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1 Rastrigin Function and Quality Gain

1.1 General Introduction

For an input vector y = (y1, y2, ..., yN ) the Rastrigin fitness f is defined as

f(y) =

N∑
i=1

fi(yi) =

N∑
i=1

y2i +A−A cos(αyi), (1.1)

with the number of dimensions N , the oscillation strength A and a frequency
parameter α. The local quality gain Qy(x) at a position y due to the isotropic
mutation x ∼ N(0, σ2) can be written as [5, p. 27]

Qy(x) = f(y + x)− f(y), (1.2)

and yields in the case of fitness minimization a negative value Qy < 0. For inde-
pendent components the fitness gain can be calculated for each i-th component
of (Qy(x))i = Qi such that

Qy(x) =

N∑
i=1

Qi(xi). (1.3)

Thus, the derivation can be done for a single component and we get

Qi(xi) = fi(yi + xi)− fi(yi) (1.4)

fi(yi) = y2i +A−A cos (αyi) (1.5)

fi(yi + xi) = (yi + xi)
2 +A−A cos (α(yi + xi)). (1.6)

Now we can apply the following trigonometric identity

cos (α(yi + xi)) = cos (αyi) cos (αxi)− sin (αyi) sin (αxi). (1.7)

This will be useful later for the calculation of the expectation value with respect
to the mutation xi. By defining two position and fitness dependent constants

ci := A cos (αyi), and si := A sin (αyi), (1.8)

one arrives at the i-th quality gain as a function of location yi and mutation xi

Qi(xi) = x2
i + 2yixi +A cos (αyi)

−A cos (αyi) cos (αxi) +A sin (αyi) sin (αxi)

= x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi), (1.9)

For analytic derivations of the progress rate, a linearized version of Qi with
respect to the mutation xi will be necessary. The quality gain can be locally ap-
proximated by Taylor expanding the function at location yi for small mutations
xi according to

fi(yi + xi) = fi(yi) +
∂fi
∂yi

xi +
1

2

∂2fi
∂y2i

x2
i +O(x3

i )

Qi(xi) = fi(yi + xi)− fi(yi) =
∂fi
∂yi

xi +
1

2

∂2fi
∂y2i

x2
i +O(x3

i ).

(1.10)
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First Order The first derivative is calculated as

f ′
i :=

∂fi
∂yi

=
∂

∂yi

(
y2i +A−A cos(αyi)

)
=

∂

∂yi
y2i +

∂

∂yi
(A−A cos(αyi))

= 2yi + αA sin (αyi).

(1.11)

The following quantities are defined

ki := 2yi (1.12)

di := αA sin (αyi), (1.13)

such that

f ′
i = ki + di. (1.14)

This decomposition was introduced to distinguish the quadratic term derivative
ki from the oscillation term derivative di, see also Fig. 1. These two components
will reappear later during the progress rate derivations. The linearized quality
gain for the first order approximation yields

Qi ≈ f ′
ixi = (ki + di)xi = (2yi + αA sin (αyi))xi. (1.15)

Figure 1: Rastrigin and quadratic function with their respective derivatives at
yi = 1.25. In general the linearization using f ′

i is highly position dependent due
to the oscillation and only useful for very small mutations. For larger mutations
the spherical approximation using ki is more suitable. This will be important
during later derivations.

Second Order Referring to Eq. (1.10) the second derivative is evaluated

f ′′
i :=

∂2fi
∂y2i

= 2 + α2A cos (αyi), (1.16)

5



such that the second order approximation yields

Qi ≈ f ′
ixi +

1

2
f ′′
i x

2
i

≈ (2yi + αA sin (αyi))xi +
1

2
(2 + α2A cos (αyi))x

2
i .

(1.17)

This approximation is used deriving Eq. (1.36), which is a sphere model of the
Rastrigin function for both small mutations and small residual distance.

1.2 Expected Quality Gain and Variance

For the progress rate calculation the expected quality gain and variance due to
the mutation strength σ is needed. This can be formulated as

EQ = E [Qy(x)] =

N∑
i=1

E [Qi] (1.18)

D2
Q = Var [Qy(x)] =

N∑
i=1

Var [Qi] =

N∑
i=1

E
[
Q2

i

]
− E [Qi]

2
. (1.19)

In order to calculate EQ and D2
Q, the quantities E [Qi], E

[
Q2

i

]
and E [Qi]

2

need to be evaluated, starting from the results of Eq. (1.9). We will arrive at
expressions containing different expectation values of trigonometric functions,
which were calculated in Appendix A and are summarized in Eqs. (1.26) and
(1.27).

1.2.1 Expected Value

Starting the determination of quantity E [Qi] using Qi from Eq. (1.9) we have

E [Qi] := EQi
= E

[
x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi)

]
= σ2 + ci(1− E [cos (αxi)]),

(1.20)

since E [sin (αxi)] and E [xi] are both zero (odd parity). After reinserting the
definitions for ci and si and the result for E [cos (αx)] we obtain

Expected value of quality gain

EQ =

N∑
i=1

EQi
=

N∑
i=1

σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
(1.21)

1.2.2 Variance

From the result above E [Qi]
2
can be easily obtained

E [Qi]
2
=
(
σ2 + ci − ci E [cos (αxi)]

)2
, (1.22)
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The more involving term E
[
Q2

i

]
will be evaluated next. Squaring Qi we

obtain

Q2
i =

(
x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi)

)2
= x4

i + 4y2i x
2
i + c2i + c2i cos

2 (αxi) + s2i sin
2 (αxi) + ...

− 2cix
2
i cos (αxi)− 2c2i cos (αxi) + 4siyixi sin (αxi) + 2cix

2
i + ...

− 2cisi cos (αxi) sin (αxi)− 4ciyixi cos (αxi) + ...

+ 2six
2
i sin (αxi) + 2cisi sin (αxi) + 4ciyixi + 4yix

3
i .

(1.23)

We know that cos(x) is an even function of x, while sin(x) is odd. This can be
easily seen by looking at the corresponding power series. We also know that for
even and odd functions following product relations hold

• (even) × (even) = (even),

• (even) × (odd) = (odd),

• (odd) × (odd) = (even).

Since the mutations are N(0, σ2) normally distributed, all odd moments are
zero. Thus one can conclude that all terms of Q2

i containing odd powers of
xi will be zero. The expression of Q2

i is already rearranged in a way that all
odd powers are given in the last two lines of Eq. (1.23). These terms can be
discarded. Thus the expected value reads

E
[
Q2

i

]
= 3σ4 + 4y2i σ

2 + c2i + c2i E
[
cos2 (αxi)

]
+ s2i E

[
sin2 (αxi)

]
+ ...

− 2ci E
[
x2
i cos (αxi)

]
− 2c2i E [cos (αxi)] + 4siyi E [xi sin (αxi)] + 2ciσ

2.

(1.24)

Given Eqs. (1.22) and (1.24) the difference E
[
Q2

i

]
− E [Qi]

2
is evaluated.

After reinserting the definitions of ci and si and collecting terms the result is

D2
Q =

N∑
i=1

E
[
Q2

i

]
− E [Qi]

2

=

N∑
i=1

2σ4 + 4y2i σ
2 + ...

+A2 sin2 (αyi)Var [sin (αxi)]

+A2 cos2 (αyi)Var [cos (αxi)]

− 2A cos (αyi) E
[
x2 cos (αxi)

]
+ 2Aσ2 cos (αyi) E [cos (αxi)]

+ 4Ayi sin (αyi) E [x sin (αxi)] .

(1.25)

The terms containing trigonometric functions are calculated in Appendix A
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and yield

E [cos (αx)] = exp

[
−1

2
(ασ)2

]
E
[
cos2 (αx)

]
=

1

2

(
1 + exp

[
−1

2
(2ασ)2

])
E
[
sin2 (αx)

]
=

1

2

(
1− exp

[
−1

2
(2ασ)2

])
E [x sin (αx)] = ασ2 exp

[
−1

2
(ασ)2

]
E
[
x2 cos (αx)

]
= (σ2 − α2σ4) exp

[
−1

2
(ασ)2

]
(1.26)

with variances Var [(·)] = E
[
(·)2
]
− E [(·)]2

Var [cos (αx)] =
1

2

(
1 + exp

[
−1

2
(2ασ)2

])
− exp

[
−(ασ)2

]
Var [sin (αx)] = E

[
sin2 (αx)

]
=

1

2

(
1− exp

[
−1

2
(2ασ)2

]) (1.27)

By inserting results (1.27) and (1.26) into (1.25) one gets

D2
Q =

N∑
i=1

2σ4 + 4y2i σ
2 + ...

+A2 sin2 (αyi)
1− e−2(ασ)2

2

+A2 cos2 (αyi)
1 + e−2(ασ)2 − 2e−(ασ)2

2

− 2A cos (αyi)(σ
2 − α2σ4)e−

(ασ)2

2

+ 2Aσ2 cos (αyi)e
− (ασ)2

2

+ 4Ayi sin (αyi)ασ
2e−

(ασ)2

2 .

(1.28)

The trigonometric identities cos2(x)+sin2(x) = 1 and cos2(x) = 1/2+cos(2x)/2
can be applied to further simplify the equation. After collecting terms, a sim-
plified expression for the variance is obtained

Variance of quality gain

D2
Q =

N∑
i=1

2σ4 + 4y2i σ
2 +

A2

2

[
1− e−(ασ)2

] [
1− cos(2αyi)e

−(ασ)2
]

+ 2Aασ2e−
1
2 (ασ)

2
[
ασ2 cos(αyi) + 2yi sin(αyi)

]
.

(1.29)
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Spherical Approximation

For vanishing oscillation amplitude or frequency, i.e. A = 0 or α = 0, the
Rastrigin function degenerates to the spherical function f(y) =

∑N
i=1 y

2
i with

quality gain Qsph =
∑N

i=1 x
2
i +2yixi and we obtain the known variance relation

D2
sph =

N∑
i=1

Var [Qi] =

N∑
i=1

E
[
Q2

i

]
− E [Qi]

2

=

N∑
i=1

E
[
(x2

i + 2yixi)
2
]
− E

[
x2
i + 2yixi

]2
=

N∑
i=1

2σ4 + 4y2i σ
2.

= 4R2σ2 + 2Nσ4,

(1.30)

using the relation
∑N

i=1 y
2
i = ∥y∥2 = R2 and xi ∼ N (0, σ2). Therefore the

quality gain variance can be expressed as a function of the residual distance R.

Approximation for Large Mutations and large R

For large mutations strengths σ given some α such that (ασ)2/2 ≫ 1, the
last two lines of Eq. (1.29) are suppressed exponentially. This means that the
trigonometric terms, i.e. the local fitness structure, has vanishing contribution
for σ →∞

D2
Q ≃

N∑
i=1

[
2σ4 + 4y2i σ

2 +
A2

2

]
= 2Nσ4 + 4R2σ2 +

NA2

2

= D2
sph +

NA2

2

(1.31)

using the result of Eq. (1.30). Therefore the variance for large mutations (or
large R) consists of a spherical contribution D2

sph and a Rastrigin-specific term
due to the oscillation defined as

σ2
R =

NA2

2
. (1.32)

Analogously, the same result is obtained for large oscillation frequency α given
a mutation strength σ.

Approximation for Small Mutations and Small R

In contrast to the derivation of (1.31), a spherical model for the variance can also
be derived assuming small mutation and residual distance, which corresponds
to a sphere model of the global attractor depending on the fitness parameters
A and α.

To this end, the second order approximation for small mutations of the
quality gain from Eq. (1.17) is needed. Additionally, a Taylor expansion of
the derivative terms f ′

i and f ′′
i for small yi (and therefore small R) has to be

performed. The goal is to discard higher order terms O(y3i ) and to relate second

order terms with the radius according to
∑N

i=1 y
2
i = R2.
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Starting from (1.17) the variance of a second order approximation can be
evaluated as

Var [Qi] = Var

[
f ′
ixi +

1

2
f ′′
i x

2
i

]
= E

[(
f ′
ixi +

1

2
f ′′
i x

2
i

)2
]
− E

[
f ′
ixi +

1

2
f ′′
i x

2
i

]2
= (f ′

i)
2σ2 +

3

4
(f ′′

i )
2σ4 − 1

4
(f ′′

i )
2σ4

= (f ′
i)

2σ2 +
1

2
(f ′′

i )
2σ4.

(1.33)

Taylor-expansion of f ′
i(yi) from (1.15) and f ′′

i (yi) from (1.17) and squaring both
quantities yields

(f ′
i(yi))

2 =
(
2yi + αA

[
αyi +O(y3i )

])2
(f ′′

i (yi))
2 =

(
2 + α2A

[
1− (αyi)

2/2 +O(y4i )
])2

.
(1.34)

As terms of at least O(y3i ) are neglected, the approximation yields

(f ′
i(yi))

2 ≈ (2 + α2A)2y2i

(f ′′
i (yi))

2 ≈ (2 + α2A)2 − α4A(2 + α2A)y2i .
(1.35)

Inserting (1.35) into (1.33) and summing over N terms one gets

D2
Q =

N∑
i

Var [Qi]

= (2 + α2A)2σ2
N∑
i

y2i +
σ4

2

N∑
i

(2 + α2A)2 − α4A(2 + α2A)y2i

= (2 + α2A)2σ2R2 +
σ4

2

(
N(2 + α2A)2 − α4A(2 + α2A)R2

)
= (2 + α2A)2

(
σ2R2 +

Nσ4

2

)
+O(σ4R2)

(1.36)

which is a spherical model of the Rastrigin variance for small R and small
mutations by neglecting higher orders thereof. The term (2 + α2A)2 serves as
a correction of the standard sphere variance from (1.30) and setting α = 0 or
A = 0 recovers it.

Assuming constant σ∗ = σN/R in Eq. (1.36) one gets

D2
Q(σ

∗) = (2 + α2A)2R4

(
σ∗

N

)2(
1 +

σ∗2

2N

)
+O

(
σ∗4R6

N4

)
, (1.37)

which can be applied to both limiting cases N → ∞ (constant R) and R → 0
(constant N).

1.3 Normal Approximation of Quality Gain Distribution

When the progress of an Evolution Strategy is modeled an assumption for the
distribution of the realized quality gain is needed. As described in more detail

10



in [5, Ch. 4], a common approach is to assume a normally distributed quality
gain. This is justified for large search spaces N → ∞ by the CLT provided all
N components are independent and identically distributed, which is the case
for Rastrigin’s function.

Starting at a position y and performing one random mutation step x ∼
σN (0,1), a random quality gain Q is realized. The normal approximation
assumes that this mutation induced quality gain is distributed with mean EQ =
E [Qy(x)] and variance D2

Q = Var [Qy(x)] given a location y and mutation
strength σ. Fitness parameters such as A and α are also relevant and assumed
to be implicitly given. Introducing a standardized random variable Z we have

Z =
Q− EQ

DQ
, (1.38)

which translates to

Pr{Z ≤ z} = Pr

{
Q− EQ

DQ
≤ z

}
N→∞−→ Φ(z) = Φ

(
q − EQ

DQ

)
. (1.39)

given the respective target values z and q. Denoting the cumulative distribution

function of the quality gain as PQ(q) and the corresponding density
dPQ(q)

dq =

pQ(q) we obtain the following approximations for N →∞

PQ(q) ≃ Φ

(
q − EQ

DQ

)
(1.40)

pQ(q) ≃
1

DQ
ϕ

(
q − EQ

DQ

)
=

1√
2πDQ

exp

[
−1

2

(
q − EQ

DQ

)2
]
. (1.41)

Within the normal approximation the inverse P−1
Q (p) given some probability

p can be easily obtained by using the quantile function Φ−1(p) of the normal
distribution. This relation will be used later to obtain a quality gain for some
given probability using

q = EQ +DQΦ
−1(p). (1.42)

1.4 Resulting Quality Gain Distributions

Using the previously obtained results the quality gain distribution at location y
due to all N components being mutated with strength σ is given by Eq. (1.40)
and following relations

Quality gain distribution

PQ(q) ≃ Φ

(
q − EQ

DQ

)
, with

EQ = Eq. (1.21)

D2
Q = Eq. (1.29)

(1.43)
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During the progress rate derivation for the i-th component, a quality gain
distribution is needed conditioned on the i-th mutation component xi being
fixed, and N − 1 components being mutated. The distribution function now
changes to

PQ(q|xi) = Φ

(
q − E [Qy|xi]√
Var [Qy|xi]

)
, (1.44)

for which expected value and variance are evaluated. First the quality gain from
Eq. (1.3) is split into two terms

Qy (xi, (x)j ̸=i) =

N∑
i=1

Qi(xi) = Qi(xi) +
∑
j ̸=i

Qj(xj). (1.45)

Now the expected value and variance with respect to xi fixed and N−1 variable
components (denoted by index j) can be taken.

Expected Value The expected value E [Qi] = Qi remains constant and we
obtain

E [Qy|xi] =: EQ|xi
= Qi +

∑
j ̸=i

E [Qj ]

= x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi)

+
∑
j ̸=i

σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
= x2

i + 2yixi + ci(1− cos (αxi)) + si sin (αxi) + Ei, (1.46)

with Ei defined as the expectation over N − 1 terms excluding the i-th

Ei :=
∑
j ̸=i

σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
. (1.47)

For the progress rate determination an analytic integration will be done over
the i-th mutation component. This will require linearization of Eq. (1.46) with
respect to xi. Using result (1.15) the approximation yields

EQ|xi
= x2

i + 2yixi + ci(1− cos (αxi)) + si sin (αxi) + Ei

≈ f ′
ixi + Ei.

(1.48)

Variance Returning to Eq. (1.45), the variance of a constant Var [Qi] = 0 and
we have

Var [Qy|xi] =: D
2
i =

∑
j ̸=i

Var [Qj ] , (1.49)

with D2
i denoting the variances of N − 1 variable terms excluding the i-th, see

also Eq. (1.29). The results can be summarized as follows
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Quality gain distribution given xi

PQ(q|xi) = Φ

(
q − EQ|xi

Di

)
, with

EQ|xi
=

{
Non-linear Eq. (1.46),

Linearized Eq. (1.48),

Di = Eq. (1.49).

(1.50)

1.5 R-Dependent Formulation

1.5.1 Exact Averaging

During later derivations, an R-dependent formulation of the progress rate will be
needed. This will be essential for the study of the convergence behavior, where
the overall residual distance R = ∥y∥ is more important than the individual
position values of y, assuming that the global optimizer is approached in an
isotropic way.

The fitness function, its mutation induced variance and the later derived
progress rate are all quantities depending on the location y. Since the Rastrigin
fitness contains the cosine of yi, the derived quantities also contain trigonometric
functions of the position. The approach of formulating the expressions as R-
dependent will be shown on the Rastrigin fitness (1.1), but are also applicable
to the variance and later the progress rate.

Given a certain R2 =
∑

i=1 y
2
i , the Rastrigin function can be written as

f(y, R) =

N∑
i=1

y2i +A−A cos(αyi) = R2 +NA−A

N∑
i=1

cos(αyi)

= R2 +NA+ T (y),

(1.51)

with

T (y) = −A
N∑
i=1

cos(αyi). (1.52)

The main issue of T (yi) is that given some R there are different Cartesian
realizations y thereof leading to different fitness values. As we are interested
in quantities which are expected values, such as the progress rate or the mean
value dynamics of Sec. 5, one is interested in the strategy’s expected behavior
and the function average is a natural solution candidate. Therefore the first
approach is averaging the function T over the (hyper-)sphere with R = ∥y∥.
Another argumentation assuming larger dimensionality N is that given R the
individual fluctuations of the positions should be negligible, if the sum is taken
over many components. Canceling effects should occur, as some components
contribute positively and others negatively to the overall average fitness level.

Averaging (1.52) could be achieved for N = 1 and N = 2 in an exact way.
For N ≥ 3 no closed form solution of the resulting integrals could be found to
this point.
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Starting with N = 1 and requiring R = ∥y1∥, the two possible solutions are
y1 = ±R. The average of T (denoted with overline) over two points therefore
yields

T (R) = −A

2

∑
yi=±R

cos(αyi) = −
A

2
(cos(αR) + cos(−αR))

= −A cos(αR).

(1.53)

The calculation of the average for N > 1 is more involved, as one has to
integrate over the (N−1)-dimensional sphere-surface SN (embedded in N di-
mensions) using some parametrization s according to

T (R) =
1

SN

∫
∥y∥=R

T (y) ds , (1.54)

with the sphere surface area

SN =
2πN/2RN−1

Γ(N/2)
. (1.55)

For N = 2 the parametrization is defined as (y1, y2) = (R cosϕ,R sinϕ) with

derivative vector d(y1,y2)
dϕ = (−R sinϕ,R cosϕ) on ϕ ∈ [0, 2π]. Additionally one

has S2 = 2πR. Therefore, inserting the parametrization into (1.54) and using

path element length
∥∥∥d(y1,y2)

dϕ

∥∥∥ = R one has

T (R) =
−A
2πR

∫ 2π

0

T (y1(R,ϕ), y2(R,ϕ))

∥∥∥∥d(y1, y2)dϕ

∥∥∥∥dϕ
=
−A
2π

∫ 2π

0

[cos(αR cosϕ) + cos(αR sinϕ)] dϕ .

(1.56)

The integrals obtained in (1.56) can be solved in terms of Bessel functions of the
first kind Jn(x) with n ≥ 0 by applying the integral identity [1, p. 360, 9.1.18]

J0(x) =
1

π

∫ π

0

cos(x sin t) dt =
1

π

∫ π

0

cos(x cos t) dt . (1.57)

Due to the periodicity, integrating cos t and sin t over [0, π] yields the same
contribution as the integration over [π, 2π]. Thus, identity (1.57) is reformulated
by including the second interval as

2J0(x) =
1

π

∫ 2π

0

cos(x sin t) dt =
1

π

∫ 2π

0

cos(x cos t) dt . (1.58)

Comparing (1.56) with (1.58) and setting x = αR, the expression (1.56) is
evaluated as

T (R) =
−A
2π

[2πJ0(αR) + 2πJ0(αR)] = −2AJ0(αR). (1.59)

The Rastrigin fitness averaged over R can therefore be summarized as

F (R) = R2 +NA+ T (R) =

{
R2 +A(1− cos(αR)) for N = 1

R2 + 2A(1− J0(αR)) for N = 2.
(1.60)
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An examplary evaluation of (1.60) is shown in Fig. 2. For N ≥ 3 no closed
form solution is available at this point. Deriving the progress rate, many ap-
proximations rely on the large dimensionality assumption for N , such that the
analytic approach is unfeasible, if no generic solution is available. Furthermore,
there are additional terms to be evaluated when averaging other functions such
as the variance, e.g. T (yi) = yi sin (αyi) in result (1.29). Therefore a different
approach is taken for the R-dependent formulation for large N .

