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1 Rastrigin Function and Quality Gain

1.1 General Introduction
For an input vector y = (y1, y2, ..., yn) the Rastrigin fitness f is defined as

N N
F) =Y fily) =Yyl + A— Acos(ay,), (1.1)
i=1 i=1
with the number of dimensions N, the oscillation strength A and a frequency
parameter «. The local quality gain Qy(x) at a position y due to the isotropic
mutation x ~ N(0,02) can be written as [5, p. 27]

Qy(x) = fly +x) = f(¥), (1.2)

and yields in the case of fitness minimization a negative value @)y < 0. For inde-
pendent components the fitness gain can be calculated for each i-th component
of (Qy(x)); = Q; such that

N
Qy(x) =3 Qilw). (1.3)

Thus, the derivation can be done for a single component and we get

Qi(wi) = filys + i) — fi(ys) (1.4)
filyi) = yi + A — Acos (ay;) (1.5)

Now we can apply the following trigonometric identity
cos (a(y; + x;)) = cos (ay;) cos (ax;) — sin (ay;) sin (ax;). (1.7)

This will be useful later for the calculation of the expectation value with respect
to the mutation z;. By defining two position and fitness dependent constants

¢i = Acos(ay;), and s; = Asin (ay;), (1.8)

one arrives at the i-th quality gain as a function of location y; and mutation x;

Qi(x;) = 2? + 2y;2; + Acos (ay;)
— Acos (ay;) cos (ax;) + Asin (ay;) sin (ax;)
=27 + 2y;z; + c;i(1 — cos (ax;)) + s;sin (am;), (1.9)

For analytic derivations of the progress rate, a linearized version of ); with
respect to the mutation x; will be necessary. The quality gain can be locally ap-
proximated by Taylor expanding the function at location y; for small mutations
x; according to

i 16°f;
Filwi o) = fily) + w1802 4 003
9yi 2 Oy;
o/, T ; (1.10)
Qi(z:) = filys + ;) — filys) = ayiﬂ?i + ) 8yf z; + O(xy).



First Order The first derivative is calculated as

of; 0

fl= 3; = 3 (y7 + A— Acos(ay;))
_ 9 5 0 ‘ (1.11)
— 73% yr + o (A — Acos(ay;))

= 2y; + aAsin (ay;).

The following quantities are defined

k; = 2y; (1.12)
d; = aAsin (ay;), (1.13)

such that
fi = ki +d. (1.14)

This decomposition was introduced to distinguish the quadratic term derivative
k; from the oscillation term derivative d;, see also Fig. 1. These two components
will reappear later during the progress rate derivations. The linearized quality
gain for the first order approximation yields

Qi ~ flw; = (ki +di)x; = (2y; + aAsin (ay;))z;. (1.15)

Linearization at y; = 1.25
12 . .

—— fit y2 4+ 2 — 2cos(2my;)
10 2

fi(wi)

Figure 1: Rastrigin and quadratic function with their respective derivatives at
y; = 1.25. In general the linearization using f/ is highly position dependent due
to the oscillation and only useful for very small mutations. For larger mutations
the spherical approximation using k; is more suitable. This will be important
during later derivations.

Second Order Referring to Eq. (1.10) the second derivative is evaluated

"o.__ anl _ 2 X
= 507 = 2 4+ a*Acos (ay;), (1.16)
y4

3




such that the second order approximation yields

1
Qi = fizi + §ff/%2
1 (1.17)
~ (2y; + aAsin (ay;))x; + 5( + a? A cos (ay;))x?.
This approximation is used deriving Eq. (1.36), which is a sphere model of the
Rastrigin function for both small mutations and small residual distance.

1.2 Expected Quality Gain and Variance

For the progress rate calculation the expected quality gain and variance due to
the mutation strength o is needed. This can be formulated as

N

Eq =ElQy(x)] =) _ElQi] (1.18)
171N N

D = Var[Qy(x)] = 3_ Var[Q] = 3 E[QF] —E[Qi)". (1.19)

In order to calculate Eg and DZ?, the quantities E[Q;], E [Q?] and E[Qz]2
need to be evaluated, starting from the results of Eq. (1.9). We will arrive at
expressions containing different expectation values of trigonometric functions,
which were calculated in Appendix A and are summarized in Eqgs. (1.26) and
(1.27).

1.2.1 Expected Value
Starting the determination of quantity E [@Q;] using Q; from Eq. (1.9) we have

E[Qi] =Fq, =E [xf + 2y;z; + ¢;(1 — cos (ax;)) + s; sin (awi)] (1.20)
= 0?4+ ¢;(1 — E[cos (ax;))]), .

since E [sin (ax;)] and E [z;] are both zero (odd parity). After reinserting the
definitions for ¢; and s; and the result for E [cos (ax)] we obtain

Expected value of quality gain

N N )
Eg = ZEQi = 202 + Acos (o) (1 — e P ) (1.21)
i=1

=1

1.2.2 Variance

From the result above E [Q;]* can be easily obtained

E[Q]* = (0% + ¢; — ¢; E[cos (axi)])2 , (1.22)



The more involving term E [Qf] will be evaluated next. Squaring @Q; we
obtain

Q7 = (27 + 2yiw; + ¢;(1 — cos (az;)) + s; sin (oz:zci))2
=z} +4y?2? + 2 4 ¢ cos? (ax;) + sZsin? (ax;) + ...
— 2¢;22 cos (ax;) — 2¢2 cos (ax;) + 4syix; sin (ax;) + 2¢22 + ... (1.23)
— 2¢;s; cos (ax;) sin (ax;) — 4de;y;x; cos (ax;) + ...
+ 2827 sin (aw;) + 2¢;8; sin (o) + deysrs + dyxs.
We know that cos(x) is an even function of x, while sin(x) is odd. This can be
easily seen by looking at the corresponding power series. We also know that for
even and odd functions following product relations hold
e (even) x (even) = (even),
e (even) x (odd) = (odd),
e (0odd) x (odd) = (even).
Since the mutations are N (0, 0?) normally distributed, all odd moments are
zero. Thus one can conclude that all terms of @7 containing odd powers of
x; will be zero. The expression of Q? is already rearranged in a way that all

odd powers are given in the last two lines of Eq. (1.23). These terms can be
discarded. Thus the expected value reads

E[Q7] = 30" +4y}o® + ¢} + ¢} E [cos® (ax;)] + s7 E [sin® (az;)] + ...
—2¢; B [mf coS (axi)] — 2¢7 E [cos (ax;)] + 4siy; E [z sin (ax;)] 4 2¢;0°
(1.24)

Given Egs. (1.22) and (1.24) the difference E [Q?] — E [Q]? is evaluated.
After reinserting the definitions of ¢; and s; and collecting terms the result is

N
D% =Y E[Q?] -E[Q;)

i=1
—220 + 4yto? + ..

+ A?sin? (ay;) Var [sin ()] (1.25)
+ A? cos? (ay;) Var [cos (a;)]

—2Acos (ay;) E [x cos (o )]
+ 240 cos (ay;) E [cos (az;)]
+ 4Ay; sin (ay;) E [z sin (az;)] .

The terms containing trigonometric functions are calculated in Appendix A



and yield
E [cos (a)] = exp [—;aaﬂ
£ o )] = § (140 [ 2]
1
2

(1 — exp |:—;(20¢0’)2:|> (1.26)

E [z sin (az)] = ao® exp {—;(aU)Q]

E [Sin2 (ax)] =

E [2 cos (az)] = (0% — a?0™) exp [—;(ao)z}

with variances Var [(-)] = E [(:)?] — E ()7

Var [cos (az)] = % (1 + exp [—;(2040)2]) — exp [~(a0)?]

, (1.27)
Var [sin (ax)] = E [sin® (az)] = 3 (1 — exp [ (2040)2})
By inserting results (1.27) and (1.26) into (1.25) one gets
N
Dé = 2204 +4y?o* + ..
i=1
1— —2(a0)?
+ A?sin? (ayi)%
—2(a0)? _ 9,—(a0)?
+ A% cos? (ay;) 1+e 2 (1.28)

2

(20)?
—2Acos (ay;)(0? — a?ot)e™ 2

oo 2
+2A0? cos (ayi)e_( 7

(ao)?
+ 4Ay; sin (ay;)ao?e™ 2

The trigonometric identities cos?(z)+sin?(z) = 1 and cos?(z) = 1/24cos(2z)/2
can be applied to further simplify the equation. After collecting terms, a sim-
plified expression for the variance is obtained

Variance of quality gain

N
A2
Dé = 21204 + 4ylo’ + > [1 - e_(‘w)z} [1 — cos(2ayi)e_(°“’)2}

+ 240023 (@0)? {aoQ cos(o;) + 2y; Sin(ayi)} .
(1.29)



Spherical Approximation

For vanishing oscillation amplitude or frequency, i.e. A = 0 or a = 0, the
Rastrigin function degenerates to the spherical function f(y) = Zfil y? with

quality gain Qsph = vazl x? + 2y;2; and we obtain the known variance relation

Sph—ZVar ZE Q2 ]
i=1

N N (1.30)
) )

g E [(x? + 2yixi)2] —E [$L2 + 2yixi] = E 204 + 4y,i202

i=1 :

= 4R%¢% + 2No*,

using the relation Zf\[:l y2 = ||ly|*> = R? and z; ~ N(0,02). Therefore the
quality gain variance can be expressed as a function of the residual distance R.

Approximation for Large Mutations and large R

For large mutations strengths o given some « such that (ac)?/2 > 1, the
last two lines of Eq. (1.29) are suppressed exponentially. This means that the
trigonometric terms, i.e. the local fitness structure, has vanishing contribution
for o =+ o0

N
A2 N A?
Dé: E [20 +4y?o? + —| =2No* +4R%0* + ——
, 2 2

i=1 , (1.31)
NA

Dsph +— 9

using the result of Eq. (1.30). Therefore the variance for large mutations (or
large R) consists of a spherical contribution DZ; and a Rastrigin-specific term
due to the oscillation defined as

, _ NAZ

o= (1.32)

Analogously, the same result is obtained for large oscillation frequency « given
a mutation strength o.

Approximation for Small Mutations and Small R

In contrast to the derivation of (1.31), a spherical model for the variance can also
be derived assuming small mutation and residual distance, which corresponds
to a sphere model of the global attractor depending on the fitness parameters
A and «a.

To this end, the second order approximation for small mutations of the
quality gain from Eq. (1.17) is needed. Additionally, a Taylor expansion of
the derivative terms f] and f/ for small y; (and therefore small R) has to be
performed. The goal is to discard higher order terms O(y?) and to relate second

order terms with the radius according to Y.~ | y? = R2.



Starting from (1.17) the variance of a second order approximation can be
evaluated as

Var [Q;] = Var {f{%‘ +5fie f]

2
[(fxri‘ —fllx 2)

2
[f$z+ f// 2}

(1.33)

= (P + SV ()P
(! 1 2 4
—(fi)2‘72+2( )%t

Taylor-expansion of f/(y;) from (1.15) and f/(y;) from (1.17) and squaring both
quantities yields

(F1w:)? = (21 + ad [ay; + O(2)])?

7 2 2 2 43\7)2 (1.34)
(ff (y:)* = 2+ a®A[1 = (ay:)*/2+ O(yi)]) "
As terms of at least O(y?) are neglected, the approximation yields
(Fi)? ~ (2 +a® A )
(ff (4:)* = (2+a®A)? — a*A(2 + a*A)y}. '
Inserting (1.35) into (1.33) and summing over N terms one gets
N
Dé = ZVar [Q:]
(24 a?A)? QZszr—Z (2 + a®4)? — a*A(2 + a2 A)y? (1.36)

4

= (2+ 02A)20°R2 + % (N(2+a?4)? — a*A(2 + a®A)R?)
N 4

= (2 +a?A)? <02R2 + 2") +O(c*R?)

which is a spherical model of the Rastrigin variance for small R and small
mutations by neglecting higher orders thereof. The term (2 + a?A)? serves as
a correction of the standard sphere variance from (1.30) and setting o = 0 or
A = 0 recovers it.

Assuming constant o* = o N/R in Eq. (1.36) one gets

2/ 2 n2paf " ? o*? o RO 1.37
DQ(J)(2+aA)R<N> <1+2N)+0(N4>, (1.37)

which can be applied to both limiting cases N — oo (constant R) and R — 0
(constant N).

1.3 Normal Approximation of Quality Gain Distribution

When the progress of an Evolution Strategy is modeled an assumption for the
distribution of the realized quality gain is needed. As described in more detail

10



in [5, Ch. 4], a common approach is to assume a normally distributed quality
gain. This is justified for large search spaces N — oo by the CLT provided all
N components are independent and identically distributed, which is the case
for Rastrigin’s function.

Starting at a position y and performing one random mutation step x ~
oN(0,1), a random quality gain @ is realized. The normal approximation
assumes that this mutation induced quality gain is distributed with mean Fg =
E[Qy(x)] and variance D, = Var[Qy(x)] given a location y and mutation
strength o. Fitness parameters such as A and « are also relevant and assumed
to be implicitly given. Introducing a standardized random variable Z we have

Q—-Eq
7z =-—= 1.38
o (139)
which translates to
—F oo —F
Pr{Z <z} = Pr{QQ < z} e D(z) = (q Q) . (1.39)
Dq Dq
given the respective target values z and ¢. Denoting the cumulative distribution
function of the quality gain as Pg(gq) and the corresponding density %q(q) =
po(gq) we obtain the following approximations for N — oo
q—FE
Polq) ~ ® (DQ> (1.40)
Q
1 q—EQ> 1 1<q—EQ>2
~ — = exp |—= 1.41
vl = 50 (502 ) = g |5 (Yo (141)

Within the normal approximation the inverse Pé ! (p) given some probability

p can be easily obtained by using the quantile function ®~1(p) of the normal
distribution. This relation will be used later to obtain a quality gain for some
given probability using

¢ = Eq+Do® " (p). (1.42)

1.4 Resulting Quality Gain Distributions

Using the previously obtained results the quality gain distribution at location y
due to all N components being mutated with strength o is given by Eq. (1.40)
and following relations

Quality gain distribution

—-FE
PQ(q)fv(I)<q Q), with
Dq

Eg =Eq. (1.21)
D = Eq. (1.29)

(1.43)

11



During the progress rate derivation for the i-th component, a quality gain
distribution is needed conditioned on the ¢-th mutation component x; being
fixed, and N — 1 components being mutated. The distribution function now

changes to
Polglai) = ® ("E[Q'“> , (1.4

Vv Var [Qy ]

for which expected value and variance are evaluated. First the quality gain from
Eq. (1.3) is split into two terms

N

Qy (i, (X)) = > Qilw:) = Qilw:) + Y _ Qj(x;)- (1.45)

i=1 j#i

Now the expected value and variance with respect to x; fixed and N — 1 variable
components (denoted by index j) can be taken.

Expected Value The expected value E[Q;] = Q; remains constant and we
obtain

E[Qyl#i] = Eqp, = Qi+ Y _E[Q)]
J#i
= 22 4 2y + ci(1 — cos (ax;)) + s;sin (ax;)
+ Z o? + Acos (ay;) (1 —e” (eg)” >
J#i
= 2?2 + 22 + ¢i(1 — cos (au;)) + s sin (o) + By, (1.46)

with F; defined as the expectation over N — 1 terms excluding the i-th

E; = 202 + Acos (ay;) (1 - e(ag)> . (1.47)

J#i

For the progress rate determination an analytic integration will be done over
the é-th mutation component. This will require linearization of Eq. (1.46) with
respect to z;. Using result (1.15) the approximation yields

EQe; = 27 + 2yix; + ¢;(1 — cos (am;)) + s;sin (ax;) + E;

1.48

Variance Returning to Eq. (1.45), the variance of a constant Var [@;] = 0 and
we have

Var [Qyz;] = D? = Var[Q,], (1.49)
i

with D? denoting the variances of N — 1 variable terms excluding the i-th, see
also Eq. (1.29). The results can be summarized as follows

12



Quality gain distribution given x;

— FEoz,
Pq(glzi) = @ (qD%) , with

5 | Non-linear Eq. (1.46), (1.50)
Qe Linearized Eq. (1.48),
D; = Eq. (1.49).

1.5 R-Dependent Formulation
1.5.1 Exact Averaging

During later derivations, an R-dependent formulation of the progress rate will be
needed. This will be essential for the study of the convergence behavior, where
the overall residual distance R = ||y|| is more important than the individual
position values of y, assuming that the global optimizer is approached in an
isotropic way.

The fitness function, its mutation induced variance and the later derived
progress rate are all quantities depending on the location y. Since the Rastrigin
fitness contains the cosine of y;, the derived quantities also contain trigonometric
functions of the position. The approach of formulating the expressions as R-
dependent will be shown on the Rastrigin fitness (1.1), but are also applicable
to the variance and later the progress rate.

Given a certain R? = Y oic1 y?, the Rastrigin function can be written as

N N
fly,R) = ny + A — Acos(ay;) = R+ NA — AZCOS(ayi)

i=1 i=1

=R+ NA+T(y),

(1.51)

with
N
T(y) = —AZcos(ozyi). (1.52)

The main issue of T'(y;) is that given some R there are different Cartesian
realizations y thereof leading to different fitness values. As we are interested
in quantities which are expected values, such as the progress rate or the mean
value dynamics of Sec. 5, one is interested in the strategy’s expected behavior
and the function average is a natural solution candidate. Therefore the first
approach is averaging the function T over the (hyper-)sphere with R = |y||.
Another argumentation assuming larger dimensionality IV is that given R the
individual fluctuations of the positions should be negligible, if the sum is taken
over many components. Canceling effects should occur, as some components
contribute positively and others negatively to the overall average fitness level.

Averaging (1.52) could be achieved for N = 1 and N = 2 in an exact way.
For N > 3 no closed form solution of the resulting integrals could be found to
this point.

13



Starting with NV = 1 and requiring R = ||y1]|, the two possible solutions are
y1 = £R. The average of T (denoted with overline) over two points therefore
yields

_ A A
T(R)=—— E cos(ay;) = —— (cos(aR) + cos(—aR))
2 2
yi=%R (1.53)
= —Acos(aR).
The calculation of the average for N > 1 is more involved, as one has to

integrate over the (NN —1)-dimensional sphere-surface Sy (embedded in N di-
mensions) using some parametrization s according to

— 1
T(R) = / T(y)ds, (1.54)
SN Jiiyl=r
with the sphere surface area
9 N/2 RN-1
b 1.55
=R )

For N = 2 the parametrization is defined as (y1,y2) = (Rcos ¢, Rsin¢) with

derivative vector d(ydlifg) = (—Rsin¢, Rcos ¢) on ¢ € [0,27]. Additionally one

has Sy = 2nR. Therefore, inserting the parametrization into (1.54) and using

path element length Hd(ydli;ﬁ’)

‘ = R one has

T _ o d(y1,y2)
T(R) = R J, T(y1(R, ¢), y2(R, ¢))Hd¢ ‘d¢ w56
2 '
= -4 [cos(aR cos @) + cos(aR sin ¢)] d¢ .
2T 0

The integrals obtained in (1.56) can be solved in terms of Bessel functions of the
first kind J, (x) with n > 0 by applying the integral identity [1, p. 360, 9.1.18]

1

™ 1 ™
Jo(z) = ;/0 cos(zsint) dt = ;/0 cos(z cost)dt. (1.57)

Due to the periodicity, integrating cost and sint over [0, 7] yields the same
contribution as the integration over [, 27]. Thus, identity (1.57) is reformulated
by including the second interval as

1 2 1 2
2Jo(x) = = / cos(zsint)dt = = / cos(z cost)dt. (1.58)
0 0

Comparing (1.56) with (1.58) and setting * = «aR, the expression (1.56) is
evaluated as

T(R) = % 27 Jo(aR) + 2w Jy(aR)] = —2AJo(aR). (1.59)

The Rastrigin fitness averaged over R can therefore be summarized as

R?* + A(1 — cos(aR)) for N=1

1.60
R?+2A(1 — Jo(aR)) for N =2. (1.60)

F(R)=R*+ NA+T(R) = {

14



An examplary evaluation of (1.60) is shown in Fig. 2. For N > 3 no closed
form solution is available at this point. Deriving the progress rate, many ap-
proximations rely on the large dimensionality assumption for N, such that the
analytic approach is unfeasible, if no generic solution is available. Furthermore,
there are additional terms to be evaluated when averaging other functions such
as the variance, e.g. T(y;) = y; sin (ay;) in result (1.29). Therefore a different
approach is taken for the R-dependent formulation for large N.

a=2r, A=10, N =1 a=2r, A=10, N =2

10°
10t 10*
ST p £ e
- o A&%‘ - 4
VW
e
1
100 5 10°
Sampling ||y|| = R Sampling ||y|| = R
F(R) = R? + A(1 — cos(aR)) F(R) = R* +2A(1 — Jy(aR))
102 : : 1072 : =
1072 10° 107 1072 10° 102
R R

Figure 2: Average Rastrigin fitness value as function of R for N = 1 (left)
and N = 2 (right). The green curves are the analytic results from (1.60). The
black curves are experimentally obtained by choosing randomly and isotropically
y; ~ N;(0,1), normalizing to be ||y|| = R and averaging over 1000 trials.

1.5.2 Averaging Using Isotropic Random Positions

For a different averaging approach, one can assume that for any given R and
N the positions y; should be independent and normally distributed around the
optimizer with zero mean and standard deviation o, such that

yi ~ ayN(0,1). (1.61)

Following the requirement R? = > y?, the property should hold in expectation

N N
R?=E [Z y?‘| =0’E [Z/\/f(o, 1)] =0E [x¥] = o.N. (1.62)
=1 =1

It was used that the sum over N independent standard normally distributed vari-
ables squared is equal to the chi-squared distributed variable x3; with E [X?v] =
N. Solving (1.62) for oy, expression (1.61) can be rewritten as

R
Yi ~ WN(O’ 1). (1.63)

Having locations distributed according to (1.63) can be justified for an ES op-
erating with large mutation strengths relative to the sphere function. Large
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(normalized) mutations are obtained on the sphere for o* smaller (but close)
to the second zero of the progress rate, see e.g. [5, Eq. (6.54)]. The limit of
large mutations is also important on the Rastrigin function to minimize the
probability of local convergence.

Having established (1.63) the idea will be to approximate the sum over the
trigonometric y;-dependent terms of fitness (1.1) and variance (1.29) as random
variables. In this way, the oscillation part is replaced by a variable with expected
value and fluctuations. Considering the fitness as an example, one can define a
new random number Y for the sum over the cosines

N
Y = Zcos(ayi), (1.64)
i=1

such that the fitness is rewritten containing a random part
f(R,Y)=R*+ NA— AY. (1.65)

As the terms within the sum are i.i.d. variates, the CLT can be applied according
to

Y —B[Y] Nooo

N(0,1), 1.66
Var [Y] 1) (1.66)
with asymptotic equality Y ~ N (E[Y], Var [Y]). Furthermore it will be shown
that E[Y] scales with N and the standard deviation \/Var [Y] only with v/N.
Hence, for large N the fluctuations of Y are negligible with following limit

Var [Y] Nooo
W 70, (1.67)

such that Y ~ E [Y]+4/Var [Y]N(0,1) can be (deterministically) approximated
as

Y ~E[Y]. (1.68)
Applying (1.68) by taking the expected value of (1.65) yields

f(R) = E[f(R,Y)|R]

; (1.69)

=R°+ NA-AEY].
The expression f(R) will be a function of R with removed y;-dependency, which
is desired. This approach is analogously applicable to the trigonometric terms
of variance (1.29), which are summed over N components.

The relevant sums to be evaluated are over the terms cos (ay;), cos(2ay;)
and ysin («y;), respectively. For each sum the limit behavior (1.67) needs to be
investigated.

For the expectations and variances over the sums of trigonometric terms the
results from Appendix A.6 with y; ~ N(0,07) with o, = \/% are applicable.
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Given aforementioned results, ratio (1.67) can be evaluated as follows

3 (2aR)2 (aR)2

Var [vazlcos(ayi)} (l—l—le_% N —e N )
=z 2 N=gog(1.70)

E [Zf\il cos(ay,»)] VNe~ 2 (e

= 0 (L71)

1
1 (2aR)? 2 1 (2aR) 2 (aR)?2\ 2
(%—%e 27N +2a2%e 2 —a2};”ve )
o N—o0
= NOTIE — 0. (1.72)
aRe™ 2"~

Note that the limit considerations hold for constant R and for a scaling relation
R? = N, see Eq. (1.62). For constant R the exponential factors yield “1” in the
limit N — oo, such that the numerators of (1.70), (1.71), and (1.72) vanish. The

denominators of (1.70) and (1.71) are also suppressing the ratio with O (1/\/N) ,
while the denominator of (1.72) remains constant. For R? = N the exponentials
yield non-zero a-dependent values and all ratios vanish with O (1 /VN )

Therefore the approximation (1.68) is justified for all corresponding terms
of fitness and variance. Applying the expected value (A.32) to expression (1.69)
yields the R-dependent fitness for large N

f(R)~R*+NA (1 —e? “73)2) . (1.73)

Analogously, the expected value (A.32) can be applied to the sum over the cosine
terms of the y-dependent quality gain expectation value (1.21). Therefore one
obtains the R-dependent formulation as

o 2
Eo(R,0) = No? +NAe2<1—e g ) (1.74)
Furthermore, one can apply (A.32), (A.33), and (A.34) to the sum over the
trigonometric terms of variance (1.29), which yields the R-dependent variance

formula

NA2 2 2 aR)2
D} (R,0) ~ 4R%0* + 2No* + - [1 — e (a0) ] [1 — ¢ (a) 922’5’}

1():|

N A2 —o?(s2 42 B2
:4R20'2+2N0'4—|—T [1—6_(0“’)2] [1—6 ( +27\’)}

—i—2Aoa72e_%((’“7)2 {Nao ez OCJI\? + 2«

o2 2 2
+ 2NA0¢202e77<02+%) [‘72 + 2717} )
(1.75)
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Figures 3 and 4 show the simulated average function value compared to the
results (1.73) and (1.75), respectively.

From result (1.75) one can easily see, that the following inequality holds for
the sphere variance derived in (1.30)

DZ,,(R,0) < D} (R,0), (1.76)
which is valid within the limit N — oo applying the CLT. Setting A = 0 or
« = 0 recovers the sphere variance. Different approximations are compared in
Fig. 5.

1.5.3 Transition Region

From Figures 3 and 4 one can observe that fitness and quality gain variance
exhibit a transitional region between two log-linear regimes. Within the two
regimes (small and large R, respectively) the functions behave sphere-like with
different prefactors. For small R the global basin is dominating and can be
modeled by a quadratic function. For large R the overall quadratic structure of
the fitness is dominating. Therefore within the transitional region the influence
of the local minima landscape is significant.

Given fitness result of (1.73), for small R a Taylor expansion can be per-
formed giving

f(R)=R*+NA (1 —eTEE )

=R*+NA <1— {1— (2}]?2+0(R4)D
1.77
2 Aa;R2 +0 (RY o

A 2
— R? (1+§> +0(RY).
Conversely, for large R the exponential can be neglected. Additionally, the
term N A is negligible compared to R?. The R-dependent Rastrigin fitness can
therefore be quadratically approximated as

R2 (14422 f IR
F(R) = (1+28) for sma (1.78)
R? for large R.

The exponential function can be interpreted as the source term of the transition.
One way of defining the transition at residual distance Ry, is to look at the
attenuation of the exponential function e~® with some value § > 0, such that

alipy 2
e 0 L e*%( S , such that
1.79)
50N (
Rtr -
@

The result of (1.79) is shown in Fig. 3. The scaling relation R ~ v N will be
used throughout the report, as it describes how the “interesting” region with
high influence of local minima scales as dimensionality NV is increased.
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For the variance Dé in Fig. 4, a transitional region can also be observed for
given constant o*. The spherical limits were already calculated in (1.31) and
(1.36). Inserting o = c*R/N into (1.75) yields the variance as a function of o*
and R giving

2 4
9 o 9 ('R oc*R
DQ(R,U)—4R (N) +2N<N>

# 2 [ et [1- e (50728
2

*R 27(172 o*R\2, B2 o*R 2 R2
aNAa? [ Z 7 ()" + ) 2=
+ a<N>e + N

)

(1.80)

such that after simplification one obtains the Rastrigin variance in terms of ¢*
as

%\ 2 *2
2 w _apd [ 9 g
D3 (R,0%) = 4R <N> [1+2N}

P DA 1 ()] [1 _ e—<aR>2[<zJ>2+ﬁq

%\ 2 £\ 2 aR)2 [/ o*\2 | 1
+92NAa?R* <U> [<U> _,_2] e*%[(ﬁ) +ﬁ}'

N

The transition point for result (1.81) is also defined in terms of an exponential
factor in such a way, that for o* = 0 result (1.79) is obtained again. Considering
the exponential factor of the last term of (1.81) one can define

_(eRy)? [ro* )24 1
edte > [(N)+N], such that

VN 1 (1.82)
o ViTooN

Hence, Ry, of the variance is additionally a function of the (normalized) mu-
tation strength. The exponential from (1.82) will also appear later in the R-
dependent progress rate result (4.5), which backs up its choice. Within the limit
N — o0, assuming constant ¢* and § = 1, the same scaling Ry, = \/ﬁ/a is
observed as in (1.79). The result of (1.82) is shown in Fig. 4.

