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Abstract

Implementation and evaluation of communication over a
5G standalone private network in an industrial use case
focusing on the data exchange between two articulated
robots
This thesis focuses on implementing and testing communication over a private
5G standalone network in an industrial environment, with a specific emphasis on
communication between two articulated robots. The main objective is to examine
machine-to-machine communication behavior in various test scenarios. Initially,
the 5G core and radio access network components are described, along with their
associated interfaces, to establish foundational knowledge. Subsequently, a use
case involving two articulated robots is implemented, and essential metrics are
defined for testing, including round-trip time, packet and inter-packet delay, and
packet error rate.

The tests investigate the impact of 5G quality of service, packet size, and trans-
mission interval on communication between the robots, focusing on the effects
of network traffic. The results highlight the significance of prioritizing network
resources based on the assigned quality of service identifier (5QI), demonstrate
the influence of packet sizes on communication performance, and underscore
the importance of transmission intervals for automation purposes.

Additionally, the study examines how network disturbances influence the move-
ments of a robot controlled via 5G, establishing a direct relationship between
network metrics and the resulting deviations in the robot’s trajectory. The work
concludes that while machine-to-machine communication can be successfully
implemented with 5G SA, tradeoffs must be carefully considered, especially con-
cerning packet error rate, and emphasizes the importance of understanding the
required resources before implementation to ensure feasibility.

Future research directions include investigating network slicing, secure remote
control of robots, and exploring the use of higher frequency bands. The study
highlights the significance of aligning theoretical standards with practical imple-
mentation options in the evolving landscape of 5G Networks.
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Kurzreferat

Implementierung und Evaluierung einer Kommunikation
mittels privatem 5G-Standalone-Netz in einem industriellen
Anwendungsfalls mit Fokus auf die Datenübertragung
zwischen zwei Knickarmrobotern
Diese Arbeit konzentriert sich auf die Implementierung und Testung eines pri-
vaten 5G-Standalone-Netzes in einem industriellen Umfeld. Der Schwerpunkt
liegt auf der Maschine-zu-Maschine-Kommunikation und deren Verhalten in ver-
schiedenen Testszenarien. Zunächst werden der 5G Core, das Radio Access Net-
work und die zugehörigen Schnittstellen beschrieben, um grundlegende Kennt-
nisse aufzubauen. Ein Anwendungsfall wird mithilfe von zwei Knickarmrobotern
implementiert, und die relevanten Metriken werden definiert, um darauf basierend
die Round-Trip-Zeit, die Paket- und Inter-Paket-Verzögerungsänderung sowie die
Paketfehlerrate in einer praxisnahen Umgebung zu messen.

Dabei werden die Auswirkungen von 5G quality of services, Paketgröße und Über-
tragungsintervall auf die Kommunikation zwischen den Robotern untersucht, wobei
besonderes Augenmerk auf den Einfluss des Netzwerkverkehrs gelegt wird. Die
Ergebnisse betonen die Bedeutung der Priorisierung von Netzwerkressourcen an-
hand der zugewiesenen Quality-of-Service-Identifier (5QI), beschreiben den Ein-
fluss der Paketgröße auf die Kommunikation und verdeutlichen die Wichtigkeit
des Übertragungsintervalls für die Automatisierung.

Darüber hinaus werden die Auswirkungen von Netzwerkstörungen auf die Bewe-
gungen eines über 5G gesteuerten Roboters untersucht und der direkte Zusam-
menhang zwischen Netzwerkmetriken und daraus resultierenden Abweichungen
der Robotertrajektorie beschrieben. Die Arbeit schlussfolgert, dass die Maschine-
zu-Maschine Kommunikation zwar mit 5G-SA umgesetzt werden kann, jedoch
Kompromisse eingegangen werden müssen, insbesondere hinsichtlich der Paket-
fehlerrate. Zudem wird auf die Bedeutung einer umfassenden Ressourcenanalyse
vor der Implementierung zur sicherstellung der Machbarkeit hingewiesen.

Zukünftige Forschungsrichtungen umfassen die Untersuchung von Netzwerk-Slicing,
die sichere Fernsteuerung von Robotern und die Nutzung höherer Frequenzbän-
der. Die Arbeit unterstreicht zudem die Notwendigkeit, theoretische Standards
mit praktischen Implementierungsoptionen in der sich entwickelnden Landschaft
der 5G-Netze abzugleichen.

3



Contents

List of Figures 6

List of Tables 9

List of Abbreviations 10

1 Introduction 14
1.1 Context of Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 5G Basics and Functionality 17
2.1 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 Radio Access Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Aerial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.2 NG Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.3 Xn Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.4 F1 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Core Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.3.1 User Plane Function . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3.2 Access and Mobility Management Function . . . . . . . . . . . 28
2.3.3 Session Management Function . . . . . . . . . . . . . . . . . . . 28
2.3.4 Further Network Functions . . . . . . . . . . . . . . . . . . . . . 29

2.4 Network Procedures and data flow . . . . . . . . . . . . . . . . . . . . . 30
2.4.1 Connection establishment . . . . . . . . . . . . . . . . . . . . . 30
2.4.2 Session modification and release . . . . . . . . . . . . . . . . . . 32
2.4.3 Handover between neighboring gNBs . . . . . . . . . . . . . . . 33
2.4.4 Data flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5 Network-slicing and QoS . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3 Hardware and Network Architecture 39
3.1 5G Core and RAN Network . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Additional hardware components . . . . . . . . . . . . . . . . . . . . . 40
3.3 Test bed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Management software and configuration interfaces . . . . . . . . . . . 43
3.5 Network configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4



4 Use-Case 46
4.1 Trajectory tracing with real time data exchange . . . . . . . . . . . . . 47
4.2 Code-structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3.1 Round-trip time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.2 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.3 Packet error rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.4 Trajectory comparison . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Measurement setups and configuration 58
5.1 Implementation and visualization of the measurements . . . . . . . . 58
5.2 Basic setup as Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Setup 1: Behavior under load . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Setup 2: Influence of the packet size . . . . . . . . . . . . . . . . . . . . 74
5.5 Setup 3: Influence of the transmission interval . . . . . . . . . . . . . . 74

6 Results 76
6.1 Results of Setup 1: Behavior under load . . . . . . . . . . . . . . . . . . 76

6.1.1 Performance with additional network traffic . . . . . . . . . . . 78
6.2 Results of Setup 2: Influence of the packet size . . . . . . . . . . . . . . 90
6.3 Results of Setup 3: Influence of the transmission interval . . . . . . . 100

7 Conclusion and Outlook 109
7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

References 114

Appendix 117

Statement of Affirmation 137

5



List of Figures

2.1 NSA Versions 3X and 7X . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Frequency range 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3 5G system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4 RAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 Protocol Stacks of UP and CP . . . . . . . . . . . . . . . . . . . . . . . . 22
2.6 Advantages of OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.7 encoding and decoding of data with OFDM . . . . . . . . . . . . . . . 24
2.8 Beamforming with one beam and three beams . . . . . . . . . . . . . 25
2.9 5G non-roaming System architecture . . . . . . . . . . . . . . . . . . . 27
2.10 Registration procedure of a UE with a 5G network . . . . . . . . . . . . 31
2.11 Session establishment of a UE with the 5G Network . . . . . . . . . . . 32
2.12 Handover between neighboring gNBs . . . . . . . . . . . . . . . . . . . 33
2.13 Dataflow between the UE and a DN . . . . . . . . . . . . . . . . . . . . 34
2.14 Dataflow between two UEs with similar QoS and location . . . . . . . 35
2.15 Dataflow between two UEs with a different UPF . . . . . . . . . . . . . 35
2.16 Standardized SST values for network slicing . . . . . . . . . . . . . . . 36

3.1 Physical setup of the 5G Network . . . . . . . . . . . . . . . . . . . . . . 40
3.2 Spatial conditions of the test bed in the Digital Factory Vorarlberg . . 41
3.3 Testbed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.4 Detailed view of the devices used for the testbed . . . . . . . . . . . . 43
3.5 Network overview containing the 5G network and the single LANs . . 45

4.1 Use case environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Program flow for trajectory tracing . . . . . . . . . . . . . . . . . . . . . 51
4.3 Change of correlation between two signals during circular shifting . . 56
4.4 Change of the R-value while shifting over a period with marked max-

imum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.5 Change of the R-value due to distortion . . . . . . . . . . . . . . . . . . 57

5.1 Measured link for RTT . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.2 Normal distribution function compared to the CDF . . . . . . . . . . . 60
5.3 Empirical cumulative distribution function . . . . . . . . . . . . . . . 61

6



5.4 Behavior of different distributions when sorted and plotted over the
index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Distorted sinusoidal angular velocity . . . . . . . . . . . . . . . . . . . 63
5.6 Distorted axis angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.7 Axis angle delay from the jittered angular velocity . . . . . . . . . . . . 64
5.8 Normalized MSE between the sensor and actuator axis angle with

increasing packet loss percentage . . . . . . . . . . . . . . . . . . . . . 65
5.9 Wired setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.10 RTT for a wired setup with ICMP and TCP measurements . . . . . . . 67
5.11 IPDV and PDV for a wired setup with ICMP and TCP measurements . 67
5.12 Overview of the compared sensor and actuator axis angles in a wired

setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.13 Detailed view of one axis . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.14 UDP real-time traffic log from one of the modems . . . . . . . . . . . 72

6.1 RTT for the basic 5G setup without traffic . . . . . . . . . . . . . . . . . 76
6.2 IPDV and PDV for the basic 5G setup without traffic . . . . . . . . . . 77
6.3 PER for the basic 5G setup without traffic . . . . . . . . . . . . . . . . . 78
6.4 Trajectories for axis one of the no-traffic setup . . . . . . . . . . . . . . 78
6.5 RTT for a 5QI of 5 for the test link and the traffic . . . . . . . . . . . . . 79
6.6 IPDV and PDV for a 5QI of 5 for the test link and the traffic . . . . . . . 80
6.7 PER for a 5QI of 5 for the test link and the traffic . . . . . . . . . . . . . 80
6.8 Trajectories for axis one with increasing traffic . . . . . . . . . . . . . . 82
6.9 Results for the ICMP tests with 5QI 5 for the test link and 5QI 8 and

80 for the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.10 Results for the ICMP tests with 5QI 80 for the test link and 5QI 5 and

8 for the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.11 Results for the ICMP tests with 5QI 8 for the test link and 5QI 5 and

80 for the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.12 Results for the TCP tests with different 5QI test link and traffic pairings 87
6.13 Trajectory comparison with increasing traffic for two setups . . . . . 89
6.14 Results for the ICMP tests against with no traffic . . . . . . . . . . . . . 91
6.15 RTT for the ICMP tests against different traffic packet sizes . . . . . . 92
6.16 IPDV and PDV for the ICMP tests against different traffic packet size . 93
6.17 PER for the ICMP tests against different traffic packet size . . . . . . . 94
6.18 RTT for the TCP tests with a different packet size for the test link and

the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.19 IPDV and PDV for TCP tests with a different packet size for the test

link and the traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.20 Trajectory comparison with a packet size of 128 bytes for the test link

and varying packet sizes for the traffic . . . . . . . . . . . . . . . . . . . 97

7



6.21 Measured errors for the trajectory with a packet size of 128 bytes and
512 bytes packet size for the traffic . . . . . . . . . . . . . . . . . . . . . 98

6.22 Trajectory comparison with a packet size of 256 bytes for the test link
and varying packet size for the traffic . . . . . . . . . . . . . . . . . . . 99

6.23 Results for testing different sending intervals with 5QI 5 and a packet
size of 128 bytes for the test link and a network load of 20 Mbps with
5QI 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.24 Histogram and scatter plot of the RTT with a 5QI of 5 and a packet
size of 128 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.25 Results for testing different sending intervals with 5QI 5 and a packet
size of 1024 bytes for the test link and a network load of 20 Mbps with
5QI 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.26 Results for testing different sending intervals with 5QI 5 and a packet
size of 178 bytes for the test link and a network load of 20 Mbps with
5QI 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.27 Histogram and scatter plot of the RTT with a 5QI of 5 and a packet
size of 128 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.28 Zoom in on the scatter plot of the RTT with a 5QI of 5 and a packet
size of 178 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.29 Trajectory comparison with a packet size of 178 bytes and changing
transmission interval for the test link and 20 Mbps traffic . . . . . . . 108

8



List of Tables

2.1 Standardized 5QI Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 The used 5QI values for testing . . . . . . . . . . . . . . . . . . . . . . . 71
5.2 Measurements carried out for setup 1 . . . . . . . . . . . . . . . . . . . 73
5.3 Measurements carried out for setup 2 . . . . . . . . . . . . . . . . . . . 74
5.4 Measurements carried out for setup 3 . . . . . . . . . . . . . . . . . . . 75

9



List of Abbreviations

3GPP Third Generation Partnership Project

5G NR Radio Access Network

5G NR 5G New Radio

5GC 5G Core

5GS 5G System

5QI 5G Quality-of-Service Identifier

AF Application Function

AMF Access and Mobility Management Function

AS Access Stratum

AUSF Authentication Server Function

CDF Cumulative Distribution Function

CP Control Plane

CUPS Control and User Plane Separation

DN Data Network

DNN Data Network Name

ECDF Empirical Cumulative Distribution Function

EPC Evolved Packet Core

F1AP 5G NR Layer 1 (L1) Application Protocol

FDD Frequency Division Duplex

FDM Frequency Division Multiplexing

10



FFT Fast Fourier Transform

GBR Guaranteed Bit Rate

gNB Next-Generation NodeB (base station)

gNB.DU gNB Distributed Unit

gNB-CU gNB Centralized Unit

GTP GPRS Tunneling Protocol

GTP-U GTP User Plane

ICI Inter-Channel Interference

IFFT Inverse Fast Fourier Transform

IPDV Inter-Packet Delay Variation

IQR Interquartile Range

ISI Intersymbol Interference

LTE Long-Term Evolution

MAC Medium Access Control

MIB Master Information Block

MIMO Multiple-Input Multiple-Output

mMIMO Massive MIMO

MSE Mean Squared Error

NAS Non-Access Stratum

NEF Network Exposure Function

NF Network Function

NRF Network Repository Function

NSA Non-Standalone Access

NSSF Network Slice Selection Function

11



OFDM Orthogonal Frequency Division Multiplexing

PCF Policy Control Function

PDCP Packet Data Convergence Protocol

PDSCH Physical Downlink Shared Channel

PDU Protocol Data Unit

PDV Packet Delay Variation

PER Packet Error Rate

PLMN Public Land Mobile Network

QAM Quadrature Amplitude Modulation

RAN Radio Access Network

RLC Radio Link Control

RRC Radio Resource Control

RTDE Real-Time Data Exchange

RTT Round Trip Time

SA Standalone Access

SBA Service-Based Architecture

SCTP Stream Control Transmission Protocol

SDAP Service Data Adaptation Protocol

SIB System Information Block

SMF Session Management Function

S-NSSAI Single Network Slice Selection Assistance Information

SSC Security and Support Capability

SST Service Set Type

SUCI Subscription Concealed Identifier

12



SUPI Subscription Permanent Identifier

TDD Time Division Duplex

UDM Unified Data Management

UDR Unified Data Repository

UE User Equipment

UP User Plane

UPF User Plane Function

13



1 Introduction
Since 1998 the 3rd Generation Partnership Project (3GPP), an association of dif-
ferent standardization institutions Worldwide, is the driving force when it comes
to specifications for cellular telecommunication. They started during the era of
GSM with the so-called Release 99 and grew in importance during the standard-
ization of LTE, with Release 8 beginning in 2005. They are now crucially involved
in the characterization and normalization of mobile communication. At the end
of 2018, 3GPP released with its Release 15, the first version of the then-new cellular
standard called 5G. Since then, 3GPP has been working on further improvement
and development of 5G, and according to their Work Plan, Release 18 will be fin-
ished in mid-2024. [1]

But why was a technology like 5G needed? What was the driving idea behind that?

Technologies like augmented or virtual reality need large bandwidth to guaran-
tee the user experience. The Internet of Things is growing fast and needs a back-
bone communication Network that can shoulder a massive number of devices
connected to it and critical applications like remote surgeries need to be very re-
liable and need a very low End-to-End Latency. All these different application
requirements led to the conclusion that if there should be one system that would
fulfill all the criteria above, a completely new approach was needed. Away from
the existing Evolved Packet Core (EPC) of LTE, which was developed for voice ser-
vices and mobile internet and was built on dedicated Hardware, and towards a
highly flexible virtualized architecture that could be scaled and configured to spe-
cific use cases. These new requirements made it also necessary that the Radio
Access Network (RAN) needed an overhaul, and that lead to the development of
the 5G Core (5GC) System and the 5G New Radio (5G NR) Access Network.

This new approach created a constantly evolving cellular network that steadily
grows in complexity and capability. One of the goals of 5G is to provide network
resources according to specific use cases, i.e., ultra-reliable low-latency, or mas-
sive machine-type communication. The network configuration allows multiple
subscribers to use the same medium but under different conditions. These newly
acquired configuration capabilities need to be tested in real setups. Particularly,
application-oriented tests are necessary to determine the feasibility and quality of
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a potential implementation. This thesis aims to build upon and attempt to show-
case the current possibilities.

1.1 Context of Work
At the beginning of this thesis, the architecture, components, and procedures of
5G are in the focus. The 5G standard is continuously maintained by 3GPP. How-
ever, since these technical specifications describe how such a system functions
in detail, it was necessary to abstract and summarize essential knowledge for this
work. An attempt was made to generate this knowledge directly from the stan-
dard, but literature was also used, which had already abstracted it to some extent.
In particular, references were made to [1] and [2].

To create a test environment that is both flexible enough to encompass multi-
ple test scenarios and as close to reality as possible, a use case was developed and
implemented. For this purpose, two articulated robots were used to perform syn-
chronous movements. The first robot initiates a motion and sends its axis data
over a network to the second robot, which follows the movement based on the
received information. To integrate this with the 5G network, the robots were con-
nected to the network using 5G modems. This allows us to identify which and
how data is sent in a machine-to-machine communication setup. This informa-
tion was used to implement different network tests and test scenarios to observe
the network behavior under certain conditions.

The metrics focused on include the round-trip time, which is the time a packet
takes to travel from a sender to a receiver and back. The variation in this time and
the number of lost packets also play a crucial role. The results are evaluated using
statistical methods, presented graphically, and explained.

The last part of this thesis presents the outcome and summarizes the results.

In [3], similar approaches were used to test a 5G Network. The behavior of the
network when using different Packet sizes and transmission intervals were the
main focus of this study and laid part of the foundation for this thesis. Addition-
ally, the setup in [4] bears similarities to the one used for this thesis, therefore the
results are comparable. Both studies investigated the behavior of data packets in
a 5G network. They used the packet delay between sender and receiver, as well
as changes in delay and packet loss, as crucial metrics. The connection between
robot movement and network metrics was introduced in [5], where the test setup
was similar but no detailed analysis on the influence of traffic was made.
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This thesis adds the investigation of different Quality of Services and the behavior
of connections under network congestion. Additionally, the influence of network
disturbances on the trajectory of a remotely controlled robot will be investigated
using the aforementioned use case. This adds an industrial application element
that was either missing in previous studies or not examined in such detail and re-
sults in the following research question:

"How do round-trip time, delay variation, and error rate behave in a 5G standalone
private network in a realistic environment where the network is operating close to
its full capacity, and how are these metrics affected in a machine-to-machine com-
munication when different qualities of service, packet sizes, and transmission in-
tervals are used?"
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2 5G Basics and Functionality

This Chapter describes the main features introduced in 5G concerning LTE, ex-
plains what a 5G core architecture looks like, the aerial interface works, commu-
nication is established, and data travels from one endpoint to the other. Further-
more, this chapter outlines some key technologies that make 5G superior to its
predecessors and provides an overview of this communication standard.