Figure 2: Average Rastrigin fitness value as function of R for N = 1 (left)
and N = 2 (right). The green curves are the analytic results from (1.60). The
black curves are experimentally obtained by choosing randomly and isotropically
yi ∼ Ni(0, 1), normalizing to be ∥y∥ = R and averaging over 1000 trials.

1.5.2 Averaging Using Isotropic Random Positions

For a different averaging approach, one can assume that for any given R and
N the positions yi should be independent and normally distributed around the
optimizer with zero mean and standard deviation σy, such that

yi ∼ σyN (0, 1). (1.61)

Following the requirement R2 =
∑

i y
2
i , the property should hold in expectation

R2 = E

[
N∑
i=1

y2i

]
= σ2

y E

[
N∑
i=1

N 2
i (0, 1)

]
= σ2

y E
[
χ2
N

]
= σ2

yN. (1.62)

It was used that the sum overN independent standard normally distributed vari-
ables squared is equal to the chi-squared distributed variable χ2

N with E
[
χ2
N

]
=

N . Solving (1.62) for σy, expression (1.61) can be rewritten as

yi ∼
R√
N
N (0, 1). (1.63)

Having locations distributed according to (1.63) can be justified for an ES op-
erating with large mutation strengths relative to the sphere function. Large
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(normalized) mutations are obtained on the sphere for σ∗ smaller (but close)
to the second zero of the progress rate, see e.g. [5, Eq. (6.54)]. The limit of
large mutations is also important on the Rastrigin function to minimize the
probability of local convergence.

Having established (1.63) the idea will be to approximate the sum over the
trigonometric yi-dependent terms of fitness (1.1) and variance (1.29) as random
variables. In this way, the oscillation part is replaced by a variable with expected
value and fluctuations. Considering the fitness as an example, one can define a
new random number Y for the sum over the cosines

Y :=

N∑
i=1

cos(αyi), (1.64)

such that the fitness is rewritten containing a random part

f(R, Y ) = R2 +NA−AY. (1.65)

As the terms within the sum are i.i.d. variates, the CLT can be applied according
to

Y − E [Y ]√
Var [Y ]

N→∞∼ N (0, 1), (1.66)

with asymptotic equality Y ∼ N (E [Y ] ,Var [Y ]). Furthermore it will be shown
that E [Y ] scales with N and the standard deviation

√
Var [Y ] only with

√
N .

Hence, for large N the fluctuations of Y are negligible with following limit√
Var [Y ]

E [Y ]

N→∞−→ 0, (1.67)

such that Y ∼ E [Y ]+
√
Var [Y ]N (0, 1) can be (deterministically) approximated

as

Y ≈ E [Y ] . (1.68)

Applying (1.68) by taking the expected value of (1.65) yields

f(R) := E [f(R, Y )|R]

= R2 +NA−AE [Y ] .
(1.69)

The expression f(R) will be a function of R with removed yi-dependency, which
is desired. This approach is analogously applicable to the trigonometric terms
of variance (1.29), which are summed over N components.

The relevant sums to be evaluated are over the terms cos (αyi), cos(2αyi)
and y sin (αyi), respectively. For each sum the limit behavior (1.67) needs to be
investigated.

For the expectations and variances over the sums of trigonometric terms the
results from Appendix A.6 with yi ∼ N (0, σ2

y) with σy = R√
N

are applicable.
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Given aforementioned results, ratio (1.67) can be evaluated as follows

Var
[∑N

i=1 cos(αyi)
] 1

2

E
[∑N

i=1 cos(αyi)
] =

(
1
2 + 1

2e
− 1

2
(2αR)2

N − e−
(αR)2

N

) 1
2

√
Ne−

1
2

(αR)2

N

N→∞−→ 0 (1.70)

Var
[∑N

i=1 cos(2αyi)
] 1

2

E
[∑N

i=1 cos(2αyi)
] =

(
1
2 + 1

2e
− 1

2
(4αR)2

N − e−
(2αR)2

N

) 1
2

√
Ne−2

(αR)2

N

N→∞−→ 0 (1.71)

Var
[∑N

i=1 yi sin(αyi)
] 1

2

E
[∑N

i=1 yi sin(αyi)
]

=

(
1
2 −

1
2e

− 1
2

(2αR)2

N + 2α2R2

N e−
1
2

(2αR)2

N − α2R2

N e−
(αR)2

N

) 1
2

αRe−
1
2

(αR)2

N

N→∞−→ 0. (1.72)

Note that the limit considerations hold for constant R and for a scaling relation
R2 = N , see Eq. (1.62). For constant R the exponential factors yield “1” in the
limit N →∞, such that the numerators of (1.70), (1.71), and (1.72) vanish. The

denominators of (1.70) and (1.71) are also suppressing the ratio withO
(
1/
√
N
)
,

while the denominator of (1.72) remains constant. For R2 = N the exponentials

yield non-zero α-dependent values and all ratios vanish with O
(
1/
√
N
)
.

Therefore the approximation (1.68) is justified for all corresponding terms
of fitness and variance. Applying the expected value (A.32) to expression (1.69)
yields the R-dependent fitness for large N

f(R) ≃ R2 +NA

(
1− e−

1
2

(αR)2

N

)
. (1.73)

Analogously, the expected value (A.32) can be applied to the sum over the cosine
terms of the y-dependent quality gain expectation value (1.21). Therefore one
obtains the R-dependent formulation as

EQ(R, σ) = Nσ2 +NAe−
1
2

(αR)2

N

(
1− e−

(ασ)2

2

)
. (1.74)

Furthermore, one can apply (A.32), (A.33), and (A.34) to the sum over the
trigonometric terms of variance (1.29), which yields the R-dependent variance
formula

D2
Q(R, σ) ≃ 4R2σ2 + 2Nσ4 +

NA2

2

[
1− e−(ασ)2

] [
1− e−(ασ)2e−2

(αR)2

N

]
+ 2Aασ2e−

1
2 (ασ)

2

[
Nασ2e−

1
2

(αR)2

N + 2αR2e−
1
2

(αR)2

N

]
= 4R2σ2 + 2Nσ4 +

NA2

2

[
1− e−(ασ)2

] [
1− e

−α2
(
σ2+2R2

N

)]
+ 2NAα2σ2e

−α2

2

(
σ2+R2

N

) [
σ2 + 2

R2

N

]
.

(1.75)
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Figures 3 and 4 show the simulated average function value compared to the
results (1.73) and (1.75), respectively.

From result (1.75) one can easily see, that the following inequality holds for
the sphere variance derived in (1.30)

D2
sph(R, σ) ≤ D2

Q(R, σ), (1.76)

which is valid within the limit N → ∞ applying the CLT. Setting A = 0 or
α = 0 recovers the sphere variance. Different approximations are compared in
Fig. 5.

1.5.3 Transition Region

From Figures 3 and 4 one can observe that fitness and quality gain variance
exhibit a transitional region between two log-linear regimes. Within the two
regimes (small and large R, respectively) the functions behave sphere-like with
different prefactors. For small R the global basin is dominating and can be
modeled by a quadratic function. For large R the overall quadratic structure of
the fitness is dominating. Therefore within the transitional region the influence
of the local minima landscape is significant.

Given fitness result of (1.73), for small R a Taylor expansion can be per-
formed giving

f(R) = R2 +NA

(
1− e−

1
2

(αR)2

N

)
= R2 +NA

(
1−

[
1− (αR)2

2N
+O

(
R4
)])

= R2 +
Aα2R2

2
+O

(
R4
)

= R2

(
1 +

Aα2

2

)
+O

(
R4
)
.

(1.77)

Conversely, for large R the exponential can be neglected. Additionally, the
term NA is negligible compared to R2. The R-dependent Rastrigin fitness can
therefore be quadratically approximated as

f(R) =

{
R2
(
1 + Aα2

2

)
for small R

R2 for large R.
(1.78)

The exponential function can be interpreted as the source term of the transition.
One way of defining the transition at residual distance Rtr is to look at the
attenuation of the exponential function e−δ with some value δ > 0, such that

e−δ !
= e−

1
2

(αRtr)2

N , such that

Rtr =

√
2δN

α
.

(1.79)

The result of (1.79) is shown in Fig. 3. The scaling relation R ∼
√
N will be

used throughout the report, as it describes how the “interesting” region with
high influence of local minima scales as dimensionality N is increased.
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For the variance D2
Q in Fig. 4, a transitional region can also be observed for

given constant σ∗. The spherical limits were already calculated in (1.31) and
(1.36). Inserting σ = σ∗R/N into (1.75) yields the variance as a function of σ∗

and R giving

D2
Q(R, σ∗) = 4R2

(
σ∗R

N

)2

+ 2N

(
σ∗R

N

)4

+
NA2

2

[
1− e−(ασ∗R

N )2
] [

1− e
−α2

(
(σ∗R

N )
2
+2R2

N

)]
+ 2NAα2

(
σ∗R

N

)2

e
−α2

2

(
(σ∗R

N )
2
+R2

N

) [(
σ∗R

N

)2

+ 2
R2

N

]
,

(1.80)

such that after simplification one obtains the Rastrigin variance in terms of σ∗

as

D2
Q(R, σ∗) = 4R4

(
σ∗

N

)2 [
1 +

σ∗2

2N

]
+

NA2

2

[
1− e−(

αRσ∗
N )

2] [
1− e

−(αR)2
[
(σ∗

N )
2
+ 2

N

]]
+ 2NAα2R4

(
σ∗

N

)2
[(

σ∗

N

)2

+
2

N

]
e
− (αR)2

2

[
(σ∗

N )
2
+ 1

N

]
.

(1.81)

The transition point for result (1.81) is also defined in terms of an exponential
factor in such a way, that for σ∗ = 0 result (1.79) is obtained again. Considering
the exponential factor of the last term of (1.81) one can define

e−δ !
= e

− (αRtr)2

2

[
(σ∗

N )
2
+ 1

N

]
, such that

Rtr =

√
2δN

α

1√
1 + σ∗2/N

.
(1.82)

Hence, Rtr of the variance is additionally a function of the (normalized) mu-
tation strength. The exponential from (1.82) will also appear later in the R-
dependent progress rate result (4.5), which backs up its choice. Within the limit
N → ∞, assuming constant σ∗ and δ = 1, the same scaling Rtr =

√
2N/α is

observed as in (1.79). The result of (1.82) is shown in Fig. 4.
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Figure 3: Rastrigin fitness value as function of R using expected value for∑
i cos(αyi) for N = {3, 10, 100, 1000}, bottom to top. The green dotted curves

are the results from (1.73). The black curves are experimentally obtained by
sampling randomly yi ∼ Ni(0, 1), then normalizing by R and averaging over
1000 trials. The approximation quality is very good even for moderately large
values of N . For small R only the R2 term is relevant. For large R the offset
NA is negligible, such that the curves appear very close to each other, see
also (1.78). Applying Eq. (1.79) with δ = 1, the red transition points are at
Rtr = {0.39, 0.71, 2.25, 7.11}.

Figure 4: Variance D2
Q as function of R for constant σ∗ using expected values for

sum over yi-dependent trigonometric terms. The value σ∗/N = 1/10 is constant
for increasing N = {3, 10, 100, 1000}, bottom to top. It was chosen due to the
idea that larger N requires increasing µ leading to increased mutation strength.
Value 1/10 was chosen for displaying purposes. The green dotted curves are the
results from (1.75). The black curves are experimentally obtained. As expected,
the approximation quality is better for larger N . Overall, the approximation
quality is very good. Applying Eq. (1.82) with δ = 1, the red transition points
are at R = {0.38, 0.68, 1.59, 2.15}
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Figure 5: Variance approximations as functions of R for exemplary values σ∗ =
10 and N = 100 (see also Fig. 4). Comparing: sampling [black], result (1.75)
[green], sphere variance (1.30) [red], variance for small R (1.36) [blue], and
variance for large R including NA2/2 using (1.31) [cyan]. D2

sph and D2
Q(sm. R)

are both spherical R2-dependent variances with different prefactors. For large
and moderate R, the cyan curve with additional term NA2/2 (exponentials
neglected) captures a large part of the transition region, but fails around the
transition point (red cross), where exponential terms are significant.
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2 Progress Rate

The progress rate between two generations for the i-th component yi is defined
as [5, p. 29]

φi = E
[
y
(g)
i − y

(g+1)
i

∣∣y(g), σ(g)
]
, (2.1)

given the position y(g) and mutation strength σ(g) at generation g. The condi-
tional quantities y(g) and σ(g) will be dropped for better readability.

2.1 General Derivation

After applying a mutation x ∼ σN (0,1) to the current parental state y(g) and
selecting the best individuals, the position update in search space is performed
using following relation

y(g+1) =
1

µ

µ∑
m=1

(y(g) + xm;λ) = y(g) +
1

µ

µ∑
m=1

xm;λ, (2.2)

where xm;λ denotes the mutation vector of the m-th best offspring after selec-
tion. Considering the position component yi and abbreviating the i-th mutation
component as

xm;λ := (xm;λ)i (2.3)

the expected value can be taken

E
[
y
(g+1)
i

]
= y

(g)
i + E

[
1

µ

µ∑
m=1

xm;λ

]
= y

(g)
i +

1

µ

µ∑
m=1

E [xm;λ] . (2.4)

Going back to (2.1), the progress rate definition is reformulated using the ex-
pected value of the order statistics of x

φi = E
[
y
(g)
i − y

(g+1)
i

]
= y

(g)
i − E

[
y
(g+1)
i

]
(2.5)

= − 1

µ

µ∑
m=1

E [xm;λ] . (2.6)

The expected value of a random variableX with density pX(x) can be calculated
as

E [X] =

∫ ∞

−∞
x pX(x) dx . (2.7)

In our case the probability density incorporates the induced order statistics of
the µ best offspring given the location y(g) = y. Using the definition of the
expected value, the progress rate can be rewritten as

φi = −
1

µ

µ∑
m=1

∫ ∞

−∞
xi pm;λ(xi|y) dxi , (2.8)

with xi denoting the integration over i-th component. The density pm;λ(xi|y)
of the m-th best individual will be established using subsequent arguments.
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Mutations are distributed normally with zero mean and variance σ2 according
to the normal density

px(xi) =
1√
2πσ

exp

[
−1

2

(xi

σ

)2]
. (2.9)

Given a position y and mutation xi, a random quality gain value Q is dis-
tributed according to a conditional probability density pQ(q|xi,y) given by

pQ(q|xi,y) =
dPQ(q|xi,y)

dq
, (2.10)

an approximation of which was presented in Eq. (1.50).

Given that the m-th best individual attains a quality gain within [q, q + dq],
we must have m − 1 better individuals having a smaller quality value with
probability [Pr{Q ≤ q}]m−1

= [PQ(q)]
m−1

, and λ − m individuals having a

larger value with [Pr{Q > q}]λ−m
= [1− PQ(q)]

λ−m
. To account for all relevant

combinations we have λ!
(m−1)!(λ−m)! , where 1/(m−1)! and 1/(λ−m)! exclude the

irrelevant combinations among the two groups of better and worse individuals,
respectively.

The conditional density for the m-th individual as a function of the quality
gain q yields

pQ;m;λ(q|xi,y) =
λ!

(m− 1)!(λ−m)!
pQ(q|xi,y)

× PQ(q|y)m−1[1− PQ(q|y)]λ−m.

(2.11)

By integrating over all attainable quality gain values [ql, qu], one arrives at
the density

pm;λ(xi|y) = px(xi)

∫ qu

ql

pQ;m;λ(q|xi,y) dq (2.12)

pm;λ(xi|y) = px(xi)
λ!

(m− 1)!(λ−m)!

×
∫ qu

ql

pQ(q|xi,y)PQ(q|y)m−1[1− PQ(q|y)]λ−m dq .

(2.13)

Plugging Eq. (2.13) into (2.8) one obtains the progress rate

φi = −
1

µ

µ∑
m=1

∫ ∞

−∞
xipx(xi)

∫ qu

ql

pQ(q|xi,y)

× λ!

(m− 1)!(λ−m)!
PQ(q|y)m−1[1− PQ(q|y)]λ−m dq dxi .

(2.14)

Moving the sum into the innermost integration, another transformation can
be applied using a well known relation between the sum over m and the regu-

23



larized incomplete beta function [5, p. 147]

µ∑
m=1

P (q)m−1[1− P (q)]λ−m

(m− 1)!(λ−m)!

=
1

(λ− µ− 1)!(µ− 1)!

∫ 1−P (q)

0

tλ−µ−1(1− t)µ−1 dt .

(2.15)

Furthermore, we will rewrite the population dependent factor as follows

1

µ

λ!

(λ− µ− 1)!(µ− 1)!
=

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
λ

µ

Γ(λ)

Γ(λ− µ) Γ(µ)

=
λ

µ

1

B(λ− µ, µ)
,

(2.16)

where we have used the property of the Gamma function Γ(n) = (n − 1)! (for
any integer n > 0) and the known relation between Gamma and Beta functions
Γ(x) Γ(y)
Γ(x+y) = B(x, y). These replacements will be useful later to derive approxi-

mations for large population sizes. After replacing the sum and refactoring we
arrive at the following progress rate integral

φi = −
λ

µ

1

B(λ− µ, µ)

∫ xi=∞

xi=−∞
xipx(xi)

×
∫ q=qu

q=ql

pQ(q|xi,y)

∫ t=1−PQ(q)

t=0

tλ−µ−1(1− t)µ−1 dtdq dxi

(2.17)

Now the integration order of t and q will be exchanged. This will enable an
analytically closed form for the quality gain integration q. The current integral
consists of following integration ranges

ql ≤ q ≤ qu, and 0 ≤ t ≤ 1− PQ(q). (2.18)

Defining the inverse transformation q = P−1
Q (1− t) and integrating over t first,

one obtains the new ranges as

0 ≤ t ≤ 1, and ql ≤ q ≤ P−1
Q (1− t). (2.19)

The integral changes to

φi = −
λ

µ

1

B(λ− µ, µ)

∫ xi=∞

xi=−∞
xipx(xi)

×
∫ t=1

t=0

tλ−µ−1(1− t)µ−1

∫ q=P−1
Q (1−t)

q=ql

pQ(q|xi,y) dq dtdxi .

(2.20)
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Now the innermost integral can be solved∫ P−1
Q (1−t)

ql

pQ(q|xi) dq =
[
PQ(q|xi)

]P−1
Q (1−t)

ql
(2.21)

= PQ(P
−1
Q (1− t)|xi)− PQ(ql|xi) (2.22)

= PQ(P
−1
Q (1− t)|xi) (2.23)

=: f(t, xi). (2.24)

where the probability PQ(ql|xi) = Pr(Q ≤ ql|xi) = 0 for any lower bound value
ql. For better readability the function f(t, xi) was introduced and y was dropped
within the conditional probability. Thus we arrive at the following progress rate
integral

φi = −
λ

µ

∫ xi=∞

xi=−∞
xipx(xi)

× 1

B(λ− µ, µ)

∫ t=1

t=0

tλ−µ−1(1− t)µ−1f(t, xi) dtdxi .

(2.25)

2.2 Large Population Approximation

Unfortunately a closed form solution of (2.25) is not possible due to the factor
f(t, xi) = PQ(P

−1
Q (1− t)|xi).

But within the so-called large-population limit with (µ, λ)→∞ and constant
truncation ratio ϑ = µ/λ a solution for the t-integration can be given using the
results of Appendix B. Comparing (2.25) with identity (B.1) one can identify
integral Iaµ,λ[f ] with parameters a = 1 and b = 0 such that

φi = −
λ

µ

∫ xi=∞

xi=−∞
xipx(xi)I

1
µ,λ[f ] dxi . (2.26)

Evaluating function f(t, xi) at t = 1− ϑ gives

f(t, xi)|t=1−ϑ = PQ(P
−1
Q (1− t)|xi)

∣∣
t=1−ϑ

= PQ(P
−1
Q (ϑ)|xi). (2.27)

Therefore the progress rate integral in the asymptotic limit of infinitely large
population sizes (constant ϑ) yields

Progress rate for large populations and generic PQ(q)

φi ≃ −
1

ϑ

∫ ∞

−∞
xipx(xi)PQ(P

−1
Q (ϑ)|xi) dxi , (2.28)

which now consists only of a single integration over the i-th mutation component
xi. The main next task is to choose PQ(q) and P−1

Q (p) in such a way that the
integral is analytically solvable.

25



2.3 Defining and Expanding the Distribution Function

An analytic approximation for φi can be derived starting from Eq. (2.28) as
follows. For the first step expressions for PQ(q|xi) and q = P−1

Q (ϑ) are needed.
The results from Eqs. (1.44) and (1.42) assuming a normally distributed quality
gain can be used with

PQ(q|xi) = Φ

(
q − EQ|xi

Di

)
(2.29)

q = P−1
Q (ϑ) = EQ +DQΦ

−1(ϑ), (2.30)

giving the result

PQ(P
−1
Q (ϑ)|xi) = Φ

(
EQ +DQΦ

−1(ϑ)− EQ|xi

Di

)
. (2.31)

Now the results can be collected. Using the large population approximation
(2.28) with result (2.31) and inserting Eq. (1.46) for EQ|xi

the progress rate
yields

φi = −
1

ϑ

∫ ∞

−∞
xipx(xi)

× Φ

(
EQ +DQΦ

−1(ϑ)− (x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi))− Ei

Di

)
dxi .