Rtr =
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a = 2w, A = 10; bottom to top: N = {3,10,100,1000}

106

Figure 3: Rastrigin fitness value as function of R using expected value for
>, cos(ay;) for N = {3, 10,100, 1000}, bottom to top. The green dotted curves
are the results from (1.73). The black curves are experimentally obtained by
sampling randomly y; ~ A;(0,1), then normalizing by R and averaging over
1000 trials. The approximation quality is very good even for moderately large
values of N. For small R only the R? term is relevant. For large R the offset
NA is negligible, such that the curves appear very close to each other, see
also (1.78). Applying Eq. (1.79) with § = 1, the red transition points are at
Ry = {0.39,0.71,2.25,7.11}.

1015 a = 2w, A = 10; bottom to top: N = {3,10,100,1000}

1010 L

o(R)

10°F

100+

1 1 1 1
1072 107! 10° 10t 102 103
R

Figure 4: Variance Dé as function of R for constant o* using expected values for
sum over y;-dependent trigonometric terms. The value o* /N = 1/10 is constant
for increasing N = {3,10, 100, 1000}, bottom to top. It was chosen due to the
idea that larger N requires increasing p leading to increased mutation strength.
Value 1/10 was chosen for displaying purposes. The green dotted curves are the
results from (1.75). The black curves are experimentally obtained. As expected,
the approximation quality is better for larger N. Overall, the approximation
quality is very good. Applying Eq. (1.82) with § = 1, the red transition points
are at R = {0.38,0.68,1.59,2.15}
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a=2m A=10, 0" =10, N = 100

10" -
Sampling ||y[| = R
————— Dy (R)
.......... Di,, = 4R*0* +2No* e
1010 [ ensernnns D% (sm. R) = (2+ o*A)*(0*R* + No* /2)
Dj(lg. R) = 4R?0* 4+ 2No' + NA?/2 e

10°

o (R)

100 |

Figure 5: Variance approximations as functions of R for exemplary values c* =
10 and N = 100 (see also Fig. 4). Comparing: sampling [black], result (1.75)
[green], sphere variance (1.30) [red], variance for small R (1.36) [blue], and
variance for large R including NA?/2 using (1.31) [cyan]. D2, and D (sm. R)
are both spherical R2-dependent variances with different prefactors. For large
and moderate R, the cyan curve with additional term N A2/2 (exponentials
neglected) captures a large part of the transition region, but fails around the
transition point (red cross), where exponential terms are significant.
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2 Progress Rate

The progress rate between two generations for the i-th component y; is defined
as [5, p. 29]
1
0i=E [yz(g) _ yz(g+ ) |y(g)’0(g)] 7 (2.1)

given the position y(? and mutation strength o(9) at generation g. The condi-
tional quantities y(9) and ¢(9) will be dropped for better readability.

2.1 General Derivation

After applying a mutation x ~ o A/(0,1) to the current parental state y(9) and
selecting the best individuals, the position update in search space is performed
using following relation

IH
YO = LS ) =y 6 zxmx, (2.2
=1

’;

where X,,,.» denotes the mutation vector of the m-th best offspring after selec-
tion. Considering the position component y; and abbreviating the i-th mutation
component as

Tm;\ = (Xm;A)i (23)

the expected value can be taken

E [yi(g-l'l)} _ yz(g) +E

] = ylg) + - Z E [Zm:] (2.4)

m=1

Going back to (2.1), the progress rate definition is reformulated using the ex-
pected value of the order statistics of x

;i =E [%@ - y(g“)} =y —E [yf‘q“)} (2.5)

?

. Z E [Zm:2] (2.6)

=1

7;

The expected value of a random variable X with density px () can be calculated
as
o0
E[X] = / z px(z)de. (2.7)
— 00
In our case the probability density incorporates the induced order statistics of
the p best offspring given the location y(9) = y. Using the definition of the
expected value, the progress rate can be rewritten as

1 K o)
;= —— Z / T; P (zi]y) dag (2.8)
[ RS

with z; denoting the integration over i-th component. The density pm,.x(z;]y)
of the m-th best individual will be established using subsequent arguments.
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Mutations are distributed normally with zero mean and variance o2 according
to the normal density
1 1 ZT; 2
Ti) = —exp|—=(— . 2.9
paj( Z) 2Qmo P |: 2 (0 ) :| ( )

Given a position y and mutation x;, a random quality gain value @ is dis-
tributed according to a conditional probability density pg(g|x;,y) given by

dPq(qlrs,y
po(glriy) = Q(dq ), (2.10)

an approximation of which was presented in Eq. (1.50).

Given that the m-th best individual attains a quality gain within [q, ¢ + dq],
we must have m — 1 better individuals having a smaller quality value with
probability [Pr{Q < ¢}]™™" = [Po(¢)]"", and A — m individuals having a
larger value with [Pr{Q > ¢}]*™™ = [1 — Po(¢)]* ™. To account for all relevant
combinations we have -—j—i, Where 1/(m—1)! and 1/(A—m)! exclude the
irrelevant combinations among the two groups of better and worse individuals,
respectively.

The conditional density for the m-th individual as a function of the quality
gain q yields

1>/!\(!)\ — m)!pQ(Q|$iaY)

pQ;M;)\(Q|xi7 Y) = (m —

x Po(qly)™ 'L — Polqly)] ™™

(2.11)

By integrating over all attainable quality gain values [g;, ¢, one arrives at
the density

pn(aily) = pa(e) | " pasma(alze,y) dg (2.12)

0 (2.13)
x / paalzi,y)Palaly)™ 1 - Polgly)* ™ dg.

q1

Plugging Eq. (2.13) into (2.8) one obtains the progress rate

Pi =

i /Oo xipm(f”i)/qu po(alziy)

me=1 7o @ (2.14)

“(m - 1)!A(!A i Felay)" L = Polaly)* ™ dg dai.

1
"

Moving the sum into the innermost integration, another transformation can
be applied using a well known relation between the sum over m and the regu-

23



larized incomplete beta function [5, p. 147]

~ P(g)" 1 - P ™
Z m— —-m
= (m=DIA—m)! (2.15)
1

1-P(q) N L .
= AR O I A Ltl's [
M*u*1Wu7DLA -9

Furthermore, we will rewrite the population dependent factor as follows

1 Al P (A—1)!
pA=p =D =1 g (A= p =) —1)!
_A T
=T W) T (210)
_A v
- uBOA = p,p)’

where we have used the property of the Gamma function I'(n) = (n — 1)! (for
any integer n > 0) and the known relation between Gamma and Beta functions
FIEZIS)’) = B(z,y). These replacements will be useful later to derive approxi-
mations for large population sizes. After replacing the sum and refactoring we

arrive at the following progress rate integral

A 1 2i=00
Pi = —*7/ LiPx\Xq
B =ty 1) o= oo ()

9=qu t=1-Pq(q)
X/ pQ(Q‘miaY)/ AP — )P At dg da
q

=q t=0

(2.17)

Now the integration order of ¢ and ¢ will be exchanged. This will enable an
analytically closed form for the quality gain integration q. The current integral
consists of following integration ranges

@ <q<qu, and 0 <t <1— Py(q). (2.18)

Defining the inverse transformation ¢ = Fp 1(1 —t) and integrating over t first,
one obtains the new ranges as

0<t<1,andq <q<P,'(1-1t). (2.19)

The integral changes to

A1 Ti=oo
Pi = —*7/ TiPz\Ti
H B()‘ - H .u) T;=—00 ( )

i—1 q=P51(1—t)
></ t*‘“‘l(l—t)“‘l/ pq(glei,y) dgdt dz; .
+=0 q9=q

(2.20)
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Now the innermost integral can be solved

Po'(1=t) Pl (1—t)
[ polalen) da = [Polalon)]} (2.21)
= Po(P5' (1 —t)]a:) — Po(alz:) (2.22)
= Po(Py' (1 —t)|a;) (2.23)
— F(t ). (2.24)

where the probability Pg(¢|z;) = Pr(Q < ¢|z;) = 0 for any lower bound value
qi- For better readability the function f(¢, z;) was introduced and y was dropped
within the conditional probability. Thus we arrive at the following progress rate
integral

)\ XT3 =00
i = **/ fUsz(Iz)

H Jai=—co (2.25)

1 /ﬁ:l N 4
X = PR — ) f( 2) At da
B(A — p, 1) Ji—o (=0 fhm)

2.2 Large Population Approximation

Unfortunately a closed form solution of (2.25) is not possible due to the factor
F(t.2:) = Po(Pg (1 - 1)]a).

But within the so-called large-population limit with (1, A) — oo and constant
truncation ratio ¥ = /A a solution for the t-integration can be given using the
results of Appendix B. Comparing (2.25) with identity (B.1) one can identify
integral I7 | [f] with parameters a = 1 and b = 0 such that

)\ T; =00
0 = fﬁ/ :cipz(zi)fi_)[f] dz; . (2.26)
Evaluating function f(¢,z;) at t = 1 — ¥ gives

F(ti)li=1-0 = Po(Py (1 = t)|zi)|,_,_, = Po(Pg ' (9)|z:). (2.27)

Therefore the progress rate integral in the asymptotic limit of infinitely large
population sizes (constant ) yields

Progress rate for large populations and generic Pg(q)

o~ —= /OO xipgﬁ(zi)PQ(Pél(ﬂ)Lri) dz;, (2.28)

— 00

which now consists only of a single integration over the i-th mutation component
x;. The main next task is to choose Py(q) and Pél(p) in such a way that the
integral is analytically solvable.

25



2.3 Defining and Expanding the Distribution Function

An analytic approximation for ¢; can be derived starting from Eq. (2.28) as
follows. For the first step expressions for Pg(q|z;) and ¢ = Py 1(9) are needed.
The results from Egs. (1.44) and (1.42) assuming a normally distributed quality
gain can be used with

Po(qlzi) = @ (q_DEQ“) (2.29)

)

q= Py (0) = Eq + Da® ' (¥), (2.30)

giving the result

EQ + DQ@_l(’ﬁ) — EQ\L‘ ) . (231)

Po(Py )le) = -

Now the results can be collected. Using the large population approximation
(2.28) with result (2.31) and inserting Eq. (1.46) for Eg),, the progress rate
yields

1 o0
i = —5/ TP (i)

— 00
o B (EQ + D@1 (V) — (22 + 2y + ¢i(1 — cos (ax;)) + sisin (ax;)) — El> dos
D; v

(2.32)

A closed form solution of the given integral cannot be obtained, since the ar-
gument of ®(-) contains nonlinear terms in x;. The subsequent derivations will
tackle this problem. The idea will be to provide an approximate solution by
splitting the argument of ®(-) into a linear function g(z;) and a nonlinear func-
tion h(z;). After splitting, a Taylor expansion of ® can be done for a small
nonlinear perturbation h(x;). Keeping only the first two terms of the expansion
will result in two analytically solvable integrals for the progress rate.

Decomposing the quality gain Considering an arbitrary position in search
space y and a comparably large mutation strength o, the Rastrigin quality gain
will be dominated by the global, i.e. spherical, structure. The fitness oscilla-
tions with strength A in Eq. (1.1) are superimposed on the spherical function.
Therefore a resulting quality gain can be regarded as globally sphere-like with
deviations due to nonlinear local perturbations, cf. Fig. 1.

The linearized quality gain component of the sphere function f; spn(yi) = y2
is given by following expression, cf. Eq. (1.15),

Qisph = fisph (Vi + i) — fispn(¥i)
— dfi,sph

dy;
~ 2y = k.

z; + O(x3) (2.33)

The nonlinear Rastrigin quality gain from Eq. (1.9) is given by

Qi = 2?2 + 2y;2; + ¢i(1 — cos (ax;)) + s sin (a;), (2.34)
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from which we can identify the same linear term 2y;x; = k;x;. Reordering the
expression and defining the nonlinear terms of x; as perturbation é(z;) we get
Qi = 2y;w; + 22 4 ¢;i(1 — cos (ax;)) + s sin (ou;)

= kjx; + 6(xy). (2.35)

with
ki = 2y;
; . (2.36)
8(z;) = xf + ¢i(1 — cos (ax;)) + s; sin ().

Plugging the obtained relation back into the argument ®(-) of Eq. (2.31), the
addends can be rearranged in terms of a linear and nonlinear part

& Eg + Dg®1(9) — (27 + 2y,xi + ¢;(1 — cos (ax;)) + s;sin (ax;)) — E;
D;
— % <—kil’i + EQ —FE; + DQ(I)il(ﬁ) 5($z)>

=& (g(z:) + h(:)), (2.37)

The linear function in xz; is obtained as

ki Eg,+Do® (v
wm:—im+‘% 5 @), (2.38)

with the following abbreviation from Eq. (1.21)

ac)2
Eq — E; = Eg, = 0 + Acos (ay;) <1 — e ) . (2.39)

The nonlinear function in z; yields

h(ws) = _5(;;) _omt ¢i(1 — cos (%ﬂfl)) + s; sin (ami). (2.40)

Expanding the CDF At this point an expansion of the distribution can be
done at g assuming small perturbations h (argument x; is dropped for brevity),
analogous to [5, p. 337, B.4],

Dg+h) =Y -t

1 dFo
= Z?T
e_%g2

V2r

Applying the decomposition (2.37) to Eq. (2.32) and considering only the first
two terms of the Taylor expansion (2.41) we obtain a new progress rate approx-
imation

=®(g) + h+ O(h?). (2.41)
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1 oo
pim 3 / 2 ipa (2) (g 7)) da
1

V2
= I+ I}

(2.42)

o0 1 2
/ gcipm(xi)h(xi)e_fg(“) dz;

The integrals I? and I} will be analytically solved in the next sections. The
superscript denotes the Oth and 1st order term of the expansion, respectively.

2.3.1 Solving Integral I?
Starting from the first line of Eq. (2.42) and using definition (2.38), the equation

can be rewritten as

- _ -1
19 = 71/ Tipy ()P (gxz + o, + %Q(I) (19)> dz; . (2.43)

— 00

Inserting the mutation density p,(x;) from Eq. (2.9) and applying the substitu-
tion z = x; /o one gets

© ko Eg, + Do®~1(9)
IQ:—L 2637 [~ z+ Qi Q dz.
! V2 /_oo < D; D;

At this point the following integral identity [5, p. 330, A.12] can be applied

(2.44)

e 142 a 1 b2
The corresponding coefficients can be identified as
ks
a:—ﬁf (2.46)
Eo, + Dg®~ (¥
b= @+§ ). (2.47)
7
Evaluating the factor a/v/1 4 a? gives
a _ D; _ ko _'7161'70' (2.48)
VitaZ D? 4 (kio)? N VD? + (kio)? Dy’ '
D? D}

where following definition was introduced
D% = D} + (ko). (2.49)
The factor exp [—b%/2(1 + a?)] yields

1 b2 1 (Eg, + Do® 1 (09)\> 1
exp |:_21 2:| = exXp _2( < DQ ( )> D2 (k;o)2
+a g Dé + 2)2
; : (2.50)
1 (Eg, + Do®1(¥)\
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Inserting results (2.48), (2.50) into identity relation (2.45), the integral (2.44)
yields

. [_1 (EQ +DQ<I>1<19>>2] kio® (251)

2.3.2 Solving Integral I}

The second summand of the progress rate from Eq. (2.42) is given by

1 [ o (20)?
Il = — wih(2:)pe (z:)e 29" da; (2.52)
¢ V219 [oo
1 0 1 1(2i)2 1 0.2
S zih(z; e 2\ /) e 29V dux; . .
: 19/ h(z:) : (F) e=39@0% g (2.53)
V219 J_so o

The product of two Gaussian functions can be rewritten as a single Gaussian
with a scaling factor C' and resulting mean m and variance s2, such that

o) wj—m2
I} = 727590 [m xih(:ci)efé( =) da; . (2.54)
Keeping this in mind and recalling definition (2.40) we have
W) = _5(Dx.i) _ @} 4 s;sin (axi)—g.ci(l — cos (ozz:i))' (2.55)

Using this relation, the integral (2.53) will be reformulated later as an expected
value of the function z;h(z;) over the normal density A (m, 82).

We start with quadratic completion of the exponential functions and by
using Eq. (2.38) with

g(x;) = c12; + co, with (2.56)
k.
= —i (2.57)
Eg. +Do® 1 (¥
o= ™ — @), (2.58)

Quadratic completion shall give

8
W

e e 29)” = omackema(@mite)® L opmr (2.59)
We have

x? 1
U—’Q + ctr? + 2c 200 + i = ( + c%) o + 2cpc1w; + ¢
2cpcq c?
=8 (x? + gt 50 (2.60)

e {x.ﬁoﬁr_[coﬁrg%
B 5] "B




with a temporary variable

D2 n ks 2 9
1 5 1+(ao)® D7 (ﬁa) Dy
B = ; —+ Cl = 02 = 0-2 = Dlo- s (2.61)

using again the definition (2.49) for D,. Therefore the exponential terms read

112 2 B g 2 (zv,f'm)2
i e 39w — o3[ RSl L e (2.62)

The mean value m after quadratic completion and inserting the definitions for
co, ¢1 and [ reads

_pma__EQ,+DQ¢%ﬁ)m(Dm)2

TS D Di \ D+ (2.63)
_ [Eq, + Da® ' (9)]kio? '
D? '
The standard deviation s is given by
1 D;
s et (2.64)

VB Dy
The factor C' is evaluated by resolving variables [, cg, c; and using the relation
D? = D? + (k;o)?, which gives

e B (e @] 8 (4
C =exp > 3 9 = exp 2 \ B
r 1 2 12
— exp 1 EQi +DQ(I) (19) ko 1
2 D; D,
(1 (Bat Do@ 9)\? [ (ko) + D2 - D
=exp |5 ( D, D2 1 (2.65)
[ 1 2/ p2 2
o[} (FatDoa 0\ (DL D2
2 D; D2 D2
r _ 2
= exp —% (EQi +g@¢ 1("9)> 1 .
+

The result is the same exponential factor as in I? from Eq. (2.51). Now all
results for the quadratic completion can be applied to Eq. (2.54) and relation
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(2.55) for h(x;) is inserted. This yields

1 Eo, + Do®~ o0 piom\2
Iil — _ exp |— ( Qi + Q ) / ( s ) dxi
2mdo 2 oo
E Do®~ > 1(xi=m)2
= —Lexp —( Qi+ Q / h(xi)e_f( =) dz;
V2mdo 2 V2rs J_oo
N S I (Egl + Dg®~ w))2
V2mioD; 2 Dy
1 [, _i(ziomy?
X [:c + s;x; sin (aw;) + ¢;(x; — x; cos (axl))] e~ 3(55) dz; .
\V21s /,oo ¢
(2.66)

Having the newly obtained form, one can identify expected values of the terms
1 wi—m)Q

in [] with respect to the density \/2175675( s

To avoid confusion with

the actual random mutation variable x; ~ N (0,02), the integration variable

is renamed ¢ = z; and t ~ N (m,sz). Additionally replacing the prefactor

_ Do
S=TD

, the integral becomes

1

1
= ——¢€
\/27T19D+ Xp[ 2

1 (EQi +DQ<1>—1(19)>21

D, (2.67)
x {E [t*] + s; E[tsin (at)] + ¢; (E[t] — E[tcos (at)]) } .
The occurring expected values are
Elf] =
E [t*] = m® + 3ms®
B [tsin (at)] = e~ [ sin (am) + as? cos (am)] (269
E [t cos (at)] = e~ [ cos (am) — as? sin (am)],

with the trigonometric expectations given in Appendix (A.17) and (A.19). In-
serting the expected values one gets

_ 2
P 1o [l (Bt Der @)
! V 27T79D+ 2 D+

x {m3 + 3ms? (2.69)

+ ;e 3(@9)? [msin (am) + as® cos (am)]

+c ( — 3o’ [m cos (am) — as® sin (am)]) }

Reinserting the definitions of m (2.63), s (2.64) gives
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Il = L leXp 1 (EQi +DQ(I>1(19)>2 1
Eo + Do® ' (Nkio2\>  _[Eo + Do® (ko2 [ Do\ >
Qi Q Qi Q
X e +3 2 D
+ T +

. 2
~3(e %)
+ s +

[Eq, + D@ ' (9)]kio® < [Eq, + DQ@l(ﬂ)}kzﬂQ)
3 Ssin | &« )
D2 D?

Do\ [Eq, + Do® 1 (0)]k;0>
co(57) e (e D )

+o [ Eat D@~ (9)]kio?
D%

(2.70)

2.3.3 Merging Results

At this point the results for I? (2.51) and I} (2.70) will be merged. Their sum
is the exact solution of Eq. (2.42) incorporating the first two terms of the Taylor
expansion.

The variables k;,c;, s;, Eqg,, Dg,D; and D, will not be inserted into the
expression due to very poor readability. Instead the variables are summarized
below. The solution will be calculated and validated computationally in Sec. 2.5.
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Progress rate for large A and expanded CDF

Pi = Izo + Iz’l
11 1 (Eg, + Do® 1 (0)\”
)
271'19 p 2 D+
kio?
X
Dy
1 [ ([Ee+ Do ' )kio®\* | ,[Eq, + Do® ' (D)]kio® (Dio'\*
D, D2 D2 D,

(2.71)

with following variable definitions

¢i = Acos (ay;) and s; = Asin (ay;), Eq. (1.8)

_ (a0)?

Eq, = 0% + Acos (ay;) (1 —e 2 > , Eq. (1.21)

N N
D} = ZVar Q:] = Z 20% + dy?o? + ...
i=1 i=1

+ %2 {1 - e’(a")ﬂ {1 — cos(2ayi)e*(°“’)2}

+24a02e 3 (@) [(wz cos(ay;) + 2y; sin(ayi)], Eq. (1.29)

D} => Var[Q,], Eq. (1.49)
J#i
D} = D} + (kio)® = Var[Q;] + (kio)®, Eq. (2.49)
y
’ (2.72)
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2.4 Large Dimensionality Approximation

The results of Egs. (2.71) and (2.72) are the exact solution of Eq. (2.42) and can
be used if highest precision is needed. At this point a result which is shorter
and easier to grasp is desired, since it will be used for upcoming studies. A
significantly simpler result can be obtained by analyzing m from Eq. (2.63) and
s from Eq. (2.64) in terms of their N scaling behavior.

Assuming large dimensionality N, the variance quantities are approximately
equal, since they only differ by a single component, the i-th component. Ne-
glecting the contribution of one component given large N we have

N
Dy =Y Var[Q]~) Var[Q;]~ Y Var[Q;] + (ki)
i=1 J# j#i
~ D? ~ Df_.

(2.73)

Within the approximation we define the variances to be equal to D2, namely
D} = Dg, and D} = Dj,. (2.74)

This approximation changes m from Eq. (2.63) and s from Eq. (2.64) as follows

(EQi + DQ(I)_l(Tg)) kia2 _ EQi (1)71(19) 2
m R D7, = D3 + Do kio (2.75)

D
s~ D—za =o. (2.76)

Since Eq. (2.75) contains Dg and Dé in its denominator, it can further be
simplified for large N. From Eq. (2.73) we observe that D?;) scales with NV and
DQ with \/N

The first term Eq, is just the quality gain expectation of a single component.
The second term ®~1(¢9) diverges only for ¥ = 0 and ¥ = 1, which are not useful
truncation values. Both terms are suppressed by N and v/N, respectively, and
the infinite dimension limit can be evaluated as

. L Eq,  ©7'(v) 2 _
ngnoom(J\I)N11§100<D22 tpy |t =0 (2.77)

which is valid for any finite o. The obtained results s ~ ¢ and m =~ 0 change the
density of ¢ ~ N (m, s?) to the mutation density ¢ ~ N (0,0?) in Eq. (2.67).
Reevaluating the expected values of Eq. (2.68) only a single term remains, such
that

E [tsin (at)] ~ ao? exp {—;(aaf] . (2.78)

The approximation (2.74) also changes the common exponential factor of I}
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and I? as follows

exp [1 (Ee +D@<I>1<v9>ﬂ (279)

where the ratio Fg,/Dg vanishes with O(1/v/N) giving the last line.

The newly defined coefficient ¢y can be identified as e*? from Eq. (B.30)
yielding the asymptotic generalized progress coefficients. The expression for cy
is also in accordance with the asymptotic expansion of the progress coefficient
Cu/ux by Beyer [5, p. 249]. The difference in the ®~largument (¢ vs. 1 — o)
is due to a differently chosen substitution that exchanges the integrand powers
of Eq. (B.2) and its maximizer location. Since ®~1(9) = —®~1(1 — 1) the two
results are equal after squaring &~ 1.

As ¢y is obtained for infinitely large populations, it poses an upper bound
of ¢,/,,» and overestimates the progress, see also Fig. 14.

The approximation quality of the subsequent result is expected to be better
for ¥ not close to 0 or 1, since the Taylor expansion point in Eq. (2.38) depends
on ®71(99), and ®1(0) = —occ and ®71(1) = oo.

2.4.1 Applying the Approximations
Inserting the result of Eq. (2.79) into Eq. (2.51) and setting D4 = D¢ yields

P~ cg—Fk;. (2.80)

Analogously the results of Egs. (2.78) and (2.79) are applied to Eq. (2.69). Only
a single term is left within the brackets {-} giving

1 _1 2 1 . _1 2
Il-l ~ cyg—sie 29 qo? = cy— Asin (ay;)e 3(00)” 52

0’2 _1
:Cﬁie 2
D

(ao)z[aA sin (ay; )] (2.81)

where the definition s; = Asin (ay;) was used. Additionally, the derivative of
the Rastrigin oscillation term d; = aAsin (ay;) was identified, as introduced in
Eq. (1.11). Finally the progress rate is simplified and yields
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Progress rate for large A and V

pi=1I +1I}
0'2 1 2
—co— (I —5(ao)” g
“Do (k te dl) (2.82)
2
= cﬁo— (Qyi + eff(a”)zaA sin (ay¢)> .
Dq

with the variance D% given in Eq. (1.29).

2.4.2 Discussion

The obtained result of Eq. (2.82) is very interesting, especially compared to the
alternative progress rate (2.109) via c,/, . A numeric comparison is given in
Fig. 14. Displaying both equations gives

2

Dico = cﬁg— (2yi + e~ 3(29)” o A sin (ayi)) (2.83)
Q
o? .
Direpsur = cH/H’A—DQ (Qyi + aAsin (ayi)) (2.84)

The progress coefficients are asymptotically equal ¢y >~ ¢/, Within the infinite
population limit.

The first term k; = 2y; is the same for both and determines the progress on
the spherical function. The second term shows a remarkable difference.

In Eq. (2.83) the oscillation derivative d; = aAsin (ay;) is suppressed expo-
nentially for large mutations o (or high oscillation frequency «). It correctly
accounts for the fact that local perturbations of the spherical fitness have only
a local effect on the expected progress, i.e. they are only relevant for small o.

This difference shows also the shortcomings of Eq. (2.84). The perturba-
tion derivative d; is not suppressed and has a global effect on the progress
independent of . Therefore Eq. (2.84) may show very large deviations from
experimental values for larger o, especially if the oscillation is prominent with
large A or a.

Setting A = 0 or a = 0 the Rastrigin function degenerates to the sphere and
both expressions yield asymptotically the same result.
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2.5 Experiments and Numerical Solutions
2.5.1 Numerical Progress Rate Solution

During the previous derivation of the progress rate multiple integrals were ob-
tained analytically as intermediate steps. In this section exact integral expres-
sions of the progress rate are solved numerically. The only approximation is the
choice of a CDF, see below. The results are compared to experiments. We have
the integrals

e I1: Eq. (2.14)
e 12: Eq. (2.17), triple integral and numerically most involving
e I3: Eq. (2.25)

To solve the equations numerically, a cumulative distribution function has
to be chosen. The conditioned distribution function (z; = const.) is chosen
according to Eq. (1.50), non-linear version, and yields

Polqlz;) = @ ("‘?’”) . (2.85)

The distribution function due to N mutated components is given by (1.43) and
inverted according to (1.42) giving

Po'(p) = q=Eq+ Dq® '(p). (2.86)
Combining the equations and evaluating at p = ¢ we obtain

Y e

Given the distribution functions (2.85) and (2.87), integrals I1, 12 and 13 are all
equivalent and should yield the same results, see Fig. 6.
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Figure 6: For the experimental results, one-generation experiments were done
and the progress was obtained according to Eq. (2.1) by averaging over 100000
runs with dimensionality N = 30 and frequency o = 2w. The starting position
was chosen to be y = 1.25 (top) and y = 1.75 (bottom). The three integrals
yield the same result, as expected. Very good agreement between experiment
and numerical solution is observed. The only approximation is the assumption
of a normally distributed quality gain.
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2.5.2 Overview of Approximations

The integrals from Fig. 6 give the most precise, i.e. least approximated, nu-
meric result of the progress rate and will be referred to as only “NUM” for the
subsequent plots. Approximations are denoted by “A” and a number. They
are compared to the experimental and numeric results. Following data will be
shown

Experiment: average over 100000 trials

NUM: Eq. (2.25); normally distributed quality gain; only numerically solv-
able

A1-NUM: Eq. (2.28); additionally large population A; only numerically
solvable

A2: additionally Taylor-expanding CDF and keeping Oth and 1st order

— A2-NUM: numeric solution of Eq. (2.42)
— A2: analytic solution according to Egs. (2.71) and (2.72)

A3: Eq. (2.82); additionally large dimensionality N

— A3: spherical progress term k; with d; = 0 in Eq. (2.82)
— A3: perturbation progress term d; exp[—...] with k; = 0 in Eq. (2.82)

C: Eq. (2.109); alternative progress rate using c,,,x; limited applicability
for Rastrigin fitness

— C: spherical progress using only k;

— C: progress using full derivative f] = k; +d;

Frequency Value For all following experiments the oscillation frequency was
set to a = 27 and remains as such, if not explicitly stated otherwise.

