number of epochs and stores the epoch with the
best training result. Another valuable callback is the "logging of training and
validation metrics," which captures the metrics achieved in each epoch. This
information can be utilized to visualize the training progress through various
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graphs, providing valuable insights into the training process [6, p. 249-256].
Géron [7, p. 90-97] provides a comprehensive overview of various performance
measures; two common metrics used in this case study are described below.

• Confusion Matrix - Counts the number of times instances of class A are
classified as class B, showing the number of times the classifier confused
between two classes. The predicted classes are listed on the vertical axis,
and the expected classes are on the horizontal axis. The fields in the
diagonal from top left to bottom right show the number of true positive
values, illustrated in Figure 2.1

• Precision and Recall - Precision measures the proportion of correctly
predicted instances out of the total predicted instances. In contrast, recall
measures the proposition of correctly predicted instances out of the total
actual positive instances. The precision and recall curve visualizes the
trade-off between the two values. Figure 2.2 shows how this curve can
look. The two metrics are often combined into the F1 score, the harmonic
mean of precision and recall.

Figure 2.1: Example of Confusion Matrix representing four Classes. (Source:
[8])
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Figure 2.2: Example of Precision and Recall Curve. (Source: [9])

2.5 Neural Networks

This chapter delves into neural networks, comprehensively exploring their his-
tory, biological foundations, and artificial implementations. The chapter is
divided into several subchapters, each focusing on a key aspect of neural net-
works. It begins with an overview of the historical development of neural net-
works, tracing their evolution from early inspirations to their modern-day ap-
plications. Subsequently, the subchapter on biological neurons delves into the
fundamental workings of neurons in the human brain, elucidating their role as
the inspiration for artificial neural networks. The following section explores
the concept of the artificial neuron, explaining its structure and functionality
in the context of neural network models. Additionally, the subchapter on the
Threshold Logic Unit delves into this specific type of artificial neuron, highlight-
ing its role in early neural network models. It further discusses the activation
function, loss function, and gradient descent, which are vital components for
training neural networks. Finally, the chapter delves into the Multilayer Per-
ceptron (MLP) and backpropagation; these are crucial components of modern
neural networks. By dissecting these subtopics, this chapter provides a com-
prehensive understanding of the historical foundations, biological inspiration,
and key components that form the building blocks of neural networks.
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2.5.1 History

Neural networks, also called ANN (Artificial Neural Networks), were introduced
in 1943 by neurophysiologist Warren McCulloch and mathematician Walter
Pitts [10]. The Idea behind ANNs is to transform how biological neurons in
animal brains might work into a simplified computational model. After the
introduction of ANNs, there was a strong belief that the technology would lead
to intelligent machines. However, in the 1960s, this belief faltered, and ANNs
disappeared from the scene. In the 1980s, ANNs reappeared with new archi-
tectures, but the interest in ANNs stopped again in the 1990s. This was due
to the development of powerful machine learning technologies, such as support
vector machines. Nowadays, the interest in ANNs is again increasing rapidly
for the following reasons. A vast quantity of data has been collected over the
last few years, which can be used to train neural networks for complex prob-
lems. The computing power since 1990 has increased significantly, as has the
performance of GPU cards, which can be used for training. As a result of
these advancements, training large neural networks within a reasonable time
frame has become achievable. Over time, the algorithms used for training have
constantly improved by minor changes, which had a tremendous positive im-
pact. Lastly, the notable success of recent projects using ANNs has generated
significant attention and funding, which increases the progress for further ad-
vancements [7, p. 279-281].

2.5.2 Biological Neuron

The functionality of artificial neurons is based on biological neurons of ani-
mal brains, as shown in Figure 2.3. Therefore, their functionality is briefly
explained. A biological neuron consists of a cell body containing the nucleus
and most complex components of the cell, many dendrites, the branching ex-
tensions, and the axon, the longest extension. At the end of the axon, it splits
into multiple branches called telodendria, and these branches end in minuscule
structures called synaptic terminals, also called synapses. The synapses are
connected to the dendrites of other cell bodies. Signals between the cell bod-
ies are transmitted over the axons by impulses called action potentials (APs).
When a neuron receives a signal, it releases its electrical impulse. One indi-
vidual neuron seems simple, but the brain connects billions into a complex
network where one neuron is connected with thousands of other neurons. Due
to this complex network, highly complex computations can be performed [7, p.
281-283].
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Figure 2.3: Biological Neuron. (Source: [7])

2.5.3 Artificial Neurons

An illustrative example is provided to improve the understanding of how arti-
ficial neurons function by demonstrating networks that compute logical oper-
ations. The artificial neurons in this example have one or many binary inputs
and one binary output. The output is activated if a certain number of the inputs
is active. Connecting these simple units of neurons makes it possible to con-
struct networks that can compute any logical operation. Four small networks of
artificial neurons, depicted in Figure 2.4, can compute any logical proposition.
The neurons in this example are activated when at least two of their input are
active. In the first network, the identity function is implemented, whereby the
activation of neuron A leads to the activation of neuron C. The second network
represents a logical AND operation, where the activation of both neurons A and
B results in the activation of neuron C. The third network embodies a logical
OR operation, with the activation of either neuron A or neuron B leading to
the activation of neuron C. Lastly, the fourth network functions as a logical
NOT operation, where the activation of neuron A and the deactivation of neu-
ron B cause the activation of neuron C. These basic networks can create more
complex networks that compute complex logical expressions [7, p. 283-284].
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Figure 2.4: Logical computations through Artificial Neural Networks. (Source:
[7])

2.5.4 Threshold Logic Unit

Threshold logic units (TLUs) seen in Figure 2.5 are another form of artifi-
cial neurons used in ANN Architectures. In contrast to artificial neurons, the
inputs and outputs of TLUs are numbers, and each input includes a weight.
They evaluate the sum of inputs, including their corresponding weights, and
subsequently generate an output by applying a step function. A single TLU
can perform a simple binary classification by computing a linear combination
of inputs, generating positive or negative output based on a specific threshold
[7, p. 284-285].

Figure 2.5: Threshold Logic Unit. (Source: [7])

2.5.5 Activation Function

An activation function is a mathematical function applied to the inputs of a
neuron, determining its output. It plays a vital role in neural networks by intro-
ducing non-linearity, enabling the modeling of complex data patterns. Selecting
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the appropriate activation function is critical when designing neural networks,
as different functions are suited for other target variables. Figure 2.6 shows
pictorial representations of various activation functions. The most basic func-
tion is the identity function, which provides no non-linearity. This function is
mainly used when the output’s target value is real. During the early stages of
neural network development, the sign, sigmoid, and hyperbolic tangent (Tanh)
functions were commonly employed as the traditional activation functions.

The sign activation function assigns a negative one for values below zero and
one for values above zero, making it useful for binary outputs. The sigmoid
activation function produces values between zero and one, allowing them to
be interpreted as probabilities. The tanh activation function is similar to sig-
moid but extends to negative values between minus one and one. However,
the functions rectified linear unit (ReLU) and hard tanh have largely replaced
sigmoid and tanh activation functions over time. These replacements offer com-
putational efficiency, making them more suitable for training large-scale neural
networks [11, p. 31-33]. Due to the ongoing advancements in this field, new ac-
tivation functions are regularly being introduced. In this case study, the YOLO
algorithm is employed, which will be described at the end of this chapter. The
algorithm’s standard implementation incorporates an updated version of the
ReLU, the leaky ReLU, as the activation function. Leaky ReLU introduces a
slight slope for negative values instead of being limited to zero, as illustrated
in Figure 2.7. This updated function addresses a limitation of the ReLU and
prevents the neurons from saturating [11, p. 153-154].

Figure 2.6: Various Activation Functions. (Source: [11])
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Figure 2.7: Leaky ReLU. (Source: [12])

2.5.6 Loss Function

The loss function, also called the cost function, is a mathematical tool to quan-
tify the discrepancy between the algorithm’s current output and the desired
output. It plays a crucial role in evaluating the algorithm’s data modeling
capabilities. The loss function can be classified into two groups based on the
nature of the task. The first group contains the loss functions for classifica-
tion tasks involving discrete values. The second group includes loss functions
for regression tasks involving continuous values. These categories allow for the
appropriate selection of the loss function that aligns with the specific modeling
objectives and the characteristics of the data being analyzed. Cross-entropy is
a commonly used loss function for classification tasks, which uses the negative
logarithm to amplify the difference between the predicted and true probability.
When the prediction gets closer to the true value, the loss decreases. The mean
square error (MSE) is a commonly used loss function for regression tasks. The
MSE calculates the difference between predicted and actual values and squares
the results. Then it calculates the mean of all squared differences to provide
an overall measure of the model’s performance [13]. For this case study, the
YOLOv5 implementation by Jocher [14] is employed, which is described in more
detail later in this chapter. This implementation utilizes the cross-entropy loss
function to calculate the classification loss.
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2.5.7 Gradient Descent

Gradient Descent is a generic optimization algorithm that aims to find the best
solutions for various problems. Its core principle involves iteratively adjusting
parameters to minimize a loss function. To illustrate this concept, Geron [7]
provides a relatable analogy where someone finds themselves lost in a dense fog
on mountainous terrain, relying solely on sensing the slope beneath their feet.
In such a situation, the most effective strategy to reach the valley quickly would
be to descend along the steepest slope. This parallels the behavior of Gradient
Descent, which calculates the local gradient of the error function concerning
the parameter vector and moves in the direction of the descending gradient.
The size of the steps during the optimization process is determined by a hyper-
parameter called the "learning rate." The process continues until the gradient
reaches zero, indicating the minimum has been reached. Initially, the parame-
ter values are randomly initialized, then gradually refined through incremental
adjustments to decrease the loss function. This iterative refinement continues
until the algorithm converges to a minimum [7, p. 118-121]. Figure 2.8 visually
represents the optimization process.