(2.32)

A closed form solution of the given integral cannot be obtained, since the ar-
gument of Φ(·) contains nonlinear terms in xi. The subsequent derivations will
tackle this problem. The idea will be to provide an approximate solution by
splitting the argument of Φ(·) into a linear function g(xi) and a nonlinear func-
tion h(xi). After splitting, a Taylor expansion of Φ can be done for a small
nonlinear perturbation h(xi). Keeping only the first two terms of the expansion
will result in two analytically solvable integrals for the progress rate.

Decomposing the quality gain Considering an arbitrary position in search
space y and a comparably large mutation strength σ, the Rastrigin quality gain
will be dominated by the global, i.e. spherical, structure. The fitness oscilla-
tions with strength A in Eq. (1.1) are superimposed on the spherical function.
Therefore a resulting quality gain can be regarded as globally sphere-like with
deviations due to nonlinear local perturbations, cf. Fig. 1.

The linearized quality gain component of the sphere function fi,sph(yi) = y2i
is given by following expression, cf. Eq. (1.15),

Qi,sph = fi,sph(yi + xi)− fi,sph(yi)

=
dfi,sph
dyi

xi +O(x2
i )

≈ 2yixi =: kixi.

(2.33)

The nonlinear Rastrigin quality gain from Eq. (1.9) is given by

Qi = x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi), (2.34)
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from which we can identify the same linear term 2yixi = kixi. Reordering the
expression and defining the nonlinear terms of xi as perturbation δ(xi) we get

Qi = 2yixi + x2
i + ci(1− cos (αxi)) + si sin (αxi)

= kixi + δ(xi).
(2.35)

with

ki = 2yi

δ(xi) = x2
i + ci(1− cos (αxi)) + si sin (αxi).

(2.36)

Plugging the obtained relation back into the argument Φ(·) of Eq. (2.31), the
addends can be rearranged in terms of a linear and nonlinear part

Φ

(
EQ +DQΦ

−1(ϑ)− (x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi))− Ei

Di

)
= Φ

(
−kixi + EQ − Ei +DQΦ

−1(ϑ)

Di
− δ(xi)

Di

)
= Φ(g(xi) + h(xi)) , (2.37)

The linear function in xi is obtained as

g(xi) = −
ki
Di

xi +
EQi +DQΦ

−1(ϑ)

Di
, (2.38)

with the following abbreviation from Eq. (1.21)

EQ − Ei = EQi
= σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
. (2.39)

The nonlinear function in xi yields

h(xi) = −
δ(xi)

Di
= −x2

i + ci(1− cos (αxi)) + si sin (αxi)

Di
. (2.40)

Expanding the CDF At this point an expansion of the distribution can be
done at g assuming small perturbations h (argument xi is dropped for brevity),
analogous to [5, p. 337, B.4],

Φ (g + h) =

∞∑
k=0

1

k!

dkΦ

dgk
hk

= Φ(g) +
dΦ

dg
h+

∞∑
k=2

1

k!

dkΦ

dgk
hk

= Φ(g) +
e−

1
2 g

2

√
2π

h+O(h2). (2.41)

Applying the decomposition (2.37) to Eq. (2.32) and considering only the first
two terms of the Taylor expansion (2.41) we obtain a new progress rate approx-
imation
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φi ≈ −
1

ϑ

∫ ∞

−∞
xipx(xi)Φ(g(xi)) dxi

− 1√
2πϑ

∫ ∞

−∞
xipx(xi)h(xi)e

− 1
2 g(xi)

2

dxi

=: I0i + I1i .

(2.42)

The integrals I0i and I1i will be analytically solved in the next sections. The
superscript denotes the 0th and 1st order term of the expansion, respectively.

2.3.1 Solving Integral I0i

Starting from the first line of Eq. (2.42) and using definition (2.38), the equation
can be rewritten as

I0i = − 1

ϑ

∫ ∞

−∞
xipx(xi)Φ

(
− ki
Di

xi +
EQi

+DQΦ
−1(ϑ)

Di

)
dxi . (2.43)

Inserting the mutation density px(xi) from Eq. (2.9) and applying the substitu-
tion z = xi/σ one gets

I0i = − σ√
2πϑ

∫ ∞

−∞
ze−

1
2 z

2

Φ

(
−kiσ

Di
z +

EQi
+DQΦ

−1(ϑ)

Di

)
dz . (2.44)

At this point the following integral identity [5, p. 330, A.12] can be applied∫ ∞

−∞
te−

1
2 t

2

Φ(at+ b) dt =
a√

1 + a2
exp

[
−1

2

b2

1 + a2

]
. (2.45)

The corresponding coefficients can be identified as

a = −kiσ

Di
(2.46)

b =
EQi

+DQΦ
−1(ϑ)

Di
. (2.47)

Evaluating the factor a/
√
1 + a2 gives

a√
1 + a2

= −
kiσ
Di√

D2
i

D2
i
+ (kiσ)2

D2
i

= − kiσ√
D2

i + (kiσ)2
=: −kiσ

D+
, (2.48)

where following definition was introduced

D2
+ := D2

i + (kiσ)
2. (2.49)

The factor exp
[
−b2/2(1 + a2)

]
yields

exp

[
−1

2

b2

1 + a2

]
= exp

−1

2

(
EQi

+DQΦ
−1(ϑ)

Di

)2
1

D2
i

D2
i
+ (kiσ)2

D2
i


= exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
.

(2.50)

28



Inserting results (2.48), (2.50) into identity relation (2.45), the integral (2.44)
yields

I0i =
1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
kiσ

2

D+
. (2.51)

2.3.2 Solving Integral I1i

The second summand of the progress rate from Eq. (2.42) is given by

I1i = − 1√
2πϑ

∫ ∞

−∞
xih(xi)px(xi)e

− 1
2 g(xi)

2

dxi (2.52)

= − 1√
2πϑ

∫ ∞

−∞
xih(xi)

1√
2πσ

e−
1
2 (

xi
σ )

2

e−
1
2 g(xi)

2

dxi . (2.53)

The product of two Gaussian functions can be rewritten as a single Gaussian
with a scaling factor C and resulting mean m and variance s2, such that

I1i = − C

2πϑσ

∫ ∞

−∞
xih(xi)e

− 1
2 (

xi−m

s )
2

dxi . (2.54)

Keeping this in mind and recalling definition (2.40) we have

h(xi) = −
δ(xi)

Di
= −x2

i + si sin (αxi) + ci(1− cos (αxi))

Di
. (2.55)

Using this relation, the integral (2.53) will be reformulated later as an expected
value of the function xih(xi) over the normal density N

(
m, s2

)
.

We start with quadratic completion of the exponential functions and by
using Eq. (2.38) with

g(xi) := c1xi + c0, with (2.56)

c1 = − ki
Di

(2.57)

c0 =
EQi

+DQΦ
−1(ϑ)

Di
. (2.58)

Quadratic completion shall give

e−
1
2

x2
i

σ2 e−
1
2 g(xi)

2

= e−
1
2

x2
i

σ2 e−
1
2 (c1xi+c0)

2 !
= Ce−

1
2

(xi−m)2

s2 . (2.59)

We have

x2
i

σ2
+ c21x

2
i + 2c1xic0 + c20 =

(
1

σ2
+ c21

)
x2
i + 2c0c1xi + c20

= β

(
x2
i +

2c0c1
β

xi +
c20
β

)
= β

([
xi +

c0c1
β

]2
−
[
c0c1
β

]2
+

c20
β

)
,

(2.60)
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with a temporary variable

β =
1

σ2
+ c21 =

1 + (c1σ)
2

σ2
=

D2
i

D2
i
+
(

ki

Di
σ
)2

σ2
=

(
D+

Diσ

)2

, (2.61)

using again the definition (2.49) for D+. Therefore the exponential terms read

e−
1
2

x2
i

σ2 e−
1
2 g(xi)

2

= e
β
2 [

c0c1
β ]

2− c20
2 e−

β
2 [xi+

c0c1
β ]

2 !
= Ce−

1
2

(xi−m)2

s2 . (2.62)

The mean value m after quadratic completion and inserting the definitions for
c0, c1 and β reads

m = −c0c1
β

=
EQi +DQΦ

−1(ϑ)

Di

ki
Di

(
Diσ

D+

)2

=
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

.

(2.63)

The standard deviation s is given by

s =
1√
β

=
Diσ

D+
. (2.64)

The factor C is evaluated by resolving variables β, c0, c1 and using the relation
D2

+ = D2
i + (kiσ)

2, which gives

C = exp

[
β

2

(
c0c1
β

)2

− c20
2

]
= exp

[
c20
2

(
c21
β
− 1

)]

= exp

[
1

2

(
EQi

+DQΦ
−1(ϑ)

Di

)2
([

kiσ

D+

]2
− 1

)]

= exp

[
1

2

(
EQi +DQΦ

−1(ϑ)

Di

)2(
(kiσ)

2 +D2
i −D2

i

D2
+

− 1

)]

= exp

[
1

2

(
EQi

+DQΦ
−1(ϑ)

Di

)2(
D2

+

D2
+

− D2
i

D2
+

− 1

)]

= exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
.

(2.65)

The result is the same exponential factor as in I0i from Eq. (2.51). Now all
results for the quadratic completion can be applied to Eq. (2.54) and relation
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(2.55) for h(xi) is inserted. This yields

I1i = − 1

2πϑσ
exp

[
−1

2

(
EQi +DQΦ

−1(ϑ)

D+

)2
]∫ ∞

−∞
xih(xi)e

− 1
2 (

xi−m

s )
2

dxi

= − s√
2πϑσ

exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]

1√
2πs

∫ ∞

−∞
xih(xi)e

− 1
2 (

xi−m

s )
2

dxi

=
s√

2πϑσDi

exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]

× 1√
2πs

∫ ∞

−∞

[
x3
i + sixi sin (αxi) + ci(xi − xi cos (αxi))

]
e−

1
2 (

xi−m

s )
2

dxi .

(2.66)

Having the newly obtained form, one can identify expected values of the terms

in [·] with respect to the density 1√
2πs

e−
1
2 (

xi−m

s )
2

. To avoid confusion with

the actual random mutation variable xi ∼ N
(
0, σ2

)
, the integration variable

is renamed t = xi and t ∼ N
(
m, s2

)
. Additionally replacing the prefactor

s = Diσ
D+

, the integral becomes

I1i =
1√

2πϑD+

exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]

×
{
E
[
t3
]
+ si E [t sin (αt)] + ci (E [t]− E [t cos (αt)])

}
.

(2.67)

The occurring expected values are

E [t] = m

E
[
t3
]
= m3 + 3ms2

E [t sin (αt)] = e−
1
2 (αs)

2

[m sin (αm) + αs2 cos (αm)]

E [t cos (αt)] = e−
1
2 (αs)

2

[m cos (αm)− αs2 sin (αm)],

(2.68)

with the trigonometric expectations given in Appendix (A.17) and (A.19). In-
serting the expected values one gets

I1i =
1√

2πϑD+

exp

[
−1

2

(
EQi +DQΦ

−1(ϑ)

D+

)2
]

×
{
m3 + 3ms2

+ sie
− 1

2 (αs)
2 [

m sin (αm) + αs2 cos (αm)
]

+ ci

(
m− e−

1
2 (αs)

2 [
m cos (αm)− αs2 sin (αm)

])}
.

(2.69)

Reinserting the definitions of m (2.63), s (2.64) gives
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I1i =
1√
2π

1

ϑ
exp

[
−1

2

(
EQi +DQΦ

−1(ϑ)

D+

)2
]

1

D+

×

{(
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

)3

+ 3
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

(
Diσ

D+

)2

+ sie
− 1

2

(
α

Diσ

D+

)2
[
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

sin

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)

+ α

(
Diσ

D+

)2

cos

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)]

+ ci

(
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

− e
− 1

2

(
α

Diσ

D+

)2
[
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

cos

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)

− α

(
Diσ

D+

)2

sin

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)])}
.

(2.70)

2.3.3 Merging Results

At this point the results for I0i (2.51) and I1i (2.70) will be merged. Their sum
is the exact solution of Eq. (2.42) incorporating the first two terms of the Taylor
expansion.

The variables ki, ci, si, EQi , DQ, Di and D+ will not be inserted into the
expression due to very poor readability. Instead the variables are summarized
below. The solution will be calculated and validated computationally in Sec. 2.5.
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Progress rate for large λ and expanded CDF

φi = I0i + I1i

=
1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]

×

{
kiσ

2

D+

+
1

D+

[(
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

)3

+ 3
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

(
Diσ

D+

)2

+ sie
− 1

2

(
α

Diσ

D+

)2
[
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

sin

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)

+ α

(
Diσ

D+

)2

cos

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)]

+ ci

(
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

− e
− 1

2

(
α

Diσ

D+

)2
[
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

cos

(
α
[EQi +DQΦ

−1(ϑ)]kiσ
2

D2
+

)

− α

(
Diσ

D+

)2

sin

(
α
[EQi

+DQΦ
−1(ϑ)]kiσ

2

D2
+

)])]}
(2.71)

with following variable definitions

ki = 2yi, Eq. (2.33)

ci = A cos (αyi) and si = A sin (αyi), Eq. (1.8)

EQi
= σ2 +A cos (αyi)

(
1− e−

(ασ)2

2

)
, Eq. (1.21)

D2
Q =

N∑
i=1

Var [Qi] =

N∑
i=1

2σ4 + 4y2i σ
2 + ...

+
A2

2

[
1− e−(ασ)2

] [
1− cos(2αyi)e

−(ασ)2
]

+ 2Aασ2e−
1
2 (ασ)

2
[
ασ2 cos(αyi) + 2yi sin(αyi)

]
, Eq. (1.29)

D2
i =

∑
j ̸=i

Var [Qj ] , Eq. (1.49)

D2
+ = D2

i + (kiσ)
2 =

∑
j ̸=i

Var [Qj ] + (kiσ)
2, Eq. (2.49)

(2.72)
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2.4 Large Dimensionality Approximation

The results of Eqs. (2.71) and (2.72) are the exact solution of Eq. (2.42) and can
be used if highest precision is needed. At this point a result which is shorter
and easier to grasp is desired, since it will be used for upcoming studies. A
significantly simpler result can be obtained by analyzing m from Eq. (2.63) and
s from Eq. (2.64) in terms of their N scaling behavior.

Assuming large dimensionality N , the variance quantities are approximately
equal, since they only differ by a single component, the i-th component. Ne-
glecting the contribution of one component given large N we have

D2
Q =

N∑
i=1

Var [Qi] ≈
∑
j ̸=i

Var [Qj ] ≈
∑
j ̸=i

Var [Qj ] + (kiσ)
2

≈ D2
i ≈ D2

+.

(2.73)

Within the approximation we define the variances to be equal to D2
Q, namely

D2
i = D2

Q, and D2
+ = D2

Q. (2.74)

This approximation changes m from Eq. (2.63) and s from Eq. (2.64) as follows

m ≈
(
EQi +DQΦ

−1(ϑ)
)
kiσ

2

D2
Q

=

(
EQi

D2
Q

+
Φ−1(ϑ)

DQ

)
kiσ

2 (2.75)

s ≈ DQ

DQ
σ = σ. (2.76)

Since Eq. (2.75) contains DQ and D2
Q in its denominator, it can further be

simplified for large N . From Eq. (2.73) we observe that D2
Q scales with N and

DQ with
√
N .

The first term EQi
is just the quality gain expectation of a single component.

The second term Φ−1(ϑ) diverges only for ϑ = 0 and ϑ = 1, which are not useful
truncation values. Both terms are suppressed by N and

√
N , respectively, and

the infinite dimension limit can be evaluated as

lim
N→∞

m(N) = lim
N→∞

(
EQi

D2
Q

+
Φ−1(ϑ)

DQ

)
kiσ

2 = 0, (2.77)

which is valid for any finite σ. The obtained results s ≈ σ and m ≈ 0 change the
density of t ∼ N

(
m, s2

)
to the mutation density t ∼ N

(
0, σ2

)
in Eq. (2.67).

Reevaluating the expected values of Eq. (2.68) only a single term remains, such
that

E [t sin (αt)] ≃ ασ2 exp

[
−1

2
(ασ)2

]
. (2.78)

The approximation (2.74) also changes the common exponential factor of I0i
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and I0i as follows

1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]

≈ 1√
2π

1

ϑ
exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

DQ

)2
]

≃ 1√
2π

1

ϑ
exp

[
−1

2

(
Φ−1(ϑ)

)2]
=: cϑ,

(2.79)

where the ratio EQi
/DQ vanishes with O(1/

√
N) giving the last line.

The newly defined coefficient cϑ can be identified as e1,0 from Eq. (B.30)
yielding the asymptotic generalized progress coefficients. The expression for cϑ
is also in accordance with the asymptotic expansion of the progress coefficient
cµ/µ,λ by Beyer [5, p. 249]. The difference in the Φ−1-argument (ϑ vs. 1 − ϑ)
is due to a differently chosen substitution that exchanges the integrand powers
of Eq. (B.2) and its maximizer location. Since Φ−1(ϑ) = −Φ−1(1− ϑ) the two
results are equal after squaring Φ−1.

As cϑ is obtained for infinitely large populations, it poses an upper bound
of cµ/µ,λ and overestimates the progress, see also Fig. 14.

The approximation quality of the subsequent result is expected to be better
for ϑ not close to 0 or 1, since the Taylor expansion point in Eq. (2.38) depends
on Φ−1(ϑ), and Φ−1(0) = −∞ and Φ−1(1) =∞.

2.4.1 Applying the Approximations

Inserting the result of Eq. (2.79) into Eq. (2.51) and setting D+ = DQ yields

I0i ≈ cϑ
σ2

DQ
ki. (2.80)

Analogously the results of Eqs. (2.78) and (2.79) are applied to Eq. (2.69). Only
a single term is left within the brackets {·} giving

I1i ≈ cϑ
1

DQ
sie

− 1
2 (ασ)

2

ασ2 = cϑ
1

DQ
A sin (αyi)e

− 1
2 (ασ)

2

ασ2

= cϑ
σ2

DQ
e−

1
2 (ασ)

2

[αA sin (αyi)]

= cϑ
σ2

DQ
e−

1
2 (ασ)

2

di,

(2.81)

where the definition si = A sin (αyi) was used. Additionally, the derivative of
the Rastrigin oscillation term di = αA sin (αyi) was identified, as introduced in
Eq. (1.11). Finally the progress rate is simplified and yields
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Progress rate for large λ and N

φi = I0i + I1i

= cϑ
σ2

DQ

(
ki + e−

1
2 (ασ)

2

di

)
= cϑ

σ2

DQ

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)
.

(2.82)

with the variance D2
Q given in Eq. (1.29).

2.4.2 Discussion

The obtained result of Eq. (2.82) is very interesting, especially compared to the
alternative progress rate (2.109) via cµ/µ,λ. A numeric comparison is given in
Fig. 14. Displaying both equations gives

φi,cϑ = cϑ
σ2

DQ

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)

(2.83)

φi,cµ/µ,λ
= cµ/µ,λ

σ2

DQ

(
2yi + αA sin (αyi)

)
. (2.84)

The progress coefficients are asymptotically equal cϑ ≃ cµ/µ,λ within the infinite
population limit.

The first term ki = 2yi is the same for both and determines the progress on
the spherical function. The second term shows a remarkable difference.

In Eq. (2.83) the oscillation derivative di = αA sin (αyi) is suppressed expo-
nentially for large mutations σ (or high oscillation frequency α). It correctly
accounts for the fact that local perturbations of the spherical fitness have only
a local effect on the expected progress, i.e. they are only relevant for small σ.

This difference shows also the shortcomings of Eq. (2.84). The perturba-
tion derivative di is not suppressed and has a global effect on the progress
independent of σ. Therefore Eq. (2.84) may show very large deviations from
experimental values for larger σ, especially if the oscillation is prominent with
large A or α.

Setting A = 0 or α = 0 the Rastrigin function degenerates to the sphere and
both expressions yield asymptotically the same result.
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2.5 Experiments and Numerical Solutions

2.5.1 Numerical Progress Rate Solution

During the previous derivation of the progress rate multiple integrals were ob-
tained analytically as intermediate steps. In this section exact integral expres-
sions of the progress rate are solved numerically. The only approximation is the
choice of a CDF, see below. The results are compared to experiments. We have
the integrals

• I1: Eq. (2.14)

• I2: Eq. (2.17), triple integral and numerically most involving

• I3: Eq. (2.25)

To solve the equations numerically, a cumulative distribution function has
to be chosen. The conditioned distribution function (xi = const.) is chosen
according to Eq. (1.50), non-linear version, and yields

PQ(q|xi) = Φ

(
q − EQ|xi

Di

)
. (2.85)

The distribution function due to N mutated components is given by (1.43) and
inverted according to (1.42) giving

P−1
Q (p) = q = EQ +DQΦ

−1(p). (2.86)

Combining the equations and evaluating at p = ϑ we obtain

PQ(P
−1
Q (ϑ)|xi) = Φ

(
EQ +DQΦ

−1(ϑ)− EQ|xi

Di

)
. (2.87)

Given the distribution functions (2.85) and (2.87), integrals I1, I2 and I3 are all
equivalent and should yield the same results, see Fig. 6.
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Figure 6: For the experimental results, one-generation experiments were done
and the progress was obtained according to Eq. (2.1) by averaging over 100000
runs with dimensionality N = 30 and frequency α = 2π. The starting position
was chosen to be y = 1.25 (top) and y = 1.75 (bottom). The three integrals
yield the same result, as expected. Very good agreement between experiment
and numerical solution is observed. The only approximation is the assumption
of a normally distributed quality gain.