The information in this chapter refers only to the 3GPP Release 15 of 5G because
the system used during this thesis is based mostly on this release. Newer release
versions not yet available for commercial use will be implemented via a software
update when provided. Therefore, this thesis points out when technologies in this
setup refer to a different Release than Version 15.

The 5G Network can be split into two main Domains:

• The Radio Access Network (RAN), also called 5G New Radio (5G NR), con-
sists of multiple access point cells called gNodeB and is responsible for con-
necting the user equipment (UE) with the 5G network. Further details are
provided in Chapter 2.2,

• The 5G Core (5GC) is a virtualized environment that offers different network
functions (NFs). The 5GC is responsible, among other things, for routing
data to specific endpoints, handling control and user data from and to the
RAN, and providing different possibilities depending on the NFs available.
Further details are provided in Chapters 2.1 and 2.3.

This split was necessary because 5G was not developed to replace 4G (LTE) from
the beginning solely but to coexist as a first step. Therefore, flexible standardiza-
tion and implementation were needed that allowed the mobile network providers
to use already existing infrastructure to implement 5G gradually. The solution was
to launch two different setups called None Stand Alone (NSA), which is a com-
bined setup with a 4G System, and Stand Alone (SA), which is set up with only 5G
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components:

• None Stand Alone (NSA): The idea was to make the first implementation
easier and quicker. Therefore, the 5G NR works alongside the LTE RAN and
uses that as a so-called communications anchor. There are different options
for how an NSA mode could be executed, but the most used version for al-
ready existing networks is 3X, shown in Fig. 2.1 on the left side, where the 5G
and 4G RAN connect to an evolved packet core (EPC) used in 4G. The solid
lines represent data paths, and the dotted lines show the control signal path.
This is easy to implement, and the update to a 5GC is possible in the future.
For newly built NSA networks, the version 7X shown in Fig. 2.1 on the right
side, where the 5G and 4G RAN connect to a 5GC, makes the most sense.

Figure 2.1: NSA Versions 3X where the network relies on an EPC and Version 7X
where a 5GC is in use [1, S. 29]

• Stand Alone (SA): This implementation relies only on the 5G technologies
and consists of a 5GC and a 5G RAN. This setup allows optimized use of
all functionalities that 5G has to offer since backward compatibility does
not have to be considered. If no backward compatibility is needed, a 5G
SA architecture should be preferred since the capabilities of 5G can only be
reached in this setup. However, comprehensive deployment of SA in public
networks is not possible due to the many non-5G capable devices still in
use. Therefore, in an industrial environment in which a new 5G system is
to be implemented and only 5G will be used, nothing speaks against a SA
setup. [1] [2]
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Since the system under test is a 5G stand-alone system, this thesis will focus only
on the 5G SA setup. That means all the following chapters always refer to a SA
topology unless otherwise stated, and for more information about NSA, please
refer to [1] [2]

Another difference between 5G and its predecessors is the frequency spectrum,
which consists of a sub-6-GHz band and a mmWave band, as shown by the two
frequency ranges in Fig. 2.3. This allows higher data rates in FR2 and ensures the
mobile coverage of lower frequencies with FR1, the band used by LTE systems. [6]

Figure 2.2: 5G frequency range FR1 and FR2 with supported channel
bandwidth [6, S. 25]

Furthermore, the numerology of 5G allows a flexible frame structure that enables
communication with lower latency. That is described in detail in Chapter 2.2

2.1 System Architecture
Fig. 2.3 shows what a simplified 5G system architecture looks like. The UE con-
nects to the RAN, which consists of multiple radio cells. The RAN is controlled
by the 5G Core, in particular from the control plane (CP) and its functions. The
focus of the CP is to provide a centralized maintenance point and flexibility in
terms availability of different NFs. On the other hand, the user plane (UP) goal is
to provide the bandwidth and latency for data connections between users or via
an external data network (DN). Therefore, the UP can be located closer to where
communication services are provided and reduce transport costs. In addition, the
control/user plane separation (CUPS) makes sense because of their different re-
sponsibilities, which were already used in LTE. [1]

One of the main differences between 5G and previous technologies is the step
away from dedicated hardware and towards using standard hardware compo-
nents and running a virtualized core as software on those components. The CP
was realized as a service-based architecture (SBA) and allows implementing or
updating NFs independently from the rest of the system. Furthermore, SBA allows
the use of all provided functions by every other NF, the multi-existence of NFs, and
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Figure 2.3: 5G system overview with UE and DN, separation of the RAN and the
core as well as CP and UP (Adapted from [7, S. 22])

the independence of every NF, which means that no other service should impact
this NF.

Another advantage is the connection of the different NFs over one common net-
work via HTTP/2 and JSON. That enables all NFs with a 3GPP-compliant service-
based interface to connect seamlessly to the core network and makes it easier to
develop and manage those. [8]

2.2 Radio Access Network
The job of the RAN is to connect the UE with the 5GC and the DN. Therefore, the
RAN contains one or multiple gNBs and operates three major interfaces:

• the aerial interface which connects UEs with gNBs via access stratum (AS)
and UEs with the 5GC via non-access stratum (NAS),

• the NG interface which connects the gNBs with a 5GC,

• the Xn interface which connects a gNB with a neighbor gNB.

Communication that is restricted exclusively between a gNB and a UE is carried
out with the access stratum (AS) layer. That includes establishing and maintaining
radio channels. Communication between the UE and the 5GC is carried out with
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the non-access stratum (NAS) layer and contains access and connection control,
mobility, and session management.

In Fig. 2.4 the architecture of a NG-RAN is shown, whereas the single gNB can
be further split up into central Unit (gNB-CU) and one or more distributed units
(gNB-DU) connected via the F1 interface.
u

Figure 2.4: RAN architecture with the connection interfaces internal and to the
5GC [9, S. 10]

It’s essential to notice that the protocol stack of the NR RAN is also divided into
user plane protocol stack and control plane protocol stack where layers one and
two are similar and layer three only refers to the control plane protocol stack. In
brief, the protocol stack looks like this:

Layer 1 is the physical layer which contains modulation and demodulation of phys-
ical channels, synchronization beamforming, and error detection.

Layer 2 includes:

– Medium access control (MAC) responsible for priority handling, log-
ical and transport channel mapping, and re-adjustment of physical
beams,

– Radio link control (RLC) is responsible for the transfer of PDUs and
error detection,
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(a) UP protocol stack between UE and
gNB [11, S. 16]

(b) CP protocol stack between UE and
gNB [11, S. 17]

Figure 2.5: Protocol Stacks show that on the UP side, the UE connects only to the
gNB while the CP connects the UE to the gNB and via NAS to the 5GC

– Packet data convergence Protocol (PDCP) responsible for user data
forwarding and connection management,

– Service data adaptation protocol (SDAP) (only UP) responsible for for-
warding and ciphering control plane data.

Layer 3 The radio resource control (RRC) (only CP) layer sends NAS and AS infor-
mation and is responsible for RRC connection and radio bearers, key man-
agement, UE measurement data, and NAS messaging to UE. [10] [11]

This is visualized in Fig. 2.5a and Fig. 2.5b with the overlaying NAS protocol on the
control plane protocol stack.

2.2.1 Aerial Interface
The aerial interface of a 5G-RAN is more complex than in other cellular technolo-
gies because of two major differences:

• The frequency spectrum of 5G is very broad since FR1 is from 410 to 7125
MHz and FR2 is from 24250 - 52600 MHz. That means the aerial interface
must be able to provide the technical capabilities to cover that range.

• The goal of 5G is to provide profiles with different communication charac-
teristics for specific use cases. Therefore, the aerial interface must be flexi-
ble and configurable.

Therefore, looking at the implemented technologies in more detail is necessary to
understand how that flexibility was created.
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(a) OFDM bandwidth reduction in
comparison to conventional
multi-carrier systems [13, S. 22]

(b) OFDM subchannel and signal in
frequency domain to show the necessary
orthogonality [13, S. 23]

Figure 2.6: Illustration of the advantages of OFDM and the orthogonality
required to take advantage of them.

First, in 5G time division duplex (TDD) and frequency division duplex (FDD) is
used. In TDD the uplink and downlink are transmitted on the same carrier fre-
quency but divided into timeslots. In FDD two different frequencies are used to
transmit uplink and downlink. In FDD, small frequency shifts between subcarri-
ers lead to intercarrier interference (ICI). Therefore it is common in 5G to use a
TDD signal between the uplink and downlink channel of an FDD signal for effi-
cient use of the spectral resources. [12] [1]

As modulation method is quadrature amplitude modulation (QAM) in use. The
specification of 5G ranges from 4-QAM up to 256-QAM, dependent on the possi-
ble signal quality between UE and gNB. [11]

5G uses frequency-division multiplexing (FDM) to reach high data rates by given
bandwidths. Therefore, a given channel bandwidth is divided into sub-channels
with sub-carriers. A specific variant of FDM, orthogonal frequency-division mul-
tiplexing (OFDM), is used, where these sub-carriers must be orthogonal func-
tions, so they don’t interfere with their neighbor sub-channels as shown in Fig. 2.6.
That allows the reduction of the sub-carrier space and to transmit more sub-
carriers in a given bandwidth as shown in Fig. 2.6a

Fig. 2.7 shows how the data processing for transmission and reception is done.
In the beginning, the binary data gets parallelized and QAM encoded. The paral-
lelized data can be viewed as if it were in the frequency domain and will then be
transformed mathematically to the time domain by an inverse fast Fourier trans-
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formation (IFFT). A cyclic prefix is added, where a part of the end of every trans-
mission symbol is copied into the guard interval at the beginning of each symbol
to preserve orthogonality and reduce Inter Symbol Interference. After the signal
is serialized, it is transmitted through a DAC. On the receiving side, an ADC con-
verts the data back and the prefix is removed. fast Fourier transformation (FFT)
converts the combined signal into the different sub-signals which are then filtered
to reduce inter symbol (ISI) and inter carrier interference (ICI). The last step is to
decode the QAM-modulated signal into the original data. [14] [15]

Figure 2.7: Decoding and encoding of a binary signal using OFDM (adapted from
[15, S. 121])

The difference between LTE to 5G is that, while in LTE the space between the
sub-carriers was fixed to 15 kHz, in 5G the sub-carrier spacing is flexible. The
sub-carrier channel bandwidth can be changed between 15, 30, 60, 120, or 240
kHz which enables faster data rates with the trade-off for higher bandwidth con-
sumed. Those different sub-spaces are written down in the so-called "Numerol-
ogy" of 5G. [11]

Since the 15 kHz channel bandwidth in LTE was used to minimize ISI which oc-
curs because of time delay spread in multipath channels [16], the higher frequen-
cies in 5G make it possible to change sub-channel bandwidth without increasing
ISI. [2] [17]

Another advantage is that in 5G the broadcast and synchronization information
do not have to be at a specific position on a channel but can be at any position.
This allows it to use different Numerologies and therefore different QoS profiles
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on the same channel. [2]

Multiple input multiple output (MIMO) was already used in LTE to send i.e. two
data streams on the same channel from two antennas on the eNB to two antennas
on the UE to increase the data rate or improve connection quality. A maximum
of eight data streams was possible in LTE but typically four were used. [1] In 5G
the term massive MIMO (mMIMO) is used, whereas "massive" stands for more
than eight but typically are phased-array-antennas with 32 or 64 elements. These
antenna arrays can be used the same way as in LTE but in addition, they allow
beamforming, which enables the manipulation of beam characteristics to con-
centrate the transmitting power on certain points in an area. Fig. 2.8 shows how
such beams could look for an array with 64 elements. [12] [16]

Figure 2.8: Beamforming with a phased array transmitter showing one beam and
three beams; simulated in Matlab [18]

The readjustment of a beam is done on the MAC layer after the first signaling is
done on the RRC layer. This allows quick adjusting via communication between
UE and RAN whereas the UE analyzes the incoming signal and sends the needed
adjustments. [2]
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2.2.2 NG Interface
The NG interface works as a logical point-to-point interface and separates the
RAN and the 5GC. It supports CUPS and therefore is divided into CP and UP. The
CP side transfers NAS signaling between UE and the Access Management Func-
tion (AMF, described in chapter 2.3) of the 5GC and control and configuration
messages between RAN and 5GC, i.e. mobility management procedures. The
NGAP protocol is used on top of an IP and Stream Control Transmission Proto-
col (SCTP) [19] layer and some elementary procedures of NGAP are:

• RAN configuration updates,

• Handover management,

• Initial context and Packet Data Unit (PDU) setup and modification,

• Paging.

The UP side uses UDP packets with the GPRS Tunneling Protocol (GTP-U) to send
user data between the RAN and the User Plane Function (UPF, described in chap-
ter 2.3) of the 5GC. [20]

2.2.3 Xn Interface
The Xn interface is between two gNBs and has a similar protocol structure to the
NG interface. It also supports CUPS and therefore can be separated into control
and user plane side. The Xn interfaces tasks are mobility and connectivity man-
agement between gNB on the CP side and flow control and user data forwarding
on the UP side. [11]

2.2.4 F1 Interface
The F1 interface is between gNB-CU and the gNB-DU and moves data from the
RLC to the PDCP sublayer in layer 2. Its task is to converge data and to split radio
network and transport network for i.e. higher compatibility regarding different
vendors and therefore uses the F1 application protocol (F1AP). [21]

2.3 Core Functions
In this chapter, the core functions of the 5GC will be explained, regarding their
tasks, their communication with each other, and how they enable a 5G System
to transport data from one endpoint to another. It must be mentioned that not
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all core functions will be explained in detail since it is not necessary within the
framework of this thesis. Functions that are only described superficially will be
referenced for more detailed information.

The 5G Core contains several Network Functions (NFs) that work together to cre-
ate a scalable, highly flexible, and compatible communication environment for
control and user data. The UP contains the user plane function and is therefore
the main element for user data forwarding.

The CP contains several NFs that have their own tasks in the overall picture of the
system. In Fig. 2.9 is the core architecture shown, with the separation between UP,
CP, RAN, and external DN and the connecting interface N1-N4, N6, and N9. The

Figure 2.9: 5G non-roaming System architecture [7, S. 22]

NFs shown in Fig. 2.9 are the basic set of a 5GC and will be explained in detail.

2.3.1 User Plane Function
The UPFs main task is to handle user traffic. Therefore, one or more UPFs can
be deployed and then controlled and configured by the CP via the N4 interface
which connects the UPF with the Session Management Function (SMF). In LTE
one had the option of three predefined capability sets that were not changeable.
Now in 5G, the UPFs are configurable by the CP to increase flexibility and give the
System much more possibilities in terms of how user data is transported from one
end-point to the other, whether this means sending user data from one UE to the
other on the same UPF, a different UPF but in the same 5G system though the N9
interface or sending data through the N6 gateway to another network. [1]

27



To ensure this, the UPF has some or all of the following functionalities imple-
mented:

• it is the anchor point for communication mobility, which means data from a
UE flows through at least one UPF before exiting on another UPF or entering
the DN,

• routing data from one endpoint over the network to the other endpoint
based on the configuration given by the SMF,

• handles the QoS flow of the UP and ensures the UL/DL rates as well as traffic
latency,

• monitoring available resources and events and reporting them to the CP,

• guaranteeing data integrity during handover,

• has implemented functions to respond to ARP or NDP requests. [1] [7]

2.3.2 Access and Mobility Management Function
The AMF is connected to a UE via the N1 interface and to the RAN via N2. The
N1 interface is directly routed to a UE over NAS signaling for procedures that re-
late to a specific UE and the N2 interface is used to send information with NGAP
for procedures related to the RAN. Therefore the main task of the AMF is control-
ling the communication between RAN and UE and providing several access and
mobility-related functionalities that include the following:

• managing UE authentication, authorization, and registration together with
the AUSF and therefore taking care of mobility management notifications,
like handovers,

• managing the UE signaling connection, i.e changing a UE from idle to con-
nected mode, via NAS messaging,

• transport SMS, Public Warning System, and Location Service messages to
the UE,

• providing UE access security management. [1] [7]
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2.3.3 Session Management Function
The SMF is the controlling instance of one or more UPFs and therefore connected
to them via the N4 interface. That means the SMF controls how data is sent
through the network, establishing tunnels for user data between the RAN and
UPFs and modifying and releasing the end-to-end connection. The following
functionalities are supported:

• IP address management and DHCP functions,

• configuration of UPF regarding traffic steering and routing,

• enforces QoS according to the given configuration for the specified UEs,

• collecting data for charging functions,

• session and service continuity (SSC) mode selection, ([7, S. 90-92])

• roaming functions. [1] [7]

2.3.4 Further Network Functions
To enable the multiple functions implemented in a 5GC further NFs are needed.
These provide additional functionalities in terms of usability, security and com-
patibility and the most important of them are:

• Network Slice Selection Function (NSSF)
The NSSF is the central instance of a public land mobile network (PLMN)
regarding allowed and configured network slice information, mapping net-
work slices of different UEs, and determining the AMF instance for a specific
UE. [7]

• Network Exposure Function (NEF)
The NEF securely receives and provides information from AFs or internal
NFs according to the network policy and stores the information as struc-
tured data in the UDR. [7]

• Authentication Server Function (AUSF)
The AUSF provides security keys and authentication procedures between a
UE and the network. In addition, the AUSF communicates with the UDM
about subscriber authentication and handles the subscription permanent
identifier (SUPI) and subscription concealed identifier (SUCI) provision to
PLMNs. [1] [22]
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• Network Repository Function (NRF)
The NRF manages the information of available NFs, their instances, ad-
dresses, supported services, and attributes and provides them to all NFs in
the Network. [7]

• Policy Control Function (PCF)
The PCF provides or pushes policies to NFs. The communication with the
SMF relates to PDU forwarding, QoS, charging, and local traffic. The com-
munication with the AMF relates to network selection and restrictions in
terms of available networks in certain areas. [1] [23]

• Unified Data Management (UDM)
The UDM handles the UE identification and subscription data, i.e. the SUPI,
roaming credentials, serving AMFs and SMFs, and is always located in the
UEs home PLMN. [7] [1]

• Application Function (AF)
AFs are not part of the 5GC but are external applications concerning policy
control or the influence of certain applications on data traffic. The AF can
either communicate to 5GC NFs directly if allowed or via NEF. [7]

The communication between the CP functions is shown in Fig. 2.9 as one com-
mon network with which all CP NFs are connected. The NFs provide certain spec-
ified services via their service-based interface (i.e., Namf stands for the network
service-based interface of the AMF) for other NFs to consume. The communi-
cation is done via TCP over HTTP/2 with JSON for serialization to ensure high
flexibility and easy integration. [7] [1]

2.4 Network Procedures and data flow
When talking about establishing data connection in 5G the term Protocol Data
Unit Session (PDU Session) is used, where the PDU includes user data and all the
protocol overhead needed for the specific network layer where the data is trans-
mitted. In this chapter, the connection setup between a UE and a 5G Network, dif-
ferent communication procedures and the transmission of PDUs from endpoint
to endpoint are considered. Since not every procedure is relevant in the context of
this work, the focus is placed on procedures that are relevant to this thesis; there-
fore, roaming will not be discussed.
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2.4.1 Connection establishment
The first step of connection establishment is using the correct PLMN and data
network name (DNN) of the network the UE wants to connect. To make the 5G
network visible to the UE the RAN sends out periodical broadcast signals where
one of which is called the master information block (MIB). The MIB is sent every
40 ms and contains basic information about the network and how the following
signal information blocks (SIB) 1 to 26 are transmitted. In contrast, not every SIB
has to be transmitted depending on the network. The SIBs after SIB 1 are not sent
as a broadcast anymore and are transmitted via a physical downlink shared chan-
nel (PDSCH). These SIBs contain all the information needed for a UE to establish
a registration request via NAS signaling with the designated gNB and the 5GC. A
suited AMF is selected, sends an identity request, and gets a response from the UE
in the form of the SUCI. After that, the AMF starts the authentication procedure
with the AUSF which checks if the subscriber data stored in the UDM is valid. The
AMF and UDM exchange UE context data and subscriber data. If the UE can con-
nect to the network, the AMF finishes the registration procedure shown in Fig. 2.10
with a registration acceptance. [1] [24]

Figure 2.10: Registration procedure of a UE with a 5G network [2, S. 182]

After the UE is registered it requests a PDU Session as illustrated in Fig. 2.11 Es-
tablishing a PDU session means creating an IP tunnel where user data can be sent
between two endpoints. However, the IP tunnel endpoint is not the UE but the
gNB and the responsible UPF to which the UE is connected. That allows an eas-
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ier change of the data flow when the UE changes its location. The SMF controls
the establishment of such data sessions, and the UPF carries out the data for-
warding. Therefore, the UE sends a session establishment request and the AMF
then chooses a suitable SMF for the requested session. The chosen SMF retrieves
the subscriber data from the UDM, responds to the AMF that the session can be
handled, and selects a matching UPF concerning the session’s purpose. The SMF
instructs the UPF to establish an N4 session and the AMF to establish the N1 and
N2 interfaces for messaging. An acknowledgment is sent from the SMF via AMF
to the gNB which forwards a NAS message to the UE about the acceptance and es-
tablishes a new radio bearer connection with the UE. After that, the gNB responds
and the AMF, SMF, and UPF update the session information. Now the tunnel is
established, and the UE can send and receive data. [24] [2]

Figure 2.11: Session establishment of a UE with the 5G Network [2, S. 186]

For simplicity, the communication with the PCF is not explained in this chapter as
is the connection of the UPF via the N6 interface with the data network. Further
information regarding the connection establishment can be found in [24].