Figure 2.8: Depiction of Gradient Descent. (Source: [7])

2.5.8 Multilayer Perceptron and Backpropagation

A Multilayer Perceptron (MLP), as seen in Figure 2.9, is an ANN architecture
that consists of multiple layers. It consists of one input layer containing input
neurons and a bias neuron, one or many hidden layers containing TLUs and a
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bias neuron, and one output layer composed of TLUs. The layers close to the
input are often referred to as lower layers, and the ones close to the output as
upper layers.

Figure 2.9: Multilayer Perceptron. (Source: [7])

To train an MLP, the backpropagation training algorithm is used, published in
1986 by David Rumelhart, Geoffrey Hinton, and Ronald Williams. The main
concept of the algorithm is that it computes the gradients passing the network
two times (forward and backward) and optimizes each weight and bias to re-
duce the error.

The following is a brief description of how the algorithm works. In the be-
ginning, all weights in the hidden layers are randomly initialized. Then the
network is passed forward by a certain number of instances called mini-batch
multiple times, where every neuron computes the output for each instance. All
the intermediate results are stored, and a loss function calculates the network’s
output error. A loss function is required to evaluate the error by comparing the
network’s actual output with the desired output. Subsequently, the network is
passed backward, computing the influence on the error of each output and the
error gradient across all connections. Finally, a Gradient Descent is performed
on the error gradient to optimize each weight in the network. This passing is
repeated multiple times, and a single passing is called an epoch. Additionally,
the step function inside the TLUs is replaced with an activation function, most
commonly the logistic (sigmoid) function. This is a significant change as the
step function contains flat segments on which the Gradient Descent can not
move, as the logistic function has a non-zero derivative throughout the gradi-
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ent, which allows the Gradient Descent to make some progress at every step [7,
p. 289-291].

2.6 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are designed to handle sequential data,
where the order of the data matters. They work by saving the output of a layer
and feeding it back to the input to predict the output of the layer. Figure 2.10
illustrates a Recurrent Neural Network (RNN), presented on the left side, and
the same RNN displayed as an unfolded computational graph on the right side.
The input values are denoted by "x" and the output by "o." The "L" value
represents the loss function that evaluates the difference between the output
and the corresponding target value "y." The weights are represented by "W."
Common applications of RNNs are language modeling, speech recognition, and
machine translation.[3, p.378-381].

Figure 2.10: Recurrent Neural Network Architecture. (Source: [3])
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2.7 Convolutional Neural Networks

Convolutional and pooling layers are included to transition from a neural net-
work to a convolutional neural network (CNN). CNNs are capable of process-
ing data with a grid-like topology. For example, time-series data can be in-
terpreted as a one-dimensional grid, and image data can be interpreted as a
two-dimensional grid of pixels. The network’s name is based on the convolution
operation performed, which is a mathematical operation.

CNNs play a crucial role in Computer Vision (CV). CV is a field of study
and technology that focuses on enabling computers to extract and understand
visual information from digital images or videos, mimicking human visual per-
ception. By employing advanced algorithms and machine learning techniques,
computer vision systems can analyze and interpret visual data, recognize ob-
jects, detect patterns, and even understand complex scenes. In the last two
decades, the development of computer vision research has been rapid. At the
same time, mathematical techniques to recover three-dimensional shapes and
appearances in images have also developed. While significant progress has been
made, current technologies still need to be able to describe a photograph with
the same level of detail as a human. However, computer vision continues to
find widespread applications in various real-world scenarios [15, p. 3-10].

The main components of the standard architecture of a CNN, seen in figure
2.11, are convolutional layers, pooling layers, and a fully connected layer, and
by stacking convolutional and pooling layers, the network gets deeper [3, p.
330-331].

Figure 2.11: Standard Architecture of a CNN. (Source: [16])
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2.7.1 Convolutional Layer

The convolutional layer performs a convolution, a mathematical operation, on
the input. This operation uses a filter, which is also known as a kernel. A
common approach used to preserve the spatial dimensions of the input volume
is padding. When padding is applied, additional border pixels are added around
the input before the convolution operation is performed, ensuring that the
output feature map is the same size as the input. The kernel has a defined
width and height and is initialized with values. A multi-dimensional filter
called kernel map is applied if the input has more than one dimension, such as
an RGB input with three dimensions. The filter is applied to the input grid
starting from the top left corner, and it calculates the dot product between the
filter and the corresponding input cells. Then the result is stored in a new two-
dimensional grid called a feature map. Subsequently, an activation function is
applied to ensure non-linearity. The most common activation function is the
rectified linear unit, also called ReLU, which will be further described later in
this chapter. As illustrated in Figure 2.12, this process is repeated by shifting
the filter by one cell and performing the dot product calculation until the entire
input grid is covered and the feature map is complete. The process occurs
within the first and third cubes labeled "convolution + ReLU" in Figure 2.11
and is applied multiple times with different kernels or kernel maps. Notably,
the depth of the outputs from the convolutional layers increases because various
filters are used, and the resulting feature maps are then concatenated to form
a three-dimensional output [3, p. 331-334].

Figure 2.12: 2-D Convolution. (Source: [3])
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2.7.2 Pooling Layer

The pooling layer of a convolutional neural network (CNN) modifies the fea-
ture map created in the previous convolutional layer by reducing its spatial
dimensions. This operation aims to extract the essential information from the
feature map while discarding some of the less important details. This process
is depicted in Figure 2.11, through the second and fourth cubes labeled as
"pooling." It helps to prevent overfitting, as the number of parameters in the
network is reduced, and to introduce some translation invariance. Translation
invariance means that the network will recognize the same feature regardless
of where it is located in the input image. A potential downside of the layer is
that it can cause a loss of information, particularly in cases where the window
is large.

To reduce the spatial dimension, small rectangular regions, also called win-
dows, of the feature map are taken, reduced to one value, and stored for the
output. Standard sizes for the window are 2x2 or 3x3, and they are moved along
the feature map with a defined step size called "stride." Two common types of
pooling are max pooling and average pooling. In max pooling, illustrated in
Figure 2.13, the maximum value within the window is selected as the output
value, while in average pooling, the average value is used [3, p. 339-345].

Figure 2.13: Illustration of Max Pooling. (Source: [17])

2.7.3 Fully Connected Layer

The previous layer’s output is flattened to a single vector in the fully connected
layer, called the dense layer. The single vector is then fully connected to a hid-
den layer to increase the attributes for the prediction. The hidden layer is then
connected to neurons, each representing a class to be predicted. A probability
distribution is calculated to predict the likelihood of an input belonging to a
particular class by applying a softmax function to the output [18]. This process
is illustrated in the right section of Figure 2.11.
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2.8 YOLO

Joseph Redmon introduced YOLO, an object detection architecture with ex-
ceptional speed and accuracy, in a 2015 paper. YOLO stands for "you only
look once," as it performs object detection of various objects by predicting the
objects in a single algorithm run. Over the years, the algorithm has improved,
resulting in multiple versions [7, p. 489]. The most recent version of the al-
gorithm is YOLOv8. Due to its speed, it can detect objects in real-time on
videos.

2.8.1 Unified Detection

In YOLO, object detection components are combined into a single neural net-
work. By utilizing the entire image’s features, the network predicts bound-
ing boxes and simultaneously indicates them for all classes in the image. This
global reasoning allows the network to consider the entire image and its objects.
YOLO’s design, seen in Figure 2.14, enables end-to-end training, real-time pro-
cessing, and high average precision. The system divides the input image into a
square grid with a specified size, where each grid cell is responsible for detecting
an object if its center falls into that cell. Each grid cell predicts bounding boxes
and confidence scores. These confidence scores indicate the model’s certainty
about an object’s presence and its predicted box’s accuracy. The confidence
score is defined by multiplying the probability for an object with the IOU (In-
tersection Over Union) truth prediction, with a value of zero if no object exists
in the cell [19].