38



2.5.2 Overview of Approximations

The integrals from Fig. 6 give the most precise, i.e. least approximated, nu-
meric result of the progress rate and will be referred to as only “NUM” for the
subsequent plots. Approximations are denoted by “A” and a number. They
are compared to the experimental and numeric results. Following data will be
shown

• Experiment: average over 100000 trials

• NUM: Eq. (2.25); normally distributed quality gain; only numerically solv-
able

• A1-NUM: Eq. (2.28); additionally large population λ; only numerically
solvable

• A2: additionally Taylor-expanding CDF and keeping 0th and 1st order

– A2-NUM: numeric solution of Eq. (2.42)

– A2: analytic solution according to Eqs. (2.71) and (2.72)

• A3: Eq. (2.82); additionally large dimensionality N

– A3: spherical progress term ki with di = 0 in Eq. (2.82)

– A3: perturbation progress term di exp[−...] with ki = 0 in Eq. (2.82)

• C: Eq. (2.109); alternative progress rate using cµ/µ,λ; limited applicability
for Rastrigin fitness

– C: spherical progress using only ki

– C: progress using full derivative f ′
i = ki + di

Frequency Value For all following experiments the oscillation frequency was
set to α = 2π and remains as such, if not explicitly stated otherwise.

2.5.3 Approximations A1 and A2
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Figure 7: Variation of N (top) and A (bottom). We have better agreement
for larger dimensionality N , which can be often observed due to the CLT. For
N = 5, the Taylor expansion of A2 introduces a moderately larger deviation.
Very good agreement is observed for A = 1 and A = 10, i.e. for a broader range
of oscillation strengths. Numeric and analytic calculation of A2 match perfectly.
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Figure 8: Variation of the truncation ratio ϑ = {0.05, 0.5} (top) and λ (bot-
tom, ϑ=const.). Decreasing the ratio increases the selection pressure and thus
the progress. The approximation quality tends to decrease for more extreme
truncation values, here for ϑ = 0.05 For smaller populations (constant ϑ) the
progress decreases and deviation increases, as expected. The approximations
depend only on the truncation ratio ϑ, assuming a large λ. Numeric and ana-
lytic calculation of A2 match perfectly.
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Figure 9: Variation of position y. The vector y = 0.995*ones(N,1) corresponds
to all components at the same local minimum. The vector y = 3*rand(N,1)
has uniformly distributed random values y ∼ U([0, 3]) for all components. The
location y = [1.75, 0, ..., 0] has only one non-zero component. One can see
moderately higher deviations for small mutations. This is investigated later
within approximation A3.
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2.5.4 Approximation A3

From last section the parameters N and ϑ were identified to have a larger influ-
ence. They are varied in Figs. 10 and 11 over a larger σ-range. Figure 12 shows
the progress for large normalized σ∗ values, motivated by dynamic experiments.
Figures 13 and 14 show a more detailed analysis for a specific position.
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Figure 10: Variation of ϑ = {0.05, 0.25, 0.5, 0.75} with N = 5 and y ∼ U([0, 3])
with constant seed and R0 ≈ 4.2. For small N the applicability of the CLT for
the CDF is very limited, such that even NUM and A1-NUM may show larger
deviations. Approximation A3 yields relatively good results even for small N ,
if ϑ is not close to 0.
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Figure 11: Variation of ϑ = {0.05, 0.25, 0.5, 0.75} with N = 30 and y ∼ U([0, 3])
with constant seed and R0 ≈ 9. As expected the approximation quality in-
creases for larger N and ϑ not close to 0. Within the range 0.25 ≲ ϑ ≲ 0.75
approximations A2 and A3 yield similarly good results.
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Figure 12: Approximation quality for large σ∗ = σN/R and ϑ = {0.25, 0.5}.
Plots on the left-hand side show the averaged dynamics for Rastrigin problem
N = 100, A = 1,y = 10 and two truncation ratios. The average dynamics yield
large levels of σ∗ ∼ 40 which are relatively constant after the initial phase has
passed. Therefore the right plots show the progress rate for 0 ≤ σ∗ ≤ 50. The
approximation quality of A2 and A3 is good even for large σ∗. The dynamic
experiments were repeated 104 times using τ = 1/

√
8N and the success proba-

bility is denoted by Ps. The initial position for the one-generation experiments
was again chosen as y ∼ U([0, 3]). Important to note is that the dynamic σ∗

changes if µ or ϑ are modified. Larger populations also enable larger mutation
strengths.
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Figure 13: Approximation A3 from Eq. (2.82) with DQ compared to A3 using
Dκ, since for large N we should have DQ ≈ Dκ. One can see that A3 with
Dκ to some degree reproduces the characteristics of A2. This indicates that in
the case of a single dominating component, e.q. y = [1.25, 0, ..., 0], the standard
deviation differences become more pronounced. The term DQ contains precise
information on the i-th component variation, whereas Dκ approximates it and
Di neglects it, see also Eq. (2.72). Still, the primary source of error is the Taylor
expansion of Eq. (2.41) applied in A2.
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2.5.5 Approximation A3 compared to C
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Figure 14: Approximation A3 decomposed into its two progress terms and com-
pared to the progress rate using cµ/µ,λ (denoted by C). The term ki = 2yi yields
the spherical progress for both A3 and C for large σ, where C is closer to the
black numeric solution since no large populations are assumed. Thus, A3 using
cϑ overestimates the true progress. For A3 the term di = αA sin (αyi) is only
relevant for small σ and gets exponentially suppressed. The superposition of
both terms (red line) yields very good results. The progress C with ki + di
shows very large deviations for larger σ since the derivative di is globally rele-
vant, i.e. not suppressed.
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2.6 Alternative Progress Rate via Progress Coefficient

Starting from Eq. (2.14) an alternative progress rate can be derived using a
so-called progress coefficient cµ/µ,λ, already established in [5, p. 216]. However,
in contrast to the progress rate in Eq. (2.42), the derivation is limited to using
only a linearized quality gain which in turn leads to sub-optimal results for the
Rastrigin fitness.

As opposed to Sec. 2.1 and 2.2, the mutation integral over xi is solved first
and Eq. (2.14) will be restructured by exchanging x and q. We have

φi = −
1

µ

µ∑
m=1

E [xm;λ]

φi = −
1

µ

µ∑
m=1

∫ qu

ql

[∫ ∞

−∞
xipx(xi)pQ(q|xi,y) dxi

]
× λ!

(m− 1)!(λ−m)!
PQ(q|y)m−1[1− PQ(q|y)]λ−m dq

= − 1

µ

µ∑
m=1

∫ qu

ql

Ixi
(q)

λ!

(m− 1)!(λ−m)!
PQ(q|y)m−1[1− PQ(q|y)]λ−m dq

(2.88)

with the mutation integral Ixi
(q) that will be solved approximately. Assuming

that the conditional quality gain density pQ(q|xi,y) is normally distributed with
linearized mutation component xi, see also Eqs. (1.48) and (1.49), we get

pQ(q|xi,y) =
1√
2πDi

exp

[
−1

2

(
q − EQ|xi

Di

)2
]

=
1√
2πDi

exp

[
−1

2

(
q − f ′

ixi − Ei

Di

)2
]
.

(2.89)

Inserting the two densities into the mutation integral we have

Ixi(q) =

∫ ∞

−∞
xi

1√
2πσ

e−
1
2 (

xi
σ )

2 1√
2πDi

e
− 1

2

(
q−f′

ixi−Ei
Di

)2

dxi . (2.90)

Substituting t = xi/σ and reordering terms gives

Ixi(q) =
σ√
2πDi

1√
2π

∫ ∞

−∞
te−

1
2 t

2

e
− 1

2

(
q−f′

iσt−Ei
Di

)2

dt . (2.91)

Now following identity can be applied [5, p. 330, A.8] to Eq. (2.91)

1√
2π

∫ ∞

−∞
te−

1
2 t

2

e−
1
2 (at+b)2 dt =

−ab
(1 + a2)3/2

exp

[
−1

2

b2

1 + a2

]
. (2.92)

We can identify the coefficients a and b as follows

a = −f ′
iσ

Di

b =
q − Ei

Di
.

(2.93)
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The first factor of the identity is calculated as

−ab
(1 + a2)3/2

=
f ′
iσ(q − Ei)

D2
i

1

(1 + (f ′
iσ/Di)2)

3/2

=
f ′
iσ(q − Ei)Di

(D2
i + (f ′

iσ)
2)

3/2

=
f ′
iσDi

D2
f

q − Ei

Df
,

(2.94)

with the newly defined quantity.

D2
f := D2

i + (f ′
iσ)

2. (2.95)

The second factor of yields

exp

[
−1

2

b2

1 + a2

]
= exp

[
−1

2

(q − Ei)
2

D2
i

1

1 + (f ′
iσ/Di)2

]
= exp

[
−1

2

(q − Ei)
2

D2
i + (f ′

iσ)
2

]
= exp

[
−1

2

(q − Ei)
2

D2
f

]
.

(2.96)

Using the results above we get for integral (2.91)

Ixi(q) =
σ√
2πDi

f ′
iσDi

D2
f

(
q − Ei

Df

)
exp

[
−1

2

(
q − Ei

Df

)2
]

=
1√
2π

f ′
iσ

2

D2
f

(
q − Ei

Df

)
exp

[
−1

2

(
q − Ei

Df

)2
]
.

(2.97)

Inserting the result for Ixi(q) into progress rate integral (2.88) and assuming a

normal cumulative distribution function PQ(q) = Φ
(

q−EQ

DQ

)
, see Eq. (1.43), we

obtain the following

φi = −
λ

µ

1√
2π

f ′
iσ

2

D2
f

∫ ∞

−f(y)

(
q − Ei

Df

)
e
− 1

2

(
q−Ei
Df

)2

×
µ∑

m=1

(λ− 1)!

(m− 1)!(λ−m)!

[
Φ

(
q − EQ

DQ

)]m−1 [
1− Φ

(
q − EQ

DQ

)]λ−m

dq .

(2.98)

The integration range of q was set to [−f(y),∞), corresponding to the attainable
fitness changes Qy(x) of Rastrigin’s function.

The obtained integral will only be solvable in terms of a progress coefficient
cµ/µ,λ, if an approximation for large dimensionality N → ∞ is applied to the

arguments q−Ei

Df
and

q−EQ

DQ
, namely that

Ei =
∑
j ̸=i

E [Qj ] ≈
N∑
j=1

E [Qj ] = EQ,

D2
f =

∑
j ̸=i

Var [Qj ] + (f ′
iσ)

2 ≈
N∑
j=1

Var [Qj ] = D2
Q.

(2.99)
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The assumption is that expectation value and variance are dominated by N − 1
terms, such that the contribution of a single i-th component is negligible.

Setting Ei = EQ, Df = DQ in Eq. (2.98) and defining the substitution

z =
q−EQ

DQ
the integral becomes

φi = −
λ

µ

1√
2π

f ′
iσ

2

DQ

×
∫ ∞

−f(y)−EQ
DQ

ze−
1
2 z

2
µ∑

m=1

(λ− 1)!

(m− 1)!(λ−m)!
[Φ(z)]

m−1
[1− Φ(z)]

λ−m
dz .

(2.100)

Now the lower boundary zl =
−f(y)−EQ

DQ
and its scaling behavior with respect

to N are investigated. Assuming (w.l.o.g.) that y = 1 and A = 0, the fitness

term f(y) = ∥y∥2 = N . Noting that EQ scales with N and DQ with
√
N , the

value for zl scales with
√
N and we have

lim
N→∞

−f(y)− EQ

DQ
= −∞. (2.101)

After extending the integration range, identity (2.15) can be applied again to
transform the sum into an integral

φi = −
λ

µ

1√
2π

f ′
iσ

2

DQ

∫ z=∞

z=−∞
ze−

1
2 z

2

× (λ− 1)!

(λ− µ− 1)!(µ− 1)!

∫ t=1−Φ(z)

t=0

tλ−µ−1(1− t)µ−1 dtdz .

(2.102)

Now the integration variables t and z can be exchanged giving the new ranges

0 ≤ t ≤ 1, −∞ ≤ z ≤ Φ−1(1− t), (2.103)

which changes the progress rate after reordering prefactors to

φi = −
f ′
iσ

2

DQ

1√
2π

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

×
∫ t=1

t=0

tλ−µ−1(1− t)µ−1

∫ z=Φ−1(1−t)

z=−∞
ze−

1
2 z

2

dz dt .

(2.104)

At this point another substitution is introduced, which will enable to identify
the progress coefficient definition. Setting t = Φ(y), y = Φ−1(t), dt

dy = ϕ(y), and

evaluating the upper bound zu = Φ−1(1− t) = Φ−1(Φ(−y)) = −y we get

φi = −
f ′
iσ

2

DQ

× 1√
2π

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

∫ y=∞

y=−∞
ϕ(y) [Φ(y)]

λ−µ−1
[1− Φ(y)]

µ−1

×
∫ z=−y

z=−∞
ze−

1
2 z

2

dz dy .

(2.105)
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The inner integration over z yields∫ −y

−∞
ze−

1
2 z

2

dz = −e− 1
2y

2

. (2.106)

Using ϕ(y) = 1√
2π

e−
1
2y

2

and λ
µ

(λ−1)!
(λ−µ−1)!(µ−1)! = (λ− µ)

(
λ
µ

)
we arrive at

φi =
f ′
iσ

2

DQ

λ− µ(√
2π
)2(λµ

)∫ ∞

−∞
e−y2

[Φ(y)]
λ−µ−1

[1− Φ(y)]
µ−1

dy

=
f ′
iσ

2

DQ
cµ/µ,λ,

(2.107)

with the definition of cµ/µ,λ = e1,0µ,λ given by [5, p. 172]

ea,bµ,λ =
λ− µ

(2π)
a+1
2

(
λ

µ

)∫ ∞

−∞
xbe−

a+1
2 x2

[Φ(x)]
λ−µ−1

[1− Φ(x)]
µ−a

dx . (2.108)

The progress rate finally yields

Progress rate via cµ/µ,λ

φi = cµ/µ,λ
σ2

DQ
f ′
i

= cµ/µ,λ
σ2

DQ
(ki + di)

= cµ/µ,λ
σ2

DQ

(
2yi + αA sin (αyi)

)
.

(2.109)

with f ′
i being the linearized quality gain given in Eq. (1.15) and D2

Q the variance
from Eq. (1.29).
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3 Quadratic Progress Rate

The first order progress rate definition from Eq. (2.1) has a major disadvantage
when approaching the optimizer ŷi = 0. It does not correctly model the progress

if zero-crossings occur, namely if y
(g)
i > 0 and y

(g+1)
i < 0, or along the negative

axis for both y
(g)
i < 0 and y

(g+1)
i < 0. In these cases the difference term

y
(g)
i − y

(g+1)
i > 0 yields positive progress even though the strategy is moving

away from ŷi = 0.
Given this behavior, the convergence towards ŷi cannot be modeled cor-

rectly. At this point one can identify that squaring the individual components
resolves this issue, which was already recognized in [6] studying the Ellipsoid

model. Introducing the difference term (y
(g)
i )2 − (y

(g+1)
i )2 models the progress

consistently approaching zero from positive and negative axes.
Therefore the new quadratic progress measure for the i-th component reads

φII
i = E

[(
y
(g)
i

)2
−
(
y
(g+1)
i

)2 ∣∣y(g), σ(g)

]
. (3.1)

During the φII
i derivation the first order progress φi from previous section will

reappear such that the obtained results will be reused.

3.1 Definition

Starting with Eq. (2.2) again, the position vector at (g + 1) yields

y(g+1) = y(g) +
1

µ

µ∑
m=1

xm;λ. (3.2)

Referring to the i-th components y
(g)
i , y

(g+1)
i , xm;λ = (xm;λ)i and squaring both

sides gives

(
y
(g+1)
i

)2
=

(
y
(g)
i +

1

µ

µ∑
m=1

xm;λ

)2

=
(
y
(g)
i

)2
+ 2y

(g)
i

1

µ

µ∑
m=1

xm;λ +
1

µ2

(
µ∑

m=1

xm;λ

)2

. (3.3)

Squaring the last term needs additional treatment(
µ∑

m=1

xm;λ

)2

=

(
µ∑

k=1

xk;λ

)(
µ∑

l=1

xl;λ

)
=

µ∑
m=1

(xm;λ)
2
+
∑
k ̸=l

xk;λxl;λ

=

µ∑
m=1

(xm;λ)
2
+
∑
k<l

xk;λxl;λ +
∑
k>l

xk;λxl;λ

=

µ∑
m=1

(xm;λ)
2
+ 2

∑
k<l

xk;λxl;λ

=

µ∑
m=1

(xm;λ)
2
+ 2

µ∑
l=2

l−1∑
k=1

xk;λxl;λ. (3.4)
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The idea was to split the squared sum into one part with µ terms of equal indices
and a double sum of µ(µ− 1)/2 mixed terms.

Reordering Eq. (3.3) and inserting the result of Eq. (3.4) we obtain(
y
(g)
i

)2
−
(
y
(g+1)
i

)2
= −2y(g)i

1

µ

µ∑
m=1

xm;λ −
1

µ2

µ∑
m=1

(xm;λ)
2 − 2

µ2

µ∑
l=2

l−1∑
k=1

xk;λxl;λ.
(3.5)

Now the expectation value can be taken with respect to mutation x

E

[(
y
(g)
i

)2
−
(
y
(g+1)
i

)2]
= −2y(g)i

1

µ
E

[
µ∑

m=1

xm;λ

]
− 1

µ2
E

[
µ∑

m=1

(xm;λ)
2

]
− 2

µ2
E

[
µ∑

l=2

l−1∑
k=1

xk;λxl;λ

]
.

(3.6)

Identifying φII
i = E

[
(y

(g)
i )2 − (y

(g+1)
i )2

]
from Eq. (3.1) and φi = − 1

µ E [
∑µ

m=1 xm;λ]

from Eq. (2.6) we get the important intermediate result

φII
i = 2y

(g)
i φi −

1

µ2
E

[
µ∑

m=1

(xm;λ)
2

]
− 2

µ2
E

[
µ∑

l=2

l−1∑
k=1

xk;λxl;λ

]
, (3.7)

with the second order progress being a function of the first order progress, and
two expectations yet to be determined. Therefore the following quantities are
defined

E(2) := σ2 E

[
µ∑

m=1

(zm;λ)
2

]
(3.8)

E(1,1) := σ2 E

[
µ∑

l=2

l−1∑
k=1

zk;λzl;λ

]
, (3.9)

with x = σz, and the superscript (·) denoting the power of occurring mutation
terms. For the sake of completeness, the expectation yielding φi from Eq. (2.6)
is also given

E(1) := σE

[
µ∑

m=1

zm;λ

]
= −µφi. (3.10)

Solutions for Eq. (3.7) will be derived in Sec. 3.2 and 3.3 using two different
approaches.

3.2 Expectations via Noisy Order Statistics

In this section, an approach by Arnold [2] is introduced and applied to calculate
expectations from Eqs. (3.8), (3.9) and (3.10). Since the quantity φi of Eq. (3.10)
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was already determined in Sec. 2.6, its result will be checked for correctness by
applying the new approach. The following derivations give a summary of the
more involved calculations by Arnold.

First the method will be presented in a more abstract form before being
applied to the problem at hand. A slight complication arises due to two cases
for the sign relation between quality gain and mutation, which influences the
ordering of mutation components zm;λ. This issue will result in slightly modified
equations compared to the derivation by Arnold.

3.2.1 Definition and Generic Solution

Let z be a random variable with density pz(z) and zero mean. The density is
approximated using a finite number of cumulants using a Gram-Charlier series
with variance κ2, skewness γ1 and excess γ2, see also (C.1). Furthermore, let
ϵ ∼ N

(
0, σ2

ϵ

)
be a normally distributed random variable modeling additive noise

disturbance. Resulting measured values v are obtained as

v = z +N
(
0, σ2

ϵ

)
, (3.11)

of which the realizations are independent and identically distributed with den-
sity pv(v) in (C.10). By performing selection of m = 1, ..., µ largest elements
over λ realizations of v, the selected values are given by

vm;λ =
(
z +N

(
0, σ2

ϵ

))
m;λ

. (3.12)

Therefore vm;λ and its source term zm;λ are being governed by order statistics,
c.f. density pm;λ(z) in Eq. (2.13). The variates zm;λ are referred to as noisy
order statistics due to the added noise term N

(
0, σ2

ϵ

)
and are linearly related

to measured (selected) values vm;λ. After selection, the elements zm;λ among
the group m = 1, ..., µ now depend on each other with joint density denoted in
(C.24).

Assuming we are interested in the expected value of a sum SP of noisy order
statistics over ν factors with corresponding powers P = (p1, ..., pν) and indices
{n1, ..., nν}, we can formulate the problem as

E [SP ] = E
[∑

zp1

n1;λ
· · · zpν

nν ;λ

]
, (3.13)

which is explained in (C.20) in more detail. Given the relation of Eq. (3.12)
and the problem formulation of (3.13), Arnold has provided a generic solution
for the expected value in [2].

As already mentioned, two cases for the sign relation between v and z may
occur which will require minor modifications of Arnold’s derivation. Denoting
the sign as s we have

v = sz +N
(
0, σ2

ϵ

)
with s ∈ {+1,−1}. (3.14)

The details concerning the modified derivations are shown in Appendix C. At
this point only a summary is provided.
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Summary of solution Arnold aims to find a closed form expression for the
(2ν + 1)-fold integration of Eq. (C.26). Therefore he successively solves the
2ν-fold integration for IP (x) over z and v-variables, respectively, presented in
(C.27) and (C.28). To this end, the noise coefficient a > 0 from Eq. (C.11) is

defined and special coefficients ζ
(P )
i,j (k) are introduced, such that

a =

√
κ2

κ2 + σ2
ϵ

, with (3.15)

ζ
(P )
i,j (k) = Polynomial(a). (3.16)

Integral IP (x) is expressed in terms of the coefficients ζ
(P )
i,j (k), and they in turn

depend on the exponent vector P , on the number of terms ν via index i and
on the expansion order of Eq. (C.1) via j. Given {P, i, j}, only certain k ≥ 0
yield non-zero coefficient values. The results were obtained using Mathematica
and are tabulated by Arnold [2, p. 141]. In the end we are left with a single

integration, which is incorporated within a new coefficient hν−n,k
µ,λ , see (3.18).