2.5.3 Approximations Al and A2
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Figure 7: Variation of N (top) and A (bottom). We have better agreement
for larger dimensionality N, which can be often observed due to the CLT. For
N =5, the Taylor expansion of A2 introduces a moderately larger deviation.
Very good agreement is observed for A =1 and A = 10, i.e. for a broader range
of oscillation strengths. Numeric and analytic calculation of A2 match perfectly.
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Figure 8: Variation of the truncation ratio ¥ = {0.05,0.5} (top) and A (bot-
tom, Y¥=const.). Decreasing the ratio increases the selection pressure and thus
the progress. The approximation quality tends to decrease for more extreme
truncation values, here for ¥ = 0.05 For smaller populations (constant ) the
progress decreases and deviation increases, as expected. The approximations
depend only on the truncation ratio 14, assuming a large A\. Numeric and ana-
lytic calculation of A2 match perfectly.
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Figure 9: Variation of position y. The vector y = 0.995%ones(N,1) corresponds
to all components at the same local minimum. The vector y = 3*rand(N,1)
has uniformly distributed random values y ~ U([0, 3]) for all components. The
location y = [1.75,0,...,0] has only one non-zero component. One can see
moderately higher deviations for small mutations. This is investigated later
within approximation A3.
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2.5.4 Approximation A3

From last section the parameters N and ¢ were identified to have a larger influ-
ence. They are varied in Figs. 10 and 11 over a larger o-range. Figure 12 shows
the progress for large normalized ¢* values, motivated by dynamic experiments.
Figures 13 and 14 show a more detailed analysis for a specific position.
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Figure 10: Variation of 9 = {0.05,0.25,0.5,0.75} with N =5 and y ~ U([0, 3])
with constant seed and Ry =~ 4.2. For small N the applicability of the CLT for
the CDF is very limited, such that even NUM and A1-NUM may show larger
deviations. Approximation A3 yields relatively good results even for small IV,
if ¥ is not close to 0.
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Figure 11: Variation of ¢ = {0.05,0.25,0.5,0.75} with N = 30 and y ~ U([0, 3])
with constant seed and Ry =~ 9. As expected the approximation quality in-
creases for larger N and ¥ not close to 0. Within the range 0.25 < ¢ < 0.75
approximations A2 and A3 yield similarly good results.

44



(50/50, 200)-0SA-ES, P¢=0.96

(50/50,200)-ES, A=1, N=100, Y, =rand(N,1), R =15

10° ST I LI L]
—geese e e
—~ 2\ *~ 39 0.25 e SRS
10N N s RS
%" 02 g“
o 10 015 /
0 <
£ S 4
E 5 0.1 f @  Experiment
g 10 _ S .
g f 0.05 ‘.’ AL-NUM
A 10 o 0ed /22
o N e
10 . . . . . . -0.05
100 200 300 400 500 600 0 10 20 . 80 40 50
g g
(100/100, 200)-0SA-ES, P_=0.99 (100/100,200)-ES, A=1, N=100, Y,=rand(N,1), R=15
10* 0.2
T
L
102 \ *~43 P o
gb 0.15 p‘
5 Ve
00 ' ya
8 g o f
g 107 § ok, Coperiment
= R P
S8 0057 ¢ AL-NUM
A 10% 5 b4 A2
- S A3
0es . . N N .
106 ! . . . .
0 200 400 600 800 1000 0 10 20 . 30 40 50
q ag

Figure 12: Approximation quality for large o* = o N/R and 9 = {0.25,0.5}.
Plots on the left-hand side show the averaged dynamics for Rastrigin problem
N =100,A =1,y = 10 and two truncation ratios. The average dynamics yield
large levels of o* ~ 40 which are relatively constant after the initial phase has
passed. Therefore the right plots show the progress rate for 0 < o* < 50. The
approximation quality of A2 and A3 is good even for large o*. The dynamic
experiments were repeated 10* times using 7 = 1/ V8N and the success proba-
bility is denoted by P,. The initial position for the one-generation experiments
was again chosen as y ~ U([0,3]). Important to note is that the dynamic o*
changes if p or ¥ are modified. Larger populations also enable larger mutation

strengths.
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Figure 13: Approximation A3 from Eq. (2.82) with Dg compared to A3 using
D, since for large N we should have Dg ~ D,. One can see that A3 with
D, to some degree reproduces the characteristics of A2. This indicates that in
the case of a single dominating component, e.q. y = [1.25,0, ..., 0], the standard
deviation differences become more pronounced. The term D¢ contains precise
information on the i-th component variation, whereas D,, approximates it and
D; neglects it, see also Eq. (2.72). Still, the primary source of error is the Taylor
expansion of Eq. (2.41) applied in A2.
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2.5.5 Approximation A3 compared to C

(10/10,20)-ES, A=10, N=30, Y7125

i Experiment /;

Figure 14: Approximation A3 decomposed into its two progress terms and com-
pared to the progress rate using c,,/,  (denoted by C). The term k; = 2y; yields
the spherical progress for both A3 and C for large o, where C is closer to the
black numeric solution since no large populations are assumed. Thus, A3 using
¢y overestimates the true progress. For A3 the term d; = aAsin (ay;) is only
relevant for small o and gets exponentially suppressed. The superposition of
both terms (red line) yields very good results. The progress C with k; + d;
shows very large deviations for larger o since the derivative d; is globally rele-
vant, i.e. not suppressed.
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2.6 Alternative Progress Rate via Progress Coefficient

Starting from Eq. (2.14) an alternative progress rate can be derived using a
so-called progress coefficient c,,/,, », already established in [5, p. 216]. However,
in contrast to the progress rate in Eq. (2.42), the derivation is limited to using
only a linearized quality gain which in turn leads to sub-optimal results for the
Rastrigin fitness.

As opposed to Sec. 2.1 and 2.2, the mutation integral over z; is solved first
and Eq. (2.14) will be restructured by exchanging x and q. We have

1 123
Yi = —— Z E [wm;k}
’umzl
1 ® qu
pi=—— Z/ [/ zipx(2:)pQ (gl y) da;
um:l @ o0
m—1 _ A—m
X s 1),( o Polaly)™ " [1 = Polaly)" ™™ dg
1 i /q“ Al (] 1[ )}A
- L, Pq(aly)™ [ — Polaly)]* ™™ dg

(2.88)

with the mutation integral I, (¢q) that will be solved approximately. Assuming
that the conditional quality gain density pg(g|x;, y) is normally distributed with
linearized mutation component z;, see also Eqgs. (1.48) and (1.49), we get

1 1 (q¢- Eqp, \’
pq(glzi,y) = WGXP o\ D
7 7

R RN I Y TR A
\/27TD1‘ P 2 Dz

Inserting the two densities into the mutation integral we have

_1(atimimE)
5= ¢ %(#)Z#e 2 < Di > dz; . (2.90)
2o V27 D; i

Substituting t = x; / o and reordering terms gives

(2.89)

I, (q) = / te 3t 7%<q 5 E) dt . (2.91)
‘ \/27rD V2T

Now following identity can be applied [5, p. 330, A.8] to Eq. (2.91)

- —142 —L(at4b)? 3, _ —ab I
E _Oote (§ dt—mexp _§W . (292)

We can identify the coefficients a and b as follows

fio
a=—
q?iE_ (2.93)
p— 150
D;



The first factor of the identity is calculated as

—ab _ fiolqg — Ey) 1
(L+a2)?2 " D} (14 (flo/D;)2)*>
_ Jiola— )2/2 (2.94)
( + (fio)?)
_ fioD;q— E;
- D} Dy’
with the newly defined quantity.
D3} == D; + (fo)*. (2.95)
The second factor of yields
I 1(q— E;)? 1
AP ITo T 2| TP T, D? 1+ (flo/D;)?
2.96
Tt a-Er ) [1a-ep]  *Y
P2 Dz (flo2| TP T2 D2
Using the results above we get for integral (2.91)
»(q) = xp |—=
M=, b2 by )P |2y
(2.97)

1 flo? (q—E; 1 /q—E\>
“ /=2 \ D, )P T2 D
2 f f f

Inserting the result for I,,(q) into progress rate integral (2.88) and assuming a
normal cumulative distribution function Pg(q) = ® (q EQ) see Eq. (1.43), we

D
obtain the following

fm AL (1o
' py2m Dj *fy) Dy

xmi_l ,\ m)| [é (q;j“@)]ml [1—<I><QZ)§Q>rmdq_

(2.98)

The integration range of ¢ was set to [— f(y), 00), corresponding to the attainable
fitness changes Qy(x) of Rastrigin’s function.

The obtained integral will only be solvable in terms of a progress coefficient

Cu/u,xs if an approximation for large dimensionality N — oo is applied to the
9—Eq
D

arguments q;—fi and , namely that

N
E; = ZE[QJ] ~ ZE[QJ] = Eg,
I - (2.99)

Df = ZVar Q;] + ZVar Q] =
JFi
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The assumption is that expectation value and variance are dominated by N — 1
terms, such that the contribution of a single i-th component is negligible.

Setting E; = Eg, Dy = Dg in Eq. (2.98) and defining the substitution

z= quQ the integral becomes
oAl flo?
" w21 Do
o] H
1,2 ()‘ - 1)' m—1 A—m
X /7f(y)7EQ ze” 2 Zl (m = DI —m)! [@(2)] [1—®(2)) dz.
DQ m=
(2.100)
Now the lower boundary z; = % and its scaling behavior with respect

to N are investigated. Assuming (w.l.0.g.) that y = 1 and A = 0, the fitness
term f(y) = |ly||> = N. Noting that Eq scales with N and D¢ with v/N, the
value for z; scales with v/N and we have

i —f™) —Eq _

dm == —00. (2.101)

After extending the integration range, identity (2.15) can be applied again to
transform the sum into an integral

A1 fi/O_Q /z:oo ei%f
pi=—=—— z
2 D Z=—00
frvem He (2.102)

_ | t=1—®(z)
0 M(A 1)}(),; 1)'/ A ) (T EP
—HT AT L) Ji=0

Now the integration variables ¢t and z can be exchanged giving the new ranges

0<t<l, —c0o<z<dH1—1t), (2.103)
which changes the progress rate after reordering prefactors to
SOA:_fi/U2 L A (A=1)!
" Do Va2mp (A —p— 1) (p—1)!

t=1 z=®"1(1-1t) s
></ tkfﬂfl(lft)“*/ ze” 2% dzdt.
t=0 z

(2.104)

=—0C

At this point another substitution is introduced, which will enable to identify
the progress coefficient definition. Setting t = ®(y),y = ®~1(t), & = ¢(y), and

rdy
evaluating the upper bound z, = ®~ (1 —t) = @ 1(®(—~y)) = —y we get
fio®
y—
Dq

: ¢127r % (A — u(il)h);!z —1)! / :,OO o) [ "L - ()"

z=—y
X / zem2% dzdy.
4

=—00

(2.105)
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The inner integration over z yields

—y )
/ 2o 3 dz = —e 2V, (2.106)
Using ¢(y) = \/%e_%?f and %% =(A—p) (2) we arrive at

o= A p () [ e - e ay

1) J
(2.107)

with the definition of ¢/, » = ei’fj\ given by [5, p. 172]

ot = A p (2) [ o:o abe™ 2 [D(2) 1 — B(2))* " da. (2.108)

The progress rate finally yields

Progress rate via c,,/,,

2
g
PYi = Cu/u,kDiin/

2
o
= CH/AL,A?Q (ki +d;) (2.109)

2
= C“/*")‘%Q <2yi + aAsin (ayi)).

with f/ being the linearized quality gain given in Eq. (1.15) and Dé the variance
from Eq. (1.29).
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3 Quadratic Progress Rate

The first order progress rate definition from Eq. (2.1) has a major disadvantage
when approaching the optimizer ¢; = 0. It does not correctly model the progress
if zero-crossings occur, namely if y(g )> 0 and y(g+ ) < 0, or along the negative

axis for both yz( 9 < 0 and y(q+1)

(g ) yl(g MR yields positive progress even though the strategy is moving

away from g; = 0.

Given this behavior, the convergence towards ¢; cannot be modeled cor-
rectly. At this point one can identify that squaring the individual components
resolves this issue, which was already recognized in [6] studying the Ellipsoid
model. Introducing the difference term (yl(g))2 - (yl(gﬂ))2 models the progress
consistently approaching zero from positive and negative axes.

Therefore the new quadratic progress measure for the i-th component reads

S —E {(yz(g))z _ (y§9+1))2 |y(g)’a(g)] ) (3.1)

During the ! derivation the first order progress ¢; from previous section will
reappear such that the obtained results will be reused.

< 0. In these cases the difference term

3.1 Definition
Starting with Eq. (2.2) again, the position vector at (g + 1) yields

(9+1) = y Z XmiA- (3.2)

Referring to the i-th components y(g), yl(ng ) s Tm:x = (Xm:a); and squaring both

sides gives

" 2
() = (o £ 3o
2
:(yl( ) —‘,—le me)\—l—(Z:L‘m)\) . (33)

Squaring the last term needs additional treatment

w 2 w I
(z) :( ) (zxM):Z@Wazxk;m;A
m=1 =1

M=

k=1 m=1 kAl
uw
= g (Tmsx) JrE IszAJrg TR ATIN
m=1 k<l k>l
I
_ 2
= (Tma)” + 2 wpazia
m=1 k<l
Iz uol-1
= E CCm )\ —|— 2 E E TR AT (3.4)
m=1 1=2 k=1
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The idea was to split the squared sum into one part with p terms of equal indices
and a double sum of u(u — 1)/2 mixed terms.
Reordering Eq. (3.3) and inserting the result of Eq. (3.4) we obtain

(y§g)) (yfg+1))
-1 (3.5)

w ;- 9 M
——29(9) Zl‘mA EZ Tmn)? = 5 DY Tradia-

= m=1

Now the expectation value can be taken with respect to mutation =

B [(yE-‘”)Q - (yE-‘””)Q}
~-a 5|3 a] - B |

-1

BN

=2 k=

—

Identifying o} = E [(yl(g))2 - (y§g+1))2] from Eq. (3.1) and ¢; = —% EDF | #ma]

from Eq. (2.6) we get the important intermediate result

1 Iz mol-1
Pl =2y, — —E|Y (@mn)?| — = E DS weaaa| . (3.7)
K m=1 ,U, =2 k=1

with the second order progress being a function of the first order progress, and
two expectations yet to be determined. Therefore the following quantities are
defined

N
E® —42E Z (zm;)\)ﬂ (3.8)
m=1
no -1
E(l’l) = 02E Zsz;Azl;)\] 5 (39)
1=2 k=1

with & = oz, and the superscript (-) denoting the power of occurring mutation
terms. For the sake of completeness, the expectation yielding ¢; from Eq. (2.6)
is also given

EWY .= 6¢E

Z zm;,\] = — ;. (3.10)

m=1

Solutions for Eq. (3.7) will be derived in Sec. 3.2 and 3.3 using two different
approaches.

3.2 Expectations via Noisy Order Statistics

In this section, an approach by Arnold [2] is introduced and applied to calculate
expectations from Egs. (3.8), (3.9) and (3.10). Since the quantity ¢; of Eq. (3.10)
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was already determined in Sec. 2.6, its result will be checked for correctness by
applying the new approach. The following derivations give a summary of the
more involved calculations by Arnold.

First the method will be presented in a more abstract form before being
applied to the problem at hand. A slight complication arises due to two cases
for the sign relation between quality gain and mutation, which influences the
ordering of mutation components z,,,5. This issue will result in slightly modified
equations compared to the derivation by Arnold.

3.2.1 Definition and Generic Solution

Let z be a random variable with density p,(z) and zero mean. The density is
approximated using a finite number of cumulants using a Gram-Charlier series
with variance ko, skewness 77 and excess 72, see also (C.1). Furthermore, let
e~N (0, 062) be a normally distributed random variable modeling additive noise
disturbance. Resulting measured values v are obtained as

v=24+N(0,07), (3.11)

of which the realizations are independent and identically distributed with den-
sity py(v) in (C.10). By performing selection of m = 1, ..., u largest elements
over A realizations of v, the selected values are given by

Umx = (2 + N (0,02)) (3.12)

mi\
Therefore v,,,;» and its source term z,,,, are being governed by order statistics,
c.f. density pm:a(2) in Eq. (2.13). The variates z,\ are referred to as noisy
order statistics due to the added noise term N (0,02) and are linearly related
to measured (selected) values vy,.x. After selection, the elements z,,., among
the group m = 1, ..., u now depend on each other with joint density denoted in
(C.24).

Assuming we are interested in the expected value of a sum Sp of noisy order
statistics over v factors with corresponding powers P = (p1, ..., p,) and indices
{n1,...,m,}, we can formulate the problem as

BISpl =B [ 2] (3.13)

which is explained in (C.20) in more detail. Given the relation of Eq. (3.12)
and the problem formulation of (3.13), Arnold has provided a generic solution
for the expected value in [2].

As already mentioned, two cases for the sign relation between v and z may
occur which will require minor modifications of Arnold’s derivation. Denoting
the sign as s we have

v=sz+N(0,07) with se{+1,—1}. (3.14)

The details concerning the modified derivations are shown in Appendix C. At
this point only a summary is provided.
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Summary of solution Arnold aims to find a closed form expression for the
(2v + 1)-fold integration of Eq. (C.26). Therefore he successively solves the
2v-fold integration for Ip(z) over z and v-variables, respectively, presented in
(C.27) and (C.28). To this end, the noise coefficient @ > 0 from Eq. (C.11) is

defined and special coefficients (i(f;)(k) are introduced, such that

[ ka2 .
a = m, with (315)

CZ.(’?) (k) = Polynomial(a). (3.16)

Integral Ip(z) is expressed in terms of the coefficients CZ—(’I;)(]C>7 and they in turn
depend on the exponent vector P, on the number of terms v via index ¢ and
on the expansion order of Eq. (C.1) via j. Given {P,4,j}, only certain k& > 0
yield non-zero coefficient values. The results were obtained using Mathematica
and are tabulated by Arnold [2, p. 141]. In the end we are left with a single
integration, which is incorporated within a new coefficient h: "k see (3.18).

The final result for the expected value of sum (3.13) in terms of z defined in
(3.14) with s € {+1,—1} reads

!
E[SP] = (SM)HP”l (u ,L_L Z/)'

303 (W) + 5B )+ k) + ) B

n=0 k>0
(3.17)

The relation v ~ —z + N (O o ) from Eq. (3.14) results in a switched sign for
skewness 71 (neglecting cumulants of higher order than four) and exchanged
permutation ordering with (—1)I”li compared to Arnold’s result in [2, p. 142,
D.28].

The introduced coefficients h;’k/\ are numerically obtainable solving

it =2 () [ e e o P - e,
(3.18)

They are closely related to the generalized progress coefficient by Beyer [5,
p. 172], with the definition here using Hermite Polynomials. As an example,
hllt’g\ = C,u/,u,)\ Wlth He() (QIJ) = ].

Given z ~ N (0, 02) expansion (C.1) yields a normal distribution with v, =
~v2 = 0 and only coefficient C,Si))(k) remains within brackets (-) of Eq. (3.17).

3.2.2 Evaluating Expectations

In this section the result of Eq. (3.17) is applied to the sums of Egs. (3.8) and
(3.9) for the determination of ¢!'. But first Eq. (3.10) is evaluated to validate
the correct application of the method.
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The first step is to redefine the fitness and quality gain in order to achieve
maximization instead of minimization. Applying (—1) to the fitness leads to a
maximization problem (denoted by overset ~). Thus, the maximized quality
gain of Eq. (1.2) is

Qy(x) = —fly +x) = (—f(¥) = f(y) — f(y +x) (3.19)
N
=—Qy(x)=— Z Qi(x;). (3.20)

Therefore the i-th component of Eq. (1.9) changes sign
Qi(z;) = — (27 + 2y;z; + ci(1 — cos (ax;)) + s;sin (az;)) . (3.21)

Evaluating the expectation value and variance yields

N N
E [@y(x)} =E Z@z] =-E lz Qz‘| =—-Eq (3.22)
) lle 3 i=1 N
Var [Qy(x)} = Var ZQZ] = (=1)?Var ZQ‘] :Dé. (3.23)

We are interested in the i-th component expectation E[Y " | z,,.\] with
Timsa = (Xm;2)i due to quality gain selection. Now the main idea is to isolate
the i-th component of the quality gain, linearize it and to model the effect of
N — 1 remaining components as a noisy disturbance. The goal is obtaining the
form of Eq. (3.14). Starting with

N
Qy(x) =) Qi =Qi+ > Q;
j=1 i
= —2? — 2y;2; — ¢;i(1 — cos (aur;)) — s sin (ou;) + Z @j (3.24)
J#i
= —kiz; — 0(xi) + Z@j,
j#i
where in the last line Egs. (2.35) and (2.36) were used. As a linear relation be-
tween @y(x) and z; is required, the perturbation is neglected assuming 6(x;) ~ 0
for small mutations.
For large dimensionality the sum > i @j asymptotically approaches a nor-

mal distribution, cf. Eq. (1.39), and we can define a substitute random variate
w

w = Zéjj, w~N (Ey,, D), with
J#i
(3.25)
E,=E|Y Qj| =—E;, D=Var|) Q| =DZ
J#i Jj#i

where Eqgs. (1.47) and (1.49) were used with sign relation (3.22) applied to E;.
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Setting z; = o0z;, neglecting 6(x;) and using substitute w, Eq. (3.24) now
becomes
éy(x) ~ —kiO'Zi +N (—Ei, D?)
éy(X) ~ —kiO'Zi — Ez +N (0, D?)
Qy(x) + By ~ —sgn (k;) [ki|oz + N (0,D?) (3.26)

éy(X)JFEi ~ N D; 2
e s sgn (—k;) zi + N <O, (1%0) .

The sign function sgn (-) and the decomposition k; = sgn (k;) |k;| were intro-
duced, as k; = 2y; may be positive or negative depending on the position. In
order to ensure constant order of selected values on the left-hand side, the equa-
tion is divided by |k;| keeping the sign relation at z;. As |k;|? = k? the absolute
value is dropped when squared. By defining

i = (Qy(x) +2Ez‘)/(\kz‘\0) (3.27)
= (Dl/k‘zo) 5

we arrive at the desired form introduced in Eq. (3.14) with s = sgn (—k;) giving

v; = sgn (—k;) z + N (0,07). (3.28)

We have z; ~ N(0,1) such that ko = 1, k; = 0 for ¢ # 2. The ordering of
maximized Qy(x) is not affected by the linear transformation v, (@y(x)>

Now the obtained results are applied. Given the sum (3.10)

14
> zm;,\] : (3.29)
m=1

relevant parameters for applying Eq. (3.17) are ke = 1, 11 = 72 = 0, P = (1),
[|P|l; =1 and v = 1, such that

EY =6E

1
E(l) _ Usgn( C (1) 1 —n,k
T X O
—osgn(-k)pYy ( G kynLE ¢ (1)(k)h0k> (3.30)
k>0

= o sgn (—ks) uCy (0)RLS

The result was obtained applying Table [2, p. 141] by using Cflg(k) = 0 for any
k, and Cé}g (k) # 0 only for k£ = 0 giving the noise coefficient a. The result (3.30)
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is further evaluated using a from (3.15) and hi’f\ from (3.18)

EW = gsgn (—k;) ,uahllt’g\

Cu/p,X
= osgn (—k;) p—FE=
V1402

o sgn (_kl) HCp /X

2
D;
1+ ()
osgn (—k;) f1C, (3.31)
2 2

V() + (&)
_ By sen (ki) kil o

(kio)® + D?

_ Cu/w)\kiaz
Dy

From first to second line it was used that hig = Cy/p and a = \/1/(1 4 02).
In the third line 62 = (D;/k;0)?. From fourth to fifth line in order to ensure the
noise coefficient a > 0, taking /(k;0)? was set to +|k;|o and the corresponding
positive solution is chosen. For the last line the definition k; = sgn (k;) |k;| was
applied again, as well as the definition of D, from Eq. (2.49).

Relating the result of (3.31) to progress rate p; of Eq. (3.10) and applying
the large N approximation Dy =~ Dgq, see Eq. (2.73), we finally arrive at the
progress rate by means of noisy order statistics

Lew
I

i =

2
= C“/N’A%ki. (332)

The result is equivalent to Eq. (2.109) showing the progress of the spherical part
k; due to neglected perturbations. If the linearized quality gain from Eq. (1.15)
was chosen in Eq. (3.24), the coefficient k; would be replaced by f/.

Therefore the method has been validated using the already obtained result.
Now the remaining expectations are evaluated.

Expectations of E®) and E(I))  For the sum defined in Eq. (3.8)

> (zm;A)Q] : (3.33)

E® =42E

m=1

we now have P = (2), ||P||; = 2 and v = 1. Distribution parameters ko = 1,

71 = 72 = 0 remain the same. As || P||; = 2, the sign yields s? = [sgn (—k;)]* =
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and can be dropped. The result of Eq. (3.17) yields

1
!
2 _ 2 K (2) 1-n,k
EFY =0 71)'5 E Cmo(k)h#,)\

(1 " n=0k>0
DI CHIGLERSHLAY
k>0

= % (CH R + B 0h3)

1,1 0,0
= 0-2/’[’ (th‘u’)\ + h#,A) (334)

=o%p (a%i’i\ + 1)

ol
2 HsA

=0o°u 5 +1

1+ ()

1,132 4
e kio

ATV 2
=pul| —~=—+0"|.
< Di )

For 3", it was used that Cff%(k:) = 0 except Cé?g(l) = a? and Cl(?g(O) = 1.
The coefficient hi{\ = elli:l)\ given He; (z) = z and comparing Eqgs. (3.18) and
(2.108). Additionally h/(i’g\ = 1 with Heg () = 1, see below. The value of
a? = 1/(1 + (D;/kic)?), and finally the definition D% = (k;0)? + D? was used
to obtain the last line.

Coefficient hi’& can be evaluated as

=222 (0) [ et - e as

A 3.35
—0-w(2)BO-pn+ ) (3.35)
B Al (A= p—1D)ly!
A —p =) Al
using the substitution ¢ = ®(z), transformation (A — u) (3) = W, the
relation between beta and gamma functions B(z,y) = % and I'(n) =

(n—1)\
Given the sum defined in Eq. (3.9)

EMY = 6?E

no -1
Zsz;Azl;A] 5 (336)

1=2 k=1

we have P = (1,1), |P||, = 2, v = 2 and s*> = 1. Distribution parameters are
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ko =1 and 3 = 72 = 0. Equation (3.17) yields

' 2
Ly _ 2 M (1,1) 2—n,k
EGY =g (n—2)! Z ZCH,O (k)hu,A
n=0 k>0
= o2u(n—1) Y (6 Rnz + <5V Rn + P (mgk)

k>0

= o2u(p— 1)¢ P (0)n%S

(3.37)

It was used that Cr(:(’)l) (k) = 0 except Cé}dl)(O) = a?/2 and hi:o = ei’ff\ comparing
Egs. (3.18) and (2.108). Again, a®> = 1/(1 + (D;/k;0)?) and D? = (k;o)? + D?

was used.

Collecting results At this point the results of Eqgs. (3.34) and (3.37) are
plugged back into Eq. (3.7) giving

1 2
‘P%I = 2y;; — EE(Q) - 7E(1’1)

Iz
1,12 4 2,0 7.2 4
1 (e \kio ) p—1le\kio
=2yipi — — | Pog— 40 | - ——L— 3.38
< D-Qi- i D-zi- ( )

, 2,0
=2yipi — — — — et (- 1)%,,\) :
At this point the expression (2.82) for ¢; is inserted into !!. Additionally, using
definition k; = 2y; from Eq. (1.12), applying variance approximation D, = D%
for large N from (2.74) and collecting the factor o2/u one gets the quadratic
progress rate result

2 2 2
n= &9% (2% +e 2 q Asin (@%‘))
Q
(3.39)
0'2 (Qyi)202 1,1 2,0
— p 1+ T?Q (611‘:)\ + (,LL - ]‘)e,u.’)\) :
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3.3 Expectations via Large Population Approximation

In this section an alternative derivation to Sec. 3.2 is presented for the expecta-
tions (3.8) and (3.9) for the derivation of ¢! in Eq. (3.7). The large population
approximation will be applied for the expectations analogous to Sec. 2.2.