Figure 2.14: YOLO Model. (Source: [19])
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For each bounding box, YOLO provides five predictions: x, y, w, h, and con-
fidence. The (x, y) coordinates define the box’s center relative to the grid cell
bounds, while the width and height are predicted relative to the entire image.
The confidence prediction represents the IOU between the predicted box and
any ground truth box. In addition, each grid cell predicts conditional class
probabilities, which are conditioned on the presence of an object within the
cell. Despite the number of boxes, only one set of class probabilities is predicted
per grid cell. During testing, the algorithm computes class-specific confidence
scores for each box by multiplying the conditional class probabilities, individual
box confidence predictions, and the IOU truth prediction. These scores reflect
the likelihood of a specific class appearing in the box and the accuracy of the
predicted box’s fit to the object [19].

2.8.2 Network Design

For the network design, a convolutional neural network is utilized. The initial
convolutional layers of the network extract features, and the fully connected
layers predict the output’s probabilities and coordinates. The network con-
sists of 24 convolutional layers and two fully connected layers inspired by the
GoogLeNet image classification model. GoogLeNet is a neural network architec-
ture introduced in the paper "Going deeper with convolutions" [20], by Google
in 2014. A fundamental building block of the architecture is the inception mod-
ule. The inception module uses parallel convolutional layers of different filter
sizes (1x1,3x3,5x5) to capture features at different spatial scales. The outputs
of the inception model are concatenated and fed into the subsequent layer. In-
stead of using inception modules like GoogLeNet, YOLO employs 1x1 reduction
layers, followed by 3x3 convolutional layers [19]. The network architecture is
illustrated in Figure 2.15.

Figure 2.15: YOLO Architecture. (Source: [19])
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Additionally, a faster version of YOLO (You Only Look Once) for object de-
tection aims to achieve faster processing speeds. This version utilizes a neural
network with nine convolutional layers, reducing the number of filters in those
layers compared to the original YOLO. The training and testing parameters
remain the same for YOLO and Fast YOLO. The network output is a 7x7x30
tensor containing predictions for object probabilities and coordinates [19]. Ac-
cording to Goodfellow [3], a tensor is defined as an array of numbers arranged
on a regular grid with a variable number of axes.

2.9 Evolutionary Progression of YOLO

In this case study, the fifth version of YOLO was implemented utilizing the
code provided by Jocher [14]. Therefore, this chapter gives an overview of the
algorithm’s improvements in each iteration up to the fifth version.

2.9.1 YOLOv2

YOLOv2, also called YOLO9000 due to the reason that it could detect 9000
categories, was published in the paper "YOLO9000: Better, Faster, Stronger"
[21] by Joseph Redmon and Ali Farhadi in the year 2016. The second version
came with various improvements to improve the algorithm, keep the speed, and
make it stronger. The improvements were the following:

• Batch Normalization - This was performed on all convolutional layers
and reduced overfitting.

• High-resolution Classifier - In YOLOv1, the model was pre-trained
with ImageNet [22], a large database with more than 14 million images at
a resolution of 224 x 224. The improvement was to finetune the model over
ten epochs with a resolution of 448 x 448, which improved the performance
on higher-resolution inputs.

• Fully Convolutional - The architecture shifted from dense layers to a
fully convolutional architecture.

• Anchor Boxes - These are predefined shapes that match prototypical
object shapes and are used in object detection. Each grid cell has mul-
tiple anchor boxes, and the system predicts the coordinates and class for
each anchor box, with the network output size being proportional to the
number of anchor boxes per grid cell.
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• Dimension Clusters - The authors improved bounding box prediction
accuracy by utilizing k-means clustering on training bounding boxes to
select five prior boxes, balancing recall and model complexity.

• Finner-grained Features - Compared to YOLOv1, one pooling layer
was removed to obtain a feature map of 13 x 13 for the input image with
a resolution of 416 x 416. Additionally, a passthrough layer that stacks
adjacent features into different channels is utilized with finner-grained
features.

• Multi-scale training - No fully connected layers are used. Therefore,
different input sizes could be used, and the model could be trained more
robustly using different input sizes.

These improvements increased the average precision (AP) by 15.2 percent on
the Pascal VOC2007 dataset [23].

2.9.2 YOLOv3

YOLOv3 was published in the paper "YOLOv3: An Incremental Improvement"
[24] by Joseph Redmon and Ali Farhadi in the year 2018. The third version
included a bigger architecture while keeping the real-time performance. The
changes compared to YOLOv2 are described in the following:

• Bounding Box Prediction - The bounding box prediction was im-
proved by predicting an objectness score for each bounding box via lo-
gistic regression. This notes the anchor box with the highest overlap to
the ground truth as one and the other anchor boxes as zero. This score
assigns only one bounding box to each ground truth, resulting in a faster
network.

• Class Prediction - For the classification, binary cross-entropy was used,
allowing the assignment of multiple labels to one box. Therefore, the same
object can be classified with different labels.

• New Backbone - The feature extractor’s size was increased to 53 con-
volutional layers, resulting in higher accuracy.

• Spatial Pyramid Pooling (SPP) - In addition to the new backbone,
a modified SPP block was added to the architecture. This block concate-
nates multiple max pooling outputs with different kernel sizes (1,5,9 and
13), allowing each neuron to refer to a larger effective area of the input
image.
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The benchmark dataset was changed from Pascal VOC2007 to the MS COCO
dataset [25], resulting in an average precision of 50 percent (AP50) of 60.6
percent and an AP of 36.2 percent.

2.9.3 YOLOv4

YOLOv4 was published in the paper "YOLOv4: Optimal Speed and Accu-
racy of Object Detection" [26] by Alexey Bochkovskiy, Chien-Yao Wang, and
Hong-Yuan Mark Liao in the year 2020. Although the implementation was
published by authors other than the previous ones, the philosophy of YOLO
was maintained. As this paper provided satisfactory improvements, it was ac-
cepted by the community as the official fourth version of the algorithm. The
improvements were the following:

• Enhanced Architecture with Bag-of-Specials (Bos) Integration -
After experiments with different backbone architectures, the best-performing
one was a modified Darknet-53, which is a combination of the network
used by YOLOv2 and Darknet-19 [27] by Redmon with cross-stage partial
connections (CSPNet) [28] and Mish activation function [29]. The neck
incorporated modified versions of spatial pyramid pooling (SPP) from
YOLOv3-spp, path aggregation network (PANet) [30], and spatial atten-
tion module (SAM) [31], while the detection head used anchors similar
to YOLOv3, resulting in the model named CSPDarknet53-PANet-SPP.
These modifications helped reduce computation while maintaining accu-
racy, and the SPP block increased the effective area of the input image
without impacting inference speed.

• Bag-of-Freebies (BoF) Integration - In addition to the regular data
augmentations such as contrast, scaling, flipping, and rotating, mosaic
augmentation was implemented. This augmentation combines four im-
ages into a single one. This allows the detection of objects in a different
context and reduces the need for large batch sizes.

• Hyperparameter Optimization with Genetic Algorithms - This
feature enables users to find optimized hyperparameters using a genetic
algorithm over multiple evolutions. Therefore, the effort to develop a
high-performing model is reduced.

These improvements increased the AP50 on the MS COCO dataset by 5.1
percent and the AP by 7.3 percent.
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2.9.4 YOLOv5

YOLOv5 [14] was released in 2020 by the founder of Ultralytics, Glen Jocher.
In contrast to the previous version implemented with darknet, it was developed
with PyTorch [32], an optimized tensor library. Besides the earlier versions,
Jocher did not publish a paper accompanying his release of YOLOv5. Still,
the community mainly accepted the algorithm, which has been forked over 14
thousand times.

The main improvement achieved was implementing PyTorch and using a Ul-
tralytics algorithm called AutoAnchor. This algorithm checks and adjusts an-
chor boxes to the dataset and training settings. Then it applies a k-means
function to the dataset’s labels, initializing them for a Genetic Evolution (GE)
algorithm. The GE algorithm then evaluates the best possible recall within a
set number of generations. The evaluation uses a fitness function, where the
desired metrics to be maximized can be defined.

The evaluation of the architecture resulted in an AP of 50.7 percent on the
MS COCO dataset, which is an increase of 7.2 percent.
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3 Implementation and
Experimental Setting

This chapter describes the implementation and experimental setting of vi-
sual inspection tests. The process begins by selecting the YOLO version and
the available hardware for model training. Subsequently, the Azure DevOps
pipeline used for continuous integration into the team foundation server is ex-
plained. Moving forward, the open-source platform ClearML is introduced as
the logging tool utilized. The available datasets are then described, followed
by the training processes for detecting power transformers, sub-components,
rust, and oil leaks. Finally, the merging of the results into an inspection report
is detailed. This chapter provides comprehensive insight regarding the steps
taken to conduct visual inspection tests and the tools and processes involved.