The final result for the expected value of sum (3.13) in terms of z defined in
(3.14) with s ∈ {+1,−1} reads

E [SP ] = (s
√
κ2)

∥P∥1
µ!

(µ− ν)!

×
ν∑

n=0

∑
k≥0

(
ζ
(P )
n,0 (k) + s

γ1
6
ζ
(P )
n,1 (k) +

γ2
24

ζ
(P )
n,2 (k) + ...

)
hν−n,k
µ,λ .

(3.17)

The relation v ∼ −z +N
(
0, σ2

ϵ

)
from Eq. (3.14) results in a switched sign for

skewness γ1 (neglecting cumulants of higher order than four) and exchanged
permutation ordering with (−1)∥P∥1 compared to Arnold’s result in [2, p. 142,
D.28].

The introduced coefficients hi,k
µ,λ are numerically obtainable solving

hi,k
µ,λ =

λ− µ√
2π

(
λ

µ

)∫ ∞

−∞
Hek (x) e

− 1
2x

2

[ϕ(x)]i[Φ(x)]λ−µ−1[1− Φ(x)]µ−i dx .

(3.18)

They are closely related to the generalized progress coefficient by Beyer [5,
p. 172], with the definition here using Hermite Polynomials. As an example,
h1,0
µ,λ = cµ/µ,λ with He0 (x) = 1.

Given z ∼ N
(
0, σ2

)
expansion (C.1) yields a normal distribution with γ1 =

γ2 = 0 and only coefficient ζ
(P )
n,0 (k) remains within brackets (·) of Eq. (3.17).

3.2.2 Evaluating Expectations

In this section the result of Eq. (3.17) is applied to the sums of Eqs. (3.8) and
(3.9) for the determination of φII

i . But first Eq. (3.10) is evaluated to validate
the correct application of the method.
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The first step is to redefine the fitness and quality gain in order to achieve
maximization instead of minimization. Applying (−1) to the fitness leads to a
maximization problem (denoted by overset ∼). Thus, the maximized quality
gain of Eq. (1.2) is

Q̃y(x) = −f(y + x)− (−f(y)) = f(y)− f(y + x) (3.19)

= −Qy(x) = −
N∑
i=1

Qi(xi). (3.20)

Therefore the i-th component of Eq. (1.9) changes sign

Q̃i(xi) = −
(
x2
i + 2yixi + ci(1− cos (αxi)) + si sin (αxi)

)
. (3.21)

Evaluating the expectation value and variance yields

E
[
Q̃y(x)

]
= E

[
N∑
i=1

Q̃i

]
= −E

[
N∑
i=1

Qi

]
= −EQ (3.22)

Var
[
Q̃y(x)

]
= Var

[
N∑
i=1

Q̃i

]
= (−1)2 Var

[
N∑
i=1

Qi

]
= D2

Q. (3.23)

We are interested in the i-th component expectation E [
∑µ

m=1 xm;λ] with
xm;λ := (xm;λ)i due to quality gain selection. Now the main idea is to isolate
the i-th component of the quality gain, linearize it and to model the effect of
N − 1 remaining components as a noisy disturbance. The goal is obtaining the
form of Eq. (3.14). Starting with

Q̃y(x) =

N∑
j=1

Q̃j = Q̃i +
∑
j ̸=i

Q̃j

= −x2
i − 2yixi − ci(1− cos (αxi))− si sin (αxi) +

∑
j ̸=i

Q̃j

= −kixi − δ(xi) +
∑
j ̸=i

Q̃j ,

(3.24)

where in the last line Eqs. (2.35) and (2.36) were used. As a linear relation be-

tween Q̃y(x) and xi is required, the perturbation is neglected assuming δ(xi) ≈ 0
for small mutations.

For large dimensionality the sum
∑

j ̸=i Q̃j asymptotically approaches a nor-
mal distribution, cf. Eq. (1.39), and we can define a substitute random variate
w

w :=
∑
j ̸=i

Q̃j , w ∼ N
(
Ew, D

2
w

)
, with

Ew = E

∑
j ̸=i

Q̃j

 = −Ei, D2
w = Var

∑
j ̸=i

Q̃j

 = D2
i ,

(3.25)

where Eqs. (1.47) and (1.49) were used with sign relation (3.22) applied to Ei.
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Setting xi = σzi, neglecting δ(xi) and using substitute w, Eq. (3.24) now
becomes

Q̃y(x) ≈ −kiσzi +N
(
−Ei, D

2
i

)
Q̃y(x) ≈ −kiσzi − Ei +N

(
0, D2

i

)
Q̃y(x) + Ei ≈ − sgn (ki) |ki|σzi +N

(
0, D2

i

)
Q̃y(x) + Ei

|ki|σ
≈ sgn (−ki) zi +N

(
0,

(
Di

kiσ

)2
)
.

(3.26)

The sign function sgn (·) and the decomposition ki = sgn (ki) |ki| were intro-
duced, as ki = 2yi may be positive or negative depending on the position. In
order to ensure constant order of selected values on the left-hand side, the equa-
tion is divided by |ki| keeping the sign relation at zi. As |ki|2 = k2 the absolute
value is dropped when squared. By defining

vi := (Q̃y(x) + Ei)/(|ki|σ)
σ2
ϵ := (Di/kiσ)

2,
(3.27)

we arrive at the desired form introduced in Eq. (3.14) with s = sgn (−ki) giving

vi = sgn (−ki) zi +N
(
0, σ2

ϵ

)
. (3.28)

We have zi ∼ N (0, 1) such that κ2 = 1, κi = 0 for i ̸= 2. The ordering of

maximized Q̃y(x) is not affected by the linear transformation vi

(
Q̃y(x)

)
.

Now the obtained results are applied. Given the sum (3.10)

E(1) = σE

[
µ∑

m=1

zm;λ

]
, (3.29)

relevant parameters for applying Eq. (3.17) are κ2 = 1, γ1 = γ2 = 0, P = (1),
∥P∥1 = 1 and ν = 1, such that

E(1) = σ sgn (−ki)
µ!

(µ− 1)!

1∑
n=0

∑
k≥0

ζ
(1)
n,0(k)h

1−n,k
µ,λ

= σ sgn (−ki)µ
∑
k≥0

(
ζ
(1)
0,0(k)h

1,k
µ,λ + ζ

(1)
1,0(k)h

0,k
µ,λ

)
= σ sgn (−ki)µζ(1)0,0(0)h

1,0
µ,λ

= σ sgn (−ki)µah1,0
µ,λ.

(3.30)

The result was obtained applying Table [2, p. 141] by using ζ
(1)
1,0(k) = 0 for any

k, and ζ
(1)
0,0(k) ̸= 0 only for k = 0 giving the noise coefficient a. The result (3.30)
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is further evaluated using a from (3.15) and h1,0
µ,λ from (3.18)

E(1) = σ sgn (−ki)µah1,0
µ,λ

= σ sgn (−ki)µ
cµ/µ,λ√
1 + σ2

ϵ

=
σ sgn (−ki)µcµ/µ,λ√

1 +
(

Di

kiσ

)2
=

σ sgn (−ki)µcµ/µ,λ√(
kiσ
kiσ

)2
+
(

Di

kiσ

)2
= −

µcµ/µ,λ sgn (ki) |ki|σ2√
(kiσ)

2
+D2

i

= −µ
cµ/µ,λkiσ

2

D+
.

(3.31)

From first to second line it was used that h1,0
µ,λ = cµ/µ,λ and a =

√
1/(1 + σ2

ϵ ).

In the third line σ2
ϵ = (Di/kiσ)

2. From fourth to fifth line in order to ensure the
noise coefficient a > 0, taking

√
(kiσ)2 was set to +|ki|σ and the corresponding

positive solution is chosen. For the last line the definition ki = sgn (ki) |ki| was
applied again, as well as the definition of D+ from Eq. (2.49).

Relating the result of (3.31) to progress rate φi of Eq. (3.10) and applying
the large N approximation D+ ≈ DQ, see Eq. (2.73), we finally arrive at the
progress rate by means of noisy order statistics

φi = −
1

µ
E(1)

= cµ/µ,λ
σ2

DQ
ki. (3.32)

The result is equivalent to Eq. (2.109) showing the progress of the spherical part
ki due to neglected perturbations. If the linearized quality gain from Eq. (1.15)
was chosen in Eq. (3.24), the coefficient ki would be replaced by f ′

i .
Therefore the method has been validated using the already obtained result.

Now the remaining expectations are evaluated.

Expectations of E(2) and E(1,1) For the sum defined in Eq. (3.8)

E(2) = σ2 E

[
µ∑

m=1

(zm;λ)
2

]
, (3.33)

we now have P = (2), ∥P∥1 = 2 and ν = 1. Distribution parameters κ2 = 1,
γ1 = γ2 = 0 remain the same. As ∥P∥1 = 2, the sign yields s2 = [sgn (−ki)]2 = 1
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and can be dropped. The result of Eq. (3.17) yields

E(2) = σ2 µ!

(µ− 1)!

1∑
n=0

∑
k≥0

ζ
(2)
n,0(k)h

1−n,k
µ,λ

= σ2µ
∑
k≥0

(
ζ
(2)
0,0(k)h

1,k
µ,λ + ζ

(2)
1,0(k)h

0,k
µ,λ

)
= σ2µ

(
ζ
(2)
0,0(1)h

1,1
µ,λ + ζ

(2)
1,0(0)h

0,0
µ,λ

)
= σ2µ

(
a2h1,1

µ,λ + h0,0
µ,λ

)
= σ2µ

(
a2e1,1µ,λ + 1

)
= σ2µ

 e1,1µ,λ

1 +
(

Di

kiσ

)2 + 1


= µ

(
e1,1µ,λk

2
i σ

4

D2
+

+ σ2

)
.

(3.34)

For
∑

k≥0 it was used that ζ
(2)
n,0(k) = 0 except ζ

(2)
0,0(1) = a2 and ζ

(2)
1,0(0) = 1.

The coefficient h1,1
µ,λ = e1,1µ,λ given He1 (x) = x and comparing Eqs. (3.18) and

(2.108). Additionally h0,0
µ,λ = 1 with He0 (x) = 1, see below. The value of

a2 = 1/(1 + (Di/kiσ)
2), and finally the definition D2

+ = (kiσ)
2 +D2

i was used
to obtain the last line.

Coefficient h0,0
µ,λ can be evaluated as

h0,0
µ,λ =

λ− µ√
2π

(
λ

µ

)∫ ∞

−∞
e−

1
2x

2

[Φ(x)]λ−µ−1[1− Φ(x)]µ dx

= (λ− µ)

(
λ

µ

)∫ 1

0

tλ−µ−1(1− t)µ dt

= (λ− µ)

(
λ

µ

)
B(λ− µ, µ+ 1)

=
λ!

(λ− µ− 1)!µ!

(λ− µ− 1)!µ!

λ!

= 1,

(3.35)

using the substitution t = Φ(x), transformation (λ − µ)
(
λ
µ

)
= λ!

(λ−µ−1)!µ! , the

relation between beta and gamma functions B(x, y) = Γ(x) Γ(y)
Γ(x+y) and Γ(n) =

(n− 1)!.
Given the sum defined in Eq. (3.9)

E(1,1) := σ2 E

[
µ∑

l=2

l−1∑
k=1

zk;λzl;λ

]
, (3.36)

we have P = (1, 1), ∥P∥1 = 2, ν = 2 and s2 = 1. Distribution parameters are
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κ2 = 1 and γ1 = γ2 = 0. Equation (3.17) yields

E(1,1) = σ2 µ!

(µ− 2)!

2∑
n=0

∑
k≥0

ζ
(1,1)
n,0 (k)h2−n,k

µ,λ

= σ2µ(µ− 1)
∑
k≥0

(
ζ
(1,1)
0,0 (k)h2,k

µ,λ + ζ
(1,1)
1,0 (k)h1,k

µ,λ + ζ
(1,1)
2,0 (k)h0,k

µ,λ

)
= σ2µ(µ− 1)ζ

(1,1)
0,0 (0)h2,0

µ,λ

= σ2µ(µ− 1)
a2

2
e2,0µ,λ

=
σ2µ(µ− 1)

2

e2,0µ,λ

1 +
(

Di

kiσ

)2
=

σ2µ(µ− 1)

2

e2,0µ,λ(kiσ)
2

D2
+

=
µ(µ− 1)

2

e2,0µ,λk
2
i σ

4

D2
+

.

(3.37)

It was used that ζ
(1,1)
n,0 (k) = 0 except ζ

(1,1)
0,0 (0) = a2/2 and h2,0

µ,λ = e2,0µ,λ comparing

Eqs. (3.18) and (2.108). Again, a2 = 1/(1 + (Di/kiσ)
2) and D2

+ = (kiσ)
2 +D2

i

was used.

Collecting results At this point the results of Eqs. (3.34) and (3.37) are
plugged back into Eq. (3.7) giving

φII
i = 2yiφi −

1

µ2
E(2) − 2

µ2
E(1,1)

= 2yiφi −
1

µ

(
e1,1µ,λk

2
i σ

4

D2
+

+ σ2

)
− µ− 1

µ

e2,0µ,λk
2
i σ

4

D2
+

= 2yiφi −
σ2

µ
− 1

µ

k2i σ
4

D2
+

(
e1,1µ,λ + (µ− 1)e2,0µ,λ

)
.

(3.38)

At this point the expression (2.82) for φi is inserted into φII
i . Additionally, using

definition ki = 2yi from Eq. (1.12), applying variance approximation D+ ≈ D2
Q

for large N from (2.74) and collecting the factor σ2/µ one gets the quadratic
progress rate result

φII
i = cϑ

2yiσ
2

DQ

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)

− σ2

µ

[
1 +

(2yi)
2σ2

D2
Q

(
e1,1µ,λ + (µ− 1)e2,0µ,λ

)]
.

(3.39)
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3.3 Expectations via Large Population Approximation

In this section an alternative derivation to Sec. 3.2 is presented for the expecta-
tions (3.8) and (3.9) for the derivation of φII

i in Eq. (3.7). The large population
approximation will be applied for the expectations analogous to Sec. 2.2.

3.3.1 Expectation of E(2)

Starting from (3.8) and referring to the corresponding term in (3.7) one has

1

µ2
E(2) =

1

µ2

µ∑
m=1

E
[
x2
m;λ

]
=

1

µ2

µ∑
m=1

∫ ∞

−∞
x2
i pm;λ(xi|y) dxi

(3.40)

analogous to the definition in Eq. (2.8), but with squared quantity x2
i . Both

(2.8) and (3.40) have the same structure after inserting the order statistic density
pm;λ(xi|y) from (2.13) and the integration over the changed mutation compo-
nent is performed at last. The results of Sec. 2.1 and 2.2 can be applied to
Eq. (3.40) by including the large population approximation up to result (2.42),
for which the mutation integration has to be performed.

Therefore (3.40) is rewritten as

1

µ2
E(2) =

1

µ

[
1

µ

µ∑
m=1

∫ ∞

−∞
x2
i pm;λ(xi|y) dxi

]

=
1

µ

[
λ

µ

∫ xi=∞

xi=−∞
x2
i px(xi)

1

B(λ− µ, µ)

×
∫ t=1

t=0

tλ−µ−1(1− t)µ−1PQ(P
−1
Q (1− t)|xi) dtdxi

]
,

(3.41)

and an equation analogous to (2.25) is obtained. Solving the t-integration in
Eq. (3.41), the large population approximation of (B.1) is applied with a = 1
and the integrand PQ(P

−1
Q (1− t)|xi) evaluated at t̂ = 1− ϑ. This yields

1

µ2
E(2) ≃ 1

µ

1

ϑ

∫ ∞

−∞
x2
i px(xi)PQ(P

−1
Q (ϑ)|xi) dxi , (3.42)

which is analogous to (2.28). Inserting the normal approximation of the quality
gain distribution (2.31) into (3.42) leads to an analytically not solvable inte-
gration due to non-linear terms in xi within Φ(·). Given Φ(·), see (2.37), with
g(xi) from (2.38) being a linear function in xi and h(xi) from (2.40) a non-linear
function, one can write

1

µ2
E(2) =

1

µ

1

ϑ

∫ ∞

−∞
x2
i px(xi)Φ (g(xi) + h(xi)) dxi . (3.43)

At this point the resulting distribution function is again expanded according to
(2.41) considering only the first two terms of the Taylor series. One obtains an
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approximation analogous to (2.42) giving

1

µ2
E(2) ≈ 1

µ

[
1

ϑ

∫ ∞

−∞
x2
i px(xi)Φ(g(xi)) dxi

+
1√
2πϑ

∫ ∞

−∞
x2
i px(xi)h(xi)e

− 1
2 g(xi)

2

dxi

]
=: I0i + I1i ,

(3.44)

with the two integrations abbreviated as I0i and I1i , which are evaluated now. As
a remark, the sign difference compared to (2.42) results from φi = − 1

µ

∑µ
m=1 E [xm;λ]

calculated in (2.42), while for (3.44) the expression 1
µ2

∑µ
m=1 E

[
x2
m;λ

]
is evalu-

ated.
Starting with the first integration I0i , it is rewritten analogously to (2.44)

using g(xi) from (2.38) and the substitution z = xi/σ giving

I0i =
1

µϑ

∫ ∞

−∞
x2
i px(xi)Φ(g(xi)) dxi

=
σ2

√
2πµϑ

∫ ∞

−∞
z2e−

1
2 z

2

Φ

(
−kiσ

Di
z +

EQi
+DQΦ

−1(ϑ)

Di

)
dz .

(3.45)

At this point the result of Identity (D.1) can be applied to (3.45). Defining the
coefficients

a = −kiσ

Di
, b =

EQi +DQΦ
−1(ϑ)

Di
, (3.46)

expressions needed for (D.1) are evaluated as

(1 + a2)1/2 =

√
D2

i

D2
i

+

(
kiσ

Di

)2

=

√
D2

+

D2
i

=
Dk

Di

a2b

(1 + a2)3/2
=

(kiσ)
2

D2
+

EQi
+DQΦ

−1(ϑ)

D+

e
− 1

2
b2

1+a2 = exp

[
−1

2

(
EQi

+DQΦ
−1(ϑ)

D+

)2
]
,

(3.47)

using D2
+ := D2

i + (kiσ)
2 from (2.49). Therefore the first integration yields

I0i =
σ2

µϑ

{
Φ

(
EQi

+DQΦ
−1(ϑ)

D+

)
−

1√
2π

(kiσ)
2

D2
+

EQi +DQΦ
−1(ϑ)

D+
exp

[
−1

2

[
EQi

+DQΦ
−1(ϑ)

]2
D2

+

]}
.

(3.48)

Applying the large dimensionality approximation from (2.73), one neglects EQi
≈
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0 and sets DQ ≈ D+. This significantly simplifies the result of (3.48) giving

I0i ≈
σ2

µϑ

[
Φ
(
Φ−1(ϑ)

)
− 1√

2π

(kiσ)
2

D2
Q

Φ−1(ϑ) exp

[
−1

2

[
Φ−1(ϑ)

]2]]

≈ σ2

µ

[
1− Φ−1(ϑ)

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]
(kiσ)

2

D2
Q

] (3.49)

Given (3.49) the asymptotic generalized progress coefficient e1,1ϑ from (B.30) can
be recognized with parameters a = 1 and b = 1, such that

e1,1ϑ =
[
−Φ−1(ϑ)

] [e− 1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]
. (3.50)

This leads to following result for the first integral

I0i =
σ2

µ

[
1 + e1,1ϑ

(kiσ)
2

D2
Q

]
. (3.51)

Note that the large dimensionality approximation can also be applied earlier,
namely to coefficients (3.47), which results in simpler expressions

(1 + a2)1/2 ≈ 1

a2b

(1 + a2)3/2
≈ (kiσ)

2

D2
Q

Φ−1(ϑ)

e
− 1

2
b2

1+a2 ≈ exp

[
−1

2

[
Φ−1(ϑ)

]2]
,

(3.52)

when evaluating Identity (D.1).
Second integration I1i from (3.44) is defined as

I1i =
1√
2πµϑ

∫ ∞

−∞
x2
i px(xi)h(xi)e

− 1
2 g(xi)

2

dxi (3.53)

with g(xi) and h(xi) defined in (2.38) and (2.55), respectively, giving

g(xi) = −
ki
Di

xi +
EQi +DQΦ

−1(ϑ)

Di

h(xi) = −
x2
i + si sin (αxi) + ci(1− cos (αxi))

Di
.

(3.54)

Quadratic completion for the Gaussians of (3.53) was already evaluated in
Eq. (2.54) with parameters C, m and s given in (2.65), (2.63) and (2.64), re-
spectively. Again, the large dimensionality approximation is applied to simplify
the lengthy expressions and the results of Sec. 2.4 are applicable giving

m ≈ 0

s ≈ σ

C ≈ exp

[
−1

2

[
Φ−1(ϑ)

]2]
.

(3.55)
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Therefore integral (3.53) with quadratic completion (2.54) assuming large N
yields

I1i =
1

µ

C

2πϑσ

∫ ∞

−∞
x2
ih(xi)e

− 1
2 (

xi−m

s )
2

dxi

≈ 1

µ

e−
1
2 [Φ

−1(ϑ)]
2

√
2πϑ

1√
2πσ

∫ ∞

−∞
x2
ih(xi)e

− 1
2

x2
i

σ2 dxi

(3.56)

Given last line of (3.56), one can compare coefficients with the asymptotic gen-
eralized progress coefficient from (B.30) and identify following using a = 1 and
b = 0

e−
1
2 [Φ

−1(ϑ)]
2

√
2πϑ

= e1,0ϑ = cϑ, (3.57)

see also Eq. (2.79). Additionally in (3.56), the definition of the expected value
of x2

ih(xi) w.r.t. xi ∼ N (0, σ2) can be applied. Inserting h(xi) from (3.54) with
Di ≈ DQ, expression (3.56) is reformulated

I1i = − cϑ
µDQ

[
E
[
x4
i

]
+ si E

[
x2
i sin (αxi)

]
+ ci E

[
x2
i

]
− ci E

[
x2
i cos (αxi)

]]
.