2.4.2 Session modification and release
A PDU session modification is necessary when one or more QoS parameters need
to be changed either initiated by the UE or the 5GC. The SMF and the PCF initiate
the update of the QoS parameters after checking that the changes are permitted.
If the changes only regard the UPF then the SMF sends a modification request
via the N4 interface, which occurs immediately. If the modification concerns UE

32



or RAN, the AMF informs them through the connected interfaces and waits for a
session modification acknowledgment. After that, the SMF requests the UPF to
update the PDU session accordingly and initiates a policy modification with the
PCF. [24]

When releasing a PDU session, unrelated to who initiated it, the SMF gets a re-
lease request from the initiator. The SMF then releases the PDU session-related
IP address and UPF resources. Now there are two possibilities:

• UE unreachable:
If the UE is unreachable the SMF notifies the AMF that the PDU session is
released. The AMF then releases all associations with this PDU session.

• UE reachable:
If the UE is reachable the SMF creates a release request that is sent to the
UE and RAN via the N1 and N2 interface. The UE then acknowledges the
release command as a NAS message via the AMF to the SMF. The further
procedure is the same as if the UE is unreachable. [24]

2.4.3 Handover between neighboring gNBs
A UE constantly measures the connection quality to the currently connected gNB,
also called the serving cell. Measurands for this are the received signal power,
quality, and strength indication. If there is more than one gNB in the connection
radius a decision must be made whether to stay connected with the current gNB
or switch to a new one. If the connection to a new gNB is better, the UE sends a
measurement report to its serving cell and starts a handover procedure as shown
in Fig. 2.12. The serving cell sends the Handover request over the Xn interface to
its neighbor gNB which will be the new destination for the PDU session endpoint.
At first, all UE data will be routed through the Xn interface and the new gNB sends
a path switch request to the AMF. The AMF communicates with the SMF and the
UPF to modify the session and then change the IP address of the tunnel end point
from the old to the new gNB. After that the old and the new gNB will be informed
about the executed switch, the PDU session is routed over the UPF to the new
serving cell, and the resources of the old gNB are released. [2]
Further procedure explanations and details can be found in 3GPP TS 23.502: "Pro-
cedures for the 5G System (5GS)". [24]

2.4.4 Data flow
For further explanation of how data is transported over a 5G Network the follow-
ing three scenarios should visualize the possible data flows. Since roaming is not
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Figure 2.12: Handover between neighboring gNBs through the Xn interface [2, S.
188]

in the scope of this thesis the following scenarios focus on connections where the
UEs are in their Home PLMN.

In the first scenario in Fig. 2.13 shows a PDU session between a UE and the Data
Network i.e., the internet. The UE sends the data utilizing the UP-protocol stack
shown in 2.5a via the Radio interface to the gNB. The gNB wraps the packet in an
IP layer and sends it via GPRS tunneling protocol (GTP) over the N3 interface to
the UPF. The UPF changes the third layer and therefore the IP address to the cor-
responding N6 address and sends the packet to the DN over standard IP protocol.
Incoming messages are similarly handled in the other direction.

Figure 2.13: Dataflow between the UE and a Data Network with the
corresponding interfaces

The second scenario explains a PDU session between two UE with the same QoS

34



(a) Dataflow between two UEs with the
same UPF and serving cell

(b) Dataflow between two UEs with the
same UPF but a different serving cell

Figure 2.14: Dataflow between two UEs with similar QoS and location

demands and similar spatial environments so that the same UPF can supply them.
The PDU session is established between the two UEs and the RAN whereas a radio
bearer for each UE is set up. The UPF must be able to handle the necessary QoS
flow and needs free resources to establish the session. The source UE then sends
the data to the responsible gNB where it gets routed to the UPF. The UPF realizes
that it handles both the receiver and transmitter, sending the data packet to the
gNB connected to the destination UE. This scenario works for a setup where both
UEs are connected to the same gNB as shown in Fig. 2.14a or a setup where two
different gNBs like in Fig. 2.14b shown, are in use.

The third scenario, shown in Fig. 2.15 displays the connection between two UEs
whereas a different UPF is needed to connect them. Possible reasons for that sce-
nario could be that the first UPF has insufficient resources left to handle another
UE, the location between the UEs is more significant than the connection radius
of the deployed UPF or the QoS demands of the two UEs are different. The data
flow is similar to scenario two except the source UPF routes the data packets to
the destination UPF via N9 interfaces as an IP packet.

2.5 Network-slicing and QoS
The specifications assume a broad spectrum of use cases can be implemented
with 5G. From handling a massive amount of UEs that send only a few data pack-
ets every second up to fast connection with low error rates, the possibilities di-
verge very strongly. In addition, a 5G network should be able to serve these differ-
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Figure 2.15: Dataflow between two UEs with a different UPF

ent use cases simultaneously without interfering with each other. A key enabler
to make this possible is network slicing.

In 5G network slicing creates isolated virtual networks within a PLMN with inde-
pendent functions, configurations, policies, and security domains to fit the net-
work slices to a given use case. Controlled are the network slices by the NSSF,
NEF, and NRF which are also the only NFs aware of slicing in the first place. Every
other NF acts according to the given circumstances and based on the available
data stored in the UDM. The NEF and NRF are the internal and external access
points to specific NFs and must know which slice to match with which entity of
the needed NF. The NSSF interacts with the AMF to select a possible network slice
instance identified by the single network slice selection assistance information (S-
NSSAI) for the pending PDU session during the connection establishment of a UE.
Each network slice operates its own SMF, UPF, and PCF and is operated by an AMF
where one AMF can manage several slices. That implies several PDU sessions with
completely different UPF configurations can coexist in the same network without
influencing each other. [7] [1]

To identify the single network slices the S-NSSAI contains a slice/service type
(SST) and a slice differentiator. The slice/service type informs about slice perfor-
mance and behavior whereas the differentiator is a number to identify multiple
entities of the same slice type. For common slice types standardized SST values,
as shown in Fig. 2.16, are used to guarantee interoperability. [7]

One significant advantage brought by network slicing is that a QoS flow, which
specifies the framework in which a PDU session must operate, is not only applied
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Figure 2.16: Standardized SST values for network slicing [7, S. 199]

in the core system but from end to end of a GTP tunnel. Therefore a QoS flow can
provide a guaranteed bit rate (GBR) and is defined by a QoS profile that contains a
5G QoS identifier (5QI), a priority level, a guaranteed flow bit rate, and a maximum
packet loss rate. For standardization, the QoS flows were associated with different
use cases and can be identified with a 5QI. The 5QI contains the following values:

• Resource type:
It contains information if the QoS flow operates with a guaranteed flow bit
rate or not. In addition, a delay critical GBR is available, which further re-
stricts whether a packet is discarded or not.

• Priority level:
If there are two or more PDU sessions established with different QoS flows,
a hierarchy is defined by this priority level. This means that the lower the
priority level, the higher the packet’s priority from a particular QoS flow is
in the core.

• Packet delay budget:
Defines the maximum time a packet may be delayed between the UE and
the N6 interface of the UPF. In the case of delay, critical GBR packets that
exceed this value are automatically added to the packet error rate.

• Packet error rate:
Sets the upper boundary of sent packages that did not arrive or in the case
of delay critical GBR did not arrive in time at the receiver.

• Averaging window:
Time over which the guaranteed flow bit rate is calculated.

• Maximum data burst volume:
Maximum data must be transported within the packet delay budget.

Some of the standardized identifiers are listed in tab. 2.1. [7]
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5QI
Value

Resource
Type

Default
Priority
Level

Packet
Delay
Budget

Packet
Error
Rate

Default
Maximum
Data Burst
Volume

Default
Averaging
Window

Example Service

1 GBR 20 100 ms 10^(-2) 2000 ms Conversational Voice
2 GBR 40 150 ms 10^(-3) 2000 ms Conversational Video

4 GBR 50 300 ms 10^(-6) 2000 ms
Non-Conversational
Video

5 Non-GBR 10 100 ms 10^(-6) N/A
IMS Signalling
Video

6 Non-GBR 60 300 ms 10^(-6) N/A
TCP-based
communication
(i.e. www, e-mail, chat)

7 Non-GBR 70 100 ms 10^(-3) N/A
Voice and Video
Live-streaming
interactive gaming

8 Non-GBR 80 300 ms 10^(-6) N/A

Video
Buffered-streaming
TCP-based
communication

79 Non-GBR 65 50 ms 10^(-2) N/A V2X messages

80 Non-GBR 68 10 ms 10^(-6) N/A
Low Latency eMBB
applications and
Augmented Reality

82
delay-critical
GBR

19 10 ms 10^(-4) 255 bytes 2000 ms Discrete Automation

83
delay-critical
GBR

22 10 ms 10^(-4) 1354 bytes 2000 ms
Discrete Automation,
V2X messaging

86
delay-critical
GBR

18 5 ms 10^(-4) 1354 bytes 2000 ms V2X messages

Table 2.1: Standardized 5QI Values [7, S. 109-110]
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3 Hardware and Network
Architecture

In this Chapter, the Hardware used in this thesis is defined and the outlines of
the testing environment are set. Therefore, the 5G System and its components
are described and how the 5GC and RAN can be configured is explained. The
hardware used to implement the use case, which will be explained in Chapter 4,
is documented, and the premises in which the tests take place are specified.

3.1 5G Core and RAN Network
The 5GC used in this thesis is provided by the company Athonet [25] and is set up
on a Dell virtual edge platform 1485N. This universal customer premises equip-
ment contains all NFs of the core as well as the whole SBA. When this thesis was
written, the core had most of the functionalities the 3GPP release 15 provides and
will be updated soon to newer releases. Connect to the core via fiber is a Mikrotik
CRS305 switch [26]. This switch connects the core with the RAN, which contains
two 5G NR gNB femtocells of the type BTI nCELL-F2240 [27]. These gNBs have
a maximum transmission power of 250 mW and can switch between 64 and 256
QAM, among other setting options. This setup is shown in Fig. 3.1. Fig. 3.1 also
shows that the interfaces N1, N2, and N3 are implemented as one physical inter-
face for the three virtualized N interfaces. This means that all data related to the
CP and the UP flows through the switch and to the core via one fiber cable. This
port on the switch is mirrored to an empty port to connect a host running a packet
sniffer for testing and troubleshooting.

The configuration of the Core is possible via GUI provided by Athonet. This GUI
allows Basic management of the system as well as the configuration of network
slices and quality of service identifiers. However, this restricts the core configura-
tion to the implemented elements in the user interface. A critical function yet to
be implemented is the possibility of applying network slices containing GBR and
delay critical GBR 5QI values. In addition, the interface between RAN and 5GC
is only conditionally capable of establishing network slicing as a GTP end-to-end
tunnel. Therefore, this thesis focuses on the non-GBR 5QI values and evaluates
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Figure 3.1: Physical setup of the 5G system that is used in this thesis with the
connecting interfaces

the possibilities of using those to alter communication channels for industrial
purposes.

The RAN can be configured directly at the femtocells, but this is primarily prohib-
ited by the vendor, as the configuration of the base frequency and the permitted
bandwidth are restricted due to regulation by the telecommunications authority.

The system is implemented in the infrastructure of the Digital Factory Vorarlberg
and the spatial conditions are shown in Fig.3.2. The factory environment which
acts as a test set including one of the femtocells in yellow is shown. For the testing
only this femtocell was used.

3.2 Additional hardware components
For the use case, two six-axis robot arms of the UR5e type from the manufacturer
Universal Robots are used. These robots can be programmed on-site via a touch
panel with the integrated software called "Polyscope" or remotely via different
client interfaces. For remote access, the control box connected to the robot con-
tains a Gigabit Ethernet interface for IP communication. The two client interfaces
used in this thesis are:

• an interface for simple control commands called the "Dashboard Server".
The connection is established via the robots IP address on port 29999 and
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Figure 3.2: Spatial conditions of the test bed in the Digital Factory Vorarlberg

it is possible to power on/off the arm, load and start/stop programs, set the
speed value with which the program is executed, and reads the actual robot
status. [28]

• the Real-Time Data Exchange (RTDE) interface on port 30004. This interface
allows synchronization and communication with the robot without break-
ing real-time properties. To do this, a setup procedure is first carried out
to determine which data is received from the robot and which is sent to
the robot. Once done, the data is transmitted in the specified order with a
configurable interval. The RTDE interface is generally configured for a fre-
quency of 125 Hz but can be changed up to 200 Hz. Please note that the
real-time controller of the control box has a higher priority than the RTDE
interface, and it can happen that data packets are not sent if the resources
are not available. Therefore, increased frequency can lead to packet loss on
the RTDE interface. [29]

One of those two robot arms is mounted on a workbench and is therefore not
movable. The other however is mounted on a mobile platform of the type "RB-
KAIROS+" from the manufacturer Robotnik [30]. This mobile platform enables
the arm to move freely and allows testing to be performed while moving and with
different local conditions. The advanced abilities of this mobile platform are not
further discussed since they are not used in this thesis.
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Industrial 5G modems from the manufacturer Teltonika type RUTX50 [31] with
firmware version 07.03.04 are used to connect the robots via Gigabit Ethernet with
the 5G network. The modems use 4x4 MIMO antennas to connect with the 5G
Network and the maximum ratings for download speed is 2,1 Gbps and for upload
speed 900 Mbps. They can also establish a WAN connection via Gigabit Ethernet
which is further used for evaluation purposes.

3.3 Test bed
The environment used for this thesis will be a fundamental building block for fur-
ther research in the areas of 5G, machine-type communication, and industrial-
ization. This makes it inevitable to set up a test bed for upcoming research as
configurable as possible to guarantee further use of the testing environment to
analyze the communication between different devices and to evaluate the influ-
encing factors of the 5G network.

To achieve this the two robots are connected to the industrial 5G modems men-
tioned above over Ethernet. The mobile robot has a built-in modem, and the sta-
tionary robot is connected to an external modem. These modems allow the con-
nection of up to four devices in a wired LAN and can set up a WAN connection
via 5G, Ethernet, or WiFi. Furthermore, on each modem, a laptop is connected
for control or measuring purposes. This setup is shown in Fig. 3.3 and is the foun-
dation on which the use-case is built, and the measurements will be executed.
Further tests require additional modems to inject traffic into the system. For this

Figure 3.3: Testbed shows the connection of the two robots and the control and
measurement stations. The connection setups between the robots are
considered in more detail in Chapter 5

purpose, two modems of the same type are used and during testing, laptops are
connected to these modems for traffic generation. The complete test bed is shown

42



in Fig. 3.4, where the used devices for the connection under test, and the devices
used for traffic injection are visible.

(a) CAD model, where the devices for the
test link are marked in green and the
devices used for traffic injection are
marked in red.

(b) Picture of the real setup

Figure 3.4: Detailed view of the devices used for the testbed

3.4 Management software and configuration
interfaces

The 5GC management and configuration can be accomplished through a web
interface provided by Athonet. The AMF, SMF, UPF, and unified data repository
(UDR) are the key functions configured for further use.

The AMF contains the network name as well as a region ID and an AMF ID. The
allowed network slices for the given network must be added to the associated
PLMN.

The SMF adds a DNN to the corresponding network slices and assigns an IP ad-
dress pool for every DNN. In addition, the SMF links every DNN to a UPF.

The UPF must be configured to route data from one virtual interface to the other
according to the GTP tunnel established. Therefore, a mapping between network
instances, DNNs, and virtual routing and forwarding links must be done. This
means that a dedicated virtual interface must be associated with a DNN, and the
core must capture this connection into its routing table.
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Most configurations on the core are done in the UDR, where all the subscrip-
tion and policy data is stored. For every type of UE, a provisioned data profile
must be added, which contains access and session management data. The access
management data contains the maximum Mbps for up- and down-link and the
allowed network slice. The session management data contains most of the con-
figurations used for further testing in this thesis and the following configurations
can be done:

• add allowed network slices for this UE,

• link UE via DNN to a certain network slice,

• maximum up- and downlink bandwidth,

• enter 5G QoS identifier,

• configure preemption capability and vulnerability. This allows a UE to pre-
empt a preemptable UE if the resources are needed,

• overwrite the default QoS priority level,

• configure a static IP and allow only certain IP types,

• select allowed SCC modes.

In addition to the provisioned data profile, a policy data profile must be added,
which links the data policy of a UE to a DNN and a network slice. When the pro-
files are configured, they must be assigned to a SUPI which relates directly to the
IMSI and therefore to a SIM card. If this SIM card is inserted into a device, it can
communicate via the 5G connection according to the configured parameters.

The 5G modems were also configured via a web interface. The configuration of
the mobile network and packet routing needed to be done and additional config-
urations regarding traffic logging and packet size where necessary.

3.5 Network configurations
An overview of the network architecture helps to understand, how the connection
is established and where the packets are routed eventually. The 5G system creates
a network with the ip 10.10.0.0/24 and the modems connect to that network. The
LAN connection on each modem operates in a 192.168.X.0/24 network where X
represents the network number for better comprehensibility. To communicate
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with a host in the individual LANs, port forwarding was used i.e., to connect to the
RTDE server of a robot, the modem must be configured to route incoming traffic
from the 5G side on port 30004 to the IP address of the robot in the LAN. This
allows only restricted access on the LANs and enables a simple implementation
to re-route traffic from the 5G network to single hosts in the LANs. The network
is shown in Fig. 3.5, where the single sub-nets are highlighted as well as the used
hardware components.

Figure 3.5: Network overview containing the 5G network, the single LANs created
by the modems, and the used hardware.
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4 Use-Case
This Chapter explains the use case, its implementation, and which network met-
rics were identified as most important.