3.1 YOLOv5

The YOLO algorithm implementation chosen for deployment was version 5,
provided by Jocher [14]. While benchmarks from Stereolabs [33] indicate that
versions 7 and 8 have lower latency than version 5, as seen in 3.1, this criterion
is not particularly relevant to evaluate the feasibility of visual inspection tests
via object detection. This is because the detection is only performed on images,
and the time of the complete inspection test is not a relevant criterion, as the
focus is on evaluating the feasibility and not on providing a releasable product.
Additionally, the benchmark illustrates that the newer versions demonstrate
higher average precision. While precision is a crucial aspect for the case study,
there is no significant reason for exclusively opting for the latest version, as
this disparity tends to decrease when deploying large models. Choosing version
five over the newest version offers the advantage of broader adoption and more
comprehensive documentation.
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Figure 3.1: Performance of YOLO v5, v7 and v8. (Source: [33])

3.2 Hardware

The partner company provided a Linux-based workstation to train the models
for this thesis. The workstation has an NVIDIA Quadro RTX4000 GPU that
provides 8GB GDDR6 memory, a 256-bit memory bus, and a bandwidth of 416
GB/s [34]. This graphic card can utilize CUDA [35], a parallel computing plat-
form and programming model developed by NVIDIA for their GPUs. CUDA
enables faster training of machine learning models for tasks such as object de-
tection by leveraging the power of the GPU’s parallel processing capabilities.

3.3 Azure DevOps CI Pipeline

The code base was maintained on a TFS (Team Foundation Server) by Azure
DevOps to adapt to the workflow of the partner company. Additionally, this
allowed viewing the code base of previous experiments and rollback if necessary.
To improve the workflow, a continuous integration (CI) pipeline [36] was estab-
lished, which triggers when code changes are pushed to the server. The pipeline
executes the code on the remote Linux Workstation, which functions as a self-
hosted agent [37]. The pipeline first deletes the old docker image to save storage
on the agent. Once the deletion process is completed, a fresh docker image is
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constructed, and then a docker container is launched using the updated image.
The required docker file was added to the YOLOv5 implementation provided
by Jocher [14]. The docker file contains all requirements to build the docker
image and the command to run the training script with specified parameters.
After the docker container is activated, the specified command is executed, and
the training is run on the agent.

3.4 Logging

ClearML [38], an open-source platform, was utilized to log and monitor the out-
comes of each training session. The platform encompasses the capabilities of
managing, tracking, and visualizing machine learning experiments. It provides
a centralized hub for experiment management that enables users to efficiently
log and monitor various aspects of their machine-learning workflow, including
console outputs, hyperparameters, and results. As the platform automatically
logs these aspects and visualizes them in several diagrams, it simplifies the pro-
cess of reproducing experiments and analysis.

The YOLOv5 implementation, created by Jocher [14], comes pre-integrated
with ClearML. To make use of the platform, an account is required. The free
version of ClearML allows up to three users and provides 100GB of storage
for artifacts, which is ample for this case study. Users can generate creden-
tials within the account and incorporate them into the training machine. Once
the connection is established, the web application can conveniently access the
training results.

3.5 Datasets

The implementation focused on utilizing three datasets. The partner company
internally collected and labeled the data for power transformer detection us-
ing the "labelimg" tool [39]. The labels generated were saved in text files,
which were required for the YOLO implementation. However, generic open-
source datasets were utilized for rust and oil leak detection. This approach was
primarily chosen due to time limitations within the project, as gathering and
labeling data specific to each case would have exceeded the project’s time frame.

The datasets used initially and their corresponding training-validation ratios
are presented in Table 3.1. For rust detection, the open-source dataset [40] was
utilized, while dataset [41] was employed for oil leak detection. After conduct-
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ing initial experiments on these datasets, it was concluded that additional data
is required to achieve satisfactory performance.

Amount of Data
Dataset Training Validation Ratio
Power Transformer 126 41 75%- 25%
Rust Detection 838 120 85%- 15%
Oil Leak Detection 124 16 87%- 13%

Table 3.1: Initial Datasets

Consequently, the dataset for power transformer detection was internally ex-
panded by collecting additional data and labeling it accordingly. Multiple
generic open-source datasets were collected and merged to train the rust and
oil leak detection models. For rust detection, the datasets [40], [42]–[44] were
utilized, while for oil leak detection, the datasets [41], [45]–[48] were employed.
An overview of the extended datasets, including the total data and the split
between training and validation data, can be found in Table 3.2. The training-
validation data ratio for rust and oil leak detection results from combining these
open-source datasets.

Amount of Data
Dataset Training Validation Ratio
Power Transformer 342 86 75%- 25%
Rust Detection 3350 796 76%- 24%
Oil Leak Detection 1938 246 87%- 13%

Table 3.2: Extended Datasets

3.6 Training Models

This sub-chapter delves into the steps undertaken in the training process for
detecting power transformers and their sub-components, rust, and oil leaks.
It provides an insight into the methodology employed for training models tai-
lored to each specific task. The process encompasses crucial stages such as
model selection, occurred difficulties, data augmentations, and hyperparameter
tuning.
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3.6.1 Detection of Power Transformer and
Sub-components

The primary focus of the initial model training was the detection of power
transformers and their sub-components, as they hold significant importance in
inspection tests. The model training process involved training a single model
encompassing both power transformers and their sub-components. First, a
model was trained using the initial dataset consisting of 167 images with a split
ratio of 75%-25%, listed in Table 3.1. Different image sizes and batch sizes were
employed during the training process. For the initial experiments, the chosen
model was "YOLOv5s," the smaller version offering faster training than larger
models. Concurrently, the dataset was expanded to enhance the model’s per-
formance. Table 3.2 presents the final dataset of 428 images with a split ratio
of 75%-25%.

Due to the GPU’s memory limitations, the flexibility to vary image and batch
sizes was restricted. Consequently, the maximum image size was set to 640, and
the maximum batch size was limited to five. An option suggested by Jocher [14]
is to use "auto" as the batch size, which automatically selects the maximum
feasible batch size based on the available GPU memory. The outcomes of the
initial experiments are summarized in Table 3.3, providing key details such as
batch size, which refers to the number of training examples processed together
in a single iteration and impacts training efficiency and resource utilization.

Additionally, the table includes information about image size, denoting the
dimensions of the input images used for training or testing, which influences
the level of detail captured by the model. The table also presents the mean Av-
erage Precision (mAP) scores at different IoU (Intersection over Union) thresh-
olds, which measure the average precision of object detection across multiple
IoU thresholds, offering an overall assessment of the model’s accuracy. Fur-
thermore, the table includes precision, quantifying the proportion of correctly
identified positive predictions out of the total predicted positives, indicating the
model’s ability to avoid false positives. Finally, the table provides the recall
metric, representing the proportion of correctly identified positive predictions
out of the total actual positives, indicating the model’s ability to capture all
relevant instances.

This table provides a concise overview of the model’s performance and ability
to detect and classify objects accurately. The highest-performing configuration,
which achieved the best result, was observed with an image size of 640 and an
auto batch size. This configuration demonstrated an mAP of 0.397 across IoU
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thresholds ranging from 50 to 95 percent, a separate mAP of 0.733 at an IoU
threshold of 50 percent, a precision of 0.74, and a recall of 0.64. This particular
configuration is highlighted in green.

First experiments with Model YOLOv5s
Batch Size Image Size mAP@0.5:0.95 mAP@0.5 Precision Recall
32 640 0.393 0.71 0.7 0.59
16 640 0.396 0.713 0.69 0.62
8 640 0.4 0.73 0.72 0.6
4 640 0.384 0.72 0.73 0.63
auto 640 0.397 0.733 0.74 0.64
4 1280 0.364 0.68 0.72 0.62
8 1280 - - - -
16 1280 - - - -
32 1280 - - - -
auto 1280 0.342 0.66 0.71 0.58

Table 3.3: First experiments utilizing Model YOLOv5s. ("-" marks that the
experiment required more memory than available)

Regarding the first evaluations, the configuration with an image size of 640, auto
batch size, and the model "YOLOv5s" was used for further experiments. A data
augmentation pipeline was implemented using Albumentations [49] for these
experiments. Several experiments were conducted to determine the pipeline’s
optimal configuration. Therefore, the best-resulting setup for the correspond-
ing percentages for each step and the complete pipeline was evaluated. The
improvements of the single augmentation steps and the entire pipeline with
different probabilities are shown in Table 3.4. The best result, highlighted in
green, was attained by applying the whole data augmentation pipeline with a
likelihood of 20% for each step. It resulted in an mAP of 0.427 across IoU
thresholds ranging from 50 to 95 percent, a separate mAP of 0.755 at an IoU
threshold of 50 percent, a precision of 0.8, and a recall of 0.75.
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Experiments Data Augmentation
Augmentation mAP@0.5:0.95 mAP@0.5 Precision Recall
No Augmentation 0.397 0.733 0.74 0.64
Horizontal Flip 50% 0.418 0.744 0.77 0.66
Vertical Flip 50% 0.417 0.743 0.77 0.66
Conditions 50% 0.423 0.746 0.76 0.64
Color 50% 0.417 0.753 0.78 0.67
Quality 50% 0.422 0.751 0.78 0.67
Crop 50% 0.423 0.752 0.79 0.7
Every step 20% 0.427 0.755 0.8 0.75
Every step 30% 0.417 0.724 0.78 0.73
Every step 40% 0.423 0.728 0.75 0.71
Every step 50% 0.422 0.719 0.74 0.71

Table 3.4: Power Transformer Detection Experiments - Data Augmentation

The following description outlines the final pipeline utilized after conducting
the experiment.