3.3.1 Expectation of F(?

Starting from (3.8) and referring to the corresponding term in (3.7) one has

1 1 &
—E® = — N "E[22,]

(3.40)
1 [t 00 )
m=1Y —>X

112
analogous to the definition in Eq. (2.8), but with squared quantity z2. Both
(2.8) and (3.40) have the same structure after inserting the order statistic density
Pma(2:]y) from (2.13) and the integration over the changed mutation compo-
nent is performed at last. The results of Sec. 2.1 and 2.2 can be applied to
Eq. (3.40) by including the large population approximation up to result (2.42),
for which the mutation integration has to be performed.
Therefore (3.40) is rewritten as

Loy LI [,
72E = — = Z Z; pm,)\(xz|y) dxz
[ o S

I [t
1 )\/”:OO ) 1
_— e P (3.41)
/’L|:N T;=—00 ( )B(/\—%M)

t=1
x/ P = 1) P (P (1= t)|e) dt da |,
t=0

and an equation analogous to (2.25) is obtained. Solving the ¢-integration in
Eq. (3.41), the large population approximation of (B.1) is applied with a = 1
and the integrand PQ(Pél(l — t)|z;) evaluated at t = 1 — 9. This yields

1 11 [~
B =5 [ ) Po(Pg (0 da, (3.42)
14 H -0

which is analogous to (2.28). Inserting the normal approximation of the quality
gain distribution (2.31) into (3.42) leads to an analytically not solvable inte-
gration due to non-linear terms in z; within ®(-). Given ®(+), see (2.37), with
g(x;) from (2.38) being a linear function in z; and h(z;) from (2.40) a non-linear

function, one can write
Lpe 1l h 22py (2:)® (9(x;) + h(x;)) da; (3.43)
/~L2 ,uz? - AT 7 2 7. .

At this point the resulting distribution function is again expanded according to
(2.41) considering only the first two terms of the Taylor series. One obtains an
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approximation analogous to (2.42) giving

1 11 [
—E® ~ - [ / 22, (2:)®(g(z;)) da

ju ) o
1 [ CLo(e? 3.44
o [ atpehlege e 4 | B
= _[? + Iilv
with the two integrations abbreviated as I? and I}, which are evaluated now. As
aremark, the sign difference compared to (2.42) results from @; = *%L F L E[zmn]

calculated in (2.42), while for (3.44) the expression % L E [mQ ] is evalu-

m=1 miA
ated.
Starting with the first integration I?, it is rewritten analogously to (2.44)
using g(x;) from (2.38) and the substitution z = x; /o giving

1 o0
10 = 1719/ 27 ps () ®(g(;)) day
- (3.45)

. -1
2 <kl(f n EQi +DQ(I) (19)) dz .

2 —
D, ~ D,

- V21 /—ooz ¢

At this point the result of Identity (D.1) can be applied to (3.45). Defining the
coeflicients

ol
W
iS)

k; Eo. + Do® (¥
a:_D‘?7 h— Qi T+ DQ ( )7 (3.46)
expressions needed for (D.1) are evaluated as
D% (kio\’ D> Dy
a5 ()~ 5
a®b . (kiU)Q Eq, + DQ(I)_l(ﬂ) (3.47)
+a” D2 D, |
. 2
e,%% ~exp 71 EQi + DQ@ 1(19) 7
2 D,

using D% := D? + (k;0)? from (2.49). Therefore the first integration yields

0_ 9 ) g (Fat Do ()
o) Dy

1 (kio)? Eq, + Do@™*(9)
V 21 -D_Q;,_ D+

exp

1 [Eq, + Do~ '(9)]”
1 o .
(3.48)

Applying the large dimensionality approximation from (2.73), one neglects Eq, ~
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0 and sets Dg ~ D,. This significantly simplifies the result of (3.48) giving

0 -1 1 (ko) 1 2
I ~ D [@(q) (ﬁ))—ﬁ D% d~ () exp {—2 [~ 1(9)] ”

NO.Q ) e—%[éfl(ﬁ)r (kio)?
Null_@ (ml ] ]

(3.49)

V2 Dé

Given (3.49) the asymptotic generalized progress coefficient 6119’1 from (B.30) can
be recognized with parameters a = 1 and b = 1, such that

1(p—1 2
- o3[ ()]
6119,1 =[-27 (V)] lm (3.50)
This leads to following result for the first integral
2 k. 2
10=21|1+ e};l([;) 1 . (3.51)
Q

Note that the large dimensionality approximation can also be applied earlier,
namely to coefficients (3.47), which results in simpler expressions

(1+a®)?2~1

a?b N (kia)gq)_lw)

(1+a2)32 " D3 (3.52)
_1 2 1 2
21ra? N
e 271+ exp{ 5 [~ 1(0)] ] ,
when evaluating Identity (D.1).
Second integration I} from (3.44) is defined as
1 e C1lg(z,)?
P = V2 [OO w3 pe (i) h(zi)e 29 da; (3.53)
with g(z;) and h(x;) defined in (2.38) and (2.55), respectively, giving
ki Eo + Do® (¥
o) = iy 4 @t Do 1)
D D (3.54)
x? + s;sin () + ¢;(1 — cos (ax;)) '
h(xz) = — D. .

Quadratic completion for the Gaussians of (3.53) was already evaluated in
Eq. (2.54) with parameters C', m and s given in (2.65), (2.63) and (2.64), re-
spectively. Again, the large dimensionality approximation is applied to simplify
the lengthy expressions and the results of Sec. 2.4 are applicable giving

m=~0

ST O

C =~ exp {_; [@1(19)]2] . (3.55)
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Therefore integral (3.53) with quadratic completion (2.54) assuming large N
yields

1 C o _1(zi=m)\2
i = w2rdo /,oo e2h(z;)e 1 (557) da; 0
3.56

1 —1 2
Le z[@ '@ 1 oo a2
~ ; V2 2ro / x?h(xi)e o

Given last line of (3.56), one can compare coefficients with the asymptotic gen-
eralized progress coefficient from (B.30) and identify following using @ = 1 and
b=0

e )

V21
see also Eq. (2.79). Additionally in (3.56), the definition of the expected value

of 2h(z;) w.r.t. z; ~ N(0,02) can be applied. Inserting h(z;) from (3.54) with
D, ~ Dg, expression (3.56) is reformulated

= ellg’o = Cy, (3.57)

Cy

Il = —
nDq

K2

[E [2}] + s E [27 sin (az;)] + ¢ E [27

7] — ¢ B [7 cos (aw;)]] .

(3.58)

with ¢; = Acos (ay;) and s; = Asin (ay;). Using results from Appendix A the
expected values read

E [xf] = 30"
E [xf] = o2
3.59
E [27sin (az;)] =0 (8:59)
E [27 cos (az;)] = (0% — ozzc;'4)€72(w)2
Therefore one gets
1 61902 2 —1(ao)? 2 2 —1(ao)?
I, :_MT {30 + Acos (ay;) (1—e 2 +a‘ce ? )} (3.60)
Q

Collecting the results (3.51) and (3.60) with k; = 2y; and inserting them back
into (3.44) the expectation value reads

1 2 2 i 2 .2
72E(2):O—7 1+611971(y)20— _cl9|:30,2
2 I Dg, Dq

+ Acos (ay;) (1 e 3(e)® | a%ze*%(aaf) } }

(3.61)
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3.3.2 Expectation of F(l1

The derivation of E(WY) is tackled in this section. Referring to (3.9) and its
application in (3.7), the expected value to be calculated is

nol—1
E(l 1) = 2 ZZE TE AT, )\ (362)
1=2 k=1

The double sum includes mixed contributions from the k-th and [-th best ele-
ments of the i-th mutation component. To avoid confusion with the summation
indices k£ and [, the integration variables associated with k-th element will be
denoted as x; (mutation) and ¢; (quality), while the I-th element is integrated
over o and ¢o.

The ordering 1 < k < [ < X is assumed with & yielding a smaller (bet-
ter) quality value ¢; < g¢2. Calculating (3.62) the joint probability density
Pri:a(T1,x2) is needed, such that the expected value can be formulated as

1 po -1
E(1 2 =— Z Z/ / T1Z2Pkx (21, T2) dro day . (3.63)
1=

G I —

The mutation densities are independent and denoted by p,(z1) and p.(z2),
respectively. Given mutation components x; and x5, the conditional density
obtaining the quality values ¢; and ¢ is pg(gi1|z1) and pg(ga|x2), respectively.
Given ¢; and g2, one has k—1 values are smaller than g1, [ —k—1 values between
q1 and g2 and A — [ values larger than g» with probabilities

Pr{Q < ql}’%l = Po(q)F "
Pr{ig < Q <} " = [Po(g) — Po(q)] ™+ 1 (3.64)
Pr{Q > ¢} = [1 - Po(g2)*"

with Pg(g) denoting the distribution function. The joint probability density
can therefore be written as

Preia (21, 22) = }%(961)1930(!102)/Oo po(q1]x1) /OOPQ(Q2|332)

min q1

Po(q1)" ' [Pg(g2) — Po(qn)]' " '[1 — Po(g2)]!
(k- D0~k — DIA— )]

x Al dgzdqy,

(3.65)

with integration ranges ¢min < g1 < 00 and ¢; < g2 < 00 as k < [. Lower bound
Gmin denotes the smallest possible quality value, which is resolved later. The
factorials exclude the irrelevant combinations among the three groups given in
(3.64). Plugging (3.65) into (3.63) and moving the sum into the integration one
gets

Lpan Z A T e / 2opa(23) / polailen) / po(gales)

H H —o00 a

no1—1 C— _

Po(q1)* M [Polg2) — Polg)]" "1 — Po(ge)]*!
X;; k- D —k— DI 1)

X dgo dgy daxo dxy .

(3.66)
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The double sum of (3.66) over the Py-values will be exchanged by an integration.
This can be done using an identity from [2, p. 113]. Setting v = 2 and identifying
the indices as i; = [ and is = k, the evaluated identity yields

pnol—1
Q QQ—Qllkll—Qz
D el

1=2 k=1 l_k_l)'(k_l)' (3.67)

= ! /Q1 AL — )2 de
(A=p =Dl =2)! Jo
for real values (Q; and @2 and integers v < p < A. Now the substitution
Q1 = 1— Py(gz), Q2 = 1 — Pg(q1) can be performed and the double sum
of (3.66) can be recognized by comparing with (3.67). Applying the identity
therefore yields

S [1 = Polg2)] '[Po(g2) — Polq)] " [Po(q)]* !

=D —k—1D)I(k—1)!

1=2 k=1 (3.68)
1 1-Pqo(g2) N L )
TSR VT
e (-1
and Eq. (3.66) changes to
Lpan - : /00 1Pz (21) /OO Tops(22)
I u2 A=p— ) (n—2)! oo
< [ palals) [ polales) (3.69)
min q1
1-Pq(g2)
X / A1 — )2 dt dgy dgy Aoy day .
0
The prefactor of Eq. (3.69) can be evaluated as
Al 1 A=) (p—1)
A —p =D =2)t 2= p = 1) —1)!
_Ap-l (A= 1 (3.70)
poop A=p =D —1)!
lp—1 1

U p BA—p,p)
which will be useful during subsequent calculations.

Now the integration order will be exchanged twice in (3.69). First the order
between ¢ and ¢s is exchanged. Then the order between ¢ and ¢; is exchanged,
such that both g-integrations are performed before the t¢-integration enabling
the application of the large population identity of Appendix B. Starting with

integration bounds
g1 < g2 <00 (3.71)
0<t<1-Polp) '

and using the inverse function Fp U with gp = ) 1(1 —t) the exchanged bounds

between ¢t and g2 are given by
0<t<1-Pylq
71@( 1) (3.72)
a1 <q2 <Py (1—1).
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Using factor (3.70) and exchanged bounds (3.72) the expression (3.69) is refor-
mulated as

1 lp—1 1 = a
72E(171) = —'u / 1‘1}%(551)/ $2p$(x2)

I 0 p BA—p,n) J o —oo
0 1—PQ((11) A 1 9
< [ potaln) [ PR (1 gy (3.73)
Qmin 0

Pyt (1)
x / P (galz2) dge dt dgr dze day .
q

1

Now the integration order between ¢ and ¢; is exchanged starting from

Gmin S q1 < 00

0<t<1-Pylq), (3.74)
yielding

0<t<1
min < @1 < PN (1—1). (3.75)

Therefore, we arrive at the following integration to be solved (beta function
moved inside as it will be evaluated during the ¢-integration)

1 lpu—1 [ >
EE(I’I) = EuT . xlpm(ﬁl)[m $2pm(952)

1 ! —p—1 pn—2
x (M/O RO

Py (1-t) Pot(1-t)
X / PQ(qi|r1) / PQ(q2|r2)dge pdqy | dt | dzpdx; .
q1

Gmin
(3.76)

Now the integrations in (3.76) will be successively solved. Starting with inte-
gration {-} over g2 one has

Pyl (1-t) Pyt (1-t)
x2)dge = | P, x
L7 retelnde = [Powir)] | -
= Po(Py' (1 —t)|z2) — Po(air2).
The ¢;-integration within [-] using (3.77) yields
Pt (1-t)
/ po(q1lz1) (PQ(Pél(l —t)]z2) — PQ(Q1|x2)) dq1 (3.78)
dmin
Pyl(1-1)
—Po(rg' 1= 0lex) [ polaleda (379)
Qmin
Pyt (1—t)
[ polme) Potarle) da (3.50)
dmin
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First integration (3.79) is easily evaluated, as the conditional density is inte-
grated over its support giving

Pt (1-t)
Po(Py'(1 —t)|x2)/ pa(ailz1) dg:

dmin

B Py (1-1) (3.81)
= Po(Pg (1= D) [Po(ala)]

= Po(P5' (1 = t)|xa) Po(Py ' (1 —t)

371)

with Pg(gmin|1) = Pr{@Q < gmin|z1} = 0. Note that the resulting factors are
equal up to the conditional variables x1 and x.

The second integral (3.80) will be simplified using integration by parts.
Thereafter, one can exchange the x; and zo variables to find a significantly
simpler expression for the original integral. Integration by parts yields

Pyl (1-1)
/ pQ(q1]71)Po(q1]w2) dgy

dmin

Pyt (1—t)
= Po(Py (1= t)|a1)Po(Pg ' (1 = t)|z2) — / Po(alz)po(qilz2) dgr -
dmin
(3.82)

Equation (3.82) inserted into (3.76) has to be integrated over x; and xs, of
which the order can be exchanged. For the following argument the t-integration
and the prefactors of (3.76) have no influence, such that they are dropped for
better readability. Integrating both sides of (3.82) yields

o oo chl(l—t)
/ 331}%(951)/ 33217:1;(902)/ P (q1|z1)Po(q1|z2) dgi dza day

—00 —00 dmin

= /_oo xlpw(ml)/_oo .Z‘pr(l‘g)PQ(Pél(l — t)|x1)PQ(P§1(1 —t)|z2) dao day

oo 0 Pl (1-t)
- / Zape(2) / 21pe (1) / Po(ai|22)po(a1|z1) dgr das das,
(3.83)

Gmin

where in the last line the integration order of x7 and x5 was exchanged, such that
an expression equivalent to the lhs of (3.83) is obtained with given arguments
for pg and Pg. Collecting the terms, Eq. (3.83) can be formulated as

00 o chl(l—t)
/ 361179;(1‘1)/ 9521%(902)/ P (q1|z1)Po(q1|x2) dgi des day
a

—00 —00 min

= ;/jo xlpx(xl)/jo 22pa(12) Po(Py ' (1 — 1) |21) Po(Pg (1 — t)|22) darp day -
(3.84)

Noting that the rhs of result (3.84) is one half of the first integration result (3.81)
after z-integration and noting the minus sign in (3.80), one gets for (3.78) the
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expression

0o 0o PQ_l(lft)
/ I1Pm($1)/ Isz(l'z)/ pQ((J1|$1)

— 00 — 00 dmin

% (Po(Pg" (1= 1)[z2) = Po(aila2)) dgy das day

= /Z x1px($1)/0; Tape(T2)

. (1 - ;) Po(P (1~ ]a1) Po(P5 (1 — t)[a2) dira dry

(3.85)

Including prefactors and integration over t again, the result within [-] of (3.76)
simplifies significantly giving

1 1lp—1 [ -
?E(lxl) :55#7[& xlpz(m)/_ooxwz(@)

" <B(/\ —lu,u) /o e (3.86)

X PQ(Pél(l — ﬁ)l.’lﬁl)PQ(Pél(l — t)|ac2) dt) dxo dxy .

Given (3.86) and the integral in (-), the large population identity of (B.1) can
be applied for (u,\) — oo with constant . Identifying a = 2 and evaluating
Py (Pél(l —t)|z1)Pg (Pél(l —t)|z) at the integrand’s maximum location f =
1 — 1 yields

1 ' —p—1 n—2 -1 1
m/o L = )PP Po(Py (1 — t)]an) Po(Pg ' (1 — t)|z2) dt

1

SPo(PG (9)]a1) Po(Pg* (9)]2).

(3.87)

Using asymptotic equality (3.87) and noting that the terms containing z; and
x9 can be separated accordingly, Eq. (3.86) becomes

Loy o1 lp—1 DO -1
! >_§@T/_Ooxlp$(xl)PQ<PQ (9)|1) day
x / 2y (22) Po (P (0)]2) e (3.88)

Tu—1[1 [= 2
=3 [19 /_ofipw@f)P@(Pal(ﬁ)Iwi)dl‘i
where the integration variable is now denoted as x; referring to the i-th compo-
nent defined in Sec. 2. Additionally, the factor 1/9 was moved into [-].

Interestingly, the expression within [-] can now be identified as the (nega-
tive) first order progress rate —¢; within the large population limit derived in
Eq. (2.28). The result of (3.88) can therefore be expressed as

69



1 lp—1
B0~ B2 (3.89)
Iz 2 p

The derivation of an analytic progress rate formula for ¢; starting from Eq. (2.28)
was performed in Secs. 2.3 and 2.4 by expanding the distribution function up to
first order and applying a large dimensionality approximation. The main result
is given in (2.82) and inserted into (3.89), such that

iE(lvl) ~ 17/1 — 1 2
p? 2 o
2
].,U,—l( 02( ,l( )2 )
e (A S dl-> 3.90
3 Do (3.90)
1,u—16270(74
5 2
2 pu Dg,

Q

L 2
<2yi + e 3@ Asin (ayi)) ,

using k; = 2y; and d; = aAsin(ay;) to obtain the last line. Additionally,
squaring the asymptotic progress coefficient yields ¢ = 6129’0 using result (B.30)
according to

22
2 -3[e7' )]
2 = 1,0 = 67 = 2,0 3.91

The final result for the expected value of E( (for large populations and di-
mensionality) is

2

1 1 O'2 g _1l(no)? . 2
EE(M) = 5;(,u — 1)6129’0D—é (Zyi +e7 22 g Asin (ayi)) . (3.92)

3.3.3 Collecting results of E(? and E(1.)

By inserting the results (3.61) and (3.92) into the expression (3.7) and result
(2.82) for ;, one gets for the quadratic progress rate

1 2
@il = 2yipi — —E@ — S B
1t I
2

= 0190— (4yf + e_%((m)z%szi sin (ayi))
Dq
o? 11(20)%0% ¢y
I 1 L \=9) 7 v 3 2
AR D3 Do { a (3.93)

+ Acos (O[yl) (1 — e_%(aU)Q + a20.2e—%(aa')2) :|

2 2
+(p— 1)6129’0;72 (2% +e 3@ Asin (ayi)> }
Q
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Comparing the terms within {-} to the noisy order statistic result (3.39) in-
teresting similarities can be observed. One can recognize that (3.93) contains
corresponding terms in the large population limit with asymptotic progress co-
efficients

11 (2y:)%0? 11 (2y:)%0?
1+ e“”\iDé —— l+ey 7D2Q
(3.94)
2,0 (20:)0” 2,0 (2y:)%0?
(M_l)e'u”)‘Té < (/,6_1)619 TC%

However, due to the different approach obtaining (3.93) by expanding the dis-
tribution function according to (2.41), additional correction terms are obtained
which are not present for the noisy order statistic result (3.39).

3.4 Relation to Residual Distance (Squared)

Starting from defintion (3.1) an important relation between the i-th component
quadratic progress rate and the corresponding residual distance can be made.
Summing (3.1) over all N' components and noting that (R®)2 = >N ()2

one has

_E lZNI ()" - ZN: (yz(g“))Q] (3.95)

= ¢
such that the progress rate w.r.t. the residual distance squared can be defined
as

Sl [(R(g))Q B (R(g+1))2 ‘R(g)ﬂ(g)] ) (3.96)

The obtained relation (3.95) is very important, as it relates the component-wise
y;-dependent progress to the progress of the residual distance. This is very
useful for the investigation of the approximation quality of expressions derived
for !, as summing over all components can be used as a cumulative measure. It
is also useful to study the convergence behavior later, for which an R-dependent
formula is needed.

The radial progress rate (3.96) can also be interpreted as the (negative)
expected quality gain of the spherical function fspn(R) = R? according to

B [ fupn (D) = fopn(R®)| = E [(R(QH))z - (R@))T =gl (3.97)

Following a relation provided by Beyer [4, p. 173, Eq. (34)], the progress of
the sphere pspn = E [R(g) — R(9+1)] after normalization can be related to the
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quality gain of fspn(R) and therefore to ¢ via

2R?

R = T(p;’h' (3.98)
This yields the normalization for ¢% denoted by @%’* according to
* N
IL* _ 11

The quantity Lp%* will be evaluated for different approximations of (!l in
Sec. 3.5 by summing over all components and normalizing.

3.5 Comparing Experiments with Approximations

Having obtained the quadratic progress rate via two methods, experiments are
performed and compared to the following progress rate approximations

e SIM: average over repeated experiments

e B1: ¢! using noisy order statistic derivation (3.39)

e B2: simplified Eq. (3.39) considering only the loss term —%2. Theoretical
derivation of the formula assuming large N will be presented in (3.116).

e L1: ¢! via large population approximation (3.93)

Approximations are listed as obtained in chronological order. All ¢! solutions
use approximation A3 for ¢;, see also Sec. 2.5.2 and Eq. (2.82). The labels “B”
and “L” were chosen to distinguish the different approaches. For L1, neglecting
all loss-terms in (3.93) except —o?/u, the approximations L1 and B2 are equal.

Initialization of Position For the following experiments the initial locations
were chosen randomly to be on the sphere surface for given radius R. This is
done by choosing y; ~ N(0,1) independently for all components 4, normalizing
y to unit length and rescaling by R. For each one-generation experiment the
initial random location is fixed for all trials, as the progress rate is evaluated
(averaged) component-wise for a given location y;.

Frequency Value For all following experiments the oscillation frequency was
set to @ = 27 and remains as such, if not explicitly stated otherwise.

Sphere Function for A=0 For the first experiment in Fig. 15, which is a
plausibility check, the oscillation strength is set to zero, such that the sphere
function is recovered. Quantity (3.95) is evaluated by summing over all com-
ponents and normalizing using (3.99). Additionally, the sphere progress rate
formula by Beyer [5, p. 216, Eq. (6.54)] is plotted to check the relation given in
(3.98).
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Figure 15: The sphere function is recovered by setting A = 0 (N = 200), such

that f(y) = >, y? = R% The normalized progress ¢ é was measured and
averaged over 105 trials for (8/8,30)-ES. Setting A = 0 the approximations
B1, B2, and L1 yield a component-wise progress rate formula for the sphere.
The results were obtained by summing over all N components, see (3.95), and
then normalizing using (3.99). Setting A > 0 deviations from the sphere will
be observed depending on R. Beyer’s formula [5, Eq. (6.54)] is plotted as an
additional reference.

Rastrigin Function for A >0 For the following experiments, the progress
rate is evaluated over 10 trials at four values R = v/N - {10,1,0.1,0.01} in-
cluding rescaling by v/N to be within the relevant range of local minima as N
is changed. For each experiment, three progress rate plots are shown, namely
¢; in Fig. 16, ¢! in Fig. 17 (both for the first component i = 1) and @R as
a normalized cumulative measure in Fig. 18. First order ¢; is shown as some
of the ¢!l-deviations can be attributed to ;. The range for the normalized
mutation o* was set accordingly to display the transition between positive and
negative progress.

In Fig. 16 the approximation A3 of Eq. (2.82) yields good results for the
first order progress. Slightly larger deviations occur for the upper experiment
with smaller N and a smaller truncation ratio (with smaller p). The lower
experiment shows very good results as N and p are larger. The approximation
quality is good over different magnitudes of R. Possible deviations within (;
apply to all approximations of ¢!!, as we have p!(y;) from Eq. (3.7).

In Fig. 17 the three approximations for ¢! are shown compared to sim-
ulations. For all approximations larger deviations are observed in the upper
experiment, as IV and p are relatively small. The deviations are consistent over
different R-values with L1 overestimating progress for large ¢*, while B1 and
B2 are underestimating. The overall approximation quality of the significantly
simpler formula of B2 is surprisingly good. The effect of the different terms
within the approximation is studied in more detail in Sec. 3.6.

In Fig. 18, the R-dependent progress @I}%’* was calculated by summing over all
components according to (3.95). Furthermore, normalization (3.99) is applied.
The radial progress and its approximation quality is comparable to results of
Fig. 17. Somewhat harder to see, the approximation quality of L1 is slightly
better for small o*. Note that the normalization yields very similar values of
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cpg’* independent of R. However, the shape of the curve shows slight changes
with varying R due to A > 0 compared to the sphere.

Additional experiments for (10/10, 4
Appendix in Figs. 63 and 64.

R=44.7214 y;=—6.35

0)-ES with N = 100 are shown in the
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Figure 16: First order progress rate ¢; for component ¢ = 1. Upper four plots

show (10/10,40)-ES with N = 20 and A

= 1 and lower plots show (25/25, 50)-

ES with N = 100 and A = 1. The progress has a negative value since y; < 0.
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Figure 17: Second order progress rate ¢! for component i = 1. Upper four plots
show (10/10,40)-ES with N = 20 and A = 1 and lower plots show (25/25, 50)-
ES with N =100 and A = 1.
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Figure 18: Normalized R-dependent progress rate as a cumulative measure
(summed over all components). Upper four plots show (10/10,40)-ES with
N = 20 and A = 1 and lower plots show (25/25,50)-ES with N = 100 and
A = 1. The approximation quality of B2 is surprisingly good considering its
simpler expression. The deviations are comparable to the deviations seen in
Fig. 17 for a single component.
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3.6 Investigation of Loss Terms

In order to understand the deviations observed in Figs. 17 and 18 the loss
terms within {-} of Eq. (3.93) are investigated in more detail. The terms are
abbreviated according to their respective factors as 6119’1, c9/Dg and 6129’0. First,
experimental tests are done followed by a theoretical analysis.

Figure 19 shows the terms relative to the value “1” for (10/10,40)-ES and A =
1 with varying dimensionality N. A single exemplary component is displayed
for a given R. All the terms are suppressed for increasing N. The term 6119’1
(blue) is negligible for any parameter set independent of o*. Term cy/Dg (red)
is relevant for small N and shows an approximately constant contribution for ¢*
large enough. This is in accordance with the top experiment of Fig. 18 showing
that L1 systematically overestimates the simulation. This is largely due to the
—cy/Dg term reducing the loss. It is obtained from Eq. (3.61), which in turn
depends on the expansion in (3.44). This suggests that higher order terms of the
expansion are needed, if higher accuracy is desired. Term eﬁ’o contributes mainly
for small o* and is suppressed for large o*. This behavior is also in accordance
with L1 of Fig. 18, as the approximation yields slightly better results for the
progress at small o*.

In Figure 20 the dimensionality is varied together with p for constant ¥ =
0.5. Therefore the relevant o*-range is also adapted, such that unnecessary
large values are omitted for experiments with small u. Note, that the only pu-
dependency of Eq. (3.93) is the prefactor (u—1) of 6129’07 as all progress coefficients
are given within the asymptotic limit of infinite populations. For Fig. 20, the
coefficient 639’1 = 0 due to ®71(0.5) = 0, such that its corresponding term
yields zero contribution. Term 6129’0 scales with p, which was expected, but it is
dampened for increasing o*. Similar to Fig. 19, term —cy/Dg is approximately
constant for large o* and suppressed for large N independent of u.

As a conclusion, Eq. (3.93) will be investigated under the asymptotic limit
N — oo in order to further simplify the expression for the progress rate ¢!l
Attention has to be paid w.r.t. the scaling p(N), for which no theoretical inves-
tigations exist at this point. In practical applications u needs to be increased
for increasing N to achieve a higher success probability. Figure 21 will show
preliminary experiments of the scaling behavior of the population size p(N)
needed to achieve high success probability.
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Figure 19: Investigating loss terms within {-} of Eq. (3.93) for increasing N. For
constant population size and increasing NV, all terms are suppressed compared

to the value “1”.
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Figure 20: Investigating loss terms within {-} of Eq. (3.93) for increasing N and
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Having experimentally investigated the N-scaling of the loss terms in Figs. 19
and 20, a theoretical investigation of the behavior is tackled now.