(3.58)

with ci = A cos (αyi) and si = A sin (αyi). Using results from Appendix A the
expected values read

E
[
x4
i

]
= 3σ4

E
[
x2
i

]
= σ2

E
[
x2
i sin (αxi)

]
= 0

E
[
x2
i cos (αxi)

]
= (σ2 − α2σ4)e−

1
2 (ασ)

2

.

(3.59)

Therefore one gets

I1i = − cϑσ
2

µDQ

[
3σ2 +A cos (αyi)

(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]

. (3.60)

Collecting the results (3.51) and (3.60) with ki = 2yi and inserting them back
into (3.44) the expectation value reads

1

µ2
E(2) =

σ2

µ

{
1 + e1,1ϑ

(2yi)
2σ2

D2
Q

− cϑ
DQ

[
3σ2

+A cos (αyi)
(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]}

.

(3.61)
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3.3.2 Expectation of E(1,1)

The derivation of E(1,1) is tackled in this section. Referring to (3.9) and its
application in (3.7), the expected value to be calculated is

1

µ2
E(1,1) =

1

µ2

µ∑
l=2

l−1∑
k=1

E [xk;λxl;λ] , (3.62)

The double sum includes mixed contributions from the k-th and l-th best ele-
ments of the i-th mutation component. To avoid confusion with the summation
indices k and l, the integration variables associated with k-th element will be
denoted as x1 (mutation) and q1 (quality), while the l-th element is integrated
over x2 and q2.

The ordering 1 ≤ k < l ≤ λ is assumed with k yielding a smaller (bet-
ter) quality value q1 < q2. Calculating (3.62) the joint probability density
pk,l;λ(x1, x2) is needed, such that the expected value can be formulated as

1

µ2
E(1,1) =

1

µ2

µ∑
l=2

l−1∑
k=1

∫ ∞

−∞

∫ ∞

−∞
x1x2pk,l;λ(x1, x2) dx2 dx1 . (3.63)

The mutation densities are independent and denoted by px(x1) and px(x2),
respectively. Given mutation components x1 and x2, the conditional density
obtaining the quality values q1 and q2 is pQ(q1|x1) and pQ(q2|x2), respectively.
Given q1 and q2, one has k−1 values are smaller than q1, l−k−1 values between
q1 and q2 and λ− l values larger than q2 with probabilities

Pr{Q ≤ q1}k−1
= PQ(q1)

k−1

Pr{q1 ≤ Q ≤ q2}l−k−1
= [PQ(q2)− PQ(q1)]

l−k−1

Pr{Q > q2}λ−l
= [1− PQ(q2)]

λ−l

(3.64)

with PQ(q) denoting the distribution function. The joint probability density
can therefore be written as

pk,l;λ(x1, x2) = px(x1)px(x2)

∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

× λ!
PQ(q1)

k−1[PQ(q2)− PQ(q1)]
l−k−1[1− PQ(q2)]

λ−l

(k − 1)!(l − k − 1)!(λ− l)!
dq2 dq1 ,

(3.65)

with integration ranges qmin ≤ q1 <∞ and q1 < q2 <∞ as k < l. Lower bound
qmin denotes the smallest possible quality value, which is resolved later. The
factorials exclude the irrelevant combinations among the three groups given in
(3.64). Plugging (3.65) into (3.63) and moving the sum into the integration one
gets

1

µ2
E(1,1) =

λ!

µ2

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

×
µ∑

l=2

l−1∑
k=1

PQ(q1)
k−1[PQ(q2)− PQ(q1)]

l−k−1[1− PQ(q2)]
λ−l

(k − 1)!(l − k − 1)!(λ− l)!

× dq2 dq1 dx2 dx1 .

(3.66)
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The double sum of (3.66) over the PQ-values will be exchanged by an integration.
This can be done using an identity from [2, p. 113]. Setting ν = 2 and identifying
the indices as i1 = l and i2 = k, the evaluated identity yields

µ∑
l=2

l−1∑
k=1

Qλ−l
1 [Q2 −Q1]

l−k−1[1−Q2]
k−1

(λ− l)!(l − k − 1)!(k − 1)!

=
1

(λ− µ− 1)!(µ− 2)!

∫ Q1

0

tλ−µ−1(1− t)µ−2 dt

(3.67)

for real values Q1 and Q2 and integers ν ≤ µ < λ. Now the substitution
Q1 = 1 − PQ(q2), Q2 = 1 − PQ(q1) can be performed and the double sum
of (3.66) can be recognized by comparing with (3.67). Applying the identity
therefore yields

µ∑
l=2

l−1∑
k=1

[1− PQ(q2)]
λ−l[PQ(q2)− PQ(q1)]

l−k−1[PQ(q1)]
k−1

(λ− l)!(l − k − 1)!(k − 1)!

=
1

(λ− µ− 1)!(µ− 2)!

∫ 1−PQ(q2)

0

tλ−µ−1(1− t)µ−2 dt ,

(3.68)

and Eq. (3.66) changes to

1

µ2
E(1,1) =

λ!

µ2

1

(λ− µ− 1)!(µ− 2)!

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×
∫ ∞

qmin

pQ(q1|x1)

∫ ∞

q1

pQ(q2|x2)

×
∫ 1−PQ(q2)

0

tλ−µ−1(1− t)µ−2 dtdq2 dq1 dx2 dx1 .

(3.69)

The prefactor of Eq. (3.69) can be evaluated as

λ!

µ2

1

(λ− µ− 1)!(µ− 2)!
=

λ(λ− 1)!(µ− 1)

µ2(λ− µ− 1)!(µ− 1)!

=
λ

µ

µ− 1

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
1

ϑ

µ− 1

µ

1

B(λ− µ, µ)

(3.70)

which will be useful during subsequent calculations.
Now the integration order will be exchanged twice in (3.69). First the order

between t and q2 is exchanged. Then the order between t and q1 is exchanged,
such that both q-integrations are performed before the t-integration enabling
the application of the large population identity of Appendix B. Starting with
integration bounds

q1 ≤ q2 <∞
0 ≤ t ≤ 1− PQ(q2)

(3.71)

and using the inverse function P−1
Q with q2 = P−1

Q (1− t) the exchanged bounds
between t and q2 are given by

0 ≤ t ≤ 1− PQ(q1)

q1 ≤ q2 ≤ P−1
Q (1− t).

(3.72)
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Using factor (3.70) and exchanged bounds (3.72) the expression (3.69) is refor-
mulated as

1

µ2
E(1,1) =

1

ϑ

µ− 1

µ

1

B(λ− µ, µ)

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×
∫ ∞

qmin

pQ(q1|x1)

∫ 1−PQ(q1)

0

tλ−µ−1(1− t)µ−2

×
∫ P−1

Q (1−t)

q1

pQ(q2|x2) dq2 dtdq1 dx2 dx1 .

(3.73)

Now the integration order between t and q1 is exchanged starting from

qmin ≤ q1 <∞
0 ≤ t ≤ 1− PQ(q1),

(3.74)

yielding

0 ≤ t ≤ 1

qmin ≤ q1 ≤ P−1
Q (1− t).

(3.75)

Therefore, we arrive at the following integration to be solved (beta function
moved inside as it will be evaluated during the t-integration)

1

µ2
E(1,1) =

1

ϑ

µ− 1

µ

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×

(
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2

×

[∫ P−1
Q (1−t)

qmin

pQ(q1|x1)

{∫ P−1
Q (1−t)

q1

pQ(q2|x2) dq2

}
dq1

]
dt

)
dx2 dx1 .

(3.76)

Now the integrations in (3.76) will be successively solved. Starting with inte-
gration {·} over q2 one has∫ P−1

Q (1−t)

q1

pQ(q2|x2) dq2 =
[
PQ(q2|x2)

]P−1
Q (1−t)

q1

= PQ(P
−1
Q (1− t)|x2)− PQ(q1|x2).

(3.77)

The q1-integration within [·] using (3.77) yields∫ P−1
Q (1−t)

qmin

pQ(q1|x1)
(
PQ(P

−1
Q (1− t)|x2)− PQ(q1|x2)

)
dq1 (3.78)

= PQ(P
−1
Q (1− t)|x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1) dq1 (3.79)

−
∫ P−1

Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 (3.80)

67



First integration (3.79) is easily evaluated, as the conditional density is inte-
grated over its support giving

PQ(P
−1
Q (1− t)|x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1) dq1

= PQ(P
−1
Q (1− t)|x2)

[
PQ(q1|x1)

]P−1
Q (1−t)

qmin

= PQ(P
−1
Q (1− t)|x2)PQ(P

−1
Q (1− t)|x1)

(3.81)

with PQ(qmin|x1) = Pr{Q ≤ qmin|x1} = 0. Note that the resulting factors are
equal up to the conditional variables x1 and x2.

The second integral (3.80) will be simplified using integration by parts.
Thereafter, one can exchange the x1 and x2 variables to find a significantly
simpler expression for the original integral. Integration by parts yields∫ P−1

Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1

= PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2)−

∫ P−1
Q (1−t)

qmin

PQ(q1|x1)pQ(q1|x2) dq1 .

(3.82)

Equation (3.82) inserted into (3.76) has to be integrated over x1 and x2, of
which the order can be exchanged. For the following argument the t-integration
and the prefactors of (3.76) have no influence, such that they are dropped for
better readability. Integrating both sides of (3.82) yields∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 dx2 dx1

=

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1

−
∫ ∞

−∞
x2px(x2)

∫ ∞

−∞
x1px(x1)

∫ P−1
Q (1−t)

qmin

PQ(q1|x2)pQ(q1|x1) dq1 dx1 dx2 ,

(3.83)

where in the last line the integration order of x1 and x2 was exchanged, such that
an expression equivalent to the lhs of (3.83) is obtained with given arguments
for pQ and PQ. Collecting the terms, Eq. (3.83) can be formulated as∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)PQ(q1|x2) dq1 dx2 dx1

=
1

2

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1 .

(3.84)

Noting that the rhs of result (3.84) is one half of the first integration result (3.81)
after x-integration and noting the minus sign in (3.80), one gets for (3.78) the
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expression∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

∫ P−1
Q (1−t)

qmin

pQ(q1|x1)

×
(
PQ(P

−1
Q (1− t)|x2)− PQ(q1|x2)

)
dq1 dx2 dx1

=

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×
(
1− 1

2

)
PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dx2 dx1 .

(3.85)

Including prefactors and integration over t again, the result within [·] of (3.76)
simplifies significantly giving

1

µ2
E(1,1) =

1

2

1

ϑ

µ− 1

µ

∫ ∞

−∞
x1px(x1)

∫ ∞

−∞
x2px(x2)

×

(
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2

× PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dt

)
dx2 dx1 .

(3.86)

Given (3.86) and the integral in (·), the large population identity of (B.1) can
be applied for (µ, λ) → ∞ with constant ϑ. Identifying a = 2 and evaluating
PQ(P

−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) at the integrand’s maximum location t̂ =

1− ϑ yields

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−2PQ(P
−1
Q (1− t)|x1)PQ(P

−1
Q (1− t)|x2) dt

≃ 1

ϑ
PQ(P

−1
Q (ϑ)|x1)PQ(P

−1
Q (ϑ)|x2).

(3.87)

Using asymptotic equality (3.87) and noting that the terms containing x1 and
x2 can be separated accordingly, Eq. (3.86) becomes

1

µ2
E(1,1) ≃ 1

2

1

ϑ2

µ− 1

µ

∫ ∞

−∞
x1px(x1)PQ(P

−1
Q (ϑ)|x1) dx1

×
∫ ∞

−∞
x2px(x2)PQ(P

−1
Q (ϑ)|x2) dx2

=
1

2

µ− 1

µ

[
1

ϑ

∫ ∞

−∞
xipx(xi)PQ(P

−1
Q (ϑ)|xi) dxi

]2 (3.88)

where the integration variable is now denoted as xi referring to the i-th compo-
nent defined in Sec. 2. Additionally, the factor 1/ϑ was moved into [·].

Interestingly, the expression within [·] can now be identified as the (nega-
tive) first order progress rate −φi within the large population limit derived in
Eq. (2.28). The result of (3.88) can therefore be expressed as
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1

µ2
E(1,1) ≃ 1

2

µ− 1

µ
φ2
i . (3.89)

The derivation of an analytic progress rate formula for φi starting from Eq. (2.28)
was performed in Secs. 2.3 and 2.4 by expanding the distribution function up to
first order and applying a large dimensionality approximation. The main result
is given in (2.82) and inserted into (3.89), such that

1

µ2
E(1,1) ≃ 1

2

µ− 1

µ
φ2
i

≈ 1

2

µ− 1

µ

(
cϑ

σ2

DQ

(
ki + e−

1
2 (ασ)

2

di

))2

=
1

2

µ− 1

µ
e2,0

σ4

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2

,

(3.90)

using ki = 2yi and di = αA sin (αyi) to obtain the last line. Additionally,
squaring the asymptotic progress coefficient yields c2ϑ = e2,0ϑ using result (B.30)
according to

c2ϑ =
(
e1,0ϑ

)2
=

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]2
= e2,0ϑ . (3.91)

The final result for the expected value of E(1,1) (for large populations and di-
mensionality) is

1

µ2
E(1,1) =

1

2

σ2

µ
(µ− 1)e2,0ϑ

σ2

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2

. (3.92)

3.3.3 Collecting results of E(2) and E(1,1)

By inserting the results (3.61) and (3.92) into the expression (3.7) and result
(2.82) for φi, one gets for the quadratic progress rate

φII
i = 2yiφi −

1

µ2
E(2) − 2

µ2
E(1,1)

= cϑ
σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)

− σ2

µ

{
1 + e1,1ϑ

(2yi)
2σ2

D2
Q

− cϑ
DQ

[
3σ2

+A cos (αyi)
(
1− e−

1
2 (ασ)

2

+ α2σ2e−
1
2 (ασ)

2
)]

+ (µ− 1)e2,0ϑ

σ2

D2
Q

(
2yi + e−

1
2 (ασ)

2

αA sin (αyi)
)2}

.

(3.93)

70



Comparing the terms within {·} to the noisy order statistic result (3.39) in-
teresting similarities can be observed. One can recognize that (3.93) contains
corresponding terms in the large population limit with asymptotic progress co-
efficients

1 + e1,1µ,λ

(2yi)
2σ2

D2
Q

←→ 1 + e1,1ϑ

(2yi)
2σ2

D2
Q

(µ− 1)e2,0µ,λ

(2yi)
2σ2

D2
Q

←→ (µ− 1)e2,0ϑ

(2yi)
2σ2

D2
Q

.

(3.94)

However, due to the different approach obtaining (3.93) by expanding the dis-
tribution function according to (2.41), additional correction terms are obtained
which are not present for the noisy order statistic result (3.39).

3.4 Relation to Residual Distance (Squared)

Starting from defintion (3.1) an important relation between the i-th component
quadratic progress rate and the corresponding residual distance can be made.

Summing (3.1) over all N components and noting that (R(g))2 =
∑N

i=1(y
(g)
i )2

one has

N∑
i=1

φII
i =

N∑
i=1

E

[(
y
(g)
i

)2
−
(
y
(g+1)
i

)2]

= E

[
N∑
i=1

(
y
(g)
i

)2
−

N∑
i=1

(
y
(g+1)
i

)2]

= E

[(
R(g)

)2
−
(
R(g+1)

)2]
=: φII

R

(3.95)

such that the progress rate w.r.t. the residual distance squared can be defined
as

φII
R = E

[(
R(g)

)2
−
(
R(g+1)

)2 ∣∣R(g), σ(g)

]
. (3.96)

The obtained relation (3.95) is very important, as it relates the component-wise
yi-dependent progress to the progress of the residual distance. This is very
useful for the investigation of the approximation quality of expressions derived
for φII

i , as summing over all components can be used as a cumulative measure. It
is also useful to study the convergence behavior later, for which an R-dependent
formula is needed.

The radial progress rate (3.96) can also be interpreted as the (negative)
expected quality gain of the spherical function fsph(R) = R2 according to

E
[
fsph(R

(g+1))− fsph(R
(g))
]
= E

[(
R(g+1)

)2
−
(
R(g)

)2]
= −φII

R. (3.97)

Following a relation provided by Beyer [4, p. 173, Eq. (34)], the progress of
the sphere φsph = E

[
R(g) −R(g+1)

]
after normalization can be related to the
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quality gain of fsph(R) and therefore to φII
R via

φII
R =

2R2

N
φ∗
sph. (3.98)

This yields the normalization for φII
R denoted by φII,*

R according to

φII,*
R =

N

2R2
φII
R. (3.99)

The quantity φII,*
R will be evaluated for different approximations of φII

i in
Sec. 3.5 by summing over all components and normalizing.

3.5 Comparing Experiments with Approximations

Having obtained the quadratic progress rate via two methods, experiments are
performed and compared to the following progress rate approximations

• SIM: average over repeated experiments

• B1: φII
i using noisy order statistic derivation (3.39)

• B2: simplified Eq. (3.39) considering only the loss term −σ2

µ . Theoretical

derivation of the formula assuming large N will be presented in (3.116).

• L1: φII
i via large population approximation (3.93)

Approximations are listed as obtained in chronological order. All φII
i solutions

use approximation A3 for φi, see also Sec. 2.5.2 and Eq. (2.82). The labels “B”
and “L” were chosen to distinguish the different approaches. For L1, neglecting
all loss-terms in (3.93) except −σ2/µ, the approximations L1 and B2 are equal.

Initialization of Position For the following experiments the initial locations
were chosen randomly to be on the sphere surface for given radius R. This is
done by choosing yi ∼ N (0, 1) independently for all components i, normalizing
y to unit length and rescaling by R. For each one-generation experiment the
initial random location is fixed for all trials, as the progress rate is evaluated
(averaged) component-wise for a given location yi.

Frequency Value For all following experiments the oscillation frequency was
set to α = 2π and remains as such, if not explicitly stated otherwise.

Sphere Function for A=0 For the first experiment in Fig. 15, which is a
plausibility check, the oscillation strength is set to zero, such that the sphere
function is recovered. Quantity (3.95) is evaluated by summing over all com-
ponents and normalizing using (3.99). Additionally, the sphere progress rate
formula by Beyer [5, p. 216, Eq. (6.54)] is plotted to check the relation given in
(3.98).
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Figure 15: The sphere function is recovered by setting A = 0 (N = 200), such

that f(y) =
∑

i y
2
i = R2. The normalized progress φII,*

R was measured and
averaged over 105 trials for (8/8,30)-ES. Setting A = 0 the approximations
B1, B2, and L1 yield a component-wise progress rate formula for the sphere.
The results were obtained by summing over all N components, see (3.95), and
then normalizing using (3.99). Setting A > 0 deviations from the sphere will
be observed depending on R. Beyer’s formula [5, Eq. (6.54)] is plotted as an
additional reference.

Rastrigin Function for A>0 For the following experiments, the progress
rate is evaluated over 106 trials at four values R =

√
N · {10, 1, 0.1, 0.01} in-

cluding rescaling by
√
N to be within the relevant range of local minima as N

is changed. For each experiment, three progress rate plots are shown, namely
φi in Fig. 16, φII

i in Fig. 17 (both for the first component i = 1) and φII,*
R as

a normalized cumulative measure in Fig. 18. First order φi is shown as some
of the φII

i -deviations can be attributed to φi. The range for the normalized
mutation σ∗ was set accordingly to display the transition between positive and
negative progress.

In Fig. 16 the approximation A3 of Eq. (2.82) yields good results for the
first order progress. Slightly larger deviations occur for the upper experiment
with smaller N and a smaller truncation ratio (with smaller µ). The lower
experiment shows very good results as N and µ are larger. The approximation
quality is good over different magnitudes of R. Possible deviations within φi

apply to all approximations of φII
i , as we have φII

i (φi) from Eq. (3.7).
In Fig. 17 the three approximations for φII

i are shown compared to sim-
ulations. For all approximations larger deviations are observed in the upper
experiment, as N and µ are relatively small. The deviations are consistent over
different R-values with L1 overestimating progress for large σ∗, while B1 and
B2 are underestimating. The overall approximation quality of the significantly
simpler formula of B2 is surprisingly good. The effect of the different terms
within the approximation is studied in more detail in Sec. 3.6.

In Fig. 18, the R-dependent progress φII,*
R was calculated by summing over all

components according to (3.95). Furthermore, normalization (3.99) is applied.
The radial progress and its approximation quality is comparable to results of
Fig. 17. Somewhat harder to see, the approximation quality of L1 is slightly
better for small σ∗. Note that the normalization yields very similar values of
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φII,*
R independent of R. However, the shape of the curve shows slight changes

with varying R due to A > 0 compared to the sphere.
Additional experiments for (10/10, 40)-ES with N = 100 are shown in the

Appendix in Figs. 63 and 64.

Figure 16: First order progress rate φi for component i = 1. Upper four plots
show (10/10, 40)-ES with N = 20 and A = 1 and lower plots show (25/25, 50)-
ES with N = 100 and A = 1. The progress has a negative value since yi < 0.
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Figure 17: Second order progress rate φII
i for component i = 1. Upper four plots

show (10/10, 40)-ES with N = 20 and A = 1 and lower plots show (25/25, 50)-
ES with N = 100 and A = 1.
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Figure 18: Normalized R-dependent progress rate as a cumulative measure
(summed over all components). Upper four plots show (10/10, 40)-ES with
N = 20 and A = 1 and lower plots show (25/25, 50)-ES with N = 100 and
A = 1. The approximation quality of B2 is surprisingly good considering its
simpler expression. The deviations are comparable to the deviations seen in
Fig. 17 for a single component.
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3.6 Investigation of Loss Terms

In order to understand the deviations observed in Figs. 17 and 18 the loss
terms within {·} of Eq. (3.93) are investigated in more detail. The terms are
abbreviated according to their respective factors as e1,1ϑ , cϑ/DQ and e2,0ϑ . First,
experimental tests are done followed by a theoretical analysis.