• Random Crop - 20%

• Conditions - 20% (Used to make the model more robust for photographs
taken with different weather conditions. It contains five augmentations
and applies one of them: random snow, random fog, random rain, random
sun flare, and random shadow.)

• Colors - 20% (Used to reduce the impact of the color. It contains three
augmentations and applies one of them; the augmentations are to grayscale
- 60%, channel shuffle - 30%, and invert - 10%.)

• Quality - 20% (Used to increase the variety of the data and simulate bad
photograph conditions. It contains three augmentations and applies one:
Gaussian noise, random brightness, contrast, and random gamma.)

• Vertical Flip - 20%

• Horizontal Flip - 20%

After evaluating the data augmentation pipeline setup, experiments utilizing
different network models were conducted to evaluate the best-performing model
size. The experiments showed that the performance increases with the increase
of the models’ size. Therefore, the largest model, "YOLOv5x" achieved the
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best results, with the batch size set to "auto" and an image size of 640. It re-
sulted in an mAP of 0.47 across IoU thresholds ranging from 50 to 95 percent,
a separate mAP of 0.80 at an IoU threshold of 50 percent, a precision of 0.86,
and a recall of 0.76. The outcome of the experiments is shown in Table 3.5.

Experiments Model Size
Model mAP@0.5:0.95 mAP@0.5 Precision Recall
YOLOv5n 0.415 0.73 0.81 0.69
YOLOv5s 0.427 0.755 0.80 0.75
YOLOv5m 0.457 0.77 0.85 0.77
YOLOv5l 0.47 0.79 0.86 0.75
YOLOv5x 0.47 0.80 0.86 0.76

Table 3.5: Power Transformer Detection Experiments - Model Size

Finally, a hyperparameter tuning was conducted using the most promising
configuration obtained from the previous experiments to enhance the perfor-
mance. The used YOLOv5 implementation by Jocher [14] contains a method
to perform a hyperparameter evolution. This method uses a genetic algorithm,
tries different hyperparameters over several evolutions, and returns the hy-
perparameters that led to the best result. A genetic algorithm is a heuristic
search algorithm that utilizes random search along with historical data to di-
rect the search into the region of better performance [50]. The procedure starts
with the hyperparameters declared in the used YAML file for hyperparameters.
The distribution to choose which value should be maximized can be adjusted
in the fitness method. The metrics that can be weighted are precision, re-
call, mAP@0.5, and mAP@0.5:0.95. For the power transformer, the metric
mAP@0.5:0.95 was weighted the highest to maximize the accuracy of detect-
ing the sub-components. This metric calculates the average precision over all
classes with an IOU (Intersection over Union) threshold of 50 to 95 percent.
The default number of evolution iterations for the method is 300. However,
in the case of power transformer detection, this number was raised to 500 to
enhance the likelihood of discovering improved hyperparameters.

The final model for power transformer detection was trained over 1000 epochs
using an image size of 640, an auto batch size, the above-mentioned data aug-
mentation pipeline, and the resulting hyperparameters of the hyperparameter
evolution. This final training resulted in an mAP of 0.49 across IoU thresholds
ranging from 50 to 95 percent, a separate mAP of 0.84 at an IoU threshold of
50 percent, a precision of 0.89, and a recall of 0.8.
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3.6.2 Rust Detection

An image size of 640 and an auto batch size were chosen for the initial exper-
iments for training the model for rust detection. The first experiments were
performed to evaluate the impact of the model size. The dataset, listed in Table
3.1, consisting of 359 images with a split ratio of 85%-15%, was used for these
experiments. The results of the first experiments are shown in Table 3.6, with
the best result highlighted in green. The best result was achieved by the model
size "YOLOv5x" with an mAP of 0.307 across IoU thresholds ranging from 50
to 95 percent, a separate mAP of 0.634 at an IoU threshold of 50 percent, a
precision of 0.7, and a recall of 0.615.

Rust Detection Experiments - Model Size - Initial Dataset
Model mAP@0.5:0.95 mAP@0.5 Precision Recall
YOLOv5s 0.284 0.623 0.693 0.535
YOLOv5m 0.298 0.627 0.7 0.593
YOLOv5l 0.288 0.646 0.703 0.6
YOLOv5x 0.307 0.634 0.7 0.615

Table 3.6: Rust Detection Experiments - Model Size - Initial Dataset

Because the results were not as sufficient as expected, the dataset was ex-
tended by adding different open-source datasets to the existing one. The ex-
tended dataset, shown in Table 3.2, consists of 4.146 images with a split ratio of
76%-24%. Subsequently, further experiments were performed on the extended
dataset. Table 3.7 displays the experiments conducted on the extended dataset
and their respective performance results, with the best result highlighted in
green. The best experiment resulted in an mAP of 0.22 across IoU thresholds
ranging from 50 to 95 percent, a separate mAP of 0.486 at an IoU threshold
of 50 percent, a precision of 0.55, and a recall of 0.49. Upon comparing the
results of the experiments conducted on the extended dataset with the initial
experiments on the first dataset, it was observed that the performance with the
extended dataset decreased. Consequently, the decision was made to revert to
the initial dataset for rust detection.

For the rust detection task, the final performed experiments involved the appli-
cation of a modified version of the data augmentation pipeline used for power
transformer and sub-components detection. The experiments were conducted
on the best result: the experiment featuring the "YOLOv5x" model with the
initial dataset. The adjustments to the data augmentation pipeline consisted of
removing the color-altering and weather condition-related augmentation steps.

46



Rust Detection Experiments - Model Size - Extended Dataset
Model mAP@0.5:0.95 mAP@0.5 Precision Recall
YOLOv5s 0.214 0.453 0.55 0.45
YOLOv5m 0.219 0.479 0.535 0.479
YOLOv5l 0.221 0.478 0.582 0.46
YOLOv5x 0.222 0.486 0.55 0.49

Table 3.7: Rust Detection Experiments - Model Size - Extended Dataset

This decision was based on the understanding that rust’s most significant char-
acteristic is its color, which remains relatively consistent across different weather
conditions. The modified pipeline, which excluded these augmentations, is out-
lined below.

• Random Crop - 20%

• Conditions - 0%

• Colors - 0%

• Quality - 20%

• Vertical Flip - 20%

• Horizontal Flip - 20%

However, despite these changes, the experiment did not improve the perfor-
mance. As a result of the experiments, the final model for rust detection was
trained on the initial dataset with an image size of 640, an auto batch size,
without applying the data augmentation pipeline, and using the largest ver-
sion of the model, "YOLOv5x". This resulted in an mAP of 0.22 across IoU
thresholds ranging from 50 to 95 percent, a separate mAP of 0.486 at an IoU
threshold of 50 percent, a precision of 0.55, and a recall of 0.49.

3.6.3 Oil Leak Detection

The training process for the oil leak detection model followed a similar approach
to that of the rust detection model. An image size of 640 and an auto batch
size were utilized. To reduce training time, initial experiments were performed
using the small model "YOLOv5s" and the large model "YOLOv5x" to eval-
uate the impact of model size on the performance. These experiments were
performed with the initial dataset, seen in Table 3.1, consisting of 140 images
with an 87%-13% split ratio.
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Table 3.8 displays the results of these initial experiments, with the row in-
dicating that the "YOLOv5x" model achieved better performance, highlighted
in green. The model "YOLOv5x" resulted in an mAP of 0.397 across IoU
thresholds ranging from 50 to 95 percent, a separate mAP of 0.738 at an IoU
threshold of 50 percent, a precision of 0.706, and a recall of 0.663. However,
since the achieved performance was still insufficient, additional data was col-
lected to improve the results. Table 3.2 provides an overview of the extended
dataset, consisting of 2184 images with a split ratio of 87%-13%.

Oil Leak Detection Experiments - Model Size - Extended Dataset
Model mAP@0.5:0.95 mAP@0.5 Precision Recall
YOLOv5s 0.386 0.725 0.691 0.638
YOLOv5x 0.397 0.738 0.706 0.663

Table 3.8: Oil Leak Detection Experiments - Model Size - Initial Dataset

To evaluate the impact of the extended dataset, the experiment with the large
model "YOLOv5x", which performed best in the previous experiments, was
repeated with the extended dataset. The experiment resulted in a significant
performance increase with an mAP of 0.686 across IoU thresholds ranging from
50 to 95 percent, a separate mAP of 0.886 at an IoU threshold of 50 percent, a
precision of 0.908, and a recall of 0.824.

For the final oil leak detection experiment, an adjusted version of the data
augmentation pipeline used for power transformer and sub-components detec-
tion was utilized. Since the detection circumstances for oil leaks are similar to
those for rust detection, the pipeline described in the previous chapter for rust
detection was utilized. This decision was based on the similarity of conditions
required to detect both oil leaks and rust. The experiment achieved a slight
increase of about one percent in mAP. Therefore the pipeline was subsequently
utilized.