Starting from (3.93), a first approach was trying to find a lower bound for
the variance Dg), such that terms containing 1/Dg and 1/D¢q are maximized.
The idea was to find upper bounds for the terms relative to the value “1”.
Due to the trigonometric terms of second line in (1.29) no useful (sufficiently
tight) bound of D% could be established at this point without yielding negative
variance. Therefore a Taylor expansion of the relevant terms will be performed
for large dimensionality N.

As the ¢! approximation shall be valid for constant normalized mutations
o* given some residual distance R, the transformed mutation is given by

(3.100)

and will be expanded within the exponential function for large N. Within the
limit N — oo attention must be paid considering the relation R(N), as the
(interesting) R-range with high density of local minima grows as well, see also
Fig. 3. Assuming w.l.o.g. that the current location y is at a local minimum
(of arbitrary order j) denoted by ¢;, one has y = [;] for N = 1 and therefore
R? = QJQ Having N components at the same order local minimum yields y =
(G, Tjs -y 5], such that R? = N;&?. This motivates the scaling relation R ~ v N
for large N. Therefore the expansion orders will be displayed as functions of
R/N for the following derivations.

First the variance (1.29) is analyzed. The exponentials will be expanded
using

—c aa*§2 *R 2 R4
e—c(ae” %) 1C<ag N) +0<N4>, (3.101)

with ¢ € {1/2,1}. Using (3.100) the variance (1.29) yields
N 4 2
R R
2 * 2 *
DQ = ;:1 2 (a N) + 4y; (0’ N)
A2 7(040*5)2 7(040*5)2
+?(1—e N )(1—608(20{%)6 N )

R\’ R R\?
L9204 <U*N> es(a™ %) [ 4 <U*N> cos (ay;) + 2y; sin (ay;) | -
(3.102)

N|=
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Applying expansion (3.101) and collecting higher order terms one gets
N 2
R R*
2 _ 2 *
i=1
A2 . R\’ R*
R\’ R*
1—cos (2ay;) |1 — (ao* = =
X ( cos ( ayl)l (aa N> +O(N4>
. R\’ 1/ R\’ R
R\2
X <a (U*N) cos (ay;) + 2y; sin(ayi)> .
The summand with prefactor A%/2 yields
A2 L R\? R4
X (1 — cos (20y;)
2 2 4
_A <<w*R) e (R ))
9 N N4
2 N N (3.104)
LR\’ R*
X (1 — cos (2a;) + cos (2ay;) <acr N) +0 <N4)>
2 2 4
= % <ag*]}$) (1 —cos (2ay;)) + O <f[4)
A R
= <Acw N> sin®(ay;) + O (N4) .
using 1 — cos 2¢ = 2sin? x for the last line. The last summand of (3.103) yields
_R\? 1/ R\’ R LR\’ ,
20A <a N> [1 —3 (ao N) +0 <N4> <a (O’ N) cos (ay;) + 2y; sin (ay;)

AN R
=2aA (O’ N) 2y; sin (ay;) + O (N4> .
(3.105)

) (3.103)
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Collecting results (3.104) and (3.105) the variance simplifies
N 2 2
R « R .
D = Z4y12 (0’ N) +2aA (0’ N) 2y; sin (ayy;)
i=1
AR 2 R*
+ (U N) (aAsin(ay;))” + O (]\74>

_ <0*£>2 ZN: (2y; + aAsin (ay:))* + ZN: 0] (ﬁi)

i=1 i=1

R 2 N 2 R4
=|o"—= ; O(—].
2y S oo )
using definition (1.11) for the derivative f/. Note that result (3.106) is contained
in the last line of Eq. (1.33), as it is an expansion for small ¢ and therefore

equivalent to an expansion for large N with o = 0*R/N (constant o* and R).
Given (3.106), the scaling of vazl (/) wrt. N and R can be deduced

(3.106)

i
applying the triangle inequality to the corresponding vectors. Considering the
positional vector y and definition sin (ay) = sin (ay;)e; + sin (ayz)es + ... +
sin (eyny)en with e; being the i-th unit vector, one has
N

()7 = |12y + aAsin (ay)|*. (3.107)
i=1
Using inequality [|a + b|| < ||a]| + ||b|| and therefore |la+b||* < (||a] + |[b|)2,
and using ||y||” = R?, an upper bound for expression (3.107) can be given as
12y + adsin (ay)|* < 4]y|* + daAly|sin (ay)l| + (a4)?||sin (ay)|*

= 4R? + 40 AR

N N
Z sin? (ay;) + (aA)? Z sin? (ay;)
i=1 i=1

< 4R? + 4aARVN + (aA)’>N = (2R + aAVN)?.
(3.108)

From (3.108) one can deduce the (upper bound) scaling vazl (f))? ~ N, which
is valid for both constant R and R ~ v/N. Therefore we conclude the scaling
relation of the variance for large N as

D2 = (g*ﬁ,)z Z: (F)*+0 (J}\i) (3.109)

N

Having obtained D, now the terms within {-} of (3.93) are investigated.

The first term 6119’1 is easily evaluated. Inserting scaling relation (3.109) for Dé
one gets

o’ o & (2y:)° 1
e};lD—é@yi)? =eg" <(U*§))2 (2y:)* = e N -© <N> : (3.110)
N
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The second term ¢y /Dy is evaluated using normalization (3.100) and expansion
(3.101) as

pefa(e ) acomtem (1= 1= (o) 40 ()
(B P ) o ()
<o Lo (o BY v acston (3 (o 2) + (o 2) w0 (22))]

(J*R)2 3 5 R
cy—— Do 3+ ozAcos(ozyl)—i—O(Nz) )

(3.111)
Inserting Do = 0*R/v/N from (3.109) into (3.111) yields
(0" £)* R?
N 2
Co——g 3—|—2a Acos(ayz)—&—O(Nz)
N (3.112)

< R )_ O (x#=) if R = const.
N3/2 ) 10(% if R~ VN.
The last term 6129’0 yields after expansion
* R 2 4
2,0 (U ) 1 * R R
(/,L - 1)619 Té (22/1 + aAsin (Oéyl) [1 — 5 (O{O’ N + 0] m

— (- 1)630( ;1;) <2y1+0¢A61H(092)+O<J}\%{22)>2'

(3.113)

Using scaling (3.109) for Dé and writing p(N) to denote the (unknown) popu-
lation dependency on N one gets

* R\2 2 2
o R
(n— 1)e§’O ((U*R)) <2yl + aAsin (ay;) + O <N2)>

N

) if u(N) = const. (3.114)

-0 (5) = {0 (40) e

The problem of population sizing, namely choosing p(N) to achieve high global
convergence probability will be investigated in the future in more detail. Pre-
liminary simulations are shown in Fig. 21 and yield a sub-linear relation.

Z)—A

Collecting Results Inserting the scaling results for the three terms (3.110),
(3.112) and (3.114) back into {-} of the quadratic progress rate (3.93), one gets
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Figure 21: Measured success probability Pg as a function of p for varying N
(top) and scaling relation p(N) to achieve high success probability (bottom).
The experiments were performed using (u/pr, A)-0SA-ES with learning param-
eter 7 = 1/v/2N for o = 27, A = 1, and 9 = 0.5. Each data point was averaged
over 1000 trials. A sub-linear increase of (V) can be experimentally observed.

for large dimensionality N — oo and residual distance scaling R ~ v/N the
relation

o2

ol = ¢y g <4yf + efé(a”)22aAyi sin (ozyi))

hio(3)vo(H) e

Provided that the population size p = o (), i.e. increasing sub-linearily with
N, all terms except “1” can be neglected for large dimensionality and the result
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yields
Quadratic progress rate for large N and sub-linear p(N)

2
(492 + 20 20 Ay sin (ays)) % (3.116)

o_ C 0.72
Pi 9 Do
Result (3.116) is also denoted as approximation B2 in Sec. 3.5. It was obtained
using the large population approximation for first order progress ¢; in Sec. 2.2
and second order terms calculated for ¢!! in Sec. 3.3. Furthermore, non-linear
terms within Q;(z;) were treated as a perturbation of the linear term giving
rise to an expansion of the distribution function, see Eq. (2.41). This expan-
sion introduces additional terms for both ¢; and ¢!f. To further simplify the
lengthy results, the large dimensionality approximation was applied multiple
times throughout the derivation. Comparing the different variance terms for
large N, see Sec. 2.4, ¢; could be simplified considerably. Additionally, the loss
part of p!! could also be simplified significantly by looking at the scaling for
large N. This is important, as (3.116) will be the starting point for further
theoretical and experimental investigations.
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4 R-Dependent Progress Rate

In order to investigate the convergence behavior of progress rate result (3.116)
using the dynamical systems approach in Sec. 5, an R-dependent formulation of
the progress rate is needed. Being a function of the residual distance (instead of
single components) also has the advantage, that a (spherical) normalization can
be applied. Additionally, relations to the spherical progress rate can be easier
identified.

The tools for transforming (3.116) into an R-dependent formula have already
been established and only need to be applied. In Sec. 1.5.2 the averaging method
was presented and the R-dependent variance Dg)(R,o) was given in (1.75).
In (3.95) the relation between the component-wise progress rate and (! was
already introduced. Summing result (3.116) over all N components yields

N

o _ 11

YR = Z ¥i
i=1

0'2 N 2 1 2 N N g
=cg—— 4 2+ 204N y;sin(ay;) | - (4.1)
l)Q(}%7 0') ( ; ; Z

N

0’2 1 2 g
=cy—— [ 4R? + e72(2) 204 yisin (ay;) | = N—.
Do) ( 2

The expression for Dg(R,0) in (1.75) is not inserted at this point for better
visibility. Aiming at an R-dependent expression of (4.1), a new random vari-
able is introduced, analogous to the method in (1.64), for the sum over the
trigonometric terms

N
Y = Z y; sin (ay;). (4.2)

i=1

Assuming i.i.d. locations y; ~ \/—RNN'(O, 1), see more detailed discussion in Sec. 1.5.2,
and using the CLT for N — oo, see (1.66), the random variable is rewritten as

Y ~ N(E[Y], Var [Y)). (4.3)

The ratio \/Var [Y]/ E[Y] — 0 was already investigated for N — oo in Eq. (1.72)
to find an R-dependent variance expression. The same limit behavior is applied
here to neglect the fluctuations of the random variable.
By writing Y ~ E[Y] + ey, expression (4.1) is split into an expected value
and a fluctuation term denoted by ey, which is then neglected in the second
o 2
step. Setting E[Y] = aR%’é%, see (A.34), one has
1 Nooo o’ AR? +e7 2020 A| E[Y] + NU2
A s (s a0 ) -
" Dq(R, o) p
2

~ " Dq(R,0)

2 2
(432 + 202 AR%e~3(00) =3 ) - NZ,

such that after simplifying we obtain the result
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Progress rate as a function of R
2R2 2 a? o2 R2 2
‘P%:cgia (2+a2Ae l +N)>—NU- (4.5)
i

In Figure 22 simulations are shown with result (4.5) compared to the approxi-
mation (3.116) it is based on.
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Figure 22: Comparing approximations B2, i.e. (3.116) summed overi =1,..., N,
and Eq. (4.5), denoted by “R”, after normalization for (20/20,40)-ES, o = 27,
A =10, and N = 20. Four values with R = v/N{10,1,0.1,0.01} are chosen.
The initial positions were chosen randomly on surface R and are constant for
all trials. This initialization is needed to compare the component-wise progress
B2 (constant coordinates) with R. The two formulas yield very similar results,
even for moderate N. One reason is that only the trigonometric terms are
approximated by the expected value, the term R? = > y? is exact and the loss
term remains unchanged. Furthermore, for sufficiently large or small R, the
Rastrigin function becomes sphere-like and both approximations yield the same
result (top-left and bottom-right progress are practically identical).

Sphere progress rate A component-wise progress rate for the sphere func-
tion can be derived starting from (3.116) and using variance from (1.29) by
applying A = 0 (or @ = 0). This simplifies the formulae considerably giving
40%y? o?
11 7
i =c - —. 4.6
%i,sph 9 /—4R20'2 T 2Nod [ ( )
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Now one can sum (4.6) over all components, set ¢ = ¢*R/N and afterwards
apply the normalization gp%’* = %w% from (3.99), such that

N N
40 No?
I _ mo_ . 2 _
YR ; SD'L,Sph v /—4R20'2 T INoA ;yz 1
4(c*R/N)? N(c*R/N)?
= ¢y (c"R/N) R2 _ (c*R/N) (4.7)
\/4R2(O'*R/N)2 +2N(c*R/N)* K
x 4(c* /N)?R* N N(c*R/N)? N

=cC .
R SR (0 /N) /1 + 07 2N 2R [ 2R2

After simplifying (4.7) the result for the sphere progress rate is obtained

* *2

IL,* (o g
=Yy — —,
R VI+to22N  2u

which for the limit N — oo yields the well-known progress rate formula [5,
p. 217, (6.56)]

(4.8)

17+ 0_*2

YR = Paph = C90" — o (4.9)

by setting ¢/, » >~ cy. Now the Rastrigin function is investigated with respect
to its spherical properties within the limits of small and large R, respectively.

Sphere limit for large R Given (4.5) the result of the sphere progress rate
(4.8) can be deduced for large R. The variance approximation (1.30) for large
R and o = 0*R/N yields (neglecting N A%/2 term)

* 2 % 4
D2, = 4R2%02% + 2No' = 4R? (UNR> 1N (” R)

sph N
0_* 2 0.*2
=4R*( = 1 .
w(5) (455
Additionally, the exponential within (4.5) can be dropped, which has the same

effect as setting A = 0. This immediately yields the same form as already shown
in Egs. (4.7) and (4.8), such that the sphere progress rate is recovered.

(4.10)

Sphere limit for small R The sphere progress rate can also be deduced for
small residual distances. Using variance (1.36) yields (neglecting higher orders)

N 4
Dy oot (s - 22)

= (2 +a?A)? <(0*R/N)2R2 +

£\ 2 *2
_ 2 0 2pa (9 g
~oratarw () (1422).

N(cr*;%/N)4>
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Given the exponential from (4.5) and setting o = 0*R/N, the exponential can
be expanded for small R as

a?2Rr?

T (F) ) 21y o (R (4.12)

Setting the exponential to one and inserting (4.11), the progress rate yields

- 2R%*(0*R/N)? (2 + a2 A) (c*R/N)?
$Pr = Cv -N
(2+ a2A)R? (0*/N) /1 + 022N 1
. 2R%(6*R/N)? N *R/N)? N
P (0" R/N) - N RIN) — (4.13)
R2(0*/N)+/1+0*2/2N 2R 7 2R
O'* 0_*2

B T —
"It o22N 2

Both limits R — oo and R — 0 of the Rastrigin progress rate (4.5) therefore
yield for A > 0 the expected spherical progress rate from Eq. (4.8). For A =0
or o = 0 the exponential terms vanish and the result holds for all R. For A > 0
and « > 0 the exponentials within progress rate and variance can be interpreted
as the transition terms between the spherical limits, see also Fig. 5.

4.1 Progress Rate Contour Maps

As the R-dependent progress rate formula is a function of only two parameters
o* and R (given fitness parameters N, o, A), it can be visualized using a contour
plot, see Figs. 23, 24, 25, and 26 for different parameter sets.

High positive progress is shown in red, while low negative progress is shown
in blue. The line of zero progress is shown in bold white. For the sphere
function only vertical lines can be observed, as the normalized progress rate is
independent of R. For the Rastrigin function deviations from the sphere can be
observed depending on A and «.

A characteristic horizontal progress dip can be observed with significantly
lower progress compared to the sphere. It has a certain extension in R- and
o*-space, and vanishes for both large and small R-values.

From the contour plots one can deduce the behavior of the deterministic
iteration (5.6) shown in Sec. 5. Setting a constant o*-value the iteration moves
vertically through the landscape. A slow-down is observed when regions of lower
progress are entered and vice-versa. If the white zero-progress line is reached,
a stationary R-value is occurs.

Important to note is that the maps do not show negative progress rates for
small mutations, which one might expect considering real experiments, where
small mutations increase the probability of local convergence. This issue is
related to the R-averaging and it is discussed in Sec. 5 in Fig. 58.

Additionally, averaged real optimization runs of the (u/pr, A)-ocSA-ES are
overlaid as vertical lines with 7 = 1/v/2N (black) and 7 = 1/v/8N (magenta).
The median of both R(g) and ¢*(g) was applied as the measure of central ten-
dency, see upcoming discussion in Sec. 5.2.1. The reduction of 7 leads to a higher
o*-level (closer to zero-progress line) and therefore higher success probabilities
for all configurations. However, within the spherical limits the mutations are
too large.
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(100/100, 200)-ES, a=2r, A =1, N =100

10

1T,

PR

Figure 23: Progress contours with parameters given in title. For small and
large R the sphere progress rate (4.8) is recovered. A characteristic “valley” of
decreased progress can be observed. The lines of equal progress are separated
by one unit value. The median over 200 oSA-runs is overlaid with 7 = 1/v/2N
(black, Pg = 0.91) and 7 = 1/+/8N (magenta, Py = 0.99).

0 (100/100, 200)-ES, a=27, A =10, N =100

11,

PR

Figure 24: Progress contours with parameters given in title. High value A = 10
is chosen compared to Fig. 23. The region of decreased progress is significantly
larger, as expected. Real oSA-runs are not converging for given parameter sets.
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(50/50, 200)-ES, a=2r, A =1, N =100
\|

10

10

1T,

Figure 25: Lower truncation value 9 = 0.25 is chosen compared to Fig. 23. The
zero-progress line shifts slightly to the left (compared to Fig. 23) giving smaller
favorable mutations. The overall characteristic is very similar. The median over
200 oSA-runs is taken with 7 = 1/v/2N (black, Pg = 0.65) and 7 = 1/v8N
(magenta, Ps = 0.94).

(10/10, 40)-ES, a=2r, A =1, N =20

10
2
8
0
6
~ 5 'y
4

Figure 26: Reduced dimensionality and population compared to previous plots.
Contour step-size was set to 0.5 for better resolution. The overall characteristic
does not change considerably. Now the median over 2000 oSA-runs is shown to
reduce fluctuations effects (black: Ps = 0.42) and (magenta: Pg = 0.69).
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4.2 Investigating Zero of Progress Rate

In order to study the convergence properties of result (4.5), we are interested
in a function describing the zero-progress line, see Figures of previous Sec. 4.1.
Here, the second zero of the progress rate is referred to as “the zero”, as the
first zero corresponds to the trivial solution o = 0.

To find the root of the equation, the relevant terms of (4.5) will be split into
a part containing “spherical” terms and a Rastrigin-specific part. Then, the
equation will be restructured and its solvability in terms of the involved expres-
sions is discussed. Afterwards, a possible analytic solution will be provided by
neglecting the exponential terms.

Starting with variance Dé (o*, R) from (1.81), the expression is restructured
and the Rastrigin-specific part is denoted by function h according to

o_*

N

2 2 *\2 2/ o*\2, o
h(c*,R) == ZLIi]’Zaﬂ{N; {1 — e (=) } [1 o B [() +N]}

LoNAa?R (T (e 2+3
N N N

2 *2
D3 (0", R) = 4R* ( ) {1 +2 +h(a*,R)] . with

2N

which will be useful later when recovering the solution for the sphere. Now the
exponential term within (4.5) is expressed using a new function g and setting
0 =0*R/N according to

aR)2 [ 5*2
g(0*, R) = a2Ae= 5 (57 %), (4.15)
Using (4.14) and (4.15) the normalized progress rate can be written as
Im* 11£
PR @R2R2
. 2R*(c*R/N)?[24+g9] N  N(¢c*R/N)> N
=y

o o2 2R2 2R?
2R2% .\ /1+ % +h H (4.16)

_ cyo” 249 o*2
D) 2 ooy
1+%c+h M

Expression (4.16) was defined in such a way that for ¢ = 0 and h = 0 (e.g. by
setting A = 0) sphere equation (4.8) is recovered. Now we are looking for
solutions of ap%’* =0 for ¢* > 0 and R > 0, which yields

2+g(c*,R) o
1 o*2 h * Cﬂu
\/ + Zx +h(oc*, R) (4.17)
. 9 0_*2 ) *2 b . R
(2+g(c", R)) 70129? +2N+ (c*, R)|,
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such that after reordering the following expression is obtained

*4 *2 0.*2

—— + —— —4=¢*0*R) +29(c*,R) —
2N u?  cyp R+ 290 )~

7 h(o*,R).  (4.18)

The functional dependencies of g and h are explicitly written in (4.18) to illus-
trate the problem of solvability. We want to solve for o*(R), which would give
a relation describing the boundary go%’* =0.

One can immediately see that with g(¢*, R) in (4.14) and h(c*, R) in (4.15)
containing arguments ¢* and R within exponential functions, no closed form
solution of Eq. (4.18) can be given at this point.

Expanding the functions g(c*, R) and h(c*, R) in a Taylor series around
some point R or ¢* would be technically possible, but the results would have
only very limited applicability for the investigation of global convergence even for
a solution using higher order polynomials. Expanding the exponentials around
R =0 or ¢* = 0 assuming small changes could also be done, but its applications
are again limited as small R or ¢* can only model the global or local attraction
basins, respectively, but not the larger scale dynamics.

Therefore, the only analytically tractable solution at this point will be the
limit of vanishing exponential factors, discussed below.

4.2.1 Zero-Progress for Sphere

Setting ¢ = h = 0 in (4.17), the right side vanishes and the sphere function is
recovered. A solution can be easily given by solving the fourth-order polynomial

o™ 4+ 2No*? —8Nc3pu? = 0. (4.19)

An equation of the form (4.19) with different coefficients will reappear later.
Hence, in the general case one can write for a real coefficient ¢

o +2No** +¢c=0. (4.20)

The only positive non-complex solution of the fourth order Eq. (4.20) can be
identified as

of = [[NQ_C]l/Q—N}l/Q' (4.21)

Applying (4.21) to (4.19) the sphere formula for zero progress (subscript “pg”)
is given by

1/2

T .sph = [[N2 + 8Nc§u2]1/2 — N} (4.22)

4.2.2 Zero-Progress for Vanishing Exponentials

Neglecting the exponential factors is needed for an analytic solution of (4.18),
but it can also be justified under following conditions.

The exponential terms are not just suppressed by very large values of R,
but also for moderate R values. This is due to the fact that the argument
is R?, and it is being multiplied by frequency o? and larger mutations o*2
(favorable to decrease the probability of local convergence). As an example in
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Fig. 5, the variance result (1.31) without exponentials models large parts of the
transitional region and not only the limit R — oco. The idea is to describe the
dynamics for large and moderately sized R at the start of the transitional region
(characterized by a slow-down) up to some extent, which is discussed later. The
descent into the global attractor basin cannot modeled by this approach, as can
be seen from the large deviations of the cyan line in Fig. 5.

Important to note is the limit N — oo with constant R, for which the
exponentials approach the value 1. Considering the scaling Ry, ~ V/N of the
transition point, see Eq. (1.79) and Fig. 3, the limit N — oo for any constant R
automatically leads progress rate equations of the global attractor basin, since
the transition point is also diverging. Interestingly, the limits R — 0 (constant
N and 0*) and N — oo (constant R and ¢*) yield the same terms of the Taylor
expansion of the exponentials. Therefore one has to be careful applying this
limit, although the progress rate approximations do require larger IV values for
better agreement.

The limit of vanishing exponentials corresponds to g = 0 and h = %,
such that (4.18) yields after rearranging the polynomial
N4 2
o™ +2No*? + —8NcZu? =0. (4.23)

4R*

Solution (4.21) can therefore be applied again with coefficient c = N4A?/(4R*)—
8Nc2p?, which yields

N4A2 1/2 1/2
[N2 T IRt + 8Nc?9u2] — N] . (4.24)

One can see that for B — oo we have o, ~ o7 ., from Eq. (4.22). For
R < o0 a condition for (4.24) is required to guarantee a non-complex result for

o*. Requiring the inner square-root of (4.24) to be real, one has

N*A?
4R*

N? + SNC?WQ >
\ N2 (4.25)
RR>—.
~ AN2 4 32N 3 p?

Analogously, requiring the outer square-root of (4.24) to be real, one has

1/2

N*A?
+8Ncu?| >N

AR?
4 A2
N? - % +8Nciu? > N? (4.26)
P N
~ 32N

N? —

As bound (4.25) is smaller than bound (4.26) the latter is chosen. The minimum

distance to have a real solution for a; o is therefore

342\ 1/4
N°A ) , (4.27)

R min Z 50 9 o
©o, (320%;12
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concluding that o7, (R) is defined for R € [Ry min, 00).

As iterations and simulations are performed for a constant given o*, it is
more convenient to reformulate (4.23) as R(c*) in order to have a “distance of
zero progress” R,,. The result can be easily given as

1 N4 A2 1/4
Boo = [4 N2 +8Nc3pu? — (%2 + N)2
with Ry, (0*) defined for o* € [0,07, ).
It remains to show how the sign of gog’* behaves w.r.t. zero-progress bound-

ary (4.28). Referring to (4.16) with g = 0 and h = N3A? /8R%0*? one has

2 0_*2 |

(4.28)

Im*

ol 61920 —— 5 >0, such that
\/1 + 2N + 8Ric*2
\/ o*2 N3 A2
2 >\ 1+ —+ ——
Com =N\ IN T 3RIg (4.29)
*4 3 A2
2 2 2 9 N°A
4019,u >0+ ON + W
N3A? 1 N*A?

R' > =- :
8(4c3pu? — 02 —g*4/2N)  48Nc3p? — 2No*2 — g+t

Positive progress requires inequality (4.29) to hold. Comparing (4.29) with
zero-progress condition (4.28) yields

1 N*A?

— — R
48Ncipu? —2No*2 — g*4

4
> ®o?

(4.30)

such that @%’* > 0 is guaranteed for any & > R, given ¢* within the approxi-
mation of neglected exponentials. The opposite condition <p%’* < 0for R < Ry,
also follows from the results above.

Figures 27 and 28 show the progress rate map from Figs. 23 and 24 with
overlaid newly obtained approximation results for the progress rate zero. The
white line depicts gp%* = 0 from (4.5) including all exponential terms. The
black dashed line shows the result (4.28) for R, (c*) with neglected exponential
terms.

Relation to noisy sphere model An important relation to the noisy sphere
model can be made. In [3] the residual location error Ro, was derived for the
(1/ 11, A)-ES assuming a constant noise strength o, in the limit o* — 0 as

N
Roo o~ |25 (4.31)
ACpu/pam

Applying the limit o* — 0 to Eq. (4.30), identifying the constant noise strength
of the Rastrigin function (for sufficiently large R) as oras = v/INA2/2, see also
(1.31) and (1.32), and taking the fourth root one gets

R (A V4 rNA2 N2 YYD [ogaN (432)
o\ 322 2 S\ 2 1632 S\ deop’ '

which corresponds to result (4.31) with ¢/, x — ¢y and 0 — ORas-
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(100/100, 200)-ES, a=27, A =1, N =100

10

11,

Pr

Figure 27: Zero-progress approximation using (4.28) with exponential factors
set to zero (dashed line) compared to full R-dependent solution (4.5). The
model is accurate for larger R and o* values, as both factors suppress the
exponential terms. For smaller R the sphere function is slowly regained and the
approximation fails at this “turning point”.

(100,/100, 200)-ES, a=2r, A =10, N =100

10

]
]
/]

Figure 28: Zero-progress approximation for larger A = 10 compared to Fig. 27.
Again, the boundary is modeled for larger R and ¢* up to the turning point.
This problem is significantly more difficult compared to A = 1, as the region
of decreased progress is larger horizontally (for a broad mutation range) and
vertically as a function of distance.
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4.2.3 Transition Point of Vanishing Exponentials

After deriving the progress rate in the limit of vanishing exponentials, one has
to address the question at which point the exponential terms are negligible or
significant.

Therefore, the results for the transition points from (1.79) and (1.82) will be
shown in the progress contour plots, see Fig. 29 with smaller attenuation factor
d = 1 and Fig. 30 with significantly higher factor § = 5. Result (1.79) is expected
to yield worse results as it describes only the transition of the fitness function
without any o*-dependence, while (1.82) is defined using a characteristic term
of the progress gain part and its variance.

Given a transition relation, the further approach is to relate the distance of
zero progress R, (c*) to the transition relation Ry-(c*). The idea behind it is
that for sufficiently small exponential terms, defined by Ry,.(c*) via attenuation
factor 0, the zero-progress formula R, (c*) should be a valid approximation.
The relation of both expressions should characterize strategy’s behavior at the
start of the transitional phase.

(100/100, 200)-ES, a=2r, A =1, N =100

10

I1,%

Pr

Figure 29: Transition formulae (1.79) [dash-dotted violet], and (1.82) [dashed
magenta] for attenuation factor § = 1. Expression (1.79) has no o*-dependence
and is therefore constant. Attenuation by e~! means that the exponential factors
are relatively large and one can see, that the sphere function is almost recovered
for R below the magenta line.