Figure 19 shows the terms relative to the value “1” for (10/10, 40)-ES and A =
1 with varying dimensionality N . A single exemplary component is displayed
for a given R. All the terms are suppressed for increasing N . The term e1,1ϑ

(blue) is negligible for any parameter set independent of σ∗. Term cϑ/DQ (red)
is relevant for small N and shows an approximately constant contribution for σ∗

large enough. This is in accordance with the top experiment of Fig. 18 showing
that L1 systematically overestimates the simulation. This is largely due to the
−cϑ/DQ term reducing the loss. It is obtained from Eq. (3.61), which in turn
depends on the expansion in (3.44). This suggests that higher order terms of the
expansion are needed, if higher accuracy is desired. Term e2,0ϑ contributes mainly
for small σ∗ and is suppressed for large σ∗. This behavior is also in accordance
with L1 of Fig. 18, as the approximation yields slightly better results for the
progress at small σ∗.

In Figure 20 the dimensionality is varied together with µ for constant ϑ =
0.5. Therefore the relevant σ∗-range is also adapted, such that unnecessary
large values are omitted for experiments with small µ. Note, that the only µ-
dependency of Eq. (3.93) is the prefactor (µ−1) of e2,0ϑ , as all progress coefficients
are given within the asymptotic limit of infinite populations. For Fig. 20, the
coefficient e1,1ϑ = 0 due to Φ−1(0.5) = 0, such that its corresponding term

yields zero contribution. Term e2,0ϑ scales with µ, which was expected, but it is
dampened for increasing σ∗. Similar to Fig. 19, term −cϑ/DQ is approximately
constant for large σ∗ and suppressed for large N independent of µ.

As a conclusion, Eq. (3.93) will be investigated under the asymptotic limit
N → ∞ in order to further simplify the expression for the progress rate φII

i .
Attention has to be paid w.r.t. the scaling µ(N), for which no theoretical inves-
tigations exist at this point. In practical applications µ needs to be increased
for increasing N to achieve a higher success probability. Figure 21 will show
preliminary experiments of the scaling behavior of the population size µ(N)
needed to achieve high success probability.
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Figure 19: Investigating loss terms within {·} of Eq. (3.93) for increasing N . For
constant population size and increasing N , all terms are suppressed compared
to the value “1”.

Figure 20: Investigating loss terms within {·} of Eq. (3.93) for increasing N and
µ. The maximum value of σ∗ was adapted to capture the relevant range. Term
e2,0ϑ scales linearly with µ.
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Having experimentally investigated theN -scaling of the loss terms in Figs. 19
and 20, a theoretical investigation of the behavior is tackled now.

Starting from (3.93), a first approach was trying to find a lower bound for
the variance D2

Q, such that terms containing 1/D2
Q and 1/DQ are maximized.

The idea was to find upper bounds for the terms relative to the value “1”.
Due to the trigonometric terms of second line in (1.29) no useful (sufficiently
tight) bound of D2

Q could be established at this point without yielding negative
variance. Therefore a Taylor expansion of the relevant terms will be performed
for large dimensionality N .

As the φII
i approximation shall be valid for constant normalized mutations

σ∗ given some residual distance R, the transformed mutation is given by

σ =
σ∗R

N
, (3.100)

and will be expanded within the exponential function for large N . Within the
limit N → ∞ attention must be paid considering the relation R(N), as the
(interesting) R-range with high density of local minima grows as well, see also
Fig. 3. Assuming w.l.o.g. that the current location y is at a local minimum
(of arbitrary order j) denoted by ŷj , one has y = [ŷj ] for N = 1 and therefore
R2 = ŷ2j . Having N components at the same order local minimum yields y =

[ŷj , ŷj , ..., ŷj ], such that R2 = Nŷ2j . This motivates the scaling relation R ∼
√
N

for large N . Therefore the expansion orders will be displayed as functions of
R/N for the following derivations.

First the variance (1.29) is analyzed. The exponentials will be expanded
using

e−c(ασ∗ R
N )

2

= 1− c

(
ασ∗ R

N

)2

+O

(
R4

N4

)
, (3.101)

with c ∈ {1/2, 1}. Using (3.100) the variance (1.29) yields

D2
Q =

N∑
i=1

2

(
σ∗ R

N

)4

+ 4y2i

(
σ∗ R

N

)2

+
A2

2

(
1− e−(ασ

∗ R
N )

2)(
1− cos (2αyi) e

−(ασ∗ R
N )

2)
+ 2αA

(
σ∗ R

N

)2

e−
1
2 (ασ

∗ R
N )

2

(
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)
.

(3.102)
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Applying expansion (3.101) and collecting higher order terms one gets

D2
Q =

N∑
i=1

4y2i

(
σ∗ R

N

)2

+O

(
R4

N4

)

+
A2

2

(
1−

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

×

(
1− cos (2αyi)

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

+ 2αA

(
σ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)]

×

(
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)
.

(3.103)

The summand with prefactor A2/2 yields

A2

2

(
1−

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

×

(
1− cos (2αyi)

[
1−

(
ασ∗ R

N

)2

+O

(
R4

N4

)])

=
A2

2

((
ασ∗ R

N

)2

+O

(
R4

N4

))

×

(
1− cos (2αyi) + cos (2αyi)

(
ασ∗ R

N

)2

+O

(
R4

N4

))

=
A2

2

(
ασ∗ R

N

)2

(1− cos (2αyi)) +O

(
R4

N4

)
=

(
Aασ∗ R

N

)2

sin2(αyi) +O

(
R4

N4

)
.

(3.104)

using 1− cos 2x = 2 sin2 x for the last line. The last summand of (3.103) yields

2αA

(
σ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)](
α

(
σ∗ R

N

)2

cos (αyi) + 2yi sin (αyi)

)

= 2αA

(
σ∗ R

N

)2

2yi sin (αyi) +O

(
R4

N4

)
.

(3.105)
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Collecting results (3.104) and (3.105) the variance simplifies

D2
Q =

N∑
i=1

4y2i

(
σ∗ R

N

)2

+ 2αA

(
σ∗ R

N

)2

2yi sin (αyi)

+

(
σ∗ R

N

)2

(αA sin(αyi))
2
+O

(
R4

N4

)
=

(
σ∗ R

N

)2 N∑
i=1

(2yi + αA sin (αyi))
2
+

N∑
i=1

O

(
R4

N4

)

=

(
σ∗ R

N

)2 N∑
i=1

(f ′
i)

2
+O

(
R4

N3

)
.

(3.106)

using definition (1.11) for the derivative f ′
i . Note that result (3.106) is contained

in the last line of Eq. (1.33), as it is an expansion for small σ and therefore
equivalent to an expansion for large N with σ = σ∗R/N (constant σ∗ and R).

Given (3.106), the scaling of
∑N

i=1 (f
′
i)

2
w.r.t. N and R can be deduced

applying the triangle inequality to the corresponding vectors. Considering the
positional vector y and definition sin (αy) := sin (αy1)e1 + sin (αy2)e2 + ... +
sin (αyN )eN with ei being the i-th unit vector, one has

N∑
i=1

(f ′
i)

2
= ∥2y + αA sin (αy)∥2. (3.107)

Using inequality ∥a+ b∥ ≤ ∥a∥ + ∥b∥ and therefore ∥a+ b∥2 ≤ (∥a∥ + ∥b∥)2,
and using ∥y∥2 = R2, an upper bound for expression (3.107) can be given as

∥2y + αA sin (αy)∥2 ≤ 4∥y∥2 + 4αA∥y∥∥sin (αy)∥+ (αA)2∥sin (αy)∥2

= 4R2 + 4αAR

√√√√ N∑
i=1

sin2 (αyi) + (αA)2
N∑
i=1

sin2 (αyi)

≤ 4R2 + 4αAR
√
N + (αA)2N = (2R+ αA

√
N)2.

(3.108)

From (3.108) one can deduce the (upper bound) scaling
∑N

i=1 (f
′
i)

2 ∼ N , which

is valid for both constant R and R ∼
√
N . Therefore we conclude the scaling

relation of the variance for large N as

D2
Q =

(
σ∗ R

N

)2 N∑
i=1

(f ′
i)

2
+O

(
R4

N3

)
∼ (σ∗R)2

N
.

(3.109)

Having obtained D2
Q, now the terms within {·} of (3.93) are investigated.

The first term e1,1ϑ is easily evaluated. Inserting scaling relation (3.109) for D2
Q

one gets

e1,1ϑ

σ2

D2
Q

(2yi)
2 = e1,1ϑ

(
σ∗ R

N

)2
(σ∗R)2

N

(2yi)
2 = e1,1ϑ

(2yi)
2

N
= O

(
1

N

)
. (3.110)
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The second term cϑ/DQ is evaluated using normalization (3.100) and expansion
(3.101) as

cϑ
DQ

{
3

(
σ∗ R

N

)2
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(
ασ∗ R

N

)2

+O

(
R4

N4

)]

+

(
ασ∗ R

N

)2
[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)])}

=
cϑ
DQ

{
3

(
σ∗ R

N

)2

+A cos (αyi)

(
1

2

(
ασ∗ R

N

)2

+

(
ασ∗ R

N

)2

+O

(
R4

N4

))}

= cϑ

(
σ∗ R

N

)2
DQ

{
3 +

3

2
α2A cos (αyi) +O

(
R2

N2

)}
.

(3.111)

Inserting DQ = σ∗R/
√
N from (3.109) into (3.111) yields

cϑ

(
σ∗ R

N

)2
σ∗R√

N

{
3 +

3

2
α2A cos (αyi) +O

(
R2

N2

)}

= O

(
R

N3/2

)
=

{
O
(

1
N3/2

)
if R = const.

O
(

1
N

)
if R ∼

√
N .

(3.112)

The last term e2,0ϑ yields after expansion

(µ− 1)e2,0ϑ

(
σ∗ R

N

)2
D2

Q

(
2yi + αA sin (αyi)

[
1− 1

2

(
ασ∗ R

N

)2

+O

(
R4

N4

)])2

= (µ− 1)e2,0ϑ

(
σ∗ R

N

)2
D2

Q

(
2yi + αA sin (αyi) +O

(
R2

N2

))2

.

(3.113)

Using scaling (3.109) for D2
Q and writing µ(N) to denote the (unknown) popu-

lation dependency on N one gets

(µ− 1)e2,0ϑ

(
σ∗ R

N

)2
(σ∗R)2

N

(
2yi + αA sin (αyi) +O

(
R2

N2

))2

= µ(N)O

(
1

N

)
=

{
O
(

1
N

)
if µ(N) = const.

O
(

µ(N)
N

)
else.

(3.114)

The problem of population sizing, namely choosing µ(N) to achieve high global
convergence probability will be investigated in the future in more detail. Pre-
liminary simulations are shown in Fig. 21 and yield a sub-linear relation.

Collecting Results Inserting the scaling results for the three terms (3.110),
(3.112) and (3.114) back into {·} of the quadratic progress rate (3.93), one gets
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Figure 21: Measured success probability PS as a function of µ for varying N
(top) and scaling relation µ(N) to achieve high success probability (bottom).
The experiments were performed using (µ/µI , λ)-σSA-ES with learning param-
eter τ = 1/

√
2N for α = 2π, A = 1, and ϑ = 0.5. Each data point was averaged

over 1000 trials. A sub-linear increase of µ(N) can be experimentally observed.

for large dimensionality N → ∞ and residual distance scaling R ∼
√
N the

relation

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)

− σ2

µ

{
1 +O

(
1

N

)
+O

(
µ(N)

N

)}
.

(3.115)

Provided that the population size µ = o (N), i.e. increasing sub-linearily with
N , all terms except “1” can be neglected for large dimensionality and the result
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yields

Quadratic progress rate for large N and sub-linear µ(N)

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)
− σ2

µ
. (3.116)

Result (3.116) is also denoted as approximation B2 in Sec. 3.5. It was obtained
using the large population approximation for first order progress φi in Sec. 2.2
and second order terms calculated for φII

i in Sec. 3.3. Furthermore, non-linear
terms within Qi(xi) were treated as a perturbation of the linear term giving
rise to an expansion of the distribution function, see Eq. (2.41). This expan-
sion introduces additional terms for both φi and φII

i . To further simplify the
lengthy results, the large dimensionality approximation was applied multiple
times throughout the derivation. Comparing the different variance terms for
large N , see Sec. 2.4, φi could be simplified considerably. Additionally, the loss
part of φII

i could also be simplified significantly by looking at the scaling for
large N . This is important, as (3.116) will be the starting point for further
theoretical and experimental investigations.
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4 R-Dependent Progress Rate

In order to investigate the convergence behavior of progress rate result (3.116)
using the dynamical systems approach in Sec. 5, an R-dependent formulation of
the progress rate is needed. Being a function of the residual distance (instead of
single components) also has the advantage, that a (spherical) normalization can
be applied. Additionally, relations to the spherical progress rate can be easier
identified.

The tools for transforming (3.116) into an R-dependent formula have already
been established and only need to be applied. In Sec. 1.5.2 the averaging method
was presented and the R-dependent variance D2

Q(R, σ) was given in (1.75).

In (3.95) the relation between the component-wise progress rate and φII
R was

already introduced. Summing result (3.116) over all N components yields

φII
R =

N∑
i=1

φII
i

= cϑ
σ2

DQ(R, σ)

(
4

N∑
i=1

y2i + e−
1
2 (ασ)

2

2αA

N∑
i=1

yi sin (αyi)

)
−

N∑
i=1

σ2

µ

= cϑ
σ2

DQ(R, σ)

(
4R2 + e−

1
2 (ασ)

2

2αA

N∑
i=1

yi sin (αyi)

)
−N

σ2

µ
.

(4.1)

The expression for DQ(R, σ) in (1.75) is not inserted at this point for better
visibility. Aiming at an R-dependent expression of (4.1), a new random vari-
able is introduced, analogous to the method in (1.64), for the sum over the
trigonometric terms

Y :=

N∑
i=1

yi sin (αyi). (4.2)

Assuming i.i.d. locations yi ∼ R√
N
N (0, 1), see more detailed discussion in Sec. 1.5.2,

and using the CLT for N →∞, see (1.66), the random variable is rewritten as

Y ∼ N (E [Y ] ,Var [Y ]). (4.3)

The ratio
√
Var [Y ]/E [Y ]→ 0 was already investigated forN →∞ in Eq. (1.72)

to find an R-dependent variance expression. The same limit behavior is applied
here to neglect the fluctuations of the random variable.

By writing Y ∼ E [Y ] + ϵY , expression (4.1) is split into an expected value
and a fluctuation term denoted by ϵY , which is then neglected in the second

step. Setting E [Y ] = αR2e−
1
2

(αR)2

N , see (A.34), one has

φII
R

N→∞
= cϑ

σ2

DQ(R, σ)

(
4R2 + e−

1
2 (ασ)

2

2αA
[
E [Y ] + ϵY

])
−N

σ2

µ

≈ cϑ
σ2

DQ(R, σ)

(
4R2 + 2α2AR2e−

1
2 (ασ)

2

e−
1
2

(αR)2

N

)
−N

σ2

µ
,

(4.4)

such that after simplifying we obtain the result
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Progress rate as a function of R

φII
R = cϑ

2R2σ2

DQ(R, σ)

(
2 + α2Ae

−α2

2

(
σ2+R2

N

))
−N

σ2

µ
. (4.5)

In Figure 22 simulations are shown with result (4.5) compared to the approxi-
mation (3.116) it is based on.

Figure 22: Comparing approximations B2, i.e. (3.116) summed over i = 1, ..., N ,
and Eq. (4.5), denoted by “R”, after normalization for (20/20,40)-ES, α = 2π,
A = 10, and N = 20. Four values with R =

√
N{10, 1, 0.1, 0.01} are chosen.

The initial positions were chosen randomly on surface R and are constant for
all trials. This initialization is needed to compare the component-wise progress
B2 (constant coordinates) with R. The two formulas yield very similar results,
even for moderate N . One reason is that only the trigonometric terms are
approximated by the expected value, the term R2 =

∑
i y

2
i is exact and the loss

term remains unchanged. Furthermore, for sufficiently large or small R, the
Rastrigin function becomes sphere-like and both approximations yield the same
result (top-left and bottom-right progress are practically identical).

Sphere progress rate A component-wise progress rate for the sphere func-
tion can be derived starting from (3.116) and using variance from (1.29) by
applying A = 0 (or α = 0). This simplifies the formulae considerably giving

φII
i,sph = cϑ

4σ2y2i√
4R2σ2 + 2Nσ4

− σ2

µ
. (4.6)
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Now one can sum (4.6) over all components, set σ = σ∗R/N and afterwards

apply the normalization φII,*
R = N

2R2φ
II
R from (3.99), such that

φII
R =

N∑
i=1

φII
i,sph = cϑ

4σ2

√
4R2σ2 + 2Nσ4

N∑
i=1

y2i −
Nσ2

µ

= cϑ
4(σ∗R/N)2√

4R2(σ∗R/N)2 + 2N(σ∗R/N)4
R2 − N(σ∗R/N)2

µ

φII,*
R = cϑ

4(σ∗/N)2R4

2R2(σ∗/N)
√

1 + σ∗/2N

N

2R2
− N(σ∗R/N)2

µ

N

2R2
.

(4.7)

After simplifying (4.7) the result for the sphere progress rate is obtained

φII,*
R = cϑ

σ∗√
1 + σ∗2/2N

− σ∗2

2µ
, (4.8)

which for the limit N → ∞ yields the well-known progress rate formula [5,
p. 217, (6.56)]

φII,*
R = φ∗

sph = cϑσ
∗ − σ∗2

2µ
, (4.9)

by setting cµ/µ,λ ≃ cϑ. Now the Rastrigin function is investigated with respect
to its spherical properties within the limits of small and large R, respectively.

Sphere limit for large R Given (4.5) the result of the sphere progress rate
(4.8) can be deduced for large R. The variance approximation (1.30) for large
R and σ = σ∗R/N yields (neglecting NA2/2 term)

D2
sph = 4R2σ2 + 2Nσ4 = 4R2

(
σ∗R

N

)2

+ 2N

(
σ∗R

N

)4

= 4R4

(
σ∗

N

)2(
1 +

σ∗2

2N

)
.

(4.10)

Additionally, the exponential within (4.5) can be dropped, which has the same
effect as setting A = 0. This immediately yields the same form as already shown
in Eqs. (4.7) and (4.8), such that the sphere progress rate is recovered.

Sphere limit for small R The sphere progress rate can also be deduced for
small residual distances. Using variance (1.36) yields (neglecting higher orders)

D2
Q = (2 + α2A)2

(
σ2R2 +

Nσ4

2

)
= (2 + α2A)2

(
(σ∗R/N)2R2 +

N(σ∗R/N)4

2

)
= (2 + α2A)2R4

(
σ∗

N

)2(
1 +

σ∗2

2N

)
.

(4.11)
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Given the exponential from (4.5) and setting σ = σ∗R/N , the exponential can
be expanded for small R as

e
−α2R2

2

(
(σ∗

N )
2
+ 1

N

)
= 1 +O

(
R2
)
. (4.12)

Setting the exponential to one and inserting (4.11), the progress rate yields

φII
R = cϑ

2R2(σ∗R/N)2
(
2 + α2A

)
(2 + α2A)R2 (σ∗/N)

√
1 + σ∗2/2N

−N
(σ∗R/N)2

µ

φII,*
R = cϑ

2R2(σ∗R/N)2

R2 (σ∗/N)
√
1 + σ∗2/2N

N

2R2
−N

(σ∗R/N)2

µ

N

2R2

= cϑ
σ∗√

1 + σ∗2/2N
− σ∗2

2µ

(4.13)

Both limits R → ∞ and R → 0 of the Rastrigin progress rate (4.5) therefore
yield for A > 0 the expected spherical progress rate from Eq. (4.8). For A = 0
or α = 0 the exponential terms vanish and the result holds for all R. For A > 0
and α > 0 the exponentials within progress rate and variance can be interpreted
as the transition terms between the spherical limits, see also Fig. 5.

4.1 Progress Rate Contour Maps

As the R-dependent progress rate formula is a function of only two parameters
σ∗ and R (given fitness parameters N,α,A), it can be visualized using a contour
plot, see Figs. 23, 24, 25, and 26 for different parameter sets.

High positive progress is shown in red, while low negative progress is shown
in blue. The line of zero progress is shown in bold white. For the sphere
function only vertical lines can be observed, as the normalized progress rate is
independent of R. For the Rastrigin function deviations from the sphere can be
observed depending on A and α.

A characteristic horizontal progress dip can be observed with significantly
lower progress compared to the sphere. It has a certain extension in R- and
σ∗-space, and vanishes for both large and small R-values.

From the contour plots one can deduce the behavior of the deterministic
iteration (5.6) shown in Sec. 5. Setting a constant σ∗-value the iteration moves
vertically through the landscape. A slow-down is observed when regions of lower
progress are entered and vice-versa. If the white zero-progress line is reached,
a stationary R-value is occurs.

Important to note is that the maps do not show negative progress rates for
small mutations, which one might expect considering real experiments, where
small mutations increase the probability of local convergence. This issue is
related to the R-averaging and it is discussed in Sec. 5 in Fig. 58.

Additionally, averaged real optimization runs of the (µ/µI , λ)-σSA-ES are
overlaid as vertical lines with τ = 1/

√
2N (black) and τ = 1/

√
8N (magenta).

The median of both R(g) and σ∗(g) was applied as the measure of central ten-
dency, see upcoming discussion in Sec. 5.2.1. The reduction of τ leads to a higher
σ∗-level (closer to zero-progress line) and therefore higher success probabilities
for all configurations. However, within the spherical limits the mutations are
too large.
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Figure 23: Progress contours with parameters given in title. For small and
large R the sphere progress rate (4.8) is recovered. A characteristic “valley” of
decreased progress can be observed. The lines of equal progress are separated
by one unit value. The median over 200 σSA-runs is overlaid with τ = 1/

√
2N

(black, PS = 0.91) and τ = 1/
√
8N (magenta, PS = 0.99).