In today’s industry, modern communication technology has become indispens-
able. Regardless of whether it is human-to-human, human-to-machine, or machine-
to-machine, a connection appropriate to the application must be established. To
make the tests and insights of this thesis as close as possible to reality, a use case
was sought which applies to a wide range of situations. For this purpose, the ex-
isting infrastructure was used as an implementation framework and the system’s
possibilities with its current state were considered. The focus was placed on test-
ing non-GBR 5QIs for two reasons. The first was to prevent packets that exceeded
the appropriate timeout from being directly discarded by the 5G system, and the
second was that the interface between the 5G core and the RAN was found to be
buggy concerning GBR 5QI settings.

The use case was implemented at the model factory of the Digital Factory Vorarl-
berg GmbH. In this factory, the articulated arm robots described in 3 perform a
task and exchange data with each other during the execution. In addition, sensors
for data acquisition send their information to a central location and the employ-
ees in the factory can communicate with each other via digital communication
devices. The entire communication is carried out via a private 5G SA network.

The robots communicate with each other via a TCP connection and the other de-
vices generate UDP traffic. The robot communication was set up in reality and
will be explained further in this chapter. The generated traffic from the sensors
and communication devices was simulated using generated UDP traffic to sim-
plify the setup. For traffic generation, two additional laptops were connected to
the network via 5G modems. On those laptops parallel video streams enabled a
constant UDP stream with a configurable bandwidth.

The connection under test, further called test link, is the communication between
the robots. Therefore, the two articulated robots, one stationary and one mounted
on a mobile platform, are connected over the 5G network. This allows the con-
trol and monitoring of the robots via a remote connection. Moreover, the mo-
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bile robot can move freely in the area with network coverage as the only limi-
tation. Two possible applications for this would be coordinating synchronized
movements to achieve a joint task or the remote control of a robot in real-time.
Due to the limited time frame of this study, the chosen implementation combines
both applications in one use case. It allows to evaluate the influence of different
communication setups on the machine-type communication between the robots.

In the implemented use case the stationary robot, further called the "sensor",
moves along a predetermined path and transmits information regarding its move-
ment to the mobile robot, further called the "actuator". The actuator robot re-
ceives this information and strives to trace the trajectory of the sensor. The two
robots are connected to a 5G Modem, explained in Chapter 3. In the beginning,
the modems are connected via Ethernet to acquire data that can further be used
as a baseline. Afterward, the cable between the modems is removed and they are
connected via 5G with different setups. On the sensor and the actuator modem, a
laptop is connected to the LAN via Ethernet to control the data sent and received
from the robots and implement further tests.

This use case was selected to investigate the framework conditions for automa-
tion through 5G technology and determine the extent to which these conditions
can be met by the existing system. Furthermore, the gap between network mea-
surements and robot movements will be closed to facilitate the interpretation of
correlations for future implementations.

In the following sections, it is described how the use cases were implemented, the
tracing of a trajectory is done, and the code structure is explained. Furthermore,
performance metrics were identified to describe the quality of the connection and
determine the influence of external factors.

4.1 Trajectory tracing with real time data
exchange

The first step was to specify the way to record the trajectory of a UR5e. Based on
the vendor information a suitable solution was to use the RTDE interface of the
Universal Robots, since this interface allows to read and write specific data from
and to the robots in a timed interval. The RTDE server runs on the robots by de-
fault and can be accessed with an RTDE client running on an external computer.

To implement this, a laptop running Ubuntu 22.04 is configured as a control sta-

47



tion with which data is read from the sensor and movement information is sent
to the actuator. To meet the low latency requirements the real-time kernel im-
plemented by default in the mentioned OS was activated to be able to intervene
in case of problems, but no explicit configuration was done. Furthermore, as de-
scribed in [32], the programming environment for addressing the RTDE interface
was set up and a program based on the examples, given by the vendor [33] as start-
ing point, was written. Here the decision was made to write the code with Python
because the implementation was easier to handle, and the C++ implementation
only supports Linux systems. This would have been feasible with this setup, but it
cannot be guaranteed that a Linux operating system will be used for this applica-
tion in the future.

The written code contains the following:

• Initial configuration to specify which data is recorded from the sensor and
the actuator,

• Communication information for sensor and actuator. Here, not only the
RTDE interface but also the dashboard interface was used. With the RTDE
interface data regarding the trajectory is received and transmitted whereas
control signals are sent to the dashboard server,

• Two threads for handling the reception and transmission of the data,

• Data processing of both trajectories and writing of the data to a .xlsx file.

This setup is shown in Fig. 4.1

In the beginning, the IP addresses and the used ports are set. To ensure the pro-
gram is not interrupted by minor processes running in the background the nice
value is set to -19. A global variable containing trajectory movements is initial-
ized and the staring time is recorded. A connection to the dashboard server of the
sensor and the actuator is established and the used programs on the robots are
started. The sensor thread sets up the RTDE client, connects to the sensor robot
via RTDE, and then receives the information specified in the setup procedure in
a loop with a frequency of 125 Hz. The recorded data and the global time at the
reception are written in the global variable in each loop. The actuator thread es-
tablishes a connection with the actuator robot in the same way and receives the
actuator data. In the same loop, the actuator thread sends the sensor data stored
in the global variable to the actuator robot which then moves according to the re-
ceived information. After the movement of the sensor and actuator, the robots are
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Figure 4.1: Detailed setup of the use case with the connection of the two robots
and the control station. The additional connection setups between
the robots are considered in more detail in Chapter 5

stopped, and the recorded data is processed and written to a file.

This implementation allows to log the data from sensor and actuator in one pro-
gram. It provides a timestamp from the same timing domain to avoid the need of
synchronizing the two robots over the network using SNTP or PTP. Furthermore,
it allows the representation of different network behaviors by comparing the data
from the sensor and actuator. The critical part of this implementation is the read-
ing of the global variable while the sensor writes the new value to it. To prevent
the actuator to read the variable in an undefined state, the variable is protected
by a mutex.

In the first implementation, the trajectory tracing was done by sending the axis
angles of the sensor to the actuator while the robots were connected via Ether-
net with each other. These measurements showed a delay of over 100 ms and the
measured delay fluctuated heavily. To improve this behavior, a change from send-
ing axis angles to axis speed was made. On the actuator robot a change from the
servoJ command, which accepts axis angles, to the speedJ command was imple-
mented. This improved the delay time between the robots to approximately 20
ms with very little fluctuation. [29]
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4.2 Code-structure
The program flow is shown in Fig. 4.2 for further understanding. On the left side
you can see the main program, which establishes the connection to the robots
via dashboard and then calls the programs on the robot. Then the threads for
the RTDE communication with the sensor and the actuator are created and the
programs on the robots are started. Meanwhile, the two threads start connecting
to the RTDE servers on both robots and start exchanging data. If the program
is running, data is received from the sensor and sent to the actuator. When the
program is finished, the connection is terminated, and the threads are closed.
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Figure 4.2: Program flow of the trajectory tracing including the threads receiving and
sending data as well as the data acquisition for further analysis.
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4.3 Performance metrics
The goal is, to provide an as exact as possible real-time copy of the sensor trajec-
tory on the actuator. The mechanical delay can only be influenced to a certain
degree and therefore, the performance of the network is essential to achieve the
best possible result. Since the performance of a Network can be described with
different measurands the testing specified on three of them:

• Round-trip time (RTT) described the time a packet needs from sender to
receiver and back,

• Jitter describes the change in RTT during measurements and can be ex-
pressed as packet delay variation (PDV) or inter-packet delay variation (IPDV), [34]

• Packet error rate (PER) describes the number of packets lost between the
sender and receiver.

An additional measurement directly related to the functionality on the imple-
mented use case is done. Here the trajectories of the sensor and the actuator robot
are compared to each other and the offset in the time domain is measured. The
correlation of the two trajectories provides additional insight into the jitter of the
network and the necessary re-transmissions needed. The code of the programs
used in this thesis is in the appendix. [35]

4.3.1 Round-trip time
The RTT gives insight into how long Data packets travel from one point of the
Network to another and back. When the packets travel the same way in the net-
work, and the conditions for upload and download are the same, then the RTT
is two times the end-to-end latency or one-way packet delay. In networks where
the traveled path can not be determined, one way can take longer than the other
and therefore, both ways should be measured separately. Since the network ar-
chitecture used in this thesis is known and the path of the packets is the same, it
could be assumed that the RTT can be referred to as twice the packet delay. In [3],
it is shown that this is not necessarily the case for 5G SA networks. For the pre-
sented use case, however, a split of the RTT in upload and download is not needed
since the packets must always be uploaded and downloaded. Furthermore, an im-
plementation to test up and download separately would have exceeded the time
frame of this thesis and will be done in future implementations.

There are two common ways to measure RTT. First is the ICMP Echo used via,
i.e., a console application with the command "ping". Therefore, an ICMP request
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is sent to a receiver which then sends back a reply. The time difference between
sending and receiving the packets relates to the RTT. The advantages are that only
one device is necessary since nearly every network device can reply to an ICMP
request. A negative aspect would be that ICMP works on the network layer of the
OSI model, and therefore the time for computing the upper layers is not consid-
ered. The second way would be sending TCP packets to a server which routes
them directly back to the transmitter. Here it is necessary to implement a client
and a server, and access to both sides of the connection under test must be given.
The principle of testing is the same for both ways, but the handling of the differ-
ent packet types can differ in certain ways according to [36]. To avoid this, both
types of measurements have been implemented and can be compared with each
other. This also increases the number of measurements and thus the relevance of
the samples. [35]

TCP is connection-oriented and contains the re-transmission of packets that are
not sent correctly. In [37], it is described how this re-transmission of TCP pack-
ets influences the measurement of RTT and how Karn’s Algorithm can be used to
improve measurement methods to exclude the increasing time measured when a
packet must be resent. However, since the described use case involves the re-
transmission of packets, an implementation that excludes the re-transmission
time was not used, which should result in a higher RTT time for TCP packets com-
pared to ICMP packets, but in the end, no packets are lost during the TCP com-
munication.

It is important to notice that the RTT depends strongly on the free network ca-
pacity. The more a network is loaded with traffic, the higher the RTT times can
become. Of course, this also depends on the priority of the various connections
and can therefore be influenced from the outside. In this case, especially the in-
fluence of different 5QI, according to 2.1, is investigated.

4.3.2 Jitter
When the time a packet travels from one point in the network to another is al-
ways the same there is no network jitter. Since a lot of variables influence the
delay of packets, jitter is prominent in every network. When the jitter exceeds a
certain amount of time, packets may arrive in the wrong order, which consumes
additional time to resort them, and data that arrived in time must wait for further
delayed packets. This can cause problems in deterministic systems when dead-
lines are not met.

Especially in wireless communication, jitter is inevitable. Since data travels through
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the air, small changes in distance, reflections, movement, or obstacles all cause a
variance in transmission time, and therefore it is an important measurement.

To further specify what is described by network jitter, the formulations accord-
ing to [34] are used. There the delay variation of one-way delays is specified, and
this specification is used in this thesis to differ the delay variation of the measured
RTT in:

• Inter-packet delay variation, which describes the change in packet delay
from one packet to the next. This metric shows how deterministic a sys-
tem is and how stable the packet delay between packets is. The IPDV can be
calculated as

I PDV = RT Ti −RT Ti−1 (4.1)

where RT Ti and RT Ti−1 are the measured round-trip times of consecutive
packets. In this equation, the IPDV can also have negative values. Since only
the variation of the packet delay is under observation, the absolute value
of 4.1 is used.

• Packet delay variation, which describes the change of packet delay during a
series of measurements. If the RTT is constantly increasing over a series of
measurements, this trend cannot be detected by the IPDV. The PDV, how-
ever, always relates the difference in RTT to the lowest RTT measured in a
series of measurements, and thus it can be determined whether this drifts
away over the time of the measurement. The PDV can be calculated as

PDV = RT Ti −RT Tmi n (4.2)

The measurement of IPDV is performed in the same process as the RTT measure-
ment, and the PDV is calculated afterward on the basis of the gathered data. [34] [35]

4.3.3 Packet error rate
The PER relates to the number of packets lost during transmission or received
after the configured timeout and is normally described in percentage. It is calcu-
lated by summing up the number of not or late received packets and dividing this
number by the total number of packages transmitted. One way to measure PER is
to send packets with a known value from a host to a network device, which routes
the packets back to the sender. The sender checks if the packets arrive correctly
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and on time. This can be done via ICMP echos since there is no re-transmission
that prevents packet loss. [1]

4.3.4 Trajectory comparison
The trajectory comparison is not a typical network measurement since it relates
to the two measured trajectories of the robots. This is the measurement metric
that allows to link the network performance to the use case implementation fea-
sibility or requirements. Therefore, the trajectories, represented by the axis angles
of the sensor and actuator robot, are compared to each other. This comparison is
made based on the correlation between the two trajectories to observe the delay
and jitter that is caused by the network. When comparing two data sets, the corre-
lation coefficient R is a 2-by-2 matrix and describes the linear association of these
datasets around a line. The diagonal entries describe the correlation of the data
sets to themselves and are always one. The other entries describe the correlation
to each other and range from minus one to one, where minus one means the data
correlates around a straight line with a negative gradient, and one means the data
correlates around a straight line with a positive gradient. Zero correlation means
the data does not correlate at all.[38]

When using two data sets, X and Y, the calculation of R can be performed as fol-
lows

R = 1

n −1

n∑
i=1

(
Xi −µX

σX

)(
Yi −µY

σY

)
(4.3)

The data is first normalized, and the sum of the product is calculated and divided
by the number of data points per data set. This calculation can now be used to
find the difference between two functions on the x-axis. In Fig. 4.3, the first pic-
ture shows two sinusoidal functions that are phase-shifted by half a period to each
other. This leads to an R-value of minus one. The red signal is now circularly
shifted to the right in π

3 steps, and the R-value increases from left to right until it
reaches one where the two signals overlap.

To find the offset on the x-axis, the two signals are shifted over one period, and the
R-value is calculated for multiple steps during this shift. The maximum R-value
then relates to the best-fitting offset in the x-axis which is shown in Fig. 4.4, where
the R-value is plotted while circular shifting one signal. It is visible that the maxi-
mum R-value is at half the period of the two signals from Fig. 4.3.

This method is used to find the delay between the sensor and the actuator trajec-
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Figure 4.3: Change of correlation between two signals during circular shifting
from left to right

Figure 4.4: Change of the R-value while shifting over a period with marked
maximum

tory. To determine the influence of jitter on the signal, the R-value provides in-
formation about the equality of the trajectories. Fig.4.5 shows how the distortion
of an original signal influences the R-value. Starting on the left with two iden-
tical signals, one gets distorted more and more, and the maximum R-value gets
smaller. In addition, this jitter leads to a change in the x-axis due to the heavy dis-
tortion of the signal.
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Figure 4.5: Change of the maximum R-value due to distortion of the signal with
increasing intensity from left to right
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5 Measurement setups and
configuration

This chapter describes the implementation and visualization of the individual
measurements, the focus of the different setups, and explains why they were cho-
sen. The configuration for the measurements, starting with a wired setup and
continuing with different 5G settings, is presented and first results are used as a
reference. The results of the measurements regarding these setups are then pre-
sented in chapter 6.

5.1 Implementation and visualization of the
measurements

First, the measured link for RTT had to be defined. Therefore the Fig. 3.5 was
adapted and the communication path is shown in Fig. 5.1. A Laptop connected
to the sensor modem sends the measurement packets to the 5GC where it gets
routed to the actuator. The actuator then sends these packets back to their desti-
nation via the 5GC. This means that the measured RTT corresponds to two times
upload and two times download. Assuming that the send time is the same for up-
load and download, the RTT corresponds to a fourfold one-way delay.

To measure this, a program was written that opens a console via Python code on
the measurement PC connected to the sensor modem and sends ICMP requests
to a Network device via its IP address. The number of packets, the packet size,
and the sending interval can be configured, and the textual reply which contains
information about the RTT, and the packet loss is then saved and the valuable in-
formation is extracted. One disadvantage of this implementation is that the next
ICMP packet is only sent when a reply has been received from the previous ICMP
request or the timeout is exceeded. This means that only one packet at a time is
sent from the sender to the receiver, which can greatly increase the measurement
time. For the measurements of the ICMP packets a timeout of 10 seconds was
used. All packets that take longer than 10 seconds to get back to the sender are
considered lost. To reduce the produced data and decrease extreme values, ten
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Figure 5.1: Measured link for RTT with the individual sub routes

measurement values are combined into one burst. The mean values of RTT, IPDV,
and PDV as well as the summed-up packet errors represent this burst as one mea-
surement for further analysis.

In the later stages of the thesis, it was noticed, that for further examination of
the RTT, tests with a fixed transmission interval were needed. This was imple-
mented with the hping3 tool. hping3 is a packet generator and analyzer which
works similarly to the known ping but with advanced configuration possibilities,
i.e., the sending of UDP and TCP packets or the changing of the interval between
every sent packet down to the microseconds range. This tool was chosen mainly
because it is possible to configure short and fixed interval times.

For the TCP measurement, a TCP server and client were implemented in Python.
The server is connected to one side of the connection under test and opens a TCP
server on a specific port. The sole purpose of the server is to receive packets and
send them back to the sender. The TCP client is configurable in terms of packet
size, number of packets, and waiting time between the sent packets.

It is important to visualize the measurement results as simply as possible and still
get all the meaningful information from them. To achieve this for the RTT, box
plots and plots of the empirical cumulative distribution function (ECDF) of the
data were used.

Box plots use the Median and the quartiles of a data set to give information on
the location, distribution, and dispersion. In the middle of the plot is the median
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and around the median is a box that includes 50% of the data and ranges from the
median of the upper data half to the median of the lower data half. This range is
also called the interquartile range (IQR). The lowest and highest quartiles are dis-
played with so-called whiskers. These whiskers usually have a maximum length
of 1.5 times the IQR which leads to an upper boundary of the third quartile + 1.5
times the IQR and a lower boundary of the first quartile - 1.5 times the IQR. Every-
thing outside these boundaries is called an outlier. [39]

For the usage of an ECDF, the cumulative distribution function (CDF) should be
explained first. A distribution function shows the probability of a value related to
a data set where the y-axis represents the probability density and the area under
the function represents the probability percentage. When a CDF is used the prob-
ability density values are added up with the value before and the graph shows a
constantly rising function. Here the values on the y-axis represent the percentage
that a value is smaller than this variable. In Fig. 5.2 is a normal distribution func-
tion and a CDF shown, where the mean is zero and the standard deviation is one.
The ECDF is used instead of the CDF when the data contains empirical samples.

Figure 5.2: Normal distribution function compared to the CDF

The ECDF is an estimation of the CDF, where x̂ is the data point under observa-
tion, p is the number of data points less than or equal to x̂ and n is the number of
data points in the sample. The ECDF can then be calculated as

ECDF(x̂) = p(x̂)

n
(5.1)

This is shown in Fig. 5.3 and the function is similar to that in Fig. 5.2, but each
measurement is represented as a step rather than a continuous function.
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Figure 5.3: Empirical cumulative distribution function of Fig. 5.2

The measurements of the IPDV can be derived from the RTT measurements al-
ready acquired. With equations 4.1 and 4.2 the data for the packet delay variation
can be calculated and prepared for further investigations.

The IPDV and PDV are plotted separately with boxplots to show the median, range,
and outliers. In addition to the Boxplots, the IPDV and PDV are sorted and then
plotted over the measurement index to visualize the difference and behavior in
certain setups. In Fig. 5.4 is shown how different distributions have different be-
havior when they are sorted and plotted over the index. These plots allow to assess
the dispersion and the mean as well as the distribution of the data. Fig. 5.4 shows
that i.e., the bimodal distribution behaves like two normally distributed signals
with a slightly shifted mean. This can provide more insights into the processing
of the data over the network.