The final model was trained for 1000 epochs, employing an image size of 640
and an auto batch size, along with the adjusted data augmentation pipeline.
The model achieved a slight increase in performance with an mAP of 0.693
across IoU thresholds ranging from 50 to 95 percent, a separate mAP of 0.894
at an IoU threshold of 50 percent, a precision of 0.911, and a recall of 0.834.
Therefore, this model was used for further development.
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3.7 Merge Results to Inspection Report

The trained models were combined in a Python script to create a report for
the inspection tests. The script performs the detection for each type in differ-
ent subprocesses. To minimize the risk of overlooking flaws, the detections are
conducted using a low confidence threshold of 15 percent. Consequently, all
detections exceeding this confidence threshold are considered for further eval-
uation. First, the power transformer and sub-component detection model are
applied to an input image. For each detected class, a sub-directory is created,
storing each detection as an image. In the next step, there are two possibil-
ities. The first one is that power transformers or sub-components have been
detected. In that case, rust and oil leak detection is performed on each detected
instance. These detections are performed within a thread pool to parallelize
the computation of the detections and increase the detection speed. Addition-
ally, the detections are performed on the input image to show the detections on
the whole input. In the second case, no power transformer or sub-component
was found in the input image. Then the detections for rust and oil leaks are
only performed on the input image. This function is implemented to enable the
inspection of close-up photos for certain cases.

Since all detections have been stored, the complete inspection can be traced
in later reviews. In addition to the stored detections, an Excel file is created to
give an overview of the inspection test. When the inspection test is performed
regarding power transformers and sub-components, the Excel file contains five
columns: asset, detected, rust detected, oil leaks detected, and condition. The
Excel sheet is completed by iterating the prior created directories and count-
ing the results. In the case that no power transformers or sub-components
are found, the Excel file contains three columns: "rust detected", "oil leaks de-
tected", and "condition". This sheet is completed by incrementing the columns
rust detected and oil leaks detected regarding the detections.

After the detections are performed, all results are registered in the Excel sheet,
which is subsequently evaluated using a traffic light system. The evaluation is
again performed differently for the two cases mentioned above. The numbers
of detected assets, rust, and oil leaks are summed up in the first case. Then
the detected rust and oil leaks are compared to the total number of detections.
If more than 50 percent contain rust or oil leaks, the condition is evaluated as
"poor", and the column is highlighted in red. If the number of rust and oil leaks
is zero, the condition is assessed as "excellent", and the column is highlighted
in green. In the cases between zero and 50 percent, the condition is assessed
as "average", and the column is highlighted in orange. Figure 3.2 visually rep-
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resents this case to illustrate the traffic light system. Further information on
the result is given in the following chapter. For the second case, the concept is
more straightforward. If both columns "rust detected" and "oil leaks detected"
contain zero, the condition is evaluated as "excellent". If either column has a
one, it is assessed as "average". If both include one, it is considered "poor".
Figure 3.3 visually describes the process.

Figure 3.2: Example of Result with Traffic Light System
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Figure 3.3: Visualized Inspection Test Process
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4 Experimental Results

This chapter presents the training results for power transformer and sub-component
detection, rust detection, and oil leak detection. The evaluation process in-
volved the utilization of a confusion matrix, emphasizing the true positive rate,
to assess the models’ performance. An F1 Score-Confidence curve was employed
to illustrate the F1 score corresponding to varying confidence levels. Further-
more, a comprehensive overview of metrics, including loss, precision, and recall,
was provided to comprehensively understand the models’ performance. These
evaluation techniques contribute to a comprehensive analysis of the detection
capabilities of the models, enabling insights for further improvements in visual
inspection tests. Finally, the chapter describes the outcomes of merging the
trained models into an inspection test and subsequently generating the results,
providing insights into both the outcomes’ positive and negative aspects.

4.1 Training Results

The following sections present the results obtained from training the models to
detect power transformers and sub-components, rust, and oil leaks.

4.1.1 Power Transformer and Sub-components

The confusion matrix presented in Figure 4.1 offers valuable insights into the
model’s performance regarding detecting power transformers and their sub-
components. The x-axis represents the actual classes, while the y-axis repre-
sents the predictions. The color range on the right side of the graph, rang-
ing from white to dark blue, visually represents the percentage values used
within the matrix. While there is no officially defined threshold to categorize a
true positive rate (TPR) as satisfactory, for detecting power transformers and
their sub-components, a targeted TPR of 75 percent was agreed upon with
the domain expert of the partner company. The power transformer demon-
strates an impressive true positive rate of 96%, indicating high accuracy in its
identification. The model showcases effective detection capabilities among the
sub-components, surpassing the targeted TPR. It achieves a TPR of 84% for

52



bushings, 80% for cooling components, and 76% for oil expansions. Neverthe-
less, surge arresters fall short of the targeted True Positive Rate (TPR) with
a TPR of 66%. This is likely due to their resemblance to bushings and the
dataset’s imbalanced distribution of labeled instances. Figure 4.2 illustrates
the class distribution in the training data. The x-axis represents the classes,
while the y-axis represents the number of instances within the dataset. Further-
more, it is noteworthy that approximately seven percent of the detected surge
arresters were identified as false positives, mistakenly classified as a bushing.

Figure 4.1: Confusion Matrix - Power Transformer and Sub-components
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Figure 4.2: Class Distribution in Power Transformer and Sub-components
Training Data

In Figure 4.3, the F1-confidence curve of the model is displayed. The x-axis
represents the confidence, while the y-axis represents the F1 score. The F1 score
peaked at 0.82, at a confidence level of 33 percent. The curve shows a consistent
trend within the confidence range of 10 percent to 65 percent, where the F1
score remains at 0.76. However, a notable decline in the F1 score becomes evi-
dent beyond this range, indicating a significant decrease in model performance.
According to the F1-Confidence curve, for reliable detection results, choosing a
confidence threshold between 0.1 and 0.65 for this model is recommended.

Figure 4.3: F1 Score - Confidence Curve - Power Transformer and
Sub-components
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Figure 4.4 illustrates the metrics obtained during the initial 200 training epochs.
The x-axis represents the number of epochs ranging from zero to 200, while the
y-axis represents the corresponding metric values. Notably, all metrics signifi-
cantly improved within the first 40 epochs. The first three plots demonstrate
the trend of the loss, which exhibited a rapid decrease in the initial 40 epochs
followed by a slight decline until epoch 200. The last two plots showcase the
metrics precision and recall, which experienced a notable increase within the
first 40 epochs and then stabilized throughout the subsequent epochs. The
training achieved its best result in epoch 176.

Figure 4.4: Training Metrics - Power Transformer and Sub-components

4.1.2 Rust

The confusion matrix presented in Figure 4.5 provides an insight into the
model’s performance in detecting rust. The x-axis represents the actual classes,
while the y-axis represents the predictions. The color range on the right side of
the graph, ranging from white to dark blue, visually represents the percentage
values used within the matrix. Same as for power transformers, a true positive
rate of 75 percent was targeted. According to the matrix, the true positive rate
for rust identification stands at 66%. However, this current level of accuracy
falls short of the desired outcome, indicating the need for improvement. To
perform reliable inspection tests, the accuracy of detecting instances of rust
needs to be increased. Therefore, it becomes necessary to focus on enhancing
the true positive rate.
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Figure 4.5: Confusion Matrix - Rust

In Figure 4.6 the F1-confidence curve of the model is visualized. The x-axis
represents the confidence, while the y-axis represents the F1 score. The F1
score peaked at 0.65 at a confidence level of 35 percent. The curve shows a con-
sistent trend within the 10 percent to 60 percent confidence range, where the
F1 score remains above 0.6. Beyond this range, the curve demonstrates a grad-
ual decline, indicating a significant degradation in the model’s performance.
According to the F1-Confidence curve, for reliable detection results, choosing a
confidence threshold between 0.1 and 0.6 for this model is recommended.
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Figure 4.6: F1 Score - Confidence Curve - Rust

Figure 4.7 illustrates the metrics obtained during the initial 200 training epochs.
The x-axis represents the number of epochs ranging from zero to 200, while the
y-axis represents the corresponding metric values. Same as the metrics for
power transformers, all metrics demonstrated their most significant improve-
ment within the first 20 epochs. The first two plots demonstrate the trend of
the loss, which exhibited a rapid decrease in the initial 20 epochs followed by a
slight decline until epoch 200. Since the model for rust detection is trained on
a single class dataset, the class loss seen in the third plot is zero. The last two
plots showcase the metrics precision and recall, which experienced a notable
increase within the first 20 epochs and then continued with a slight increase
within the subsequent epochs. The training achieved its best result in epoch
132.