4.2.4 Intersection point and population scaling
Now the intersection point oj,. between the zero progress boundary R, (c*)
and the transition relation Ry.(c*) is derived, see intersection between magenta
and black dashed lines in Figs. 29 and 30. After deriving the relation one can

deduce a population scaling relation p(N). The transition point derived in
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(100/100, 200)-ES, a=2m, A =1, N =100

10

11,

Pr

-10

Figure 30: Transition formulae (1.79) [dash-dotted violet] and (1.82) [dashed
magenta] for higher attenuation factor § = 5. The value was chosen exemplary
for displaying purposes as the magenta line follows the valley of lower progress,
which is interesting to note. Compared to Fig. 29, the attenuation (of the
corresponding exponential term) is e~! /e~ a 55 times larger.

(1.82) is recalled as

V20N 1
a \/1+02/N

Setting R} = R{, by using (4.30) and (4.33) yields after rearranging the terms

Rt'r =

(4.33)

1 N*A? ~ 40°N* 1 (4.34)
40*4+2No*2 —8NcZu2 o' o* +2No*2 + N2’ '
Collecting the corresponding factors of o* yields
1662\ 4 2 1652 5 1286°Nc3u?
(1+ a4A2>0 2No <1+ aw) b BERGI
(4.35)
*4 v N?(aA? —12862¢2 4% /N)
0" 4+2No™ + =0.
atA? 4 1662

An equation of the form (4.20) was obtained and now solution (4.21) can be
applied

442 2.2 2 1/2 1/2
. <N2_N2aA 1285cﬁu/N) _N]

see atA? + 1602

- 1/2 (4.36)

1/2

| (166282 4 16522 B v

1652(1 + 247) -
1652
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such that the intersection point is obtained as

<1+ %)1/2

o 1/2
(1+ 555)

1/2

o = |N ~N| . (4.37)

Two examples for result (4.37) are shown in Fig. 31. The transition parameter
was set to § = 5 analogous to Fig. 30. The intersection point o, serves as an
approximation of the characteristic progress dip location. The expression (4.37)
is further investigated now. In order to have a converging normalized mutation
strength (on the sphere) it must hold

0 < J:ec < O-:;O,spha (438)

with the sphere-zero o ) given in Eq. (4.22). The relation o, < o

follows immediately for any A,«,d > 0. Setting A = 0 or & = 0 recovers

Eq. (4.22). Requiring a positive mutation strength oZ,. > 0 one must have

2 2\ 1/2 42 1/2
(1+8c};“> ><1+O‘ )

164> (4.39)
8c2 u? - atA?
N 1662 °
Now one can solve (4.39) for p to fulfill the inequality as
Na*A?
s — 4.40
W2 198252 (4.40)

Taking the square-root of (4.40) one arrives at the important result

N o2A
N 4.41
P2\ 2 8eys (4.41)

Result (4.41) can be regarded as a population sizing relation u(N, A, a) for given
(fixed) truncation ratio ¥ and transition parameter §. It models the scaling of
the characteristic progress dip within the R-dependent progress rate formula-
tion. Note that expression (4.41) can also be rewritten using the Rastrigin-
specific variance term oras from (1.32) as

2
ORas®¥

80195 ’

u> (4.42)

Population scaling In this section the population scaling p(N) is investi-
gated for constant o*. Experimental results of real optimization runs with
0" =0y, are shown in Fig. 32 for ¥ = 0.25 and A = 1. The maximum number
of generations was set to 5000, as it is necessary to terminate non-converging
runs. Furthermore, for each given p and N the sphere-optimal value 6, was
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N = O

11,

Figure 31: Plots showing intersection point (4.37) with transition parameter
d =5 for (25/25, 100)-ES with N = 50 and A =1 (top), and (100/100, 200)-ES
with N =100 and A = 10 (bottom).

calculated numerically using [5, Eq. (6.54)]. Random initial y-values were cho-
sen with ||y | = 20v/N outside the local attraction region. The results for small
N and therefore small p need to be interpreted carefully, as fluctuation effects
tend to be pronounced. Given a maximum of 5000 generations (fixed number
for all N) and constant o*, the dimensionality N = 30 is significantly easier to
optimize than N = 50 due to fluctuations and the ES “spontaneously” descend-
ing into the global attractor. This effect is more pronounced for smaller N and
w1 than for large values thereof. For larger N a different behavior is observed
showing a sub-linear relation p(N).

Now the results (4.41) for the population scaling u = O(v/N) is investigated
numerically in Fig. 33 by assuming constant ¢*. To this end, three o*-values
were chosen relative to the (numerically) obtained sphere optimal value 67,
The values are, from top to bottom, o* = {67,,,,65,/2, (65 + 05 spn)/2}-
Given fixed 9, N, A, and «, the population size pu was successively increased and
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the R-dependent progress rate (4.5) was evaluated given o*. Global conver-
gence occurs at some g, if @%’*(0*) > 0 for all R. If @%’*(a*) < 0 occurs the
corresponding p is marked unsuccessful. The numerical experiments were done
by discretizing o* € [0, ceil(oy; )] and R € [0, ceil(3v/N)] to cover the rang
of possible negative progress. Local attraction effects are not modeled by %
as already mentioned.

In Fig. 33 one can see that the scaling p = O(\/JV) is recovered in all plots.
Important to note is that for the central plot (0™ = 67, /2) oscillation strength
A had to be increased to A = 10 compared to top and bottom plots (A = 1).
The reason is that for A = 1 global convergence occurred for all N for any p > 1
giving a scaling O(1). This can be attributed to small o* = 67, /2 relative to a
comparably small A = 1, such that the progress dip has no significant influence.
For the bottom plot the v/N-scaling is recovered for larger N. For smaller N
similar population sizes p(NN) are needed for global convergence, in contrast
to Fig. 32. This can be attributed to the non-linearity of Eq. (4.5) and the
particular choice 0* = (67, + o7, )/2, such that a small increase in N does

®0,sph
not necessarily require larger p-values.

9=0.25, A=1, o*=0,

pt

1 _
—e— N=3000
& 0.5] —e— N=1000
N=300
—e— N=100
—a— N=50
N=30
O P i 1 MY |
10° 10! 102 10° 10*
1%
10t - 9=0.25, A=1, o* =0,

11(Ps > 0.95)

Figure 32: Population scaling experiments for ¢ = 1/4, o = 2w, A = 1, and
0" = 63,,- The maximum number of generations was set to 5000 and for each
data point 300 trials were evaluated. Fluctuation effects are more pronounced

for smaller N and p.
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Figure 33: Numerically obtained scaling relation u(N) for ¢ = 1/4 and o = 27
by evaluating the R-dependent progress rate (4.5). Top plot shows A = 1 with
0" = 63,y central plot A =10 with o* = 6:ph/2, and bottom plot A = 1 with

o = (&:ph + UZU,Sph)/2'
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4.3 Investigation of Local Attraction and Global Conver-
gence

In this section different ideas are documented considering the modeling of lo-
cal attraction. As it was already explained in the previous sections, the R-
dependent formula (4.5) is not able to model local attraction phenomena for
small mutation strengths. This is due to the assumption of independent nor-
mally distributed positions y; around the global optimum. This assumptions
holds well for large mutations, see Fig. 35, as they tend to spread out the candi-
date solutions more evenly in search space. For smaller mutations local effects
tend to dominate and the resulting y;-components are distributed mostly around
the local minima locations resembling a discrete distribution.

As a first step, see Fig. 34, dynamic experiments are performed for an exem-
plary configuration with different values o* € (0, U;msph) and given two different
values A =1 (top) and A = 10 (bottom). For each ¢*, 100 runs are conducted
and the residual distance R,; of the unsuccessful runs is measured within the
steady state after many generations. The maximum number of generations was
fixed to 5000, as there is no local convergence in the sense of o* — 0. For each
trial a new random initialization for y was chosen with ||y|| = Ry = 50v/N, as
for A =10 (N = 1) the last local minimum is at y; ~ 31. This is necessary to
start outside the local attraction region and to prevent the ES reaching the same
local attractor for each trial if very small o*-values are given. For each trial the
average Ry is measured within the last 1000 generations. Then, the average
R is then taken over all 100 trials to obtain the values shown in Fig. 34. The
success probability Ps is shown on the right axis (not shown for A = 10 as there
are no globally converging runs).

One can observe a characteristic shape of Rg(c*). For large o*, this behavior
was predicted by the zero-progress lines derived in the previous section, see
illustration of Fig. 36. The zero-progress lines were obtained by including the
(constant) noise term NA?/2 within the quality gain variance. The residual
distance Ry for large o* can therefore be attributed to the overall noise effect
of the sum over all cosine terms. The effect of local convergence for small o*,
and global convergence for certain intermediate values, e.g. ¢* ~ 30 in Fig. 34
(A = 1), needs further investigation.

To gain some knowledge and insight about local attraction, a hybrid model
is used starting from Eq. (4.1). In order to keep the equations tractable the
variance is taken as R-dependent, assuming that the effect of the trigonometric
terms for large dimensionality has an averaging effect, such that it can be ex-
pressed as R-dependent. On the other side, the gain term ). y; sin(ay;) will be
kept y;-dependent, such that following expression will be investigated

2

2 N
11 _ g 2 | . —i(a0)? : g
Yr(R)y) =cg—=—-— | 4R" + e 2 200A yisin (ay;) | — N—.
r(R:y) Dg(R,0) < 2 ( w

(4.43)

i=1

As an example for the application of “hybrid” formula (4.43), denoted by
“HYB”, a one generation experiment is shown in Fig. 35. The hybrid for-
mula is able to regenerate the negative progress dip for small ¢* despite using
an R-dependent variance, similar to purely y-dependent formula B2. Progress
rate R on the other hand does not model local attraction.
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Figure 34: Dynamic experiments with (100/100,200)-ES, a = 27, N = 100,
A =1 (top), and A = 10 (bottom). The average residual distance Ry is
evaluated over 100 repetitions. The convergence probability is shown along the
right axis (top plot, bottom plot has Pg = 0 for all trials).
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(100,200)-ES N=100 A=1 R=5.0117
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Figure 35: The progress rate approximations are compared at a certain y (R =
5), where local attraction effects are observed for small o*, see also Fig. 58 in
the following section.
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4.3.1 Local attraction along the diagonal

Each attractor region can be considered differently depending on the actual y;-
coordinates. To illustrate the effects of attraction on the progress contour map,
one can set y; = R/v/N for all i = 1,..., N given some R in hybrid Eq. (4.43).
This way one moves along the diagonal of strictly positive y; through search
space, see Fig. 36 with overlaid Rg-curve from Fig. 34.

For small mutations local attraction regions are present, where progress is
entirely negative, e.g. for R € [5,10]. The characteristic of the Rg:-curve is not
modeled correctly. However, for large mutations the spherical structure is re-
covered, where the Rg-curve agrees very well with the progress rate result. One
can observe that the strategy faces negative progress regions for a broad range
of mutations strengths. This effect can of course be counteracted by increasing
the population size of the strategy. The population in Fig. 36 was deliberately
chosen too small (for A =10 and N = 100) to illustrate the problem.

This approach illustrates the problem of local attraction, it is not a complete
model. However, within the effect of component equipartition during dynamic
iterations, see Sec. 5.4, components are reaching values y; = R/ VN (after many
generations) and the progress rate along the diagonal will be relevant.

30 (100/100, 200)-ES, o = 2w, A =10, N = 100

0 10

11,

PR

Figure 36: Progress rate contour map using hybrid Eq. (4.43) with R-dependent
variance and locations y; = R/\/N for all i =1,..., N given R. The blue curve
shows the result of Fig. 34. The plot illustrates the effects of local attraction
(small o*) on the progress rate.

4.3.2 Local attraction via a probabilistic approach

For the second approach the sum in Eq. (4.43) is modeled as a normally dis-
tributed random variable Y using the CLT, which was already introduced in
(4.3). However, now the fluctuations will not be neglected and the progress will
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be treated as a random variable. We define
By =E[Y] and D% :=Var[Y], (4.44)

with Ey evaluated in (A.34), and D% in (A.38). Then, one can demand positive
progress

2 2

(432 e 3@)’9qA [EY + Dy N(0, 1)]) _ N% >0,
(4.45)

YR = C _—
R Dg(R,0)

and rearrange the equation to isolate the random variate according to

3(a0)? ND E
€2 Q 2 Y

0,1 _— — 4R ) — —/—. 4.46
N, 1) > QOLADy< copl > ( )

From (4.46) one can deduce the probability P, to have positive progress using
the CDF of the normal distribution for given R and o according to

P, =Pr{ol > 0|R,0} =1—Pr{o} <0|R,0}
1(ao)?
Lo SN (NDg e By (4T
20ADy \ cyp Dy

Figure 37 displays the results of (4.47) applied to two parameter configurations.
Dark red regions correspond to P, = 1, while dark blue regions show P, = 0.
A sharp boundary can be observed for large ¢* and R corresponding to the
spherical limit including the characteristic dip of low progress (probability).
Within these limits the Rastrigin noise variance term NA?/2 dominates and
the progress probability yields a sharp transition. This can also be explained by
looking at (4.45), where the random variable vanishes with prefactor e~3(a0)’
yielding a deterministic equation.

For small mutations an interesting (orange-yellow) region of decreased progress
probability emerges. This can be attributed to local attraction effects giving
negative (or zero) realizations ¢!} < 0. This is in contrast to the sphere func-
tion, where strictly positive progress ¢* > 0 for ¢* > 0 in the limit of 6* — 0 is
expected.

One can see that a continuous region of decreased P, is present w.r.t. o*.
This matches the experimental observations of Fig. 34, especially for A = 10.
However, result (4.47) is only an indicator of local convergence effects and not
a complete model. Local attraction can also occur with ¢ > 0, if local and
global attractor are aligned in such a way.

The dynamics of Eq. (4.45) is investigated in Fig. 38 for small o* = 1 and
large A = 10 using three different random number generator seeds compared
to its deterministic expression setting the fluctuation Dy = 0. This is done
using the iteration scheme of Eq. (5.6). The overall effect of the fluctuations
of Eq. (4.45) are very small, as there are only minor differences in the overall
R-dynamics. The progress probability P, was checked during the iteration and
yields consistent results as shown in Fig. 37. Negative progress occurs, but with
comparably small contributions. All runs are converging globally and Ry of
Fig. 34 is not recovered. Therefore, fluctuations using hybrid Eq. (4.45) are not
sufficient to recover experimental results of local convergence.
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(100/100, 200)-ES, a = 27, A = 1, N = 100
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Figure 37: Probability of positive progress P, from result (4.47) modeling the
sum over y;-dependent terms from (4.43) as a normally distributed variate.
Decreased P,-values for small ¢* indicate local convergence effects. Top plot
shows A = 1 and bottom plot A = 10 with (100/100,200)-ES, o = 27, and
N = 100.
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(100/100, 200)-ES, a=2r, A=10, N=100, ¢*=1.00
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Figure 38: Dynamics of Eq. (4.45) for (100/100, 200)-ES, o = 2w, N = 100,
o* =1, and A = 10.
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4.3.3 Positive gain condition

The goal of this section is to derive a condition on the mutation strength, such
that positive progress is ensured for all component-wise progress rates (!!. Start-
ing from Eq. (3.116) one has

o2
ol = CﬁD (4yl +e3(00) 2aAy; sin (ay,)) 7, (4.48)
Q K

The gain function G is defined as
Gy, 0) = 4y? + e~ 3@ 20 Ay, sin (ay;). (4.49)

Requiring positive progress ¢! > 0 for Eq. (4.48) yields

Cy 1
Do G(yi,0) > e (4.50)
The only term of (4.50) which is not necessarily positive is the gain function.
Additionally, even for G > 0, depending on the actual y;- and o-values the
inequality ¢!(y) > 0 may not be fulfilled. However, one can consider the infi-
nite population size limit u — oo, as the only p-dependent term is on the rhs
of (4.50). Within this limit it suffices to show that G > 0 to satisfy inequal-
ity (4.50). An exemplary numerical evaluation of (4.49) for A = 10, and o = 27
is shown in Fig. 39 for o € [0, 1] and y; € [0, 5]. Negative gain values are shown
in darker blue colors and the G = 0 boundary is displayed in bold white. A
derivation of the dashed black line (constant o) ensuring positive gain for any y;
is given now. The o-value ensuring G > 0 will be referred to as oes. (escaping
the local attractor).

Besides the condition G = 0 an additional condition is needed. From Fig. 39
it can be inferred that B—G = 0 must hold at the point of vanishing gain. Due
to the periodicity there Wlll be multiple solutions. However, the contribution of
a negative sine term will be largest for small ||y;|| < 1, where y2 < ||yl

Requiring G <0 and assuming y; # 0, Eq. (4.49) can be formulated as
G = 2y,G, (4.51)
with G defined as
G =2y +e 2(29)” o A sin (ovy;) 2 0. (4.52)

The second condition g—f = 0 yields for (4.51)

oG 5 . 9G
=2G +2y;— =0 4.53
ayl + yZ ayl ’ ( )
AsG=0andy; #0, 2 ay = 0 is equivalent to 8—; = 0, see (4.53). Therefore
one gets
gG =2+ e 2”024 cos (ay;) = 0, (4.54)
Yi
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such that the following condition is obtained

R Y P
e 2 a o cos (g1 (4.55)
Inserting condition (4.55) into (4.52), it follows
2 si i
oy, — 25nloy) _ (4.56)
a cos (ay;)

Introducing the substitution = ay; and applying sinz/ cosz = tanx yields
2
—(z —tanz) =0. (4.57)
e
The first non-trivial solution of (4.57) satisfying x = tanx is
xo ~ 4.493. (4.58)

Multiplying (4.52) by «, identifying xg = ay; and 0 = 05 (point of vanishing
gain) results in
2w + e~ 3(@0es0)® 02 4 gin z9=0
a? Asin zg (4.59)
2],‘0 '

e%(aaew)z —

Resolving (4.59) for o.s. yields the final result

1 a2 Asin zg

Oese = —4/2In | ————=
a 220 (4.60)
1

Oesc = —/21 (0.10860%4),

Numerical evaluations of (4.60) for o = 27 (default) and different A-values is
shown in Table 1.

A 1 2 5 10
Oese  0.272  0.330 0.394 0.436

Table 1: Evaluation of (4.60) for constant o = 27 and different values of A.

The result of (4.60) can be interpreted as a stability criterion of the ES to
achieve positive component wise-progress. It represents a worst-case scenario
considering the last local attractor and the position requiring the largest o at
y; =~ 0.75, see Fig. 39. This criterion is valid for all y; until the global attractor
basin is reached, where o < 0.5, must be chosen to have convergence. An
exemplary evaluation of (4.60) is shown in Fig. 39, see black dashed line.

Figures 40 and 41 show o.s. as a black dashed line in a o*-R-plot with
the characteristic declining function R = oN/o*. The oscillation amplitude
A =10 is chosen relatively large and tackled using large ES-populations, which
is in accordance with the assumptions made above. Figure 41 shows different
configurations (by varying 7) of the median of unsuccessful 0SA-ES runs. Con-
figurations using larger T-values tend to converge locally when o falls below o¢gc.
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Runs with smaller 7 (showing the highest Pg) tend to follow the path between
progress rate zero and above o5, to minimize the residual distance (and max-
imize the success rate). However, falling below o¢s. does not necessarily mean
that local convergence must occur. Due to fluctuations the global attractor can
also be reached (Ps > 0 for all 7-values).

Figure 41 shows single ES-runs with constant ¢* (same parameters as in
Fig. 40). None of the runs are converging globally. Therefore the residual
distance is evaluated for the last 1000 generations and shown as blue dots.
Both the Rastrigin noise (larger c*) and oes. (smaller o*) pose a challenge for
the ES to find the global attractor. The results are similar to previous results
of Fig. 34.

From these observations one can conclude, that a strategy with constant
0 = 0esc should be able to find the global attractor. Figure 42 shows the same
parameter set as Figs. 40 and 41, with three configurations o = e ~ 0.43,
o = 0.4, and o = 0.35 and fixed maximum number of generations Ng = 10%.
The black line follows the characteristic path of o.s. =~ 0.43 up until the global
attractor is reached, while the two smaller o-values show stagnating behavior
at larger y;-values, which can be inferred from the distribution of y;-values
in Fig. 43. A second example is shown in Fig. 44, where at A = 5 one has
Oese &~ 0.39. The distribution indicates that the global attractor is reached.
However, due to smaller ¢ = 200 the fluctuations tend to be larger and some y;
(over 1000 generations) are found outside [—0.5, 0.5], see axis limits (bars barely
visible, but present). This underlines the importance of the limit p — co.

The condition for o.s. from Eq. (4.60) contains no dependency on N or
1. However, increasing A results in an increase of the Rastrigin noise term
or = /N/2A. To reduce the expected residual distance at which the noise
term starts to dominate, p has to be increased appropriately, see also (4.32).
If p is too small compared to A, intersection of the zero-progress line and o,
may occur at R = R, see Fig. 45. This is the worst case, in which no further
progress is expected to occur for any o*.
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Figure 39: Gain function G(y;) for o = 27 and A = 10, see Eq. (4.49). The
G = 0 boundary is shown in bold white. The value of g¢s. &~ 0.436 is shown in
dashed black.

112



(400/400, 800)-ES, o = 2, A = 10, N = 100
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Figure 40: Dynamics for (400/400, 800)-cSA-ES with N = 100, A = 10, and
a = 27, showing the median of unsuccessful runs (out of 100 trials). The
7-values are varied: 7 = 1/v/N (magenta, Ps = 0.02), 7 = 1/v/2N (green,
Ps = 0.06), and 7 = 1/v/8N (blue, Ps = 0.33). The dashed black line marks
the constant o.s. ~ 0.436 according to Table 1.

Figure 41: Dynamics for (400/400, 800)-ES (constant o*) with N = 100, A =
10, and a = 27. The maximum number of generations was set to Ng = 10*
and different o*-values are tested. The blue dots show the mean of the residual
distance of the last 1000 generations, as no local convergence can occur. The
dashed black line marks the constant o.s. =~ 0.436 according to Table 1.
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(400/400, 800)-ES, a = 2, A = 10, N = 100
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Figure 42: Dynamics for (400/400, 800)-ES (constant o) with N = 100, A = 10,
and a = 27. The maximum number of generations was set to Ng = 10* and
different constant o-values are tested. The black line shows o = 044 ~ 0.436,
the magenta line 0 = 0.4, and the cyan line ¢ = 0.35. The distribution of the
y;-values of the three configurations is shown in Fig. 43.
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Figure 43: The distribution of y;-values (for all 4, last 1000 generations) of the
three configurations of Fig. 42 is shown with (top to bottom) o = gcs. & 0.43,
o =0.4, and o = 0.35.
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Figure 44: The distribution of y;-values (for all i, last 1000 generations) for
(200/200, 600)-ES (constant oes. =~ 0.39) with N = 200, A = 5, and o = 2.
The maximum number of generations was set to Ng = 10* and the global at-
tractor is reached. A few values (although rare) can be found outside [—0.5, 0.5].
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Figure 45: Progress rate zero and stability condition via o.s. from (4.60) inter-

secting at comparably large R ~ R,,. Due to 0., and noise no further progress
is expected to occur for R-values below the intersection point.
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4.3.4 Optimization under constant o

In Fig. 42 it was observed that by optimizing the Rastrigin function under
constant ¢ one can approach the global optimizer for roughly ¢ =~ o.s.. For
comparably small o-values however, the ES is jumping between local attractors,
see Fig. 43, such that it gets stuck in the fitness landscape at a large residual
distance.

This effect is studied by comparing real ES-dynamics (constant o) with
dynamics obtained by iterating the progress rates ¢; and ! (see also (5.4)).
For both real and iterated dynamics, the ES is initialized randomly and far
away from the optimizer (R = 100 - v/N). All runs start at the same initial
y-coordinates.

Figure 46 shows the results of a (200/200, 600)-ES, N = 100, « = 2, and
A = 10 at varying o-values. Solid lines shows the real dynamics (single trial),
while the dotted lines show the progress rate ;-dynamics. Figure 47 is obtained
using the same parameters as Fig. 46, but via progress rate !l. The number of
generations is chosen such that a steady state occurs.

A few observations can be made regarding Figs. 46 and 47. For small o the
real dynamics shows practically a steady state behavior, or more precisely, a very
slowly converging dynamics. Due to o being fixed, some progress is observed
over time. For large o the initial descent is comparably fast, following by a
noise-type steady state (see fluctuations). The progress rates on the other hand
do show a steady state (horizontal line) with vanishing progress. Significant
deviations between real dynamics and iteration occur especially for moderate
0 & Oese = 0.436. In this limit the fluctuations support the escape process, as
the R of real dynamics lies usually below the steady state R of the iterations.

These observations can be explained by looking at Figs. 48 and 49. Figure 48
shows the progress landscape of ¢!'(o) assuming equipartition for the variance
term Dg(R) setting R = y;v/N. Figure 49 shows the same as Fig. 48, but
displaying all local minima. The progress rate iterations reach a steady state if
(starting from large y;) at any point the zero-progress line is crossed. Finding
the expected steady state therefore corresponds to finding the largest y; at which
;=0 (or g} = 0). Choosing o > 0., see Fig. 48, the iteration reaches the
Rastrigin noise floor and stagnates. This was already observed in Fig. 42. The
prediction of zero-progress due to the noise floor was already investigated before.
An analytic solution can only be obtained for relatively large R (or y; = R/N)
neglecting the exponential functions. For small R no closed-form solution is
available.

Furthermore, the results of ¢; and !l are practically the same for small
o, as the iteration remains far away from the optimizer (negligible loss term).
Interestingly, ; shows global convergence when o > g.4.. This can be explained
by looking at the positive gain conditions of (4.49) and (4.52). Requiring G = 0
is equivalent to G =0 and G is the y;-dependent gain prefactor of the progress
rate @;, see (2.82). Furthermore, assuming that the variance Dg(y) does not

change significantly as a single component is varied, the condition g—g =0
translates to g‘; = 0. Choosing 0 > 0.4 therefore ensures @; > 0 for any y;

and global convergence occurs (as there is no loss term).
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Figure 46: Real dynamics (solid lines showing a single trial, respectively) and

iterated p;-dynamics (dotted lines) for the (200/200, 600)-ES, N = 100, o = 27,
and A = 10 at varying o-values.
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Figure 47: Same configuration as Fig. 46, but with ¢!-dynamics shown by the
dotted lines.
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(200,200, 600)-ES, o = 27, A = 10, N = 100
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Figure 48: Progress landscape ¢! (o) for (200/200, 600)-ES, N = 100, a = 27,
and A = 10. The zero-progress boundary is shown in bold white. The Rastrigin
noise floor is the lowermost white s-shaped line. Due to o relatively small,
and large population p, oes. (black dash-dotted line) from Fig. 39 is a good
approximation of the escape condition for (!
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Figure 49: Same configuration as Fig. 48, but showing all local minima attrac-
tion basins.
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4.4 Conclusion

In this section the R-dependent progress rate ¢ of Eq. (4.5) was derived based
on the result of the N-dimensional progress rate ! from (3.116). The R-
formulation was derived by assuming normally distributed y;-values around
the optimizer. This approximation is justified for large normalized mutation
strengths o* (compared to the sphere progress rate), but deteriorates if o* be-
comes too small where local attraction is dominating.

The R-formulation enables further analytical analysis, as result (4.5) is a two
dimensional function of R and ¢* given the fitness parameters. Furthermore,
within this formulation relations to the sphere progress rate can be easily estab-
lished by setting A = 0 or &« = 0. As a result, an alternative sphere progress rate
was derived y;-dependent in (4.6), and o*-dependent in (4.8). It is more accu-
rate at N < oo compared to ¢* = ¢/, 20" —0*?/(2u) as it includes additional
correction terms in the variance.

Having investigated the progress rate landscape in Sec. 4.1, the Rastrigin
function shows a large A- and a-dependent progress dip (region of negative
progress relative to the sphere function). Real oSA-runs at small 7-values,
shown in Fig. 23, tend to move close to the negative progress boundary by
operating at large o*-values. This also justifies the assumptions made for the
distribution of y;-values. For small o*-values on the other hand, no negative
progress (pg < 0 can be observed independent of fitness or ES-parameters,
which indicates the limits of wg not modeling local attraction (see also example
of Fig. 35).

The progress boundary ¢% = 0 is of most interest, especially the charac-
teristic progress dip, as the ES has to move “around” it in R-o*-space. This
zero-progress curve can be interpreted as an R-dependent noise due to the cosine
terms in all N-dimensions. It is therefore a cumulative effect of all oscillation
terms present at large mutation strengths. This is in contrast to the local attrac-
tion of a single attractor occurring for ¢ — 0. Both effects combined therefore
pose a major challenge for the ES, as ¢* has to be reduced when the noise terms
start to dominate, which then in turn increases the risk of local convergence. In
the limit of constant maximum Rastrigin noise og = /N/2A, the relation to
the noisy sphere model was established in (4.32).