The measurement of the PER is implemented in the RTT measurement. Every
packet that arrives late or not at all counts as lost and is summed up over a mea-
surement. This sum is divided by the amount of sent packets and represents the
PER in percentage. Since the PER is only a percentage value over one measure-
ment, bar charts represent and compare the single measurements.

For the trajectory comparison, it was important to understand how delay, jitter,
and packet loss can interfere with the trajectory of the actuator robot to be able to
estimate for which setups a measurement of the trajectory makes sense. A script
for Matlab version 2023a was written, to simulate these influences before imple-
menting the measurements for the trajectories. This simulation is only a rough
estimation of the errors that occur during the transmission and is used mainly
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Figure 5.4: Behavior of different distributions when sorted and plotted over the
index to visualize network behavior

for visualization, better understanding and to bridge the gap between the imple-
mented measurements and the selected use case. For simplification, a sinusoidal
signal with a frequency of 25mHz was used as the base function that simulates
the transmitted angular velocity ωs received from the sensor robot. This signal
is sampled with 125kHz to simulate the RTDE interface of the used robots. Tests
on the RTT were carried out in advance to estimate the interval with which the
trajectory information arrives at the actuator. This was necessary since not every
packet received will be transmitted to the actuator due to processing and trans-
mission delays. When receiving data from the sensor, the cycle time of 8 ms can
be maintained. However, when sending data over a wireless communication that
takes longer than 8 ms to transmit, this data and therefore the receiving interval
increases. First measures showed that factor four could be used as an approxima-
tion which led to a sample time on the actuator side of 32 ms. This base signal ωs

is sampled with 125 kHz over 40 seconds and the undisturbed signal at the actua-
tor ωa which contains only every fourth measurement overlaps the sensor signal
completely.

Adding a delay to the signal simulates a RTT higher than zero and can be done
by increasing the time vector of the actuator signal by a certain value. In addition
to the added delay, a delay variation should be added. This variation can occur
for two reasons:

• When a packet must be resent because of a packet error or exceeding the
maximum transmission timeout. This leads to a change of ωs at the actua-
tor side and is visible as a steady value over at least one sample time at the
actuator. This makes it possible to show a deterioration of the actuator ωa
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compared to the sensor ωs according to a specific error percentage.

• IPDV caused by the wireless transmission. This leads to a change in RTT ac-
cording to the intensity of the IPDV. In addition, a high IPDV can also cause
an actuator cycle to not receive a packet which results in the first error ex-
plained. Therefore, it was necessary to implement the packet error first and
then add a random value that is not steady but increases with higher packet
error rates. Here a linear function according to measured data was used to
simulate the relation between increasing packet loss and IPDV.

These errors are shown in Fig. 5.5, where a delay of two seconds and an error rate
of 10% was added. Since the TCP position is the variable of interest, it is necessary

Figure 5.5: Sinusoidal angular velocity for the sensor and a simulated distorted
transmission to the actuator

to integrate the angular velocity. This was done with the trapezoid rule∫ j

i
f (x)d x ≈ 1

2

m∑
n=1

(xn+1 −xn)( f (xn)+ f (xn+1)) (5.2)

where the function to be integrated is the sinus and the variable x is the time
vector both after the changes according to the errors applied. This integration is
already predefined by Matlab as the cumtrapz() function. [40].

After the integration, the axis angle of the sensor and actuator can be compared
which is shown in Fig. 5.6. It is visible that the trajectory is deformed because
of the sudden changes of ωa which lead to an unsteady change of the axis an-
gle. Another insight gained from this simulation is, that a distortion of the angular
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Figure 5.6: Axis angle for the sensor and a simulated distorted transmission to the
actuator

velocity leads to a delayed axis angle at the actuator. This is shown in Fig. 5.7
where the transmission was simulated without any delay, but with a high error
percentage of 15%. It is visible that in Fig. 5.7 the angular velocity on the left is not
delayed but has a high jitter. This results in a delayed axis angle at the actuator,
which comes from the partly slower change of the axis speed due to the missing
packages resulting in constant speed over time. To find out at what percentage a

Figure 5.7: Delayed axis angle resulting from the jittered transmission of angular
velocity

trajectory measurement stops making sense, the mean squared error (MSE) be-
tween the sensor and actuator trajectory for different PERs was computed. At a
PER between 10% to 25% a steep ascent of the MSE is recorded which leads to the
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assumption, that at a PER of 10% the accuracy of the actuator trajectory reaches
a critical range where the uncertainty is not sustainable. The normalized MSE is
shown in Fig. 5.8 where 20 simulations for each packet loss between 0 to 25 were
computed. As a first assessment, it can be said that a transmission resulting in an
error of more than 10% at the actuator, which corresponds to a PER of about 22%,
is unusable.

Figure 5.8: Normalized MSE between the sensor and actuator axis angle with
increasing packet loss percentage

Based on the simulation, the measurements of the real trajectories, including the
axis angles of all six axes and the measured time at the host computer, from the
sensor and actuator were implemented in Matlab. Since the data of the sensor
and actuator is not recorded synchronously in the time axis, the first step was to
synchronize the data. For this purpose, the two data sets were linear interpolated
and then sampled with a sampling rate of 1 kHz. This sampling rate assures that
there is no large error due to the re-sampling since the data was acquired with a
sampling rate of 125 Hz. To compute the delay and R-value of the two trajecto-
ries, the methods explained in this chapter were used. The already implemented
Matlab function corrcoef() compares two sets of data and gives back the R ma-
trix. This was combined with a circular shift of one data set and computed over
the number of samples per data set. This was done for all six axis angles and the
average value of the delay, and the R-value represent the corresponding network
errors.
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5.2 Basic setup as Benchmark
The first measurements were done with fixed wiring. The two robots and the
modems were connected over Ethernet cables, as shown in Fig. 5.9 and the net-
work measurements were performed. The RTT measurements were done with

Figure 5.9: Setup for the measurements in the hardwired state

ICMP and TCP packets and the results are shown in Fig. 5.10. It is important to
notice, that the delay is not only caused by the transmission itself but also by the
internal packet processing time and I/O buffer delay on the devices. These influ-
ences have a stronger effect, especially at very low RTT.

Considering this, the RTT of the measured ICMP packets are all under two mil-
liseconds, whereas the TCP packets have a higher RTT with a median of approx.
two and a half milliseconds. There are two main reasons for this, firstly ICMP
function on the Network layer (L3) of the ISO/OSI model and TCP is categorized
as a transport layer (L4) protocol and secondly, the 3-way handshake of the TCP
protocol delays the packets further. When examining the ECDF plot, the data is
not completely normally distributed but tends to a bimodal distribution, which is
however negligible, since this takes place in a range smaller than <1ms and is also
heavily influenced by device internal delays.

The Boxplot shows that the spread of the RTT is also increased for TCP packets
which mainly leads to the time taken during the handover and the processing time
of the TCP server which routes the packets back to the client.

When examining the delay variation shown in Fig. 5.11 the Boxplots for the IPDV
show a suitable result to the RTT. The plot of the PDV indicates, that the delay vari-
ation is not trending in a direction and the data fits nearly a normal distribution.
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Figure 5.10: RTT for a wired setup with ICMP and TCP measurements plotted as
ECDF and as boxplots

It is worth mentioning, that the spread of the data is higher on the upper side of
the median, which indicates a gamma distribution. This stems from the above-
mentioned device delays and can not be influenced at the physical layer.

Figure 5.11: IPDV and PDV for a wired setup with ICMP and TCP measurements
plotted as Boxplots and as a scatterplot to visualize the data
distribution

67



In the next step, the trajectories of the two robots were recorded and compared
with each other. Therefore, the sensor executes a given movement and the actua-
tor follows. The movement lasts 25.7 seconds and uses every axis with a different
speed. The recorded axis angles for the sensor and actuator are shown in Fig. 5.12
with the corresponding R values and delay. The R values are all >0.9998, which
indicates that, besides a time delay, there is not much of a difference between the
sensor and actuator trajectories. The delay is not the same for all six actuator axis
and ranges from 0 to 32 milliseconds. This is due to the tracing of speed values
instead of axis angles which causes faster and slower tracing according to the axis
movement. The zero value on axis three needs additional explanation. This value
means, that on average, the actuator reaches the given value simultaneously with
the sensor. This is also due to the tracing of speed values and can happen when
the axis speed is delayed right when the movement slows down. The actuator
overshoots the sensor angle and therefore reaches the upcoming angles quicker
or at the same time as the sensor.
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Figure 5.12: Overview of the compared sensor and actuator axis angles in a wired
setup with the corresponding R values and delay
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A real difference in the axis angles is only visible when looking closer at one angle.
Therefore, axis two was used, and in Fig. 5.13 the visualization of the angle from
15 to 20 seconds is shown in detail. Between 18.5 and 19 seconds the overshoot,
and the resulting change of the actuator from lagging to leading, as mentioned
above is visible.

Figure 5.13: Detailed view on one axis to show the delay

The measurement for the wired setup was repeated five times. The mean delay
showed 19.33 ms and the R value is 0.999925. For the upcoming measurements,
this value can be used as a benchmark to differentiate between the delay and dis-
tortion caused by the hardware components and the implementation of the tra-
jectory tracing, and the added interference by the communication setup.

One goal of this work was to find a usable setup for the use-case used. For this pur-
pose, the non-GBR quality of service combinations were considered in advance.
It was decided that the 5QI values 5, 8, and 80 would be used for the tests as they
use very different priority levels and packet delay budgets as shown in tab. 5.1.

To find out how these settings relate to each other, several tests were performed.
The tests were carried out with a packet size of 256 bytes for the test link and an
MTU size of 1500 bytes for the network load if not mentioned otherwise and a
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5QI
Value

Resource
Type

Default
Priority
Level

Packet
Delay
Budget

Packet
Error
Rate

Example Service

5 Non-GBR 10 100 ms 10^(-6)
IMS Signalling
Video

8 Non-GBR 80 300 ms 10^(-6)

Video
Buffered-streaming
TCP-based
communication

80 Non-GBR 68 10 ms 10^(-6)
Low Latency eMBB
applications and
Augmented Reality

Table 5.1: The 5QI values 5, 8, and 80 which were used for further testing [7, S.
109-110]

256-QAM was used on the RAN side. The different setups will now be explained
in detail.

5.3 Setup 1: Behavior under load
The first setup was used to determine the relationship of communication with
each 5QIs to itself and to other 5QIs under stress. For this, a test link was estab-
lished with two modems that are configured with the same 5QI. To load the net-
work, two additional modems were also connected to the 5G network, and UDP
streams were performed on these modems at a specified bandwidth to simulate
network traffic. Every UE in the system was configured with the same priority
level, to check the behavior of the 5QIs compared to traffic with the same pri-
ority level. To provide traffic with a certain bandwidth, the maximum bandwidth
was restricted on the 5GC for the two UEs which produced the traffic. This restric-
tion in combination with video streaming produced a steady traffic that simulates
real UDP download accurately. The real-time traffic analysis of the modems in
Fig. 5.14 shows that the download traffic is steady, and the restrictions are accu-
rate.

ICMP and TCP tests were then performed on the test link to measure the qual-
ity of the connection. At the beginning every 5QI was tested without traffic to
get a baseline for RTT, packet delay variation, and error rate. After that, the test

71



Figure 5.14: UDP real-time traffic log over 3 minutes from one of the modems
while performing a video stream with 20 Mbps

link was stressed with traffic of the same 5QI with increasing bandwidth. The last
measurements tested a specific 5QI for the test link and applied traffic of one of
the other two 5QIs. This was done to check the influence between the 5QIs when
they have the same priority level.

One of the first insights was, that the system can handle a bandwidth of approx-
imately 50 Mbps. When increasing the traffic higher than that, the modems get
disconnected after a short time and will not reconnect for a certain time. Often
was a restart of either the modems or the UPF of the 5GC necessary to establish a
connection again. As a result, the load intensity was increased up to a maximum
of 50 Mbps.

Tab. 5.2 lists the measurements carried out to provide an overview of everything
tested in this setup.

72



Setup 1. test link 5QI network traffic 5QI load intensity in Mbps
1 5 - -
2 8 - -
3 80 - -
4 5 5 10
5 5 5 20
6 5 5 30
7 5 5 40
8 5 5 50
9 8 8 10
10 8 8 20
11 8 8 30
12 8 8 40
13 8 8 50
14 80 80 10
15 80 80 20
16 80 80 30
17 80 80 40
18 80 80 50
19 5 8 10
20 5 8 20
21 5 8 30
22 5 8 40
23 5 8 50
24 5 80 10
25 5 80 20
26 5 80 30
27 5 80 40
28 5 80 50
29 8 5 10
30 8 5 20
31 8 5 30
32 8 5 40
33 8 5 50
34 8 80 10
35 8 80 20
36 8 80 30
37 8 80 40
38 8 80 50
39 80 5 10
40 80 5 20
41 80 5 30
42 80 5 40
43 80 5 50
44 80 8 10
45 80 8 20
46 80 8 30
47 80 8 40
48 80 8 50

Table 5.2: Measurements carried out for setup 1
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5.4 Setup 2: Influence of the packet size
Since the use case can require a diverse size of data packets to be sent, the influ-
ence of the packet size was of interest to this thesis. This setup was about deter-
mining the packet size for the test link that is least impacted and how the packet
size of the traffic is related to that. Therefore, the packet size of ICMP and TCP
packets for the test link was changed from 128 to 256, 512, and 1024 bytes and
tested, first without traffic and then with a steady packet size of 256 bytes for the
traffic. Afterward, the measurements on the test link were repeated, but with 512,
1024, and 1500 bytes packet size for the traffic. To exclude any influence on the
measurements due to different 5QI settings, both the test link and the traffic were
carried out with a setting of 5QI 80 and the same priority level. The traffic was
applied with a steady bandwidth of 20 Mbps and tab. 5.3 gives an overview of the
measurements carried out in the setup.

Setup 2.
test link packet size
in bytes

traffic packet size
in bytes

1 128 no traffic
2 256 no traffic
3 512 no traffic
4 1024 no traffic
5 128 256
6 256 256
7 512 256
8 1024 256
9 128 512
10 256 512
11 512 512
12 1024 512
13 128 1024
14 256 1024
15 512 1024
16 1024 1024
17 128 1500
18 256 1500
19 512 1500
20 1024 1500

Table 5.3: Measurements carried out for setup 2 with a fixed 5QI of 80 for the test
link and the traffic

5.5 Setup 3: Influence of the transmission
interval

The RTDE interface of the UR5 robots allows the configuration of a sampling rate
of up to 200Hz. This led to the need to perform a test setup that tests different
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transmission intervals. Since the measurements in setups one and two used the
approach of only one data packet sent at a time, the measurements needed to be
changed. This setup uses the hping3 implementation mentioned in 5 to test the
different interval times. Since the behavior of ICMP and TCP showed little dif-
ference, apart from the increased RTT, in the setups before and the packet loss is
of interest in this setup, only ICMP tests were performed. To perform tests simi-
lar to a real implementation, the same 5QIs as well as different 5QIs for test link
and traffic were examined with a sending interval from 1 ms, 10 ms, and 100 ms.
Since setup one showed the influence between the used 5QI, only 5QI 80 and 5QI 5
were used to test this setup. In addition, the packet size of the test link was altered
between 128 bytes and 1024 bytes to examine how this influences the measure-
ments. Tab. 5.4 shows the executed measurements where the traffic was applied
with a steady 20 Mbps and a packet size of 1500 bytes.

Setup 3.
test link
5QI

sending interval
in ms

test link packet
size in bytes

network traffic
5QI

1 5 1 128 80
2 5 2 128 80
3 5 10 128 80
4 5 100 128 80
5 5 1 1024 80
6 5 10 1024 80
7 5 100 1024 80
8 80 1 128 5
9 80 2 128 5
10 80 10 128 5
11 80 100 128 5
12 80 1 1024 5
13 80 10 1024 5
14 80 100 1024 5
15 5 1 128 5
16 5 2 128 5
17 5 10 128 5
18 5 100 128 5
19 5 1 1024 5
20 5 10 1024 5
21 5 100 1024 5
22 5 5 128 80
23 5 10 128 80
24 5 20 128 80
25 5 40 128 80
26 5 5 128 5
27 5 10 128 5
28 5 20 128 5
29 5 40 128 5

Table 5.4: Measurements carried out for setup 3 with a fixed packet size for the
traffic of 1500 bytes and a bandwidth of 20 Mbps
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6 Results

This chapter presents the measurements and results of the setups explained in
5. Every subsection starts with the presentation of the RTT followed by the IPDV,
PDV, and PER. After explaining the results, a distinction is made from case to case
whether a trajectory measurement is valuable. If so, this is presented, and the
results are explained. The end of this chapter summarizes the most important
insights gained and puts the results in relation to each other.

6.1 Results of Setup 1: Behavior under load

Basic performance without traffic
A first measurement was done without traffic for all three 5GI values. Fig. 6.1 rep-
resents the RTT as an ECDF and boxplots and shows, that the median is around
30 ms for all three measurements.

Figure 6.1: ECDF and boxplots of the RTT of the basic 5G setup for the three 5QIs
surveyed without traffic

76



As expected, there is little difference in the measurements since traffic is that of
the test link only, and can provide the maximum service for every measurement.
At first glance, RTT values seem high compared to the expected latencies of a 5G
system. However, as explained in Chapter 5, the RTT metric measured comprises
four communication latencies. These are from the UE to the gNB and to the 5G
core, plus the inverse path from the 5G core to gNB and the UE. If symmetric com-
munication delays could be assumed, our RTT values amount to around 7.5 ms, in
the expected range for a 5G SA system, and in agreement with the values reported
in [3]. The distribution is approximately normal with a skew to the right resulting
from multiple outliers that are above 40 ms, especially for the measurements of
the 5QI 80.

When looking at the IPDV and PDV in Fig. 6.2 we find that the IPDV is lower than 6
ms in 99.65% of the measurements when using the 1.5 IQR rule explained in Ch. 5
and under the assumption that the measurements follow a normal distribution.
That assumption holds in the PDV plot, except for the measurements with 5QI of
8 with a much higher variance that prevents a clear fit.

Figure 6.2: IPDV and PDV of the basic 5G setup for the three 5QIs surveyed
without traffic

An unexpected result is the high PER measured (Fig. 6.3). When compared to [7],
the PER should be around 10−6. The measured values are between 0.14% and
0.02% which is a factor of 10000 higher than what the standard describes. A deeper
investigation into the reasons behind this gap led to the research in [3], where it
was discovered that many losses occur in the core. To narrow down this behavior

77



further tests are necessary, capable of discriminating losses occurring at the radio
interface from those introduced by processing errors inside the core. These tests
go beyond the scope of this thesis and will be tackled in follow-up work.

Figure 6.3: PER of the basic 5G setup for the three 5QIs surveyed without traffic

Regarding the real-time trajectory copying through the 5G network, the trajec-
tories for the basic setup measured an average delay of 64.22 ms and a R-value of
0.9999. This is reasonable compared to the wired measurements since the delay
is 45 ms higher than the wired setup. These 45 ms results from the 30 ms delay
caused by the 5G test link and the sampling rate of the two robots, which is 125 Hz
each and thus reads or writes a new value every 8 ms. The R-value is slightly worse
than the wired setup since the IPDV is higher. The trajectories for axis one of the
three 5QIs without traffic are shown in Fig. 6.4 where an almost perfect match is
observed.

Figure 6.4: Trajectories for axis one of the no-traffic setup for the different 5QIs

6.1.1 Performance with additional network traffic
The next measurements consider adding load to the network through traffic from
additional UEs connected to the network, using the same 5QI as the test link.
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Since every 5QI showed the same behavior for this setup, only the results for the
5QI 5 are shown in Fig. 6.5 with increasing intensity of the added network traffic
from 10 to 50 Mbps.