Figure 24: Progress contours with parameters given in title. High value A = 10
is chosen compared to Fig. 23. The region of decreased progress is significantly
larger, as expected. Real σSA-runs are not converging for given parameter sets.
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Figure 25: Lower truncation value ϑ = 0.25 is chosen compared to Fig. 23. The
zero-progress line shifts slightly to the left (compared to Fig. 23) giving smaller
favorable mutations. The overall characteristic is very similar. The median over
200 σSA-runs is taken with τ = 1/

√
2N (black, PS = 0.65) and τ = 1/

√
8N

(magenta, PS = 0.94).

Figure 26: Reduced dimensionality and population compared to previous plots.
Contour step-size was set to 0.5 for better resolution. The overall characteristic
does not change considerably. Now the median over 2000 σSA-runs is shown to
reduce fluctuations effects (black: PS = 0.42) and (magenta: PS = 0.69).
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4.2 Investigating Zero of Progress Rate

In order to study the convergence properties of result (4.5), we are interested
in a function describing the zero-progress line, see Figures of previous Sec. 4.1.
Here, the second zero of the progress rate is referred to as “the zero”, as the
first zero corresponds to the trivial solution σ = 0.

To find the root of the equation, the relevant terms of (4.5) will be split into
a part containing “spherical” terms and a Rastrigin-specific part. Then, the
equation will be restructured and its solvability in terms of the involved expres-
sions is discussed. Afterwards, a possible analytic solution will be provided by
neglecting the exponential terms.

Starting with variance D2
Q(σ

∗, R) from (1.81), the expression is restructured
and the Rastrigin-specific part is denoted by function h according to

D2
Q(σ

∗, R) = 4R4

(
σ∗

N

)2 [
1 +

σ∗2

2N
+ h(σ∗, R)

]
, with

h(σ∗, R) :=
N2

4R4σ∗2

{
NA2

2

[
1− e−(

αRσ∗
N )

2] [
1− e

−(αR)2
[
(σ∗

N )
2
+ 2

N

]]

+ 2NAα2R4

(
σ∗

N

)2
[(

σ∗

N

)2

+
2

N

]
e
− (αR)2

2

[
(σ∗

N )
2
+ 1

N

]}
,

(4.14)

which will be useful later when recovering the solution for the sphere. Now the
exponential term within (4.5) is expressed using a new function g and setting
σ = σ∗R/N according to

g(σ∗, R) := α2Ae
− (αR)2

2

(
σ∗2
N2 + 2

N

)
. (4.15)

Using (4.14) and (4.15) the normalized progress rate can be written as

φII,*
R = φII

R

N

2R2

= cϑ
2R2(σ∗R/N)2 [2 + g]

2R2 σ∗

N

√
1 + σ∗2

2N + h

N

2R2
− N(σ∗R/N)2

µ

N

2R2

=
cϑσ

∗

2

2 + g√
1 + σ∗2

2N + h
− σ∗2

2µ
.

(4.16)

Expression (4.16) was defined in such a way that for g = 0 and h = 0 (e.g. by
setting A = 0) sphere equation (4.8) is recovered. Now we are looking for

solutions of φII,*
R = 0 for σ∗ > 0 and R > 0, which yields

2 + g(σ∗, R)√
1 + σ∗2

2N + h(σ∗, R)
=

σ∗

cϑµ

(2 + g(σ∗, R))
2
=

σ∗2

c2ϑµ
2

[
1 +

σ∗2

2N
+ h(σ∗, R)

]
,

(4.17)
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such that after reordering the following expression is obtained

σ∗4

2Nc2ϑµ
2
+

σ∗2

c2ϑµ
2
− 4 = g2(σ∗, R) + 2g(σ∗, R)− σ∗2

c2ϑµ
2
h(σ∗, R). (4.18)

The functional dependencies of g and h are explicitly written in (4.18) to illus-
trate the problem of solvability. We want to solve for σ∗(R), which would give

a relation describing the boundary φII,*
R = 0.

One can immediately see that with g(σ∗, R) in (4.14) and h(σ∗, R) in (4.15)
containing arguments σ∗ and R within exponential functions, no closed form
solution of Eq. (4.18) can be given at this point.

Expanding the functions g(σ∗, R) and h(σ∗, R) in a Taylor series around
some point R̃ or σ̃∗ would be technically possible, but the results would have
only very limited applicability for the investigation of global convergence even for
a solution using higher order polynomials. Expanding the exponentials around
R̃ = 0 or σ̃∗ = 0 assuming small changes could also be done, but its applications
are again limited as small R or σ∗ can only model the global or local attraction
basins, respectively, but not the larger scale dynamics.

Therefore, the only analytically tractable solution at this point will be the
limit of vanishing exponential factors, discussed below.

4.2.1 Zero-Progress for Sphere

Setting g = h = 0 in (4.17), the right side vanishes and the sphere function is
recovered. A solution can be easily given by solving the fourth-order polynomial

σ∗4 + 2Nσ∗2 − 8Nc2ϑµ
2 = 0. (4.19)

An equation of the form (4.19) with different coefficients will reappear later.
Hence, in the general case one can write for a real coefficient c

σ∗4 + 2Nσ∗2 + c = 0. (4.20)

The only positive non-complex solution of the fourth order Eq. (4.20) can be
identified as

σ∗ =
[[
N2 − c

]1/2 −N
]1/2

. (4.21)

Applying (4.21) to (4.19) the sphere formula for zero progress (subscript “φ0”)
is given by

σ∗
φ0,sph =

[[
N2 + 8Nc2ϑµ

2
]1/2 −N

]1/2
. (4.22)

4.2.2 Zero-Progress for Vanishing Exponentials

Neglecting the exponential factors is needed for an analytic solution of (4.18),
but it can also be justified under following conditions.

The exponential terms are not just suppressed by very large values of R,
but also for moderate R values. This is due to the fact that the argument
is R2, and it is being multiplied by frequency α2 and larger mutations σ∗2

(favorable to decrease the probability of local convergence). As an example in
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Fig. 5, the variance result (1.31) without exponentials models large parts of the
transitional region and not only the limit R → ∞. The idea is to describe the
dynamics for large and moderately sized R at the start of the transitional region
(characterized by a slow-down) up to some extent, which is discussed later. The
descent into the global attractor basin cannot modeled by this approach, as can
be seen from the large deviations of the cyan line in Fig. 5.

Important to note is the limit N → ∞ with constant R, for which the
exponentials approach the value 1. Considering the scaling Rtr ∼

√
N of the

transition point, see Eq. (1.79) and Fig. 3, the limit N →∞ for any constant R
automatically leads progress rate equations of the global attractor basin, since
the transition point is also diverging. Interestingly, the limits R→ 0 (constant
N and σ∗) and N →∞ (constant R and σ∗) yield the same terms of the Taylor
expansion of the exponentials. Therefore one has to be careful applying this
limit, although the progress rate approximations do require larger N values for
better agreement.

The limit of vanishing exponentials corresponds to g = 0 and h = N3A2

8R4σ∗2 ,
such that (4.18) yields after rearranging the polynomial

σ∗4 + 2Nσ∗2 +
N4A2

4R4
− 8Nc2ϑµ

2 = 0. (4.23)

Solution (4.21) can therefore be applied again with coefficient c = N4A2/(4R4)−
8Nc2ϑµ

2, which yields

σ∗
φ0

=

[[
N2 − N4A2

4R4
+ 8Nc2ϑµ

2

]1/2
−N

]1/2
. (4.24)

One can see that for R → ∞ we have σ∗
φ0
≃ σ∗

φ0,sph
from Eq. (4.22). For

R <∞ a condition for (4.24) is required to guarantee a non-complex result for
σ∗. Requiring the inner square-root of (4.24) to be real, one has

N2 + 8Nc2ϑµ
2 ≥ N4A2

4R4

R4 ≥ N4A2

4N2 + 32Nc2ϑµ
2
.

(4.25)

Analogously, requiring the outer square-root of (4.24) to be real, one has[
N2 − N4A2

4R4
+ 8Nc2ϑµ

2

]1/2
≥ N

N2 − N4A2

4R4
+ 8Nc2ϑµ

2 ≥ N2

R4 ≥ N4A2

32Nc2ϑµ
2
.

(4.26)

As bound (4.25) is smaller than bound (4.26) the latter is chosen. The minimum
distance to have a real solution for σ∗

φ0
is therefore

Rφ0,min ≥
(

N3A2

32c2ϑµ
2

)1/4

, (4.27)
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concluding that σ∗
φ0
(R) is defined for R ∈ [Rφ0,min,∞).

As iterations and simulations are performed for a constant given σ∗, it is
more convenient to reformulate (4.23) as R(σ∗) in order to have a “distance of
zero progress” Rφ0 . The result can be easily given as

Rφ0 =

[
1

4

N4A2

N2 + 8Nc2ϑµ
2 − (σ∗2 +N)2

]1/4
(4.28)

with Rφ0
(σ∗) defined for σ∗ ∈ [0, σ∗

φ0,sph
).

It remains to show how the sign of φII,*
R behaves w.r.t. zero-progress bound-

ary (4.28). Referring to (4.16) with g = 0 and h = N3A2/8R2σ∗2 one has

φII,*
R =

cϑσ
∗

2

2√
1 + σ∗2

2N + N3A2

8R4σ∗2

− σ∗2

2µ

!
> 0, such that

2cϑµ > σ∗

√
1 +

σ∗2

2N
+

N3A2

8R4σ∗2

4c2ϑµ
2 > σ∗2 +

σ∗4

2N
+

N3A2

8R4

R4 >
N3A2

8(4c2ϑµ
2 − σ∗2 − σ∗4/2N)

=
1

4

N4A2

8Nc2ϑµ
2 − 2Nσ∗2 − σ∗4 .

(4.29)

Positive progress requires inequality (4.29) to hold. Comparing (4.29) with
zero-progress condition (4.28) yields

R4 >
1

4

N4A2

8Nc2ϑµ
2 − 2Nσ∗2 − σ∗4 = R4

φ0
, (4.30)

such that φII,*
R > 0 is guaranteed for any R > Rφ0

given σ∗ within the approxi-

mation of neglected exponentials. The opposite condition φII,*
R < 0 for R < Rφ0

also follows from the results above.
Figures 27 and 28 show the progress rate map from Figs. 23 and 24 with

overlaid newly obtained approximation results for the progress rate zero. The
white line depicts φII,*

R = 0 from (4.5) including all exponential terms. The
black dashed line shows the result (4.28) for Rφ0

(σ∗) with neglected exponential
terms.

Relation to noisy sphere model An important relation to the noisy sphere
model can be made. In [3] the residual location error R∞ was derived for the
(µ/µI , λ)-ES assuming a constant noise strength σϵ in the limit σ∗ → 0 as

R∞ ≃

√
σϵN

4cµ/µ,λµ
. (4.31)

Applying the limit σ∗ → 0 to Eq. (4.30), identifying the constant noise strength
of the Rastrigin function (for sufficiently large R) as σRas =

√
NA2/2, see also

(1.31) and (1.32), and taking the fourth root one gets

Rφ0 =

(
N3A2

32c2ϑµ
2

)1/4

=

(
NA2

2

N2

16c2ϑµ
2

)1/4

=

√
σRasN

4cϑµ
, (4.32)

which corresponds to result (4.31) with cµ/µ,λ → cϑ and σϵ → σRas.
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Figure 27: Zero-progress approximation using (4.28) with exponential factors
set to zero (dashed line) compared to full R-dependent solution (4.5). The
model is accurate for larger R and σ∗ values, as both factors suppress the
exponential terms. For smaller R the sphere function is slowly regained and the
approximation fails at this “turning point”.

Figure 28: Zero-progress approximation for larger A = 10 compared to Fig. 27.
Again, the boundary is modeled for larger R and σ∗ up to the turning point.
This problem is significantly more difficult compared to A = 1, as the region
of decreased progress is larger horizontally (for a broad mutation range) and
vertically as a function of distance.
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4.2.3 Transition Point of Vanishing Exponentials

After deriving the progress rate in the limit of vanishing exponentials, one has
to address the question at which point the exponential terms are negligible or
significant.

Therefore, the results for the transition points from (1.79) and (1.82) will be
shown in the progress contour plots, see Fig. 29 with smaller attenuation factor
δ = 1 and Fig. 30 with significantly higher factor δ = 5. Result (1.79) is expected
to yield worse results as it describes only the transition of the fitness function
without any σ∗-dependence, while (1.82) is defined using a characteristic term
of the progress gain part and its variance.

Given a transition relation, the further approach is to relate the distance of
zero progress Rφ0

(σ∗) to the transition relation Rtr(σ
∗). The idea behind it is

that for sufficiently small exponential terms, defined by Rtr(σ
∗) via attenuation

factor δ, the zero-progress formula Rφ0(σ
∗) should be a valid approximation.

The relation of both expressions should characterize strategy’s behavior at the
start of the transitional phase.

Figure 29: Transition formulae (1.79) [dash-dotted violet], and (1.82) [dashed
magenta] for attenuation factor δ = 1. Expression (1.79) has no σ∗-dependence
and is therefore constant. Attenuation by e−1 means that the exponential factors
are relatively large and one can see, that the sphere function is almost recovered
for R below the magenta line.

4.2.4 Intersection point and population scaling

Now the intersection point σ∗
sec between the zero progress boundary Rφ0

(σ∗)
and the transition relation Rtr(σ

∗) is derived, see intersection between magenta
and black dashed lines in Figs. 29 and 30. After deriving the relation one can
deduce a population scaling relation µ(N). The transition point derived in
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Figure 30: Transition formulae (1.79) [dash-dotted violet] and (1.82) [dashed
magenta] for higher attenuation factor δ = 5. The value was chosen exemplary
for displaying purposes as the magenta line follows the valley of lower progress,
which is interesting to note. Compared to Fig. 29, the attenuation (of the
corresponding exponential term) is e−1/e−5 ≈ 55 times larger.

(1.82) is recalled as

Rtr =

√
2δN

α

1√
1 + σ∗2/N

. (4.33)

Setting R4
φ0

= R4
tr by using (4.30) and (4.33) yields after rearranging the terms

−1

4

N4A2

σ∗4 + 2Nσ∗2 − 8Nc2ϑµ
2
=

4δ2N4

α4

1

σ∗4 + 2Nσ∗2 +N2
. (4.34)

Collecting the corresponding factors of σ∗ yields(
1 +

16δ2

α4A2

)
σ∗4 + 2Nσ∗2

(
1 +

16δ2

α4A2

)
+N2 − 128δ2Nc2ϑµ

2

α4A2
= 0

σ∗4 + 2Nσ∗2 +
N2
(
α4A2 − 128δ2c2ϑµ

2/N
)

α4A2 + 16δ2
= 0.

(4.35)

An equation of the form (4.20) was obtained and now solution (4.21) can be
applied

σ∗
sec =

[(
N2 −N2α

4A2 − 128δ2c2ϑµ
2/N

α4A2 + 16δ2

)1/2

−N

]1/2

=

(16δ2N2 + 16δ2N2 8c2ϑµ
2

N

16δ2
(
1 + α4A2

16δ2

) )1/2

−N

1/2

,

(4.36)
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such that the intersection point is obtained as

σ∗
sec =

N
(
1 +

8c2ϑµ
2

N

)1/2
(
1 + α4A2

16δ2

)1/2 −N


1/2

. (4.37)

Two examples for result (4.37) are shown in Fig. 31. The transition parameter
was set to δ = 5 analogous to Fig. 30. The intersection point σ∗

sec serves as an
approximation of the characteristic progress dip location. The expression (4.37)
is further investigated now. In order to have a converging normalized mutation
strength (on the sphere) it must hold

0 < σ∗
sec < σ∗

φ0,sph, (4.38)

with the sphere-zero σ∗
φ0,sph

given in Eq. (4.22). The relation σ∗
sec < σ∗

φ0,sph

follows immediately for any A,α, δ > 0. Setting A = 0 or α = 0 recovers
Eq. (4.22). Requiring a positive mutation strength σ∗

sec > 0 one must have(
1 +

8c2ϑµ
2

N

)1/2

>

(
1 +

α4A2

16δ2

)1/2

8c2ϑµ
2

N
>

α4A2

16δ2
.

(4.39)

Now one can solve (4.39) for µ to fulfill the inequality as

µ2 >
Nα4A2

128c2ϑδ
2
. (4.40)

Taking the square-root of (4.40) one arrives at the important result

µ >

√
N

2

α2A

8cϑδ
. (4.41)

Result (4.41) can be regarded as a population sizing relation µ(N,A, α) for given
(fixed) truncation ratio ϑ and transition parameter δ. It models the scaling of
the characteristic progress dip within the R-dependent progress rate formula-
tion. Note that expression (4.41) can also be rewritten using the Rastrigin-
specific variance term σRas from (1.32) as

µ >
σRasα

2

8cϑδ
. (4.42)

Population scaling In this section the population scaling µ(N) is investi-
gated for constant σ∗. Experimental results of real optimization runs with
σ∗ = σ̂∗

sph are shown in Fig. 32 for ϑ = 0.25 and A = 1. The maximum number
of generations was set to 5000, as it is necessary to terminate non-converging
runs. Furthermore, for each given µ and N the sphere-optimal value σ̂∗

sph was
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Figure 31: Plots showing intersection point (4.37) with transition parameter
δ = 5 for (25/25, 100)-ES with N = 50 and A = 1 (top), and (100/100, 200)-ES
with N = 100 and A = 10 (bottom).

calculated numerically using [5, Eq. (6.54)]. Random initial y-values were cho-
sen with ∥y∥ = 20

√
N outside the local attraction region. The results for small

N and therefore small µ need to be interpreted carefully, as fluctuation effects
tend to be pronounced. Given a maximum of 5000 generations (fixed number
for all N) and constant σ∗, the dimensionality N = 30 is significantly easier to
optimize than N = 50 due to fluctuations and the ES “spontaneously” descend-
ing into the global attractor. This effect is more pronounced for smaller N and
µ than for large values thereof. For larger N a different behavior is observed
showing a sub-linear relation µ(N).

Now the results (4.41) for the population scaling µ = O(
√
N) is investigated

numerically in Fig. 33 by assuming constant σ∗. To this end, three σ∗-values
were chosen relative to the (numerically) obtained sphere optimal value σ̂∗

sph.
The values are, from top to bottom, σ∗ = {σ̂∗

sph, σ̂
∗
sph/2, (σ̂

∗
sph + σ∗

φ0,sph
)/2}.

Given fixed ϑ,N,A, and α, the population size µ was successively increased and
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the R-dependent progress rate (4.5) was evaluated given σ∗. Global conver-

gence occurs at some µ, if φII,*
R (σ∗) > 0 for all R. If φII,*

R (σ∗) ≤ 0 occurs the
corresponding µ is marked unsuccessful. The numerical experiments were done
by discretizing σ∗ ∈ [0, ceil(σ∗

φ0,sph
)] and R ∈ [0, ceil(3

√
N)] to cover the rang

of possible negative progress. Local attraction effects are not modeled by φII
R,

as already mentioned.
In Fig. 33 one can see that the scaling µ = O(

√
N) is recovered in all plots.

Important to note is that for the central plot (σ∗ = σ̂∗
sph/2) oscillation strength

A had to be increased to A = 10 compared to top and bottom plots (A = 1).
The reason is that for A = 1 global convergence occurred for all N for any µ ≥ 1
giving a scaling O(1). This can be attributed to small σ∗ = σ̂∗

sph/2 relative to a
comparably small A = 1, such that the progress dip has no significant influence.
For the bottom plot the

√
N -scaling is recovered for larger N . For smaller N

similar population sizes µ(N) are needed for global convergence, in contrast
to Fig. 32. This can be attributed to the non-linearity of Eq. (4.5) and the
particular choice σ∗ = (σ̂∗

sph + σ∗
φ0,sph

)/2, such that a small increase in N does
not necessarily require larger µ-values.

Figure 32: Population scaling experiments for ϑ = 1/4, α = 2π, A = 1, and
σ∗ = σ̂∗

sph. The maximum number of generations was set to 5000 and for each
data point 300 trials were evaluated. Fluctuation effects are more pronounced
for smaller N and µ.
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Figure 33: Numerically obtained scaling relation µ(N) for ϑ = 1/4 and α = 2π
by evaluating the R-dependent progress rate (4.5). Top plot shows A = 1 with
σ∗ = σ̂∗

sph, central plot A = 10 with σ∗ = σ̂∗
sph/2, and bottom plot A = 1 with

σ∗ = (σ̂∗
sph + σ∗

φ0,sph
)/2.
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4.3 Investigation of Local Attraction and Global Conver-
gence

In this section different ideas are documented considering the modeling of lo-
cal attraction. As it was already explained in the previous sections, the R-
dependent formula (4.5) is not able to model local attraction phenomena for
small mutation strengths. This is due to the assumption of independent nor-
mally distributed positions yi around the global optimum. This assumptions
holds well for large mutations, see Fig. 35, as they tend to spread out the candi-
date solutions more evenly in search space. For smaller mutations local effects
tend to dominate and the resulting yi-components are distributed mostly around
the local minima locations resembling a discrete distribution.

As a first step, see Fig. 34, dynamic experiments are performed for an exem-
plary configuration with different values σ∗ ∈ (0, σ∗

φ0,sph
) and given two different

values A = 1 (top) and A = 10 (bottom). For each σ∗, 100 runs are conducted
and the residual distance Rst of the unsuccessful runs is measured within the
steady state after many generations. The maximum number of generations was
fixed to 5000, as there is no local convergence in the sense of σ∗ → 0. For each
trial a new random initialization for y was chosen with ∥y∥ = R0 = 50

√
N , as

for A = 10 (N = 1) the last local minimum is at yi ≈ 31. This is necessary to
start outside the local attraction region and to prevent the ES reaching the same
local attractor for each trial if very small σ∗-values are given. For each trial the
average Rst is measured within the last 1000 generations. Then, the average
Rst is then taken over all 100 trials to obtain the values shown in Fig. 34. The
success probability PS is shown on the right axis (not shown for A = 10 as there
are no globally converging runs).

One can observe a characteristic shape of Rst(σ
∗). For large σ∗, this behavior

was predicted by the zero-progress lines derived in the previous section, see
illustration of Fig. 36. The zero-progress lines were obtained by