A closed form expression R(c*) under the condition that ¢! = 0 can not
be obtained due to the terms containing exponential functions, especially in the
variance Dg(R) from (1.75). An analytic solution of the dip location is therefore
not available. However, assuming a constant (maximum value) Rastrigin noise
strength and defining a characteristic transition of the exponential function, see
(4.33), a solution for the intersection point (4.37) could be obtained as a function
of an (unknown) transition parameter §. From this result, a population sizing
relation (4.41) with u = O(v/N) could be deduced. Tt can be thought of as a
“lower bound” scaling relation emerging due to the characteristic progress dip
(noise) at a certain transition level parameterized by ¢ (significance of exponen-
tial terms). Modeling the actual descent into the global attraction basin likely
requires a probabilistic approach, as the progress rate is (only) an expected
value without considering fluctuations in y;-space.

While the large o*-limit of ga% is comparably well understood, as it is domi-
nated by R-dependent noise and the zero of the sphere progress rate, the effects
of local attraction need more investigation. An open question is if there are any
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characteristic mutation strengths that enable (statically within one generation,
or dynamically) to escape one local attractor and enter a neighboring attrac-
tor. A first approach by requiring positive gain for the component-wise ¢} was
presented in 4.3.3. First results indicate that it is possible to reach the global
attractor with an ES operating under constant o.
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5 Dynamical Systems Approach

5.1 Motivation and Introduction

In order to assess the quality of the quadratic progress rate, one-generation
experiments were performed in the previous section given a certain location
y. Having obtained the progress rate, the next goal is to predict the dynamic
behavior (in expectation) of the ES and analyze its convergence properties. To
this end, the dynamical systems approach introduced by Beyer [5] is applied. It
was also used iterating the dynamics of the Ellipsoid model [6].

Given definition (3.1), @ and ygg) at current generation g, and assuming
¢! is known, one can formulate an iteration g — g + 1 according to

2 2
(4) = (1) = @2,y + cilo?,y?), (5.1)

where ¢! yields the expected positional difference (by definition) and €; mod-
eling positional fluctuations, which are unknown at this point.

Furthermore, an iteration for the mutations strength ¢(9) is needed. As a
first approach, one can introduce the spherical normalization ¢* of the mutation
strength o for a residual distance R = ||y||, such that for given o* > 0 one has

o

o* = =N = const. 5.2

e (52)

This ensures that o decreases simultaneously with R and global convergence

can be modeled. However, the quantity o* is only known for theoretical models

and not in real world applications. Still, valuable information can be extracted
from these models. The control scheme of ¢(9) can therefore be given by

a9 = o*

() H /N = o*R9/N. (5.3)

The investigation of step-size adaption schemes such as self-adaption or cumu-
lative step-size adaption is part of future research.

By setting e; = 0in (5.1) as a first step neglecting fluctuations, one arrives at
the deterministic approximation of the dynamic iteration for the i-th component

(5 0) = (1)~ @M@,y ), (54)

which is shown in Alg. 1. Considering relation (3.95), the result (5.4) can be
expressed as a function of R by summing over ¢ according to

N 5 N 2 N
S () =30 (1) =D e,y @) (5.5)
1 =1 =1

- (R(g+1))2 _ l(_R(g)>2 — ol (0(9),R(g)), (5.6)

where Sec. 4 was used to derive the R-dependent progress rate ¢l

The iteration schemes will be used for the investigation of the (deterministic)
dynamics obtained from different progress rate approximations. The iterated
dynamics will also be compared to real simulations with constant o*, where
fluctuations are of course present.
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Two important issues need to be discussed before iterating. Firstly, the
scheme (5.4) describes the iteration of a single component i. For large N it is
not feasible to analyze each component individually and global convergence is
achieved for all components vanishing at the same time. While the components
will be iterated separately, the dynamics will be presented as a function of the
residual distance R, see also relation (3.95).

Secondly, for the evaluation of p!! being a function of y, the square root of the

components (yl(g))2 has to be taken after iteration giving two solutions j:yl(g).

Interestingly, the result of (3.39) shows that corresponding terms of ¢! are
even in y{¥. This also holds for the Rastrigin quality variance D3 (y) in (1.29).
This effect is attributed to the progress being second order (quadratic) and the
Rastrigin function being symmetric. Therefore the iteration is equivalent for
both :I:ygg)7 see pseudocode of iteration in Alg. 1.

Algorithm 1 Deterministic component-wise iteration using ¢! with o*=const.

1. g < 0

5 y(0) ( y(init

3. 00 J*| y(O)H/N

4: repeat

5. fori=1,....N do

6 () e )2 - e,y @)

& yz(gﬂ) — +1/ (y§g+1))2 both solutions £4/(-) equivalent
8: end for

9. oloth) J*Hy(g+1)“/N
10 g<4g+1
11: until termination criterion

5.2 Experimental Setup

The optimization runs are performed using constant normalized mutation strength
o* according to Alg. 2. As we are interested in the expected convergence behav-
ior of the algorithm, the residual distance R is measured and averaged over
multiple runs.

Position initialization For the initialization, y(®) is chosen randomly such
that [ly(@| = R© for a given residual distance R(®). The starting position is
kept constant for consecutive runs of the same experiment. For the magnitude
of RO it must be ensured, that the strategy starts outside the local minima
landscape. For A = 1 and o = 27, the default configuration of the following
experiments, the last local minimum is located at y; ~ 3. A larger reference
value y; = 20 is chosen to be farther away. Including the dimensionality scaling
R ~ /N from (1.79), we therefore set R©) = 20/N as the default initialization
distance, if not explicitly stated otherwise.

Mutation initialization For the choice of ¢* the sphere progress rate by
Beyer [5, p. 216, Eq. (6.54)] can be used as a reference by numerically solving
to obtain 6%, = argmax(pZ,,(c*)). This serves a guideline as the Rastrigin
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Algorithm 2 (u/ur, A)-ES with constant o*
g+ 0
y(0) ( y(init)
c 00 U*Hy(O)H/N
repeat
fori=1,...\do
%+ o @WAN;(0,1)
Vi y@) + %,
fi = f(31)
end for
(F1:0s -+, Yusn) < sort (}7 w.r.t. ascending f)
yth i D1 Ymix
12 oot  o* y(-‘”'l)H/N
13: g«g+1
14: until termination criterion

= e
= O

function is sphere-like for large R and within the global attractor. However,
for a higher Pg in the experiments a larger value than ¢, is needed as larger
mutations decrease the probability for local convergence. Therefore o* > Oeph
is empirically chosen, such that a high value Pg ~ 1 is obtained (more details
in Sec. 5.3).

5.2.1 Measures for Averaging

The first issue to discuss is the averaging of the dynamic simulations. More
precisely, a measure of central tendency is needed. Experiments have shown
that due to fluctuations large run-time differences among converging runs may
occur for the same parameter set, see as an example Fig. 50. Multiple averaging
approaches are compared against each other.

To simplify the notation, the following definitions are used. The experiment
repetitions are denoted with 5 = 1,..., M and the generation counter with g,
such that abbreviated notation is used as

— (9)
mean(R) = nean, (Rj > (5.7)
median(R) = median (Rgg)) . (5.8)
g=const

Measure of central tendency for constant ¢ One group of measures (de-
noted by lines in Fig. 50) evaluates the data for fixed g, such that the measures
mean(R) and median(R) can be easily evaluated. Additionally, the mean of
log(R) is plotted which corresponds to a “visual averaging” in log-space of the
R-values.

In order to discuss the difference between the standard mean(R) and the
other measures, see Fig. 50, the distribution of R-values is plotted in Fig. 51
for ¢ = 10 and in Fig. 52 for g = 75, respectively. The results indicate that
the median is more robust as a statistical measure, if large differences for R by
orders of magnitude are present.
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Evaluating median(R) has another useful property. We have R > 0 and
log(R) is a monotonic transformation thereof. For an odd number of elements
the median is the central value from the corresponding sorted list. Therefore
log(median(R)) yields the same as median(log(R)), which makes it suitable for
evaluation in linear and logarithmic space. For an even number of elements the
median is the average of the two central values, such that the relation above is
not exact. Still, for a large number of runs the central values are expected to
be very close to each other such that the deviations are negligible.

Measure of central tendency for constant R The second group of mea-
sures (denoted by dots in Fig. 50) is an approach to average for fixed R values.
Given a certain range [R, R - 0R], the respective generation values are collected
for all trials and evaluated using mean and median, respectively. The constant
factor R is used to obtain evenly spaced points in log-space.

The results are displayed at the interval center point and show good agree-
ment with averaging methods for constant g. The larger deviations at the
descent point are due to high influence of present fluctuations.

(10/10, 40)-ES, a=2r, A=1, N=20, 0*=6, Ps=1 (500/500)

102

mean(R,g=const)
median(R,g=const)
———— mean(log(R),g=const)
o mean(gin [R,R-J0R)])
median(g in [R, R - dR])

10°

= 102
z 10
10°*

10791 " .
0 50 100 150 200 250

Figure 50: Different averaging approaches for the dynamics of 500 runs with
success probability Ps = 1. The simulation parameters are in the title. Mean(R)
with linear R-values is heavily skewed for moderate g-values due to different
orders of magnitudes of R. All other measures yield comparably similar results.
Slightly larger deviations occur before descending into the global attractor basin,
where fluctuation effects are strong.

Concluding averaging discussion From Figures 50, 51, and 52 it was estab-
lished that standard linear averaging of R-values is not suitable for dynamical
simulations with moderate to large run-time differences, which occurs on the
Rastrigin function. This is due to the fact that large outliers create a skewed
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Generation g=10 Generation g=10

5 10 15 20 0.8 1 1.2
Distr. of R . Distr. of logl0(R)

Figure 51: At an early stage with g = 10 the distributions of linear and logarith-
mic R-values are relatively symmetric and not heavily skewed. The measures
mean(R), median(R), and mean(log(R)) therefore yield comparable results.

Generation g=75 Generation g=75
500 40

Count
Count

0 0.5 1 15 -5 -4 -3 -2 -1 0
Distr. of R Distr. of logl0(R)

Figure 52: For moderately large g = 75 the distributions of linear and logarith-
mic R-values are completely different, as the simulations are at different stages
having R-values that are deviating in orders of magnitude. The mean calcu-
lated for the left distribution will therefore be highly influenced by very few
large values (in relation), which is observed in the dynamics of Fig. 50, while
the median as a central value is more robust w.r.t. outliers. The right plot shows
the distribution of exponents of R by taking the logarithm.

distribution, such that large deviations between mean and median values are
observed.

The median is significantly more robust with respect to outliers, as it is rep-
resents the central value. The property of the median being invariant under the
monotonic transformation R +— log(R) is also useful. Therefore the median will
be displayed when comparing the real simulation runs with iterated (expected)
dynamics.

The averaging using constant intervals [R, R - 0 R] was also shown in Fig. 50,
but it will not be displayed for the upcoming dynamics, as no additional value
is provided by the method at this point. It also requires an additional R-
discretization, which is not needed for averaging via constant g.
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5.3 Comparing Real Simulations with Iteration

In this section the median of real simulation runs will be compared to iter-
ated dynamics. Two deterministic iteration schemes are used with following
underlying progress rate evaluations

o Iteration SIM: ¢! by simulating (3.1) over 10* runs for each g and iterating
(5.4); serves as a reference deterministic iteration

o Iteration Y: ¢! using (3.116) with iteration (5.4)
e Iteration R: ¢!} (4.5) with iteration (5.6)

The investigations are done for high success probability runs close to one and
lower success probabilities to test the limitations of the approach.

5.3.1 High Success Probability Investigation

(10/10, 40)-ES, a=2r, A=1, N=20, o*=6, Ps=1 (500/500)

10?
i median(R)
————— Iter. SIM
100F “SSEYYT et | Tter. Y
- = =TIter. R

= 1072

10k

10—6 \ AW,
0 50 100 150 200 250

Figure 53: Median dynamics compared to iterated dynamics using three
progress rate calculations. Parameters are given in the title. Approximations Y
and R show the same convergence speed for large and small R (parallel lines).
The offset emerges during the transition at R = 1. Iterations Y and R slightly
overestimate the convergence speed compared to the median and SIM. The off-
set between median and SIM is due to fluctuations, as the accuracy of simulated
¢! is expected to be very high. Differences between SIM and iterations Y and
R, respectively, are due to the underlying approximations. The agreement is
relatively good considering small N and small populations with lower trunca-
tion ratio ¥ = 0.25.
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(100/100, 200)-ES, a=2m, A=1, N=100, c*=29, Ps=1 (100/100)

102 median(R)
————— Iter. SIM
100 |
&0z
104 r
1076 1 1 !
0 100 200 300 400 500

Figure 54: Median dynamics compared to iterated dynamics for N = 100 with
population and ¢* set accordingly. For larger N and population size better
agreement is observed between the median and the iterations. Furthermore,
the difference between the iterations tends to decrease, as the approximation
quality increases for larger N. This is also shown in Fig. 55. Again, an offset
between Y and R emerges before the descent at R ~ 1 due to the underlying
approximations.

(1000/1000, 2000)-ES, a=2m, A=1, N=1000, 0*=100, Ps=1 (100/100)

median(R)
———— Iter SIM
- = = Jter Y

102

=, 100

1072

0 100 200 300 400 500 600

g
Figure 55: The dynamics is shown for large dimensionality N = 1000 with
population and ¢* set accordingly. Within this limit fluctuations are decreasing
(loss term scaling as 1/u) and different runs tend to follow the same path.
Deviations between iterations R and Y are decreasing compared to Fig. 54 as

the approximation quality increases.
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5.3.2 Lower Success Probability Investigation

(100/100, 200)-ES, a=2m, A=1, N=100, 0*=18.4, Ps=0.58 (58/100)

10?
10°
=102
z 10
median(R)
1074 L [===== Iter. SIM
- = =TIter. Y
---------- Iter. R
10*6 1 1 1 1 \I 1 1
0 50 100 150 200 250 300 350 400

g

Figure 56: The experiment of Fig. 54 is repeated with decreased o*. Now
o* = 18.4 is chosen to be very close to the sphere optimal value by numerically
solving [5, p. 216, Eq. (6.54)]. All iterations now lie below the median curve
and are overestimating the overall progress, as fluctuations are not modeled.
The median is taken over the globally converging runs. A relatively sharp
splitting point occurs between locally (light gray) and globally (gray) converging
runs. This example illustrates the problem of smaller mutation strengths on the
Rastrigin function and why ¢* = 29 was chosen in Fig. 54.

(100/100, 200)-ES, a=2r, A=1, N=100, 0*=5, Ps=0 (0/100)

median(R)

ks =e——— Tter. SIM
- = =TIter. Y

=
= 10 E
100 1 1 I KN 1 1 1 1
0 50 100 150 200 250 300 350 400
g

Figure 57: The value of o* is further reduced compared to Fig. 56 and no global
convergence occurs. Iterations SIM and Y correctly predict a stagnation point
around R ~ 5, while R predicts global convergence. This is due to the R-
dependent model being an average over all locations with ||y|| = R, while SIM
and Y are actual y-dependent models. The issue is explained in Fig. 58.
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(100,200)-ES N=100 a =27 A=1 R=5.0117

g f
S oL /é @ SIM, y=const
p ’ SIM, y=var, ||y||=R
D 2 ju— B2
- B
.’..‘ Beyer (6.54)

_2 1 1 1 1 1 1 1 ]
0 5 10 15 20 25 30 35 40

Figure 58: The difference between Y and R from Fig. 57 is explained by looking
at @%’*(U* = 5). Iteration Y in Fig. 57 was stopped the first time negative
progress 90% = >, w%l < 0 is observed, which triggers at g = 146. At this
point the Cartesian coordinates y are saved and gp%’* is evaluated to study the
difference (approximation B2 corresponds to iteration Y). Between red (R) and
blue (B2) there is a gap at 0* =5 with B2 showing (small) negative progress and
R positive progress. This can be attributed to the positional dependence of the
progress rates. The black dots show cp%’* for one-generation experiments with
constant y (trigger point), where good agreement with B2 is observed. The
orange dots show 90%* for the R-value of the trigger point, but for each trial y
newly chosen with ||y|| = R, where good agreement with R is seen. Therefore R
is not able to reproduce the local convergence behavior observed with Y, where
the actual y-values are iterated. But it is a good approximation when evaluating
the progress over |ly|| = R. For small o* significant deviations occur compared
to Beyer (6.54), while for larger o* the sphere-like structure is recovered. This
also explains the better agreement between SIM, Y, and R in Fig. 54 with larger
o* =29.

5.4 Component Equipartition

During the iteration of squared locations via (5.4) it could be experimentally

observed that all the components converge to a value (ygg ))2 = (R¥)?/N for
g and o* sufficiently large. This was observed independent of the initial value
provided that there is linear convergence of the overall residual distance. This
observation, which is referred to as “component equipartition”, is investigated
here in more detail. The effect happens on both Rastrigin and sphere function,
such that the analysis here is performed on the sphere by investigating the
difference equations.

For better readability of the subsequent derivations the following abbrevia-
tions are introduced

Yg = (yz‘(g))Q

rg = (RW)? (5.9)
* I1,*

Y =Pr -
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Recalling the deterministic iteration (5.4) of a single component one has

Yg+1 = Yg — ‘PiL(g)- (5.10)

The i-th component progress rate of the sphere function for constant o* at
generation g was given in (4.6). By applying 0% = o*?r,/N? one gets

*2

(vaL(g) _ 2cyo* yo — o
‘ Ny1+02)2N"? N2p”

Now gain and loss prefactors (constant during iteration) are defined as follows

(5.11)

B = N\/% (5.12)
v = ;22 (5.13)
such that
P"® = By, — . (5.14)
Hence, Eq. (5.10) becomes
Yg+1 =Yg — BYg + 7. (5.15)

Summing (5.11) over all N components, multiplying by 1/r,, and using normal-

ization f—% = %(p* yields the r4-dependent progress rate of the sphere in terms
of # and v
N * *
SN e _ 200" 0,
i ~— ¥R - - 9 Y
Py Ny/1+0*2/2N Np (5.16)
2
2o =8_N
N =B N7,

which will be needed later for solving the difference equations.
Returning to (5.15) one has

Yg+1 = (1 = B)yg + 7. (5.17)

An expression for the residual distance r4 is needed. The analysis of the y,-
dynamics is performed under the condition that there is convergence of the rg-
dynamics. Using iteration (5.6), normalization ¢* = np%%, and abbreviation
9

II,* * .
YR =", one can write

=7, (1 - ;ga*). (5.18)
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Assuming constant ¢* > 0, the dynamics of Eq. (5.18) given initial value ro can
be easily evaluated as

2 g
Ty =70 (1 - Ngo*) . (5.19)

Inserting (5.19) into Eq. (5.17), one has a first order linear difference equation
in variable y, with constant coefficient a := (1 — ) and a generation-dependent
term b, := yry, which couples to the y4-evolution. The linear difference equation
is now written as

Yg+1 = aYg + by. (5.20)

Starting from yo and repeatedly evaluating expression (5.20), the value at g can
be given as

g
g =a%yo+ »_ a¥ Py (5.21)
k=1

This can be verified by inserting (5.21) into (5.20) giving

9
ayg + by = a(agyo + Z ag_kbk1> + by
k=1

g
= a9+1y0 + E a97k+1bk_1 + aobg
k=1
g+1
1 1-k
= a9 yy + g a9tk
k=1

(5.22)

= Yg+1.

Therefore (5.21) is the generic solution to iteration scheme (5.17), which yields
9
yg = (1= B)yo+7 > (1= B) Fre_s. (5.23)
k=1
The term r_1 needs to be rewritten using (5.19) according to

2 \'"
Tg =T <1 - Ngo*) ,  such that

9 k—1—g 9 k—1
Tk—1 =Ty (1 — NQO*) =70 (1 - N@*> ‘ (5.24)

Inserting (5.24) into (5.23) and moving all k-independent terms out of the sum
yields

_B) I /1— 2t
yg=(1—ﬁ)gyo+wo(fl P) Z(l N(p). (5.25)
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The sum in Eq. (5.25) can be evaluated using the formula for the n first terms

. . . 1-2p* .
of a geometric series with ¢ := T g; according to

n 1—gn
qu_l =1+4+¢ +.. +¢q" 1= 7(17 such that
1-q
k=1
1—q9t!
ql—&—...—l—qg:iq—l
l—q
- LW, (5.26)
l—q
under the condition that g # 1, see denominator in Eq. (5.28).
First, evaluating the numerator ¢ — ¢9* of (5.26) yields
1— ch* 1— 280* g
g9t — (1 — ¢9) = N 1— N ) 5.27
- =l - ¢) 1—5[(1—5) (5.27)

Evaluating the denominator 1 — ¢ of (5.26) using %¢* = 8 — Ny from (5.16)
gives

1-2¢0* 1-8-(1—%¢*) Ny
1_N5 = I—BN =1 g (5.28)

which is well defined for 8 # 1, see also Eq. (5.32).
The result of the sum can be given as

* *\ 9
q_qg+1:_1—%g0 1 —%gp (5.29)
1—g¢q N~ 1-8 ' ’

1l—qg=1-

Substituting the sum in (5.25) with result (5.29) one gets
2 %\ 9
To 1-— ~ P
=(1=B)9yg— —(1—=B8)9 1| —N"_
o = (1= B0 = 72 5)[ (16)]

2%\
:(1—ﬁ)g<yo—rﬁo)+7ro(l NN(p) )

(5.30)

Using 7y = r9(1 — 2¢*/N)? and resolving abbreviations defined in (5.9), the
final result yields

(R(O))z) + (RO (5.31)

W2 == (07 - EE )+ B

One can immediately see from result (5.31) that the initial values (ygo))2 and
(R(©)2 are decaying for g > 0 as long as 0 < 3 < 1. For g large enough the initial
values are suppressed and the term (R9))2/N is dominating. Therefore within
the deterministic iteration any (squared) component (y§g ))2 will approach the

value (R9))2/N for g large enough. At g = 0 the initial value (ygo))2 is recovered.
Figure 59 shows an example where the iteration is compared to analytic
solutions of the difference equations. As ¢* is relatively small, the approaching
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of components to the value (R¥))2/N is relatively slow (see generation axis).
There is no (visible) difference between the two calculations, as the equations
are solved analytically.

Figure 60 shows the same experimental setup of Fig. 59 but with increased
o* = 20. Now the adaption time is much faster (see generation axis) due to
larger 3, see (5.12), and both components quickly approach the target value
(RY)?/N.

Additional investigation is needed concerning the gain parameter /5 occurring
in solution (5.31). In order to have convergence it must hold

0<p<l. (5.32)

The lower bound is satisfied for any ¢* > 0 with

< 2cy0*
N1+ 022N’

The upper bound is given by (assuming o* # 0)

(5.33)

2019(7*

— <1
Ny/1+0*2/2N
4c50** < N*(1+0**/2N)

No™ o w2

4c3o*? —

2
4019 - 5 < ﬁ

Equation (5.34) is satisfied for most practical cases with moderate to large
N. The right side is strictly positive. Additionally, the (asymptotic) progress
coefficient is usually a relatively small number for moderate o, such that 4¢3 <
% yields negative values on the left side.

Component equipartition on Rastrigin The argumentation made on the
sphere function can also be transferred to the Rastrigin function, as long as one
has negligible influence of the local attractors. As the iteration experiments are
usually initialized far away from the optimizer, equipartition is established by
the time the iteration reaches the local attractors.

The argumentation can also be illustrated by looking at component-wise
progress ! (3.116) and comparing it with Eq. (5.16). As long as the gain
factor 8 > 0 (the loss terms are equal) and RU)_convergence is present over
many generations, equipartition can be observed, which is the case for Rastrigin
within the spherical limits of negligible local attractors.
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Figure 59: Iteration compared to analytic solution of difference equations for
(100/100, 200)-ES on the sphere function with N = 100 at o* = 1. The left
plot shows the (R(9))2-iteration and solution (5.19). The right plot shows the
(ygg))g-iteration and solution (5.31) for two components ¢ = 1 and ¢ = 97. The
latter component was chosen as its initial value is relatively small, such that
one can observe the initialization dynamics. The value o* = 1 yields relatively
small value 5 = 0.016 giving slow adaption compared to Fig. 60.
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Figure 60: Iteration compared to analytic solution of difference equations for
(100/100, 200)-ES on the sphere function with N = 100 at larger o* = 20. The
left plot shows the (R(¥))%-iteration and solution (5.19). The right plot shows
the (yl(g ))Q—iteration and solution (5.31). The larger mutation strength yields
8 = 0.18 and therefore faster adaption.
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Appendix A Expectation Values

A.1 Expectation Value of cos(ax)

For a normally distributed random variable z ~ A '(u, 0?), the expectation value
of a function g(z) is given by

_1e=m?

Blo@) = —— [ gl 0. (A1)

210 J -

The characteristic function ¢y (t) of a random variable Y with density py (y) is
defined as

o0

py(t) =E [e"] = / py(y)dy. (A2)

— 00

The expectation value of sin(ax) and cos(az) can be obtained using the defini-
tion of the complex exponential e'®® = cos(ax) + isin(ax) according to

E [e"**] = E [cos(az)] + i E [sin(az)] . (A.3)

Calculating the expectation of €'** using definition (A.1) one obtains

iox 1 > iox _1e—p?
E[e ]:ﬁ | ee 2o do. (A4)

Given integral can be identified as the definition of the characteristic function
of a normally distributed variable [7, p. 160]

1.2 2

E [e""] = on(u,02) (@) = " #7277 (A.5)
= e~ 2°°"[cos (ap) + isin (ap)]. (A.6)
Using (A.3) the expectation values read
E [cos (az)] = e cog (ap) (A7)
E [sin (az)] = e 2% sin (ap). (A.8)

Since mutations of the ES are distributed according to 2 ~ A/(0, 0?), we obtain
simplified equations

E [cos (az)] =" exp [;(aa)ﬂ (A.9)

E [sin (ax)] = (A.10)
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A.2 Expectation Value of cos?(az) and sin?(azx)

These expectation values can be easily simplified by applying trigonometric
identities and cos?(z)+sin?(z) = 1 and using the previous results for E [cos(a)]
with a scaled constant. We obtain

E [cos*(az)] = E Eu + cos(2aw)]} - % (1 + o2 cos (20zu)> (A.11)

=01 1
H=0 3 (1 + exp {—2(20«7)2}) (A.12)
and analogously
1 (200)?

E [sin2(ax)] = E E[l - cos(2aw)]} = (1 — e cos (2a,u)) (A.13)

H=0 % <1 —exp {—;(2040)2]> (A4

A.3 Expectation Values of x cos(az) and z sin(ax)

The quantities E [x cos(ax)] and E [z sin(ax)] can be deduced by differentiating
the expression (A.6) on both sides with respect to a and identifying real and
imaginary parts. The left-hand side yields

d o s atax
aE[e ]:E[w:e }
= E [iz(cos () + isin (ax))] (A.15)
= i E [z cos (ax)] — E [z sin (ax)] .
Evaluating the derivative of the right-hand side gives
d
I [e_%a%z [cos () + isin (au)]} =..
= —ue*%(‘m)z sin (o) — ace™2(29) cog (o) (A.16)
+i [—ozaQe*%(M)2 sin (ap) + ue*%(m’)2 cos (au)} .
By identifying the real and imaginary part one gets
E [z cos(ax)] = e 2(00)? [11cos (ap) — ao? sin (o)) (A.17)
"= (A.18)
E [zsin(az)] = e 2(00)? [sin (ap) + ao? cos (ap)] (A.19)
- 1
=% a0 exp [—2(0[0)2} . (A.20)

A.4 Expectation Value of z? cos(ax)

The expected value can be derived by differentiating the result from Egs. (A.15)
and (A.16) a second time with respect to @. One obtains

d2

] d TN Te% 4 iox
Fpe) E [e""] = o E [ize’*”] = E [—2%e"*"] (A.21)

= —E [2? cos (az)] — i E [2” sin (az)] . (A.22)
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for the left-hand side. Evaluating the right-hand side gives

d%; {e_%a%z [cos (au) 4+ isin (ap)]| = ...
— p2e 30" cog (ap) + 2ap0%e™ 2@ sin (ap)
— g2e72(29)" ¢og (ap) + a2ote™2(09)? ¢og (ap) (A.23)
+1 {—,uQe_%(O‘”)2 sin (ap) — o%e2(@9)" gin (ap)

- 2a/w2e_%(‘m)2 cos (apu) + a?otem2(29) gin (au)} .
Using the real part one obtains the result

E [2? cos(az)] = e z(00)’ [1? cos (ap) + o2 cos (ap) (A.24)
—2apo?sin (ap) — a?o? cos (ap)] .