Figure 6.5: RTT for a 5QI of 5 for the test link and the traffic

When increasing traffic from 10 to 30 Mbps the RTT increases from 32 ms to 50
ms, which indicates that individual performance depends strongly on the net-
work load, even under mild traffic loads. This is an observation missing in exper-
imental research available in the literature, that disregards the network load. For
loads over 40 Mbps, the median of the RTT stays steady at around 50 ms but the
outliers increase. This means that the distribution of the RTT skews more to the
right and therefore the tendency to higher RTTs increases.

The small drop in RTT from 40 to 50 Mbps traffic can be attributed to two effects:

• When loading the network over its capacity, packets get dropped. When
test link packets with a high RTT drop, the average delay decreases, with a
corresponding increase in the PER.

• When the network gets overloaded, traffic behavior changes from a steady
flow to bursts. Between these bursts, a relatively low number of packets gets
consumed by the traffic hosts. This can lead to an increasing capacity for
the test link.

The IPDV and PDV show similar behavior to the RTT. In Fig. 6.6, the IPDV shown
on the left side increases from 4.6 ms up to 15.7 ms at 40 Mbps traffic. At 50 Mbps
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traffic, the IPDV drops to 12.7 ms, which may also stem from the above expla-
nations. The plot of the PDV gives additional insight into the distribution of the
data and shows that with increasing traffic, the skewness to the right increases to
a certain degree.

Figure 6.6: IPDV and PDV for a 5QI of 5 for the test link and the traffic

When looking at the PER in Fig. 6.7, the initial 10 Mbps of traffic do not show any
noticeable change compared to the unloaded tests. From then on, however, the
PER increases drastically to a maximum value of 3.56 percent. This means that
178 of the 5000 packets sent were lost. Since the network should not be busy with
traffic of less than 50 Mbps, further investigations are necessary to explain the
high PERs for these measurements.

Figure 6.7: PER for a 5QI of 5 for the test link and the traffic
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These results show that a network load with the same 5QI as the test link increases
the RTT and IPDV to a certain intensity of traffic. This behavior can change when
the network is at its maximum load because the traffic is no longer stable. How-
ever, the PER increases steadily and is much higher than assumed in the theory.

To find out how traffic load affects the behavior of the actuator, the trajectories
were recorded during increasing traffic. In Fig. 6.8, the trajectories of axis one for
the sensor and actuator with increasing traffic are shown. The trajectories show
a correlation between the measurements of the RTT, IPDV, PER, and the R-values
and delay of the trajectories. With 10 Mbps traffic, the trajectory is almost the
same as with no traffic. However, if the traffic is increased, a sharp increase in the
delay is noticeable. It is also visually recognizable how the trajectory is distorted
at the actuator and the R-value decreases as a result. These results confirm the in-
sights from [5], which show a deviation of the axis speed with high network traffic
applied.
To investigate the interaction of different traffic types, tests between the different
5QIs were done with applied traffic of 40 and 50 Mbps as these correspond to high
network load and are thus of most practical interest.

Starting with a test link with a 5QI of 5, traffic with 5QI 8 and 80 were applied.
Fig.6.9 shows that neither traffic with 5QI 8 nor 80 has a major influence on the
RTT, IPDV, or PER of the test link. The results are even better than the measure-
ments where the test link and traffic have the same 5QI. This is because the 5QI
5 has the highest priority of the three and therefore there is little to no influence
from the others. Nevertheless, this is interesting because when configuring the
5QI profiles, a manual priority of one was assigned to all UEs used. Thus, it can be
determined that, when two UEs with the same configured priority are using the
same medium with limited resources, the UE with the higher default priority wins.

The second test considered a 5QI of 80 for the test link. 5QI 80 has a higher default
priority than 8 and a lower default priority than 5, which means, that different
behavior should be determined. Fig. 6.10, shows the results from these measure-
ments. It is clear to see that these assumptions were correct, as the median of the
RTT, shown in part b of the Fig. 6.10b, increases up to 117.8 ms against traffic with
a 5QI of 5 and the ECDF plot shows a heavily one-sided distribution where a traffic
of 5QI 8 has only a minimal effect on the test link. The IPDV and PDV plots show
a similar result, with an average IPDV of 33.8 against 50 Mbps of 5QI 5 traffic. In
addition, the PDV plot shows that the data tends towards a bimodal distribution
with an accumulation of values under 10 ms and around 45 ms. This can also be
attributed to the behavior of the traffic, which changes from a steady stream to
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Figure 6.8: Trajectories for axis one with increasing traffic from 10 to 50 Mbps
where the delay and the R-values are noted

bursts at rates close to the maximum network capacity. The PER is shown in part
c of the Fig. 6.10c confirms the previous findings and shows that a communica-
tion with a test link of 5QI 80 has an unusable quality against traffic with a 5QI of
5, but against traffic with 5QI 8 a relatively stable test link could be measured.
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(a) RTT for test link with 5QI 5 and different traffic setup

(b) IPDV and PDV for test link with 5QI 5 and different traffic setup

(c) PER for test link with 5QI 5 and different traffic setup

Figure 6.9: Results for the tests with 5QI 5 for the test link and 5QI 8 and 80 for the
traffic
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(a) RTT for test link with 5QI 80 and different traffic setup

(b) IPDV and PDV for test link with 5QI 80 and different traffic setup

(c) PER for test link with 5QI 80 and different traffic setup

Figure 6.10: Results for the tests with 5QI 80 for the test link and 5QI 5 and 8 for
the traffic

84



To have a comprehensive evaluation of the interaction between 5QIs, Fig. 6.11
shows the results of a final test performed with a 5QI of 8 for the test link and 5QI
of 5 and 5QI of 80 for the traffic. The results for these tests are consistent with
those of the previous measurements. Since the test link has the lowest priority, it
is strongly influenced by both traffic configurations and shows a very high RTT as
well as IPDV and PDV. The distribution of the RTT becomes more and more right
skewed with increasing traffic and the delay variation changes again to a bimodal
distribution at 50 Mbps traffic. The PER also strongly increased, which makes the
usability of 5QI 8 for automation purposes highly questionable.

In addition to the ICMP tests, TCP tests were performed to analyze the behav-
ior of connection-oriented communication. For this, all 5QI pairings were tested
with the same setups as the ICMP tests. Based on the results from the ICMP tests,
results only for a traffic of 50 Mbps are presented in Fig. 6.12. The RTT, IPDV, and
PDV show the same behavior for the different pairings as in the ICMP tests, but
with significantly higher delay and delay variation. It should be noted that due
to the large change between the setups, the y-axis for the PDV plot was chosen
to be logarithmic. However, the distribution of the PDV measurements of these
setups is similar to that of the ICMP tests. If the IPDV and PDV values in Fig. 6.12b
are considered, it is recognized that these are significantly higher than the values
of the ICMP tests. This is due to the fact that when retransmitting packets, the
delay variation can change significantly. Since the ICMP tests showed error rates
of more than 10%, every tenth packet must be re-transmitted and thus the delay
fluctuates strongly. These results underline the importance of the right choice of
5QI pairing to ensure a stable connection.
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(a) RTT for test link with 5QI 8 and different traffic setup

(b) IPDV and PDV for test link with 5QI 8 and different traffic setup

(c) PER for test link with 5QI 8 and different traffic setup

Figure 6.11: Results for the tests with 5QI 8 for the test link and 5QI 5 and 80 for
the traffic
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(a) RTT for TCP packets with different 5QI test link and traffic pairings

(b) IPDV and PDV for TCP packets with different 5QI test link and traffic pairings

Figure 6.12: Results for the TCP tests with different 5QI test link and traffic
pairings with a traffic intensity of 50 Mbps
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The last tests for TCP communication were done to connect the use case with
the measured values and find out, what this means for the movements of the two
robots. Towards that end, tests were carried out with two different setups. One
with a test link with 5QI 5 against traffic of 5QI 8 with increasing intensity. Based
on the measurements already performed in Fig. 6.9, it can be expected that this
setup is very well suited for recording the trajectory, and a high R-value and low
delay can be expected. The second measurement was performed with a test link
with 5QI 8 and a traffic of 5QI 5 with increasing intensity. The measurements al-
ready performed can be seen in Fig. 6.11 and suggest that the conditions here are
the other way around. For this setup, a very bad R-value and a high delay are to
be expected.

In Fig. 6.13 the test link with 5QI 5 is shown on the left and the test link with 5QI 8
is shown on the right both with increasing traffic from 20 to 50 Mbps. The R-value
and delay for the trajectory on the left setup is relatively stable up to 50 Mbps traf-
fic whereas the quality of the right setup decreases rapidly. This goes so far that
recording an entire trajectory for the tests at 50 Mbps was not possible because
the connection was constantly interrupted as seen in the picture in the right lower
corner, where the trajectory could only be recorded for eight seconds.

These tests lead to the conclusion that the 5QI settings and the default priority
of a UE profile, makes a crucial difference with respect to RTT, IPDV, PDV, and
PER. These should be assigned to the individual UEs in accordance with the use
case and the expected network load, to give priority to critical applications during
high network utilization.
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Figure 6.13: Trajectory comparison with increasing traffic where on the left setup
the traffic has a small impact and, on the right, the traffic has a big
impact on the test link.
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6.2 Results of Setup 2: Influence of the packet
size

The results in this section show how the packet size influences the 5G test link. It
is emphasized that the measurements are as close as possible to reality and there-
fore only certain packet sizes were examined. The first setups correspond to ICMP
tests and were done with a traffic packet size of 256, 512, 1024, and 1500 bytes.
First, without applied traffic for baseline performance in Fig. 6.14, that show a
slightly higher RTT and delay variation for packets of the size of 512 bytes which
can be the result of measurement errors.

The next step was adding traffic and examining the behavior of the test link under
stress. The results in Fig. 6.15 show the RTT for these measurements with ascend-
ing packet size for traffic starting with the smallest packet size in Fig. 6.15a.

These results show, that the RTT for 1024-byte long packets is significantly higher
than for the other packet sizes tested. This is somehow intuitive because longer
packets are more difficult to schedule. It can be said that packets with 1024 bytes
take longer to be transmitted in every setup but especially against traffic with
smaller packets the difference is significant. Furthermore, it can be said that traf-
fic with a packet size between 512 and 1024 bytes cause the greatest delay at the
test link. This leads to the assumption that the system can handle either small
or large packets very well but struggles with processing traffic of medium sized
packets. This behavior needs further investigation. If the ECDF plots in Fig. 6.15b
and Fig. 6.15c are examined more closely, the behavior of packages with a size
of 128 bytes shows a tendency towards a bimodal distribution. This behavior is
comparable to the results in [4] and can be attributed to the RAN. Since the used
n41 frequency band uses TDD and therefore a time multiplexing method, it can
happen that the asymmetrical up- and download time slots cause this distribu-
tion type.

The delay variation in Fig. 6.16 shows a similar behavior and thus confirms the
findings from the RTT results that the 1024-byte packets are poorly forwarded by
the system. It should also be noted that a packet size of 512 or 1024 bytes has
the greatest influence on the test link whereas traffic with 128 and 1500 byte show
nearly no additional distortion of the test link.
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(a) RTT for ICMP packets with different packet sizes

(b) IPDV and PDV for ICMP packets with different packet sizes

(c) PER for ICMP packets with different packet sizes

Figure 6.14: Results for the ICMP tests against with no traffic
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(a) RTT for ICMP packets against traffic with a packet size of 256 bytes

(b) RTT for ICMP packets against traffic with a packet size of 512 bytes

(c) RTT for ICMP packets against traffic with a packet size of 1024 bytes

(d) RTT for ICMP packets against traffic with a packet size of 1500 bytes

Figure 6.15: RTT for the ICMP tests against different traffic packet sizes with a
traffic intensity of 20 Mbps

92



(a) Traffic packet size of 256 bytes

(b) Traffic packet size of 512 bytes

(c) Traffic packet size of 1024 bytes

(d) Traffic packet size of 1500 bytes

Figure 6.16: IPDV and PDV for the ICMP tests against different traffic packet sizes
and with a traffic intensity of 20 Mbps
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The ICMP test results are completed with the PER measurements in Fig. 6.17 and
shows that a big packet size for the test link is not only slow and highly varying
but also has a high error rate. The remaining results of the PER measurement are
consistent with the insights already obtained and show that the packet size of the
test link is steady above a certain size. It has to be noted that in Fig. 6.17d only
three bars are plotted since the measurements for a test link packet size of 256
bytes did not show any packet errors.

(a) Traffic packet size of 256 bytes (b) Traffic packet size of 512 bytes

(c) Traffic packet size of 1024 bytes (d) Traffic packet size of 1500 bytes (PER is
zero for a test link packet size of 256
bytes)

Figure 6.17: PER for the ICMP tests against different traffic packet sizes and with
a traffic intensity of 20 Mbps

In addition to the ICMP tests, TCP tests were performed with the same setups.
The results are summed up for the RTT in Fig. 6.18 and for the IPDV in Fig. 6.19
and show one significant difference.

94



(a) Traffic packet size
of 256 bytes

(b) Traffic packet size
of 512 bytes

(c) Traffic packet size
of 1024 bytes

(d) Traffic packet size
of 1500 bytes

Figure 6.18: RTT for the TCP tests with a different packet size for the test link and
the traffic with a traffic intensity of 20 Mbps

(a) Traffic packet size
of 256 bytes

(b) Traffic packet size
of 512 bytes

(c) Traffic packet size
of 1024 bytes

(d) Traffic packet size
of 1500 bytes

Figure 6.19: IPDV and PDV for the TCP tests with a different packet size for the
test link and the traffic with a traffic intensity of 20 Mbps

Compared to the ICMP tests, the results for a traffic packet size of 256 bytes show
a higher RTT and IPDV. The RTT is visible in Fig. 6.18a and can be compared with
fig 6.15a and the IPDV in Fig. 6.19a can be compared with fig 6.16a where the mea-
surements for the ICMP tests for traffic of a packet size of 256 bytes are shown.
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This behavior may be related to the higher PER values but needs further inves-
tigation. The rest of the measurements have the same information content as
the ICMP tests, only with higher values, which is in agreement with the results
from 6.1.

The TCP tests have shown that the RTT and IPDV are relatively high compared to
the tests for the behavior under load when the packet size for the traffic is chosen
smaller than 1500 bytes. To test the impact on the use case, the control program
for the robots was modified to send data packets of different sizes from the sensor
to the actuator while recording the trajectory. Starting with a test link packet size
of 128 bytes, the results for different test link packet sizes are shown in Fig. 6.20.
As expected, the delay is the lowest and R-value the highest when the network is
loaded with traffic that has a packet size of 1500 bytes. With increasing packet
size the R-value rises and the delay drops except for a 512 bytes traffic packet size.
The change from 1024 bytes to 1500 bytes packet size for the traffic results in a
significant delay reduction by a third of the measured delay.
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(a) Traffic packet size of 256 bytes (b) Traffic packet size of 512 bytes

(c) Traffic packet size of 1024 bytes (d) Traffic packet size of 1500 bytes

Figure 6.20: Trajectory comparison with a packet size of 128 bytes for the test link
and varying packet sizes for the traffic

The measurements with 512 bytes traffic packet size had to be redone several
times since the connection was very unstable in this setup. The robots either lost
consecutive packets and therefore distorted the tracing flow or the modems lost
connection and the test link got interrupted as a result. The first measurement
trajectories are visible in Fig. 6.21 and show the interrupted connection on the left
and a distorted result on the right. The next step was to increase the packet size
for the test link to 256 bytes and repeat the measurements with the results shown
in Fig. 6.22. The trend is consistent with the previous measurements, where a
higher packet size for the traffic increases the R-value and decreases the delay.
For the measurement with a traffic packet size of 512 bytes in Fig. 6.22b, no whole
trajectory could be recorded, even after repeated testing, which also supports the
previous conclusion.
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(a) Distorted measurement because of high
packet loss

(b) Faulty measurement because of
complete connection loss

Figure 6.21: Measured errors for the trajectory with a packet size of 128 bytes and
512 bytes packet size for the traffic

The tests with a packet size of 512 and 1024 bytes for the test link were so unsta-
ble that even after multiple tests no trajectories could be calculated and therefore
cannot be presented. This is probably due to the fact that the sending interval of
125 Hz for the sensor and the actuator in combination with the increasing packet
size leads to errors. Thus the connection is only partially usable.

The results of this setup lead to the conclusion, that the system in principle can
handle a few bigger packets for the traffic better than many smaller packets but
certain setups need to be tested before being used for automation purposes. The
connection problems with a packet size of 512 bytes for the traffic are particularly
noticeable, which requires further tests and investigations to understand this be-
havior.
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(a) Traffic packet size of 256 bytes (b) Traffic packet size of 512 bytes

(c) Traffic packet size of 1024 bytes (d) Traffic packet size of 1500 bytes

Figure 6.22: Trajectory comparison with a packet size of 256 bytes for the test link
and varying packet size for the traffic
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6.3 Results of Setup 3: Influence of the
transmission interval

After exploring the quality of service configurations and the influence of different
packet sizes, the transmission interval was also of interest. This metric is espe-
cially important in machine-to-machine communication since the sending inter-
vals can be programmed and therefore it can be directly linked to the use case.
Initially, the test link was configured with a 5QI of 5 and the traffic with a 5QI of
80. This configuration was chosen because the previous measurements showed
that the influence on the test link is very small. In Fig. 6.23 are the results shown
for a packet size of 128 bytes for the test link, where a sending interval of one,
two, ten, and one hundred milliseconds was chosen. The RTT shows that a fast
interval leads to a higher delay between the sensor and actuator. Thus, it can be
concluded that the data packets are delayed and that becomes a bottleneck if they
are sent too fast. If the IPDV in Fig. 6.23b is considered, it can be concluded that
the faster intervals have much better behavior than the slower ones. However,
looking at the PDV, results show significantly worse behavior at send intervals of
one and two milliseconds. The PER shows zero percent for one and ten millisec-
onds and Fig. 6.23c shows the remaining values.

The overall picture shows that with very fast transmission intervals a problem
arises which cannot be explained more precisely based on these plots. For this
purpose, further analyses of the data were carried out and presented in a his-
togram, in Fig. 6.24 on the left, and as a time series in Fig. 6.24 on the right.
These plots can be used to explain the results better. The histograms show that
the spread of the data is very wide for fast intervals and very narrow for slow inter-
vals. The scatter plots on the right explain why that happens. Data does not have
steady RTT values but is transported intermittently, resulting in a sawtooth-like
signal. Like the bimodal distribution during the packet size tests, this relates to
the used multiplexing method. In [3], similar behavior was observed with a fre-
quency band using TDD at high transmission intervals, which is attributed to the
reservation and expiry of a communication channel. This intermittent data trans-
mission can lead to problems, especially with machine-to-machine communica-
tion, which runs through fixed periodic cycles. A possible solution to this problem
could be decreasing the sending interval or changing from TDD to FDD.
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(a) RTT for a test link different sending intervals

(b) IPDV and PDV for a test link with different sending intervals

(c) PER for test link with different sending intervals

Figure 6.23: Results for testing different sending intervals with 5QI 5 and a packet
size of 128 bytes for the test link and a network load of 20 Mbps with
5QI 80
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(a) Histogram of the RTT for a sending
interval of 1 ms

(b) Scatter plot of the RTT for a sending
interval of 1 ms

(c) Histogram of the RTT for a sending
interval of 2 ms

(d) Scatter plot of the RTT for a sending
interval of 2 ms

(e) Histogram of the RTT for a sending
interval of 10 ms

(f) Scatter plot of the RTT for a sending
interval of 10 ms

(g) Histogram of the RTT for a sending
interval of 100 ms

(h) Scatter plot of the RTT for a sending
interval of 100 ms

Figure 6.24: Histogram and scatter plot of the RTT with a 5QI of 5 and a packet
size of 128 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80
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The following tests focus on the same setup but with a larger packet size of 1024
bytes and only one, 10, and 100 milliseconds sending intervals. The larger pack-
ets resulted in a connection loss right after the start of the measurements for the
sending interval of one millisecond. The reason can be either a processing delay
at the modems, which leads to the packets piling up and thus overfilling the mo-
dem buffer, or it can also be traced back to the core, which cannot process the
packets properly and thus discards them. A test to determine which of these is
the cause falls beyond the scope of this thesis and is planned within the following
research steps. Fig. 6.25 shows the results for the two remaining measurements
and the results of the RTT are comparable to the measurements with the smaller
packets. The delay variation improved, which can be linked to the packages being
all sent individually and not in bursts as with the smaller packages. In Fig. 6.25c
is the very high PER for the fast interval visible and the PER for a 10 ms interval is
not shown since it is zero.