Figure 4.7: Training Metrics - Rust
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4.1.3 Oil leaks

The confusion matrix in Figure 4.8 reveals the model’s performance in detecting
oil leaks. The x-axis represents the actual classes, while the y-axis represents
the predictions. The color range on the right side of the graph, ranging from
white to dark blue, visually represents the percentage values used within the
matrix. Same as for power transformers, a true positive rate of 75 percent was
targeted. The true positive rate for identifying oil leaks stands at 86%. This
indicates that the model successfully and accurately identifies a significant por-
tion of oil leak instances of the validation set, surpassing the targeted TPR.
The high true positive rate signifies a promising result of the model in detecting
oil leaks and highlights its potential to be used for visual inspection tests.

Figure 4.8: Confusion Matrix - Oil Leaks
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In Figure 4.9 the F1-confidence curve of the model is visualized. The x-axis rep-
resents the confidence, while the y-axis represents the F1 score. The F1 score
peaked at 0.87 at a confidence level of 42 percent. The curve shows a consistent
trend within the confidence range of 10 percent to 78 percent, where the F1
score remains above 0.8. Beyond this range, the curve demonstrates a gradual
decline, indicating a significant degradation in the model’s performance. Ac-
cording to the F1-Confidence curve, for reliable detection results, choosing a
confidence threshold between 0.1 and 0.78 for this model is recommended.

Figure 4.9: F1 Score - Confidence Curve - Oil Leaks

Figure 4.10 illustrates the metrics obtained during the initial 400 training
epochs. The x-axis represents the number of epochs ranging from zero to 200,
while the y-axis represents the corresponding metric values. Same as the met-
rics for power transformers, all metrics demonstrated their most significant
improvement within the first 40 epochs. The first two plots demonstrate the
trend of the loss, which exhibited a rapid decrease in the initial 40 epochs fol-
lowed by a slight decline until epoch 400. Same as the model for rust detection,
this model is trained on a single class dataset. Therefore, the class loss seen in
the third plot is zero. The last two plots showcase the metrics precision and
recall, which experienced a notable increase within the first 40 epochs and then
continued with a slight increase within the subsequent epochs. The training
achieved its best result in epoch 132.
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Figure 4.10: Training Metrics - Oil Leaks

4.2 Merged Inspection Test

New data from various cases was gathered to assess the inspection test using
the final object detection models. This dataset encompasses images of power
transformers, close-up shots highlighting rust and oil leaks, and photographs of
power transformers captured from different angles. Figure 4.11 displays an in-
spection test report generated for an input featuring a power transformer. The
report highlights the successful detection of the power transformer, a bushing
and cooling system, and the identification of rust within the power transformer.
As the detection yielded one flaw out of 3 detections, which is below 50%, the
condition is assessed as "average."

Figure 4.11: Test Report - Results with Power Transformer

Every image in the gathered data underwent the visual inspection test. Subse-
quently, the yielded results were analyzed. The most significant findings from
this analysis are summarized in Table 4.1, and further details are provided in
the subsequent paragraphs.

60



Key Findings - Visual Inspection Test
Model Findings
Power Transformer and
Sub-components • Successful detection of most components

• Successful detection of unknown construction
types

• Outcome is influenced by the angle

• Surge arresters misinterpreted as bushings

Rust detection

• Successful detection of rust spots

• Best results with close-up photographs

• Not all occurrences are detected

• Detection is not flawless

Oil leak detection

• Successful detection of oil leaks

• Best results with close-up photographs

• Certain misclassifications

• Detection is not flawless

Table 4.1: Key Findings

The inspection tests successfully detected most of the power transformers and
their sub-components with a confidence ranging from 45 percent to 85 percent.
Furthermore, it showcased the capability to identify power transformers of con-
struction types that were not included in the training data. An example of this
case is shown in Figure 4.12, where the power transformer, the cooling system,
and the oil expansion were successfully detected. Nevertheless, the analysis
of the results indicated that the detection is influenced by the angle at which
the photograph was taken. Certain angles may result in the inability to detect
components, especially the cooling system and the oil expansion. Figure 4.13
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provides an illustrative example of the results obtained from two angles. The
left section of the figure demonstrates that the power transformer, three bush-
ings, and the oil expansion are not detected, primarily due to the angle of the
photograph. Conversely, the cooling system and one bushing are not detected
in the right section. Another common issue observed is the misinterpretation
of surge arresters as bushings and vice versa. As mentioned in the previous
chapter, this is mainly due to the imbalanced distribution of the training data.

Figure 4.12: Power Transformer Inspection on Unknown Type
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Figure 4.13: Power Transformer Inspection from Various Angles

The results showed that the model for rust detection can recognize some rust
spots but not all of them. The confidence mostly ranged from 25 percent to
85 percent. While the accuracy is not as high as desired, the outcomes still
provide a good indication of whether the image contains rust or not. Figure
4.14 shows an example of rust detection on a power transformer. The model
accurately identifies areas with rust marked by red rectangles. However, there
is a misinterpretation on the far right, where a red-colored cable is mistakenly
classified as rust. Also, not every occurrence of rust is detected. It’s important
to note that close-up photographs produce better detection results because the
dataset used only had close-up images. Although the model for rust detection
doesn’t capture every instance, the outcomes generally match the characteris-
tics observed in the input image in most cases.

The results revealed that the oil leak detection model can detect oil leaks,
with a confidence ranging from 45 percent to 55 percent. It performs best
on close-up photographs, and its accuracy decreases when analyzing images of
power transformers, where it sometimes misses existing oil leaks. Figure 4.15
shows an example of oil leak detection on a close-up photograph. A red rect-
angle highlights the identified oil leak. The example shows that an oil leak
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Figure 4.14: Rust Detection on Power Transformer

has been detected, but there are still oily parts within the image that have not
been detected. Despite not detecting all occurrences, the outcome still matches
the characteristics observed in the input image. A common issue detected is
the model’s tendency to misclassify tree tops as oil leaks. Like the model for
rust detection, the model for oil leak detection is not flawless, but it generally
matches the distinctive features in the input image.

Figure 4.15: Oil Detection on Close-up Photograph
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5 Discussion of the Results

In this chapter, the results of the case study are discussed. The sub-chapters en-
compass the implemented Azure DevOps Pipeline, the Hardware facilitated for
model training, the detection of power transformers and their sub-components,
rust detection, oil leak detection, and the resulting inspection report. Through
an in-depth exploration of these areas, the outcomes obtained from the study
are analyzed and interpreted while also providing insights for potential future
enhancements in visual inspection testing.

5.1 Azure DevOps Pipeline

The partner company manages its software development projects on an Azure
DevOps Server [51], previously known as Team Foundation Server (TFS), using
Git version control [52], allowing seamless management and version control. By
integrating the YOLOv5 implementation by Jocher [14] into the existing struc-
ture, the pipeline has brought a significant workflow improvement. This com-
bination of methodologies holds considerable value for the partner company,
as it enables object detection in the current project and lays a foundation for
future projects in this domain. Moreover, the pipeline can be easily adapted
to accommodate different versions of YOLO, enhancing its versatility. The in-
tegration of Git version control for storing the historical codebase has brought
significant advantages and proven highly beneficial. It allows for seamless roll-
backs to previous experiment configurations, such as when the rust detection
dataset experienced a decline in performance upon its expansion. This capa-
bility provides the flexibility to efficiently manage and address issues that may
arise during the development and optimization of the model.

5.2 Hardware

For further developments, acquiring a GPU with increased memory capacity
is essential to mitigate the occurred limitations in the training process. This
case study employs the NVIDIA Quadro RTX 4000 GPU, which features 8GB
of GDDR6 memory. According to Puget Systems [53], 8GB is considered the
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minimum size, while 12 to 24 GB is commonly recommended. Hence, upgrad-
ing to a GPU within this memory range is advised. This upgrade will grant
more outstanding training capabilities and enable the utilization of larger in-
put images. Since the detection process focuses on sub-components, there are
instances where the resolution of these components is notably low, primarily
due to the initial image size. By leveraging the computational power of a GPU
capable of handling larger images, the accuracy of sub-component detection
can be enhanced, addressing the limitations imposed by their low resolution.

5.3 Detection

This section discusses the training outcomes for power transformer and sub-
component detection, rust detection, and oil leak detection. It builds upon the
results obtained in the previous chapter and explores potential development
steps for future advancements in visual inspection tests.

5.3.1 Power Transformer and Sub-components

The current power transformer and sub-component dataset has already yielded
a well-performing model for detection. Particularly the detection of power
transformers yielded a true positive rate (TPR) of 96 percent and confidence
peaking at 90 percent. An issue of the model was the detection of bushings
and surge arresters, especially surge arresters with a TPR of 66 percent and
maximum confidence of 65 percent. This is due to their resemblance and the
dataset’s imbalanced distribution of labeled instances. Therefore, there remains
unused potential to further enhance its performance by expanding the dataset
to balance the distribution and improving the quality of the labels. In par-
ticular, increased availability of labeled surge arresters is essential to increase
the model’s performance in accurately identifying these components. Applying
these changes allows an opportunity to enhance and elevate the model’s overall
performance. Goodfellow [3] describes determining whether more data must be
gathered. This can be evaluated by comparing the detection results performed
on validation data and data from the training set. If the detection performed
on the training data has high accuracy and decreases on the validation data,
this is a sign that more data is required. For power transformers and their
sub-components, the detection on the training set has a constant confidence
of around 80 percent, whereas the detection performed on the validation data
ranges from 50 to 80 percent. This indicates that gathering more data can
increase the model’s performance.
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The results indicate that the photograph’s perspective significantly affects the
detection process. Mainly, cooling is predominantly detected in front-view pho-
tos. To address this issue in the future, inspection tests could be performed on
a video, where the asset is recorded from various angles. This could provide a
solution as the video captures the asset from multiple angles. Therefore, the
angle would not affect the inspection test anymore. Another potential solution
would involve giving explicit instructions regarding the required angles for cap-
turing photographs. These instructions would lead to photos from the required
angles, solving the problem. However, it is essential to acknowledge that this
approach carries a higher risk of errors, as instructions may be disregarded or
misinterpreted.