=0 (02 — 020 exp [—;(aa)ﬂ : (A.25)

A.5 Expectation Value of z?cos?(az) and z2sin?(ax)

First the identities cos?(z) = 1[1 4 cos(2z)] and sin®(z) = 3[1 — cos(2z)] are
applied, respectively. Afterwards, the result (A.24) can be applied with rescaled
frequency a. One has

22 2% cos(2ax)

E [2? cos*(ax)] = E - + — s (A.26)

1 1 .
= 5(/ﬁ +0?) + 5675(20{0)2 [/},2 cos(2ap) + o2 cos(2ap)

— dapo® sin(2ap) — (2a)?0™ cos(2ap) |

(A.27)
=01 1
= 502 + 3 (0% — (2a)20*) o2 (200)°, (A.28)
Analogously one gets
2 2
2
E [2®sin*(az)] = E % — M (A.29)
= l(lﬁ +0?) — }e_%(%“’f [1? cos(2ap) + o cos(2a)

2 2 (A.30)

— dopo® sin(2ap) — (2a)?0™ cos(2ap)]

=01 1

=0 5% — (0% — (20)%0") e 3(220)°, (A.31)

2 2

A.6 Sums Over Expected Values and Variances

In Sec. 1.5.2 the expected values and variances over the sums of i = 1,..., N
trigonometric terms with random variable y; ~ N (0, 05) and oy = TRN is needed

assuming independent components. The expected values and variances are taken
over sums of the terms cos (ay;), cos(2ay;) and ysin (ay;), respectively.
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First, the expected values are evaluated according to

N | 1 2 1 (aR)?
E Zcos(ozyi) = Ne~2(@%)" — Ne72w (A.32)
i=1 _
al ] 1 2 (aR)?
E | cos(2ay;)| = Nem2(22)" = Ne?"% (A.33)
i=1 i
N | 1 2 1 (aR)?
E Zyisin(ayi) =Na05e_5(0“’y) =aR% 2z ~ (A.34)
i=1 _

Now the corresponding variances are calculated. Applying Var [}-,(-)] = >, E [(1)?]—

E[(-)]* and using previously obtained results of Appendix A with ty = 0 and
oy =R/ V/N yields for the variances

N 7 N
Var Z cos(ay;)| = Z E [cos2 (ayi)} - E [cos(ayi)}2
i=1 1 =1
1 1 aR)? aR)?
_N (2 e e%’?) (A.35)
N 7 N
Var Z cos(2ay;) | = Z E [cos®(2ay;)] — E [cos(2ay;)]?
i=1 1 =1
1 1 _1@am? aR)?
=N <2 + §e_§<4TR) — e_(QJ‘}’Q)> (A36)
N N
Var Z Yi sin(ayi)l = Z E [y?sin®(ay;)] — E [y sin(ay;))
i=1 i=1
1R 1[R? R*] _1cam? R* _(em?
= N<2N — 5 |:N — (20[)2J\/v2:| e 2 N — Oézme N (Ag?)
1 1 2aR)? 2 2aR)2 R aR)2
:R2<2_2e1( R) +2@2W87%( 1\17%) —QQWG (aR) ) (A.38)

The obtained results are used for the evaluation of ratio (1.67) in Sec. 1.5.2.
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Appendix B Large Population Identity

Let A > p+1and g > a with @ > 1 and ¥ = p/\, such that t*#~1(1 —
t)*~% exhibits its maximum on (0,1) and vanishes at ¢ € {0,1}. Furthermore,
let f(t) be function defined and differentiable on (0,1), and let B(-,-) be the
beta function. For infinitely large populations (p, A) — oo (constant ) the
asymptotic equality holds

1 U
Clfl= o L O L
ialf) = g [ S0P =
f(=9)
PYe—1 7
with higher order terms vanishing with O(1/u) and O(1/X).

(B.1)

~

B.1 Derivation

Properties of the integrand Given the definition above it can be observed
that t*~#~1(1 — t)*~® exhibits a single increasingly sharp maximum on the
interval (0,1) given a fixed truncation ratio as the population size tends to
infinity, see also Fig. 61.

This observation suggests performing a Taylor series expansion of the func-
tion f(t) around the sharp peak located at  defined by

t = argmax [t’\_“_l(l — ). (B.2)
te[0,1]

The first terms of the series should already yield a good approximation for large
populations. The maximum of the sharp peak can be obtained by setting the
first derivative to zero and deriving the corresponding ¢ according to

S =0 (83)
()\ — - 1)t)\—/L—2(1 _ t)u—a _ t)\—u—l(u _ a)(l _ ﬁ)ﬂ—a—l -0
A=—p-—1DA-t)—(p—a)t=0
A=p=1)—-A—p-Dt—(p—a)t =0
A=p=-1)=A—-a-1)

j_An-l g pma o pll-ap)

DA vy il v Tkl ve gy vy VR e

Looking at the limit of infinitely large populations it can be observed that the
maximizer approaches a constant value. Setting /A = ¢ one gets
lim t=1-9. (B.5)

(p,A)—00
Y=const.

Taylor expansion Taylor-expanding f(¢) around t yields

oo 8k .
=3 Sk b, (B.)
k=0 """

t=t
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Figure 61: Integrand mt)‘_“_l(l —t)#~1 plotted for a = 1, A = 20 (left)

and A = 200 (right) for two different truncation ratios ¥ = 1/4 and ¢ = 1/2. The
peak sharpness increases with growing A and the factor 1/ B(\ — pu, pt) rescales
the peak heights.

such that integral (B.1) is expressed as

. 1 TS 1 okf
Bl = 5 Jy 2

(t — DR 1 — ) de

t=t

— 1 oFf 1 /1 N .
=N - [ el g e —Dkde (BT
kZ:O k! otk |,_; BN —pu, 1) Jo (B.7)
o k
=g |, O
— k! otk |,_;
The introduced coefficients C¥) are defined as
1 1 .
ok — 7/ R G W (R L U (B.8)
B(A =, 1) Jo (=85~

It will be shown that only the 0-th order coefficient C(©) will yield significant
contributions and all higher orders k& > 1 will vanish with O(1/X) for large
populations.

Starting with & = 0 the coefficient can be evaluated as

0 1 ! A—p—1 u—a
C():B(A—u,u)/ot (1—t)odt
:B()\—,u,u—a—l—l):F(/\—M)F(/,L—a+1) T'(\)
B(A =y, 1) FA—a+1)  TA—p)T(u)
_ A=p—DNp—a) A=1)
A —a)! M= p—Dl(p—1)! (B.9)

=D p—a)! T A-n GrALl—n/A

Tl lp-n Iial-n/u
1 fora =1,
N ﬂal,l Hz;i }:Z;l’) for a > 1.
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It was used that for a > 1 one has

8:3: :al:[)\—n and (p—a) = 1 . (B.10)

Therefore the limit yields for any a > 1

1
i 0) —
(p,l)\l)n—1>oo ¢ o W (Bll)
Y=const.

with O(1/u) and O(1/)). The analysis of C*) with & > 1 is slightly more
involved and is tackled now. Noting that (¢t — {)* = (—£)*(1 — t/{)* one has

(k) _ (—t)* et a4t ’ B.12
¢ B(A*%N)/o ! (=9 (1 f) v (312

By applying the binomial theorem the expression can be reformulated

_t?)k 1 k k o ¢ i
C(k) — ( / tk—p—l 1 — t)H—a 1k—z —2) a
B(A—p, 1) Jo (=9 —\i t

7

= (—D)F zk: (f)(—l)i (1)1 m /01 tATT (L — e dt

i=0
[k
_ (_PNk _ 1\t e pt.a
oty () rmen
=0
(B.13)
with additional treatment needed for the factors F"* and Fy“
i,a 1 ‘
' 1 b1+
Fz’alzi/t7”7 1=t~ dt. B.15
? B(A =, 1) Jo ( ) ( )

Factor Ff’a is easily evaluated using (B.5) and yields

- () -Gm) () e

Factor Fy* yields

BOA—p+i,pu—a+1)

= B(A — p, 1)
A =p=1+0) (- a) (A—1)!
= A—a+1)! A—p—Dl(p—1)! (B.17)

A=p—=14+9)! A=D1 pu—a)!
A=p—1! A—a+d)l(p—1)"
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The first ratio of result (B.17) yields

m HA p-145) =XNT[a-0-1/A+i/0. (B1s)

j=1

For the second ratio of result (B.17) one can use (B.10) and write (A — 1)! =
(A —a)! TI%Z3 A — n, such that

A=Dip—a) w1 (A=a)! [[piA-n
A—a+i)(p—=1)!  A—a+)[[*Zp—n

B 1 [hoiA—n
T (A —a+i)liin—n .
S (B.19)
1 A1 1 —n/A
Y [Tj_ (1 —a/A+ /) pe T2 1 —n/p
A=Dlp—a)! o=1 1

A—at e =D~ N[ —1/A+/A)

The result of (B.19) for a > 1 is also valid for a = 1 when defining the product
over n with no elements as H2:1(') = 1, which is assumed for the following
derivations. '

Using (B.18) and (B.19) factor F,* therefore yields for a > 1

ia _ N [Tio (1 =9 — 1/A+j/X) ha-1 H‘H(l — /)
’ »H] (U—a/A+j/N) pe- ln Y= n/u)

(1—0 —1/A+75/X) %S (1—n/\)
R 1H (I—a/X+j/N) H (1—n/p)

(B.20)

Finally the result for C*) from (B.13) can be evaluated using (B.16) and (B.20)
E /L o
k) = (—f)k Z <> (1) Fy Fy

1=0
sk (1 —a/A—1/\)
_ (_Pk _1\¢
=0 Z <>( Y (1—9—1/\)

(1—9—1/A+7/N)

0@11_[ (1—a/X+7/\) g
-+ (1—n/X\)
1;[(1—n/u

e (1—9—1/A+ /N1 —a/A—1/))
;() H 1-9—=1/NA—a/X+j/N

(1=n/A)
(1—n/p)

(B.21)

Jj=1

In the second line of (B.21) factors F'* and in’a were inserted and in the
last line the product over m was moved out of the sum as no i dependency
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is given. Additionally the factors (1 —a/\ —1/A)" and 1/ (1 — 9 — 1/\)" were
moved into the product over j = 1,...,4 which is important for the following
limit consideration.

Applying the limit (p, A\) — oo significantly simplifies (B.21), as the pop-
ulation dependent terms vanish with O(1/u) and O(1/)), respectively. The
two products yield asymptotically one. Using the property that the sum of
alternating binomial coefficients yields zero for any k£ > 1, one obtains the limit

(—D)F K (K :
(Mgi)xgwc(k21>: T Z(i)(—lyzo. (B.22)
19:7const. 1=0

Collecting results Having established the large population limit of C(*) in
(B.11) and (B.22) one can return to the Taylor expansion of (B.7) and evaluate
corresponding expressions. Noting that ¢ = 1 — ¢ from (B.5) the result is

1 OFf
lim I%,[f]= lim [ — 2 oW
) HoA ) k! Otk 2
ity ity (B.23)
1
:Wf(l—ﬁ),

with higher order terms vanishing as O(1/u) and O(1/\). Therefore within the
large population limit it is sufficient to consider only the 0-th order term of the
Taylor expansion evaluated at the integrand maximum ¢. All these considera-
tions hold provided that the derivatives of f(t) are well defined at .

B.2 Applications

Progress Rate Identity (B.1) is used to solve the progress rate integral of
(2.25) for large populations with parameter ¢ = 1 and f(¢) defined in Eq. (2.24).
The result is given in Eq. (2.28).

Generalized Progress Coefficient A second application emerges investi-
gating the generalized progress coefficients introduced by Beyer [5, p. 172]

et = A p (A) / T et @) P - ®(2)]* e, (B.24)

a+1
1) J -

(2m)

for which asymptotic properties can be derived assuming large populations. The
population depend prefactors are rewritten as

(M) =2 (A -1 1
° u)(l)_u()\—u—l)!(u_m OB — i 0) (B.25)

Introducing the substitution ¢t = ®(z) with = ®~1(¢), do = 2me®” /2 dt and
changing the bounds 0 < ¢ < 1 the progress coefficients yields

w11 1
ey = —
wA ) BN = 1) (21)

1 2
a7 / [@-1()]" e 2P OF Aot — pyeear.
0

(B.26)
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Comparing (B.26) with identity (B.1) the function f*(t) (with @ and b in
superscript emphasizing the parameter dependence) can be identified as

ab = [0 (t)] e [ 0]
f (t)|t=1—19 [ (t)] t=1—2 (B'27)

b o~ (1-9)]?

e_%[

)

Therefore the coefficients can be expressed as

(B.28)

In the second line the asymptotic equality is used. For the last line the properties
P11 —-9) = -0~ 1(¥), [P~ (1 - 0)]? = [@~1(9)]? are applied and all factors
being powers of a and b are collected. Defining the asymptotic generalized
progress coefficient as
e’ = lim ™}
v (p,A)—o00 A (B29)

Y=const.

the final result yields

Asymptotic Generalized Progress Coefficient

a,b eié[q)_l(ﬁ)}Q ’ —1 b
ey’ = [\/2?19] -2~ '(9)]". (B.30)

The result (B.30) is numerically validated in Fig. 62 showing eZ”I;\ as a function

of p (constant 1) and the corresponding asymptote ef;’b.
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Figure 62: Generalized progress coefficient eﬁ’fj\ numerically calculated (dashed)

with the corresponding asymptotic limit ef;’b (dotted) from Eq. (B.30) for ¢ €
{0.3,0.6}. The coefficient orders are e>? (blue), e*! (red), €2 (green) and e**
(orange).

Appendix C Noisy Order Statistics
Modeling the distribution of z The underlying distribution from which

the not selected z in (3.14) are drawn is modeled in terms of its cumulants x; by
expanding a normally distributed density function using a Gram-Charlier series

1 22 "1 z Yo z
P = _— ]_ — H o4 H A bl
P=(2) V2T Ko P [ 2/@2] ( * 6 <1//<;2> * 94 VK2 *

(C.1)
with skewness v, and excess 7.
_ 3/2
N = ks " (C.2)
Vo = Ka/K3.
The probabilist’s Hermite polynomials are defined by
dko(x
D) (1) Hey () o). (©3)

For z being the mutation variable with z ~ A (0, 02), as in our case, the second
cumulant k9 = 02 and k; = 0 for ¢ = 1 and ¢ > 3. In this case the expansion is
exact.

If the series is truncated with some cumulants x; # 0 (i > 3), the expression
(C.1) is only an approzimation of a probability density and may yield p,(z) < 0
for some values of z. However the integral ffooo p.(z)dz = 1 as the Hermite
terms have vanishing contribution. As higher order approximations are usually
not required, Arnold has neglected cumulants of higher order than four.
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Considering the case s = —1 of (3.14), an expression for the density is needed
evaluated at (—z) giving

i e [ 0 (55) 4 3 (55) o)
- e [_2} (1 N (f) + 2 ey (\F) . >

z

[N}
)
1

[V}

:

—Zz

bS]

(C.4)

where we have used that Heg (—z) = Hey (x) for even k and Hep (—x) =
— Hey, (2) for odd k. The transformed density yields —v; instead of -1, which
is equivalent to the third cumulant being —k3 instead of k3. In general, all odd
Hermite terms yield a negative sign. Due to truncation they are not shown here.

Transition density Starting at Eq. (3.14) and assuming z, s are given, the
transition density p(v|z, s) is obtained by reformulating the expression to

v — 82

= N(0,1), (C.5)

Oe

such that

Oe

ol = o (22, (C6)

Modeling density and distribution of v The density of measured values
pu(v) can be obtained by integrating p,(z) from series (C.1) over transition
density (C.6) according to

niw = | " (ol s)ps(2) dz
—o0 (C.7)

>~ 1 v — 8z
:/—ooo'e(ﬁ< o )pz(z)dz

Having two cases integral (C.7) yields

<1 v — 82 ffooo g%¢ (”;Z)Pz(z)dz for s =1,
/ < )pz(z) dz ) i
—o0 Oe¢ O¢ ffooo o%d) ('U;Z>pz(—z)dz fOI‘S:—l,
(C.8)

using the substitution z = —z for the second line, which moves the sign from
0%(;5 (%) into p,(—z). One can see that given the case s = —1 the density
pu(v) can be described in terms of p,(—z) which in turn only changes the sign
of k3 (and therefore ;) compared to s = 1. This property is used throughout
the subsequent derivations.

In principal, the integrals (C.8) can be solved in a straightforward manner
inserting the densities and applying Identity 2 [2, p. 115] with Hermite terms
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integrated over the given exponential factors. However, the resulting density
can also be established in an easier way using following argumentation.

As z and € are independent variates and v = sz + ¢, the cumulants of p,(v)
denoted by ¥; can be obtained by addition of respective cumulants

~ ~ 2 ~ ~
k1 =0, RKo=kKo+ 0., Kz =S5K3, Ka=RKa, .. (C.9)

Note that sign s appears for k3 to include both cases. Due to truncation higher
orders are not shown. Density p,(v) must therefore have the same form as ex-
pansion (C.1) with corresponding skewness and excess due to added cumulants,
such that one gets

wir- e () b () () |
C.10

By defining a noise coefficient a according to [2, p. 139]

K2
=,/— C.11
“= o (C.11)

resulting skewness and excess quantities for p,(v) can be expressed as

~ Eg SK3

3
N=35= 2y3/2 _ SNa
Ko + O
Ryt (matod) (C.12)
~ Kq g 4
Yo = = ————— ="70a".

73 (k2 +o?)?

Density p,(v) can therefore be expressed in terms of the original cumulants of
expansion (C.1) using the noise coefficient a giving

1 v
pv(v)* \/K2+GZ¢<\/1€2+O’Z>

3 4
71a v Yol v
1+s He + Hey | ———= ] +...|.
6 3<\/n2—|—ag) 24 4(«@—4—0?) ]

(C.13)

The resulting distribution function can be obtained by integration

Py(v) = / @)y (C.14)

— 00

k
The terms of p, (v) are easily integrated using (C.3) with ¢(z) Hey, (x) = (—1)’“%&@,
then performing integration on the k-th differential yielding order k£ — 1, and
then back-transforming again using (C.3).

Integrating the first term of (C.13) yields

v 1 Y z=v/y/Kk2+02
—— o = [ s
/—oo Ko + 0'62 Ko + 052

() dax

(C.15)

T=—00
v
\/I{2+0'62 ’
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using the substitution x = v'/y/k2 + 02. For the coeflicient 71 of (C.13) one
has

3 v / /

Y10 1 v v ,
s Hes | —— | dv
6 /;oo \/H2+0'62¢ <\/H2+a§> K <\/f<a2 +a€2>

o] a3 v/y/k2+02
i/
3 v/ r2to? 3
’Y16a / [(_1)3ddi(f)} Az (C.16)
3 2
_.na” o d p(x)
=5 (D

=S

¢(x) Heg (z) dx

— 00

=S

— 00

x=v/4/K2+0?

71a3 v v
=_—3 1) Heo | — | .
6 V ke + o2 VK2 +0?

Analogously, for the last term with coefficient v, one gets

4 v 1 ! 1
'72“/ ¢ Y Hey [ ———u | do
24 700\//’\324’0'62 \/52+U€2 ke + o2

(C.17)
o 772a4¢ v He v
24 VK2 + 02 ’ NE
Therefore the distribution function of (C.14) yields
v v
ke + 02 VK2 + 02
? ? (C.18)

ma® v yoat v
S 6 Heg<m>+ 21 He3<m>+
During later derivations, the sum of (C.25) is converted into an integral, such
that after substitution the quantile function P, !(-) evaluated at ®(z) is needed,
see also [2, p. 138, D.14].

As P,(v) is given by an expansion w.r.t. a normal distribution, its inverse
can be approximated using a Cornish-Fisher series assuming small deviations
from a normal distribution. The idea is given the case v ~ N(0,1) with Ko =1
and r; = 0 for i > 3, the series expansion for P, ! should be exact giving
P Y(®(z)) = x. For v defined by cumulants (C.9) the series needs correction
terms and rescaling, such that using expansion [2, p. 111, A.14] one gets

-1 2 71&3 '72a4
P (®(x)) = /Ko + 02 (:E +s : Hes (z) + 51 Hes (z) + > . (C.19)

Having defined the densities and distribution functions, the problem can be
formulated as follows.

Problem formulation A sum Sp of products of noisy ordered variates con-
taining v terms per summand can be expressed as

Sp= Y 2Bl 2b (C.20)

{ni,...,n,}
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where the vector P = (p1, ..., p,) denotes the positive exponents. Distinct sum-
mation indices are denoted by the set {ni,...,n,}. The goal is to provide a
generic solution to E [Sp] for arbitrary v and P (up to some order).

In order to apply certain integral identities during the derivation, the sum
has to be reordered. Defining mp as the permutation of z variates, such that for
each summand the ordering n; < ... < n; < ... < n, is always maintained with
the rightmost element being the largest. The sum (C.20) is rewritten

1% ni—1 TL,,71—1
SP = Z Z Z WP(an;A,...,ZnV;)\). (021)
ni=vng=r—1 n,=1

Evaluating the expectation E [Sp] requires modeling the joint probability
density of v ordered elements pp,,.. n,a(%1,...,2,). As an example, the joint
density for v = 2 and {n1,n2} = {k,{} will be constructed, which corresponds
to the sum of Eq. (3.9).

The variates z and z; are distributed with p,(z;) and p,(z;) using (C.1),
respectively, and each variate is independently disturbed by noise o2. Therefore
measured value v is realized with conditional density of Eq. (C.6) depending on
sign s.

For the measured values ordering 1 < k < < A is assumed with k denoting
the k-th best (largest) value. Given measured values v and v; with the distri-
bution function P,(v) of Eq. (C.18), the selection of the k-th and I-th largest
values gives the probabilities

Pr{V > v} =[1 — P,(v)]"?
Pr{v, <V <u} = [Py(v) — Py(vy)]F 1 (C.22)
Pr{V < v} = [Py(vx)]* %,
with [ — 1 denoting larger values than v; and A — k smaller values than v;. The
number of intermediate values is obtained by A—(A—k)—(I—1)—2=k—1—1.
Finally the joint density pg.x(2k, 21) can be given using p,(zx), p.(21), the

transition densities p(vg|zk, ), p(vi)z1, s) and probabilities from (C.22) by inte-
grating over all v, and v; according to

RO B | v — 8z \ 1 v — 82
P (2, 21) = pz(zk)pz(zl)/ / —¢ ( —¢
—oo Ju, Oe O¢ O¢ O¢

[1 = Py(u)]' ' [Po(r) — Po(wr)]* [Py (o)}
=Rk —1— 1)l —1)!

x Al

d’Ul d’l)k .
(C.23)
Note that the integration range vy < v; < co and integration order was set due
to the ordering k < I. The factor A!l/[(A— k)!(k —1—1)!(I —1)!] incorporates all
combinations, but excluding the irrelevant ones among the three groups (larger,

smaller and values in between). The result of Eq. (C.23) can be generalized to
the v-fold density
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VE — SZ,
pnl,...,nu;k(zlw-v / / alz Zk < b k>]
Vy—1
P,

[P, (vy1) — Py (vg)]e 1=t

1;[ (nk = nky1 — 1)

] dv, -+ -dvy .
(C.24)

Setting s = 1 yields the density derived by Arnold [2, p. 136, D.12], while
s = —1 will require some additional steps in order to apply Arnold’s equations.
The expectation value of sum (C.21) has to be calculated over density (C.24)
by integrating over all contributions of z

ni—1 ny_1—1
SP / / ’I’le:l/ nzzl/ 1 nz—l TrP Znh)\’” e A) (025)

x pn17~-.,nu;/\(217 vy 2y)dzy - day

Now one can insert density (C.24) and replace the v-fold sum by an additional
integral, similar to Eq. (2.15). The problem is reformulated as

_ ,LL! A—p (A > —1? T A—p—=1p P 2) da
Blse] = L () [ et ) - e et o,
(C.26)
with Ip(z) and s = £1 giving
s=1 i - N mp(z z
) o M l WAV IR
lH D2 (21) 1 --dzy du, - - - doy (C.27)

Ip() 5_—_1 ! jo(q)(m / / / / P21, 20)
[sz )6 (vk +zk)

By exchanging the sums with an integral, an intermediate result in [2, p. 138]
yields the upper integration bound P,(v;), see also Identity 1 [2, p.113] explain-
ing the transformation. After substitution and exchanging orders of integration,
the expression P, 1(®(z)) is the lower integration bound of vy in Ip(z), which
is the reason for deriving Eq. (C.19).

The subsequent derivations by Arnold aim to find an approximate solution
to the integration (C.27). As Eq. (C.28) differs only by the sign within the
transition density, Arnold’s results can be reused by transforming (C.28) into
the form of (C.27).

Starting with (C.28) the substitution z = —z is introduced for all v terms
and the switched integration bounds and minus sign of the differential cancel

dz, ---dzydv, - -doy . (C.28)
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each other. The function arguments change according to

| o [ [ ) [
Ip(z) =" 7/ / / / / (=21, .0 —2)
O¢ JP; Y (®(x)) Jus vy,—1 J—00 —o0

[ﬁ p(—21) (”k — Z’“)] dz, - -dzdv, - - doy . (C.29)
k=1

Oe

The density p,(—zx) was derived in Eq. (C.4) and yields a negative sign for the
resulting skewness 3 = —ks /ng ®. The resulting distribution function P,(v)
due to density (C.7) is given in (C.18) and its quantile function P, ! in (C.19).
Both yield a negative sign for the resulting skewness 7, = —x3/ (k2 +02)%/2, see
relations (C.12).

Considering the permutation mp(—z1, ..., —z,) with negative arguments one
can construct a simple example. Assuming P = (1,1,1) the permutation with
positive and negative arguments, respectively, yields

m(1,1,1)(21, 22, 23) = 212023, Wwith z3 largest,
11,1y (=21, =22, —23) = (—=21)(—22)(—23), with (—23) smallest, (C.30)

= (—1)>212023
Therefore, for a generic vector P = () we have
mp(—21, 0 —2) = (=D)Plhizp (2, ..., 2,). (C.31)

Using the results (C.4) and (C.31) expression (C.29) changes to

w1 1 oo oo oo oo oo
Ip(z) =" 7/ / / / / (—=DIPhap(z, .., 2)
o¢ Pyt (®(x)) Jour vy—1 J —00 —00

[H p—z(21)0 (ng_ Zk )1 dz, ---dzydv, - - doy . (C.32)
k=1

€

As a conclusion, the obtained result (C.32) has the form of (C.27), where the
quantities p_,(z;) and P, 1(®(z)) differ only be the sign of the skewness value
k3 (and therefore 1), neglecting higher orders. Depending on P the sign of the
permutation operator may also change. Still, the same solution method can be
applied to both equations with s = +1.

The final result of Arnold’s derivation including the modification due to sign
of z is summarized in Eq. (3.17).
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Appendix D Identities

Identity 1 For real parameters a and b we have

1 o0 1,2
— t2e= 20 ®(at + b) dt
V4 27T [oo ( )

D.1
b 1 a’b _1_ b2 (D-1)
=& — e 21+a?,
(1+a2)1/2 V27 (1 + a2)3/2
Proof It is shown starting from the known identity [5, p.330, A.9]
oo 2 272
\/1 / Pe—bte-blattn)? g L LFAOT AL 40 p o)
21 J oo (14 a?)5/2
Both sides can be integrated with respect to b, such that
1™, ae (Y i
\/j t2€ 2t € 2(at+b) dbdt
21 J - —o0
T (D.3)

v’ 21,2
= L+a® ,  a% i @
(1+a2)52 " (1+a2)5/2

Integration of left-hand side yields simply
L/OO t2e— 2t /b/ ez (atth)* qp 4t = /OO e 2" d(at + 1) dt, (D.4)
\Y Q'IT —00 —00 —0o0 ’

which is the left side of (D.1) by renaming b = ¥, up to constant 1/+/2.
Considering the right-hand side the first term yields

1 Vo1 2 V2m v
v [ e () 09

For the second term of rhs following integral is used

using the substitution y = % with dz = s2dy /z. The second term of rhs of
(D.3) is partially integrated using (D.6), such that

a? 4 1 b2
1+ 2)5/2/ b {be_2 1+a2} db
a —00
2 2

1 bl b/ 1 2
:M{{‘b(”“)“”"z] +/ <1+a2>62¢*db} (D.7)
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Y L T3T1ralz
= e 21+a? 4 g (1+a2)1/2

0]
(1+a2)3/2 1+a

Adding results (D.5) and (D.7) for the rhs, renaming b = b’ and dividing by
V2w yields the result (D.1). The results can be verified by differentiating (D.1)
with respect to b and showing that (D.2) is obtained again.
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Appendix E Additional Plots

R=100 y; =—6.55 (i=1)

\\ $ SIM
———— A3

\‘
e

*%‘.
10
o
R=1y,=—0.0655 (i=1)

“e

o
\
.
*.*
L AT Y
10 15 20

& -0.5

15 20

-1

&.-0.005

-0.01
0

R=100 y; =—6.55

15

15

R=10 y,=—0.655 (i=1)

«10-% R=0.1 y;=—0.00655

Figure 63: Additional plot of Sec. 3.5 for (10/10,40)-ES with N =100, A =1

and o = 2m.

154



A=1 R=100 A=1R=10

5 L PP
i ML /‘ Q.t.\’\
~ N ~
* §, \’\ * o ’\ \*\
He \Ne " B ~§. ’
9. 0\ NS SN
2 RN
N , , , N, , , , kN
0 5 10 15 20 0 5 10 15 20
o* o*
A=1R=1 A=1R=0.1
"S- a 1=
b & T 0 “ﬂ "“}\
& S < ‘& N,
& b SN < RS
o o x o
= S =5 (gf e
> (Y \s > ,$ \’
e .
\? -5k 0
0 5 10 15 20 0 5 10 15 20
a* o*

Figure 64: Additional plot of Sec. 3.5 for (10/10,40)-ES with N =100, A =1
and o = 27.
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