In order to determine more precisely which settings are suitable for the use case,
tests with a packet size of 178 bytes, which is the size of the packages sent by the
sensor and the actuator, and on the basis of the available interval times of the
robots were carried out. Here, the aim was to investigate the influence of the
sawtooth profile from Fig. 6.24b on the trajectory and how this changes when
the interval time is increased. Therefore, the fastest sending interval possible on
the RTDE interface of the UR5 robots, which is five milliseconds, was the starting
point, and additional tests with 10, 20, and 40 ms were done. The RTT, IPDV, PDV,
and PER were measured for these intervals to determine whether these are viable
options for testing on the robots. Fig. 6.26 shows the results and the RTT looks
stable for all interval times. When looking at the delay variation in Fig. 6.26b, the
fastest interval has a similar behavior as the delay variation in Fig. 6.24b. This
leads to the observation, that a five millisecond interval causes the packets to be
sent in batches.

To investigate the data further, histograms and scatter plots of the RTT are used
again. Fig. 6.27 shows the results and at first sight, there is no tendency to a saw-
tooth signal as in Fig. 6.24b visible, but the spread of the data for the fastest inter-
val is noticeably higher.
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(a) RTT for test link different sending intervals

(b) IPDV and PDV for test link with different sending intervals

(c) PER for test link with different sending intervals

Figure 6.25: Results for testing different sending intervals with 5QI 5 and a packet
size of 1024 bytes for the test link and a network load of 20 Mbps with
5QI 80
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(a) RTT for test link different sending intervals

(b) IPDV and PDV for test link with different sending intervals

(c) PER for test link with different sending intervals

Figure 6.26: Results for testing different sending intervals with 5QI 5 and a packet
size of 178 bytes for the test link and a network load of 20 Mbps with
5QI 80
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(a) Histogram of the RTT for a sending
interval of 5 ms

(b) Scatter plot of the RTT for a sending
interval of 5 ms

(c) Histogram of the RTT for a sending
interval of 10 ms

(d) Scatter plot of the RTT for a sending
interval of 10 ms

(e) Histogram of the RTT for a sending
interval of 20 ms

(f) Scatter plot of the RTT for a sending
interval of 20 ms

(g) Histogram of the RTT for a sending
interval of 40 ms

(h) Scatter plot of the RTT for a sending
interval of 40 ms

Figure 6.27: Histogram and scatter plot of the RTT with a 5QI of 5 and a packet
size of 128 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80
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When zooming into the scatter plots on the values between measurement 6000

(a) Scatter plot of the RTT for a sending
interval of 5 ms

(b) Scatter plot of the RTT for a sending
interval of 10 ms

(c) Scatter plot of the RTT for a sending
interval of 20 ms

(d) Scatter plot of the RTT for a sending
interval of 40 ms

Figure 6.28: Zoom in on the scatter plot of the RTT with a 5QI of 5 and a packet
size of 128 bytes with changing sending interval and traffic of 20
Mbps with a 5QI of 80

and 7000, shown in Fig. 6.28, it becomes visible that the same problems as be-
fore occur at a 5 ms transmission interval, only with lower intensity. These four
intervals were additionally tested on the robots to see the direct influence on the
trajectory of the actuator.

Fig. 6.29 shows a zoomed-in plot of the trajectories of the two robots for the dif-
ferent transmission intervals and confirms the negative influence of the five ms
interval. This leads to the conclusion that the network should first be tested for
the lowest viable transmission interval before machine communication is used in
the process of automation.
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(a) Test link with a sending interval of 5 ms (b) Test link with a sending interval of 10 ms

(c) Test link with a sending interval of 20 ms (d) Test link with a sending interval of 40 ms

Figure 6.29: Trajectory comparison with a packet size of 178 bytes and changing
transmission interval for the test link and 20 Mbps traffic
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7 Conclusion and Outlook

5G stand-alone networks are one possible way to establish a wireless connec-
tion adapted to different use cases. This is particularly interesting for industrial
purposes when it is a private, closed network in which the mobile subscriber has
complete freedom of configuration. To what extent this is already applicable and
where the current limits of such a system lie were one driver of this thesis. There-
fore, a private 5G SA network in an industrial environment was investigated.

A brief introduction to 5G and the associated technologies was presented to give
the reader a basic understanding of the material. The 5G core, the radio access
network, and the related interfaces were described, and simple procedures ex-
plained.

To know the findings of this work as close as possible to industrial applications, a
test environment that meets these requirements for testing, but is still applicable
in practice, is essential. For this purpose, a use case was implemented that en-
ables the control of two articulated arm robots. The measurements focused on the
round-trip time, the inter-packet and packet delay variation, as well as the packet
error rate as decisive variables. In addition, the trajectories of the two robots were
recorded and compared with each other to visualize the effects of the network dis-
turbances directly at the axis angles of the robots. The connection between these
robots, called test link, was first tested with a fixed cabling to determine the base-
line metrics of the implemented use case. Subsequently, the cabling was replaced
by a wireless connection via 5G with different configuration setups.

For the measurements, four variables were examined in more detail as decisive
factors for machine-to-machine communication:

• The 5G quality of service identifier, in short 5QI,

• The packet size of transmitted data,

• The transmission interval with which the data is sent,

• The influence of network traffic on a test link during the tests performed.
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The 5QIs allow UEs to be assigned to a priority to allocate network resources ef-
ficiently. Here, three different 5QIs were examined for their behavior with lim-
ited network capacity. For this purpose, the 5G network was loaded with UDP
traffic, and different test link to traffic combinations were tested. The test link
behaves the same for every 5QI when tested against traffic of the same 5QI. The
RTT and delay variation increase with a higher traffic bandwidth until the net-
work reaches the maximum bandwidth. When the network reaches its capacity,
the same priority for the test link and traffic causes unstable behavior, leading to
a higher packet drop on the test link and the traffic. The advantages of prioritizing
are visible when testing different 5QI for the test link and traffic with ICMP pack-
ets. When the test link has a higher priority, stable behavior is feasible even with a
high network load. However, if the test link has a lower priority than the traffic, the
measurements will show unusable behavior for automation purposes with PERs
of 10% and higher. The TCP tests show the same results for the higher prioritized
test link, but a much increased RTT and delay variation for the lower prioritized
test link. The reason for this behavior is the high PER and the resulting resending
of packets which delays the communication. An important insight was that man-
ually overwriting the priority of a 5QI either had no effect in this system or the
default priorities of the 5QIs were used when the test link and traffic had the same
manually configured priority. The trajectories of the sensor and actuator robot
show similar behavior to the measurements performed. The delay of the trajecto-
ries and the R-value are stable for higher-priority connections and show a sharp
drop for lower-priority connections. These results are comparable to the results
of [5], where the tests with network traffic showed a strong deviation from sen-
sor to actuator trajectory. Therefore, it is crucial to identify essential connections
already during network planning and prioritize them using the assigned 5QI. Nev-
ertheless, it must be noted that the measured values are far from the target values
specified in [7] for an SA 5G network, and especially the high PERs make the use
of this system for automation purposes questionable in its current state and fur-
ther improvement is necessary.

Since the size of the packets to be transmitted often depends on the applica-
tion, tests are carried out for different packet sizes to examine the influence more
closely. Especially the combination of test link and traffic packet size was the fo-
cus of these tests to determine which relation is best suited for the implemented
use case. The results show that communication without traffic behaves similarly
for all packet sizes. The measured RTT can be compared to the measurements in
[4], where upload and download time was measured separately, and the RTT data
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distribution caused by the TDD during these tests was also explained. If added
traffic to the network, it is visible that the 5G system can handle small packets
in principle better than medium-sized and large packets. Considering the test
link and the traffic separately and in more detail, small packets with a size of 256
bytes or smaller show the best results, whereas the traffic packet size shows the
least influence on the test link with the largest tested packet size of 1500 bytes.
The robot trajectory shows a similar behavior compared to the results from the
measurements. Especially traffic with a packet size of 1500 bytes shows viable
results, whereas traffic with a packet size of 512 bytes caused massive problems.
Further was, a measurement of the trajectory not possible with a test link packet
size bigger than 256 bytes, highlighting the importance of small packet sizes for
automation purposes. The conclusion drawn from these measurements is that
communication that is bandwidth oriented, like video streaming, should be exe-
cuted with large packet sizes, whereas applications more oriented towards relia-
bility and lower latency should use smaller packets. This improves the individual
connections’ performance and reduces interference between them.

The transmission interval of the packets is often configurable for industrial IoT
devices. For example, the sensor and actuator robots use a configurable update
interval for their RTDE interface. This led to the measurements with changing
transmission intervals to examine the influence on the test link. The results show
that if data is sent in an interval that the 5G system can not handle, the transmis-
sion occurs in batches, leading to unusable behavior for i.e. robot control. The
results from [3] show similar behavior and associate this with the use of TDD,
where a channel gets reserved for a specific time, and if the reservation expires,
the packet queue stacks up, which leads to s saw-tooth-like signal for the RTT.
The transmission interval was observed more precise with the packet size used
for the trajectory tracing and in the practicable sending interval from 5 to 40 mil-
liseconds. This showed that a transmission interval of five milliseconds is already
borderline, and thus increased interference occurs. The actuator robot’s trajec-
tory shows no significant delay increase when changing the transmission interval
from 5 to 40 milliseconds since the RTT is higher than 40 milliseconds. This leads
to the conclusion that when implementing a 5G network for industrial purposes,
the interval requirements of the sensors must first be considered, and based on
this it can be decided whether an implementation is even feasible.

Measuring the influence of network disturbances directly on the robot trajectory
could be implemented. First, simulations were performed to compare the ex-
pected influence of the simulations with the measurements. Subsequently, the
direct influence of RTT, delay variation, and error rate on the delay and the corre-
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lation coefficient between the sensor and actuator robot trajectory could be ob-
served.

In summary, machine-to-machine communication can already be implemented
sensibly using SA 5G. Compared to what has been specified by the 3GPP standard,
however, some compromises must be made, especially with regard to the packet
error rate. This has significantly higher values than described and can therefore
lead to problems, especially in critical implementations. The measured end-to-
end delays are in the range that a one-way delay in the sub-10 millisecond range
can be achieved, but to reach the one millisecond limit described for URLLC ap-
plications, the system must be further optimized. The problems caused by using
TDD lead to the conclusion that further tests with a different frequency band that
supports FDD are necessary. Furthermore, the testing of one-way delay is im-
portant to detect the asymmetric behavior described in [3] and subsequently to
adjust the system to a symmetric behavior. It was found that the hardware in UEs
is often not yet certified for the frequency band used, making connection impos-
sible. The 5G modems used are also very error-prone, which often leads to con-
nection losses and makes it necessary to restart the modem. This is critical in an
industrial environment and makes it difficult to implement quality robot control.

7.1 Outlook
Since these were the first tests with this system, the possibilities for future research
directions are vast. Whether it is the improvement of the system at hand or explor-
ing different technologies, some possible directions for future research are:

• The implementation of network slicing enables a comprehensive decou-
pling of different applications from the Radio Access Network and 5G Core
Network. This reduces interference from User Equipment that require dif-
ferent use cases. Research in this direction is particularly valuable for the
automation of large-scale systems and should therefore be a priority.

• Secure and real-time remote control of robots via wireless systems is par-
ticularly interesting in the field of medicine and in hard-to-reach locations.
The implemented use case can serve as a basis for further research in the
area of trajectory recording, processing, and implementation of movements.
A first step would be to replace the sensor robot with an input unit that
allows for arbitrary control of the robot. Here, the implementation of a
toolchain from an input trajectory to the transmitted axis angles should be
prioritized.
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• The rollout of new 3GPP releases includes the utilization of frequency range
two in the higher range above 24 GHz. This enables the transmission of
very large data volumes with the trade-off of short ranges. The presented
use case could greatly benefit from this, and it should be explored as soon
as possible to investigate frequency range two as well.

• Further improvement of the system at hand will be key. For machine com-
munication, symmetric transmission is especially interesting. To observe
this, the first step would be the implementation of one-way delay measure-
ments to consider upload and download separately. The implementation
can be done using a similar model as [3] and allows, in particular, to look at
the behavior of the RAN in detail. The adjustment from a TDD to an FDD
channel is dependent on the frequency band and therefore needs a research
license. Obtaining one for future tests is essential since it would also solve
the bandwidth restriction. Until this happens, the RAN should be config-
ured in such a way that upload and download receive the same resources,
and thus the influence of asymmetric communication is reduced. Further-
more, it will be important to optimize and automate the testing methods for
this setup. The implementation of a traffic generator is essential for further
testing. It should be configurable to generate both TCP and UDP packets of
different sizes and with variable sending intervals. Additionally, it should be
capable of monitoring the generated traffic.

However, further research possibilities strongly depend on the available devices
and up-to-date software. It has already been observed during this work that the
theoretical standards and marketing of 5G network providers are ahead of the ac-
tual implementation capabilities, indicating a need for catching up in this regard.
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Appendix

Listing 7.1: Code for robot control and trajectory measurement

1 # name: rtde_trajectory_measurement

2 # author: m.sonnberger

3 # date: 15.04.2023

4 # use: collects trajectory data from sensor and sends it to actuator

5

6 # opens thread to measure sensor and actuator trajectory (angles, speed, time) and

7 # sends the data from the sensor to the actautor to remote control the movements

8

9 # necessary librarys: rtdelibs from universal robots and configuration files

10 # (.xml) for RTDE

11

12 import sys

13 import time

14 import logging

15 import threading

16 import rtde_read_write_functions as rtde_wr

17 import numpy as np

18 import pandas as pd

19 import socket

20

21 import os

22 import psutil

23

24 import logging

25

26 import rtdelibs.rtde as rtde

27 import rtdelibs.rtde_config as rtde_config

28

29 os_used = sys.platform

30 process = psutil.Process(os.getpid())

31

32 if os_used == "linux":

33 pid = os.getpid()

34 os.system("sudo renice −n −19 −p " + str(pid))
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35 elif os_used == "win32":

36 process.nice(psutil.REALTIME_PRIORITY_CLASS)

37 else:

38 print("OS not supported)")

39

40 sys.path.append("..")

41

42 MAX_ITERATIONS = 24000

43

44 RTDE_SENSOR_IP = ’192.168.1.200’

45 RTDE_SENSOR_PORT = 30004

46

47 RTDE_ACTUATOR_IP = ’10.10.0.200’

48 RTDE_ACTUATOR_PORT = 30004

49

50 DASHBOARD_SENSOR_IP = "192.168.1.200"

51 DASHBOARD_SENSOR_PORT = 29999

52

53 DASHBOARD_ACTUATOR_IP = "10.10.0.200"

54 DASHBOARD_ACTUATOR_PORT = 29999

55

56 actualJointSpeed = [0.0,0.0,0.0,0.0,0.0,0.0]

57

58 running = 1

59

60 def list_to_setp(sp, list):

61 for i in range(0, 6):

62 sp.__dict__["input_double_register_%i" % i] = list[i]

63 return sp

64

65 def setp_to_list(sp):

66 sp_list = []

67 for i in range(0, 6):

68 sp_list.append(sp.__dict__["input_double_register_%i" % i])

69 return sp_list

70

71 def test_print_thread():

72 global actualJointSpeed

73 while True:

74 with lock_jointAngles:

75 print("actualJointAngles = ", str(actualJointSpeed))

76 time.sleep(0.008)

77
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78 def sendDashboardCommand(dashboard , cmd):

79 cmd = cmd + ’\n’

80 print(cmd)

81 dashboard.sendall(cmd.encode())

82 time.sleep(2)

83 rcvd = dashboard.recv(4096)

84 print(rcvd)

85 return rcvd

86 # return True

87

88 # sensor thread

89 def rtde_sensor(sensorIP , sensorPort , configFilename):

90

91 global actualJointSpeed

92 global startTime

93 global running

94 logging.getLogger().setLevel(logging.INFO)

95

96 conf = rtde_config.ConfigFile(configFilename)

97

98 state_names , state_types = conf.get_recipe("state")

99 watchdog_names , watchdog_types = conf.get_recipe("watchdog")

100 speed_slider_names_s , speed_slider_types_s = conf.get_recipe("speed_slider")

101

102 con = rtde.RTDE(sensorIP, sensorPort)

103 con.connect()

104

105 print("Connected to Sensor")

106

107 # get controller version

108 con.get_controller_version()

109

110 # setup recipes

111 states = con.send_output_setup(state_names , state_types)

112 speed_slider_sensor = con.send_input_setup(speed_slider_names_s , speed_slider_types_s)

113

114 speed_slider_sensor.speed_slider_mask = 1

115 speed_slider_sensor.speed_slider_fraction = 0.3

116

117 watchdog = con.send_input_setup(watchdog_names , watchdog_types)

118

119 # The function "rtde_set_watchdog" in the "rtde_control_loop.urp"

120 # creates a 1 Hz watchdog

120



121 watchdog.input_int_register_0 = 0

122

123 # Datastorage for trajectory

124 trajectory = np.zeros((MAX_ITERATIONS ,14), dtype=float)

125

126 # start data synchronization

127 if not con.send_start():

128 sys.exit()

129

130 con.send(speed_slider_sensor)

131

132 sensorTime = 0

133 i = 0

134

135 while(running):

136

137 state = con.receive()

138

139 sensorTime = ((time.perf_counter_ns()−startTime)/1000000)
140

141 if state is None:

142 break

143

144 with lock_jointAngles:

145 actualJointSpeed = [round(state.actual_qd[0],5),

146 round(state.actual_qd[1],5),

147 round(state.actual_qd[2],5),

148 round(state.actual_qd[3],5),

149 round(state.actual_qd[4],5),

150 round(state.actual_qd[5],5)]

151

152 trajectory[i] = [ sensorTime ,

153 round(state.timestamp , 5),

154 round(state.actual_q[0],5),

155 round(state.actual_q[1],5),

156 round(state.actual_q[2],5),

157 round(state.actual_q[3],5),

158 round(state.actual_q[4],5),

159 round(state.actual_q[5],5),

160 round(state.actual_qd[0],5),

161 round(state.actual_qd[1],5),

162 round(state.actual_qd[2],5),

163 round(state.actual_qd[3],5),
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164 round(state.actual_qd[4],5),

165 round(state.actual_qd[5],5)]

166

167 # kick watchdog

168 watchdog.input_int_register_0 = 1

169 con.send(watchdog)