5.3.2 Rust

Although the results demonstrated the model’s capability to detect rust, the
current dataset used for rust detection needed to meet the required level of
accuracy for deployment in a visual inspection test product. The dataset’s
performance fell below the desired standards during the validation phase with a
true positive rate (TPR) of 66 percent and maximum confidence of 65 percent.
Several factors contribute to this underwhelming performance, including the
lack of data quality, insufficient labeling, and the dataset’s generic nature, which
could be more optimal for addressing the specific problem. Goodfellow [3]
mentions that machine learning algorithms perform best when the data for
training is appropriate for the true complexity of the task. This is not the case
for the rust detection model, as it is too generic and only consists of close-up
photographs. To achieve a reliable performance suitable for visual inspection
tests, investing more time in collecting data that encompasses particular cases
and applying a labeling process with high-quality standards is imperative. It
is essential to shift the focus towards acquiring real-world data from power
transformers that specifically include instances of rust. By implementing these
measures, it is feasible to enhance the effectiveness of the dataset and achieve
the desired levels of accuracy and reliability for the model.

5.3.3 Oil Leaks

Although the dataset for detecting oil leaks has shown satisfactory performance
on the validation set, including a high true positive rate of 86 percent and
peaking confidence of 87 percent, the overall accuracy of the model for power
transformers in specific cases did not meet the desired level. As for rust detec-
tion, considering the statement from Goodfellow [3], this discrepancy can be
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attributed to the limitations of the available open-source dataset, which pri-
marily comprises close-up photographs that are not well-suited for addressing
the specific problem. Consequently, further refinement and improvement are
necessary to ensure accurate detection within the targeted domain. These im-
provements are crucial for deploying the visual inspection test as a product.
They can be done by sorting out inappropriate images and incorporating ad-
ditional images representing specific cases within power transformers. Another
notable issue is that the current version of the model tends to misclassify parts
of trees as oil leaks. To mitigate this, unlabeled images depicting trees and
natural surroundings can be introduced to the dataset, facilitating the model’s
ability to distinguish between oil leaks and tree tops.

5.4 Inspection Report

The Excel sheet report provides a concise summary of the inspection test. Nev-
ertheless, engaging in discussions regarding the desired design of the report with
domain experts can enhance the report’s quality and contribute to its future
development. An in-depth evaluation of individual sub-components becomes
possible by including an itemized listing of each detected object and the cor-
responding image’s name and path. This enhanced level of detail within the
sheet would offer a comprehensive overview of the inspection test, enabling a
more comprehensive assessment of its outcomes.

Furthermore, enhancing the level of detail could be achieved by training the
model to detect varying degrees of rust and oil leaks. This could involve differ-
entiating between "minimal rust/oil leak" and "severe rust/oil leak." However,
gathering and labeling specific data for each case is necessary to accomplish
this.
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6 Conclusion

This chapter summarizes the case study, including its key findings and out-
comes. Following the summary, an outlook section unveils a forward-looking
perspective, outlining potential areas for further exploration and development
based on the insights gained from the case study. This chapter’s structure pro-
vides a comprehensive understanding of the case study’s implications and sets
the stage for future research and advancements in visual inspection tests.

This case study assessed the viability of visual inspection tests targeting power
transformers. To achieve this, three distinct object detection models were
trained utilizing the implementation of YOLOv5 [14]. The training was con-
ducted on a Linux-based workstation using an NVIDIA Quadro RTX 4000
GPU. It was acknowledged that the case study results could be enhanced by
employing a more powerful GPU, which would expand the possibilities for train-
ing object detection models. An Azure DevOps Pipeline was utilized to execute
each training to improve the workflow and seamlessly integrate the codebase
into the partner company’s infrastructure. The training results were closely
monitored using the open-source platform ClearML [38]. The model for detect-
ing power transformers was trained on data gathered and labeled by the partner
company. In contrast, the rust and oil leak detection models were trained on
generic data collected from open-source datasets.

The final model for power transformer and sub-component detection achieved
satisfactory accuracy. However, the model’s dependence on the angle of input
images remains a limitation. One proposed solution for this limitation is to
conduct the inspection test using a video recorded from multiple angles. By
addressing this flaw, the power transformer and sub-component detection can
be effectively incorporated into a visual inspection test product. The models
trained on generic open-source datasets demonstrated the feasibility of detect-
ing flaws such as rust and oil leaks in visual inspection tests. The case study
implementation successfully detected and consolidated many rust spots or oil
leaks within the input images into an inspection report. Analysis of the test
results revealed common errors, including misclassifying oil leaks as rust and
mistakenly detecting treetops as oil leaks. Proposed solutions for these issues
involve improving precision through collecting and labeling specific case data
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and incorporating background images that contain treetops to mitigate the flaw
in oil leak detection. Although the resulting models for rust and oil leak de-
tection in this case study are not precise enough for use in a visual inspection
test product, their precision can be enhanced through further improvements to
meet the required standards.

The results of this case study have been presented to the management of the
partner company, who expressed their admiration for the demonstrated out-
comes. They acknowledged the potential for further development of the project.
While no definitive decision has been made regarding the project’s future, the
critical tasks for its continued advancement are outlined in the subsequent sec-
tions of this chapter.

6.1 Improve Precision

The latest YOLO version, YOLOv8, can be employed to develop a releasable
product to enhance the precision and speed of detection. This updated version
of YOLO offers improved performance and is particularly advantageous if the
decision is made to conduct inspection tests on videos, where fast detection is
crucial. The performance increase is illustrated in Figure 3.1.

Furthermore, dedicating additional time and effort to enhance the quality of
the datasets, particularly by making them more specific to the target cases,
can significantly improve the precision of detection. Additionally, leveraging
a more powerful GPU can expand the possibilities for training experiments,
thereby enhancing the performance of the models.

6.2 Inspection Report

A comprehensive test result is crucial to provide the visual inspection test as
a product. Therefore, the test result of this case study can be extended to be
more detailed. As mentioned in the Chapter "Inspection Report" 5.4, this can
be achieved by including an itemized listing of each detected object, along with
the corresponding image name and path. This would enable detailed reviews of
inspection tests. Furthermore, the level of detail could be enhanced by label-
ing the data with different stages. This could involve differentiating between
"minimal rust/oil leak" and "severe rust/oil leak." Additionally, the design of
the Excel sheet can be improved to make the outcomes of the inspection test
more transparent.
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6.3 Increase Speed

In the case study, object detections were conducted on the input image and
each detected sub-component. This approach facilitated the merging of out-
comes into a comprehensive test result. However, since this method involves
processing parts of the image multiple times, it does not optimize the speed of
the inspection test. As the goal is to offer visual inspection tests as a product,
the speed of the service becomes crucial. To enhance the performance of the
detection process, the detections can be performed only on the input image, and
the inspection test result can be generated by evaluating the bounding boxes
for each detection. By comparing the coordinates, it becomes possible to assess
whether or not a flaw has occurred within a specific component. Moreover, if
there is a requirement for individual detections to be documented, additional
functionality can be implemented. This functionality would utilize the coordi-
nates of the bounding boxes to create sub-images of the detections and store
them in a subsequent step.

6.4 Additional Inspections

While this case study primarily concentrated on rust and oil leak detection,
several other flaws must be addressed for comprehensive inspection tests. Ex-
amples of these flaws include fire traces from electric shocks and incomplete
components. Gathering and labeling data specific to each flaw is necessary to
implement these flaws for visual inspection tests. The experiments conducted
for rust and oil leak detection can serve as a reference for training, which can
then be adjusted to optimize the performance for each specific problem. The
models for additional detection can be seamlessly integrated into the existing
code to enable individual detections and merge the outcomes into a compre-
hensive test result.

6.5 Provide Webservice

Upon release, the product should be offered as a web service for easy accessibil-
ity by customers. Users can upload an image or video to the service and receive
a detailed test result. By providing the visual inspection test as a web service,
the customers can access the tool from any device with an internet connection.
This increases the usability since the test engineers can use a smartphone or
tablet to perform the test. Another advantage is that the customer can access
the tool without having to install anything, and updates to the service can be
provided seamlessly.
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