170 i = i+1

171

172 # change nice value back to normal

173 os.system("sudo renice −n 0 −p " + str(pid))
174

175 # write trajectory + time in .xlsx file

176 sensorData = pd.DataFrame({ ’Global Time’:trajectory[:,0],

177 ’Sensor Time’:trajectory[:,1],

178 ’Axis Angle 1’: trajectory[:,2],

179 ’Axis Angle 2’: trajectory[:,3],

180 ’Axis Angle 3’: trajectory[:,4],

181 ’Axis Angle 4’: trajectory[:,5],

182 ’Axis Angle 5’: trajectory[:,6],

183 ’Axis Angle 6’: trajectory[:,7],

184 ’Axis Speed 1’: trajectory[:,8],

185 ’Axis Speed 2’: trajectory[:,9],

186 ’Axis Speed 3’: trajectory[:,10],

187 ’Axis Speed 4’: trajectory[:,11],

188 ’Axis Speed 5’: trajectory[:,12],

189 ’Axis Speed 6’: trajectory[:,13],

190 })

191

192 # delete rows with zeros

193 sensorData = sensorData.loc[sensorData["Global Time"] != 0]

194

195 sensorData.to_excel(’data/sensor_data.xlsx’, sheet_name=’jointAngles_time’)

196

197 con.send_pause()

198 con.disconnect()

199

200 # actuator thread

201 def rtde_actuator(actuatorIP , actuatorPort , configFilename):

202

203 global actualJointSpeed

204 global startTime

205

206 logging.getLogger().setLevel(logging.INFO)
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207

208 conf = rtde_config.ConfigFile(configFilename)

209

210 state_names , state_types = conf.get_recipe("state")

211 setp_names , setp_types = conf.get_recipe("setp")

212 speed_slider_names_a , speed_slider_types_a = conf.get_recipe("speed_slider")

213 watchdog_names , watchdog_types = conf.get_recipe("watchdog")

214

215 con = rtde.RTDE(actuatorIP , actuatorPort)

216 con.connect()

217

218 print("Connected to Actuator")

219

220 # get controller version

221 con.get_controller_version()

222

223 # setup recipes

224 states = con.send_output_setup(state_names , state_types)

225 setp = con.send_input_setup(setp_names , setp_types)

226 speed_slider_actuator = con.send_input_setup(speed_slider_names_a , speed_slider_types_a)

227

228 watchdog = con.send_input_setup(watchdog_names , watchdog_types)

229

230 speed_slider_actuator.speed_slider_mask = 1

231 speed_slider_actuator.speed_slider_fraction = 1

232

233 setp.input_double_register_0 = 0

234 setp.input_double_register_1 = 0

235 setp.input_double_register_2 = 0

236 setp.input_double_register_3 = 0

237 setp.input_double_register_4 = 0

238 setp.input_double_register_5 = 0

239

240 # The function "rtde_set_watchdog" in the "rtde_control_loop.urp"

241 # creates a 1 Hz watchdog

242 watchdog.input_int_register_0 = 0

243

244 # Datastorage for trajectory

245 trajectory = np.zeros((MAX_ITERATIONS ,14), dtype=float)

246

247 # start data synchronization

248 if not con.send_start():

249 sys.exit()
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250

251 con.send(speed_slider_actuator)

252

253 while actualJointSpeed == [0.0,0.0,0.0,0.0,0.0,0.0]:

254 time.sleep(1/100000)

255

256

257 i = 0

258

259 while(running):

260

261 state = con.receive()

262 actuatorTime = ((time.perf_counter_ns()−startTime)/1000000)
263

264 if state is None:

265 break

266

267 with lock_jointAngles:

268 new_setp = actualJointSpeed

269 list_to_setp(setp, new_setp)

270

271

272 # send new setpoint

273 con.send(setp)

274

275 trajectory[i] = [ actuatorTime ,

276 round(state.timestamp , 5),

277 round(state.actual_q[0],5),

278 round(state.actual_q[1],5),

279 round(state.actual_q[2],5),

280 round(state.actual_q[3],5),

281 round(state.actual_q[4],5),

282 round(state.actual_q[5],5),

283 round(state.actual_qd[0],5),

284 round(state.actual_qd[1],5),

285 round(state.actual_qd[2],5),

286 round(state.actual_qd[3],5),

287 round(state.actual_qd[4],5),

288 round(state.actual_qd[5],5)]

289

290 # kick watchdog

291 watchdog.input_int_register_0 = 1

292 con.send(watchdog)
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293 i = i+1

294

295 # change nice value back to normal

296 os.system("sudo renice −n 0 −p " + str(pid))
297

298 # write trajectory + time in .xlsx file

299 actuatorData = pd.DataFrame({ ’Global Time’:trajectory[:,0],

300 ’Actuator Time’:trajectory[:,1],

301 ’Axis Angle 1’: trajectory[:,2],

302 ’Axis Angle 2’: trajectory[:,3],

303 ’Axis Angle 3’: trajectory[:,4],

304 ’Axis Angle 4’: trajectory[:,5],

305 ’Axis Angle 5’: trajectory[:,6],

306 ’Axis Angle 6’: trajectory[:,7],

307 ’Axis Speed 1’: trajectory[:,8],

308 ’Axis Speed 2’: trajectory[:,9],

309 ’Axis Speed 3’: trajectory[:,10],

310 ’Axis Speed 4’: trajectory[:,11],

311 ’Axis Speed 5’: trajectory[:,12],

312 ’Axis Speed 6’: trajectory[:,13],

313 })

314

315 # delete rows with zeros

316 actuatorData = actuatorData.loc[actuatorData["Global Time"] != 0]

317 actuatorData.to_excel(’data/actuator_data.xlsx’, sheet_name=’jointAngles_time’)

318

319 con.send_pause()

320 con.disconnect()

321

322

323

324 lock_jointAngles = threading.Lock()

325

326 dashboardSensor = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

327 dashboardSensor.settimeout(2)

328 dashboardSensor.connect((DASHBOARD_SENSOR_IP , DASHBOARD_SENSOR_PORT))

329

330 sendDashboardCommand(dashboardSensor ,’programState’)

331 sendDashboardCommand(dashboardSensor ,’load rtde/Trajectory_measurement/rtde_sensor.urp’)

332

333 dashboardActuator = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

334 dashboardActuator.settimeout(2)

335 dashboardActuator.connect((DASHBOARD_ACTUATOR_IP , DASHBOARD_ACTUATOR_PORT))
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336

337 sendDashboardCommand(dashboardActuator ,’programState’)

338 sendDashboardCommand(dashboardActuator ,’load rtde/Trajectory_measurement/rtde_actuator.urp’)

339

340 time.sleep(2)

341 # create sensor thread

342 thread_sensor = threading.Thread(target=rtde_sensor ,

343 args=( RTDE_SENSOR_IP ,

344 RTDE_SENSOR_PORT ,

345 "configuration_rtde_sensor.xml"))

346

347 # create actuator thread

348 thread_actuator = threading.Thread(target=rtde_actuator ,

349 args=(RTDE_ACTUATOR_IP ,

350 RTDE_ACTUATOR_PORT ,

351 "configuration_rtde_actuator.xml"))

352

353 startTime = time.perf_counter_ns()

354

355 # start sensor thread

356 print("Thread sensor start")

357 thread_sensor.start()

358

359 # start actuator thread

360 print("Thread actuator start")

361 thread_actuator.start()

362

363 # start Actuator

364 print("Start Actuator")

365 sendDashboardCommand(dashboardActuator ,’play’)

366 time.sleep(1)

367

368 # start Sensor

369 print("Start Sensor")

370 sendDashboardCommand(dashboardSensor ,’play’)

371

372 while(running):

373 received = sendDashboardCommand(dashboardSensor ,’programState’)

374

375 if received.find(b’STOPPED’) != −1:
376 print("program stopped")

377

378 # stop Actuator
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379 sendDashboardCommand(dashboardActuator ,’stop’)

380 running = 0

381

382

383 actualJointSpeed = [0.0,0.0,0.0,0.0,0.0,0.0]

Listing 7.2: Configuration file for the actuator RTDE client

1 <!−−
2 name: configuration_rtde_actuator

3 author: m.sonnberger

4 date: 15.04.2023

5 use: configuration file for RTDE actuator

6 −−>
7

8 <?xml version="1.0"?>

9 <rtde_config >

10 <recipe key="state">

11 <field name="timestamp" type="DOUBLE"/>

12 <field name="actual_q" type="VECTOR6D"/>

13 <field name="actual_qd" type="VECTOR6D"/>

14 <field name="output_int_register_1" type="INT32"/>

15 </recipe>

16

17 <recipe key="setp">

18 <field name="input_double_register_0" type="DOUBLE"/>

19 <field name="input_double_register_1" type="DOUBLE"/>

20 <field name="input_double_register_2" type="DOUBLE"/>

21 <field name="input_double_register_3" type="DOUBLE"/>

22 <field name="input_double_register_4" type="DOUBLE"/>

23 <field name="input_double_register_5" type="DOUBLE"/>

24 </recipe>

25

26 <recipe key="speed_slider">

27 <field name="speed_slider_mask" type="UINT32"/>

28 <field name="speed_slider_fraction" type="DOUBLE"/>

29 </recipe>

30

31 <recipe key="watchdog">

32 <field name="input_int_register_0" type="INT32"/>

33 </recipe>

34 </rtde_config >
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Listing 7.3: Configuration file for the sensor RTDE client

1 <!−−
2 name: configuration_rtde_sensor

3 author: m.sonnberger

4 date: 15.04.2023

5 use: configuration file for RTDE sensor

6 −−>
7

8 <?xml version="1.0"?>

9 <rtde_config >

10 <recipe key="state">

11 <field name="timestamp" type="DOUBLE"/>

12 <field name="actual_q" type="VECTOR6D"/>

13 <field name="actual_qd" type="VECTOR6D"/>

14 </recipe>

15

16 <recipe key="speed_slider">

17 <field name="speed_slider_mask" type="UINT32"/>

18 <field name="speed_slider_fraction" type="DOUBLE"/>

19 </recipe>

20

21 <recipe key="watchdog">

22 <field name="input_int_register_0" type="INT32"/>

23 </recipe>

24

25 </rtde_config >

Listing 7.4: Code for ICMP testing with ping

1 # name: ping_tester

2 # author: m.sonnberger

3 # date: 27.03.2023

4 # use: ICMP tester for measurements of RTT, jitter and PER

5

6 # sends CYCLES * COUNT ICMP packets with a size of SIZE to a
7 # network device HOSTNAME and measures RTT, jitter and PER

8

9 import os

10 import sys

11 import numpy as np

12 import pandas as pd

13 import time

14 import sys

15 import os
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16 import psutil

17

18 # target

19 HOSTNAME = "10.10.0.200"

20

21 # measurement configurations

22 CYCLES = 500

23 COUNT = 10

24 INTERVAL = 0.01

25 SIZE = 256

26

27 # set scheduler priority of code to REALTIME (highest)

28 os_used = sys.platform

29 # Set highest priority for the python script on the CPU

30 process = psutil.Process(os.getpid())

31 if os_used == "win32":

32 process.nice(psutil.REALTIME_PRIORITY_CLASS)

33 elif os_used == "linux":

34 pid = os.getpid()

35 os.system("sudo renice −n −19 −p " + str(pid))
36 else:

37 process.nice(20)

38

39

40 # command shell

41 command = f"sudo ping −c {COUNT} −i {INTERVAL} −s {SIZE} {HOSTNAME}"
42

43 # analysis variables

44 searchword = "min/avg/max/mdev"

45 minimum = [0] * CYCLES
46 average = [0] * CYCLES
47 maximum = [0] * CYCLES
48 mdev = [0] * CYCLES
49 per = [0] * CYCLES
50

51 # program start

52 start_time = time.perf_counter()

53 for j in range(CYCLES):

54

55

56 response = os.popen(command).read()

57

58 strings = response.split()
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59 packetErrors = 0

60

61 if searchword in strings:

62 position = strings.index(searchword)

63 stats = strings[position + 2]

64 per[j] = strings[position − 6]

65

66 index = 0

67 k = 0

68 delimiter = [0] * 3
69 for i in range(len(stats)):

70 position = stats.find("/",index)

71 if(position!= −1):
72 index = position+1

73 delimiter[k] = position

74 k = k + 1

75

76 minimum[j] = stats[0:delimiter[0]]

77 average[j] = stats[delimiter[0]+1:delimiter[1]]

78 maximum[j] = stats[delimiter[1]+1:delimiter[2]]

79 mdev[j] = stats[delimiter[2]+1:len(stats)]

80

81 stop_time = time.perf_counter()

82

83 # data processing

84 rttData = pd.DataFrame({’minimum’: minimum,

85 ’average’: average,

86 ’maximum’: maximum,

87 ’mdev’: mdev,

88 ’per’: per

89 })

90

91 print("\n\rprocess time: " + str(stop_time − start_time))

92 rttData.to_excel(’/home/factory/rtde/ws/data/ping_response.xlsx’, sheet_name=’ping_data’)

Listing 7.5: Code for ICMP testing with hping3

1 # name: hping3_tester

2 # author: m.sonnberger

3 # date: 02.06.2023

4 # use: ICMP tester for measurements of RTT, jitter and PER with

5 # fixed interval

6

7 # sends COUNT ICMP packets with a size of SIZE and with a fixed
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8 # sending INTERVAL to a network device HOSTNAME and measures RTT

9

10 import os

11 import sys

12 import numpy as np

13 import pandas as pd

14 import sys

15 import os

16 import psutil

17 import math

18

19 # target

20 HOSTNAME = "10.10.0.200"

21

22 # measurement configurations

23 COUNT = 10000

24 INTERVAL = "u40000"

25 SIZE = 86 #128

26

27 # set scheduler priority of code to REALTIME (highest)

28 os_used = sys.platform

29

30 # Set highest priority for the python script on the CPU

31 process = psutil.Process(os.getpid())

32 if os_used == "win32":

33 process.nice(psutil.REALTIME_PRIORITY_CLASS)

34 elif os_used == "linux":

35 pid = os.getpid()

36 os.system("sudo renice −n −20 −p " + str(pid))
37 else:

38 process.nice(20)

39

40 # command shell

41 command = f"sudo hping3 −1 −c {COUNT} −i {INTERVAL} −d {SIZE} −t 2000 {HOSTNAME}"
42

43 # analysis variables

44 rtt = np.zeros([COUNT])

45 rttUnfiltered = np.zeros([COUNT])

46 firstRttData = 18

47 nRttData = 7

48 stringOffset = 13

49

50 # program start
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51 process = os.popen(command)

52 preprocessed = process.read()

53

54 strings = preprocessed.split()

55 receivedData = math.ceil((len(strings)−stringOffset)/7)
56

57 for i in range(receivedData):

58

59 rttUnfiltered = strings[firstRttData + i*nRttData]
60 rtt[i] = rttUnfiltered[4:8]

61

62 # data processing

63 rttData = pd.DataFrame({’rtt’: rtt,

64 })

65

66 rttData.to_excel(’/home/factory/rtde/ws/data/hping3_response.xlsx’, sheet_name=’hping3_data’)

Listing 7.6: Code for TCP testing client

1 # name: tcp_tester_client

2 # author: m.sonnberger

3 # date: 12.04.2023

4 # use: TCP client for measurements of RTT, jitter and PER

5

6 # sends packets to server and waits till packets

7 # arrive from server, measures time till reception

8

9 import socket

10 import time

11 import numpy as np

12 import statistics

13 import pandas as pd

14

15 import sys

16 import os

17 import psutil

18

19 # traget

20 HOST = ’10.10.0.200’

21 PORT = 30004

22

23 SLEEPTIME = 1/1000

24

25 #set scheduler priority of code to REALTIME (highest)
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26 os_used = sys.platform

27

28 # Set highest priority for the python script on the CPU

29 process = psutil.Process(os.getpid())

30 if os_used == "win32":

31 process.nice(psutil.REALTIME_PRIORITY_CLASS)

32 elif os_used == "linux":

33 pid = os.getpid()

34 os.system("sudo renice −n −19 −p " + str(pid))
35 else:

36 process.nice(20)

37

38 # packet payload in byte

39 payload_size = 1024

40

41 # number of packets

42 packets = 10

43

44 # number of bursts that send n number of packets

45 bursts = 500

46

47 payload = b’0’ * payload_size
48

49 # rtt mean per burst

50 rtt_burst = np.zeros(bursts)

51

52 # error rate per burst

53 error_rate_burst = np.zeros(bursts)

54

55 # jitter mean per burst

56 jitter_burst = np.zeros(bursts)

57

58 print("\n\rtesting\n\r")

59

60 # loops the number of bursts

61 for j in range(bursts):

62

63 # sets rtt,errors and jitter to zero for every burst

64 rtt = np.zeros(packets)

65 errors = 0

66 jitter = np.zeros(packets−1)
67

68 # create socket and connect
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69 sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

70 sock.settimeout(30000)

71 sock.connect((HOST, PORT))

72

73 # loops the number of packets in every burst

74 for i in range(packets):

75

76 payload = i.to_bytes(1,’big’) * payload_size
77

78 # measuring time before and after S/R

79 start_time = time.perf_counter()

80

81 # send and receive payload

82 send = sock.send(payload)

83 receive = sock.recv(payload_size)

84

85 end_time = time.perf_counter()

86

87 # rtt in ms

88 rtt[i] = ((end_time − start_time) * 1000)
89

90 # if sent packet is different from received packet −−> error
91 if payload != receive:

92 errors = errors + 1

93

94 # jitter = delta of rtt1 & rtt2

95 if i != 0:

96 jitter[i−1] = abs(rtt[i−1] − rtt[i])

97 # print(jitter[i−1])
98

99 time.sleep(SLEEPTIME)

100

101 # take mean of rtt from every burst and store it in vector

102 rtt_burst[j] = statistics.mean(rtt)

103

104 # take mean of jitter from every burst and store it in vector

105 jitter_burst[j] = statistics.mean(jitter)

106

107 # store PER from every burst into vector

108 error_rate_burst[j] = ((errors / packets) * 100)
109

110

111 # dispaly progress
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112 print(" %d%%" % ((j / bursts)*100), end="\r")
113

114 # close socket between bursts

115 sock.close()

116

117 # write data to xlsx file

118 headline = pd.DataFrame({’rtt’: rtt_burst ,

119 ’jitter’: jitter_burst ,

120 ’PER’: error_rate_burst})

121 headline.to_excel(’/home/factory/rtde/ws/data/tcp_tester_data.xlsx’,

122 sheet_name="TCP Tester Data")

123

124 # for readability

125 for j in range(bursts−1):
126 print("%.6lf %.6lf %.6lf" % (rtt_burst[j], jitter_burst[j], error_rate_burst[j]))

Listing 7.7: Code for TCP testing server

1 # name: tcp_tester_server

2 # author: m.sonnberger

3 # date: 12.04.2023

4 # use: TCP server for measurements of RTT, jitter and PER

5

6 # receives packets and routes them back

7

8 import socket

9 import sys

10 import os

11 import psutil

12

13 # target

14 HOST = "192.168.1.58"

15 PORT = 30004

16

17 BUFFERSIZE = 1024

18

19 # set scheduler priority of code to REALTIME (highest)

20 os_used = sys.platform

21

22 # Set highest priority for the python script on the CPU

23 process = psutil.Process(os.getpid())

24 if os_used == "win32":

25 process.nice(psutil.REALTIME_PRIORITY_CLASS)

26 elif os_used == "linux":
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27 pid = os.getpid()

28 os.system("sudo renice −n −19 −p " + str(pid))
29 else:

30 process.nice(20)

31

32

33 with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as sock:

34 sock.bind((HOST, PORT))

35 sock.listen()

36 while True:

37 conn, addr = sock.accept()

38 data = conn.recv(BUFFERSIZE)

39

40 while data:

41 conn.send(data)

42 data = conn.recv(BUFFERSIZE)

43

44 conn.close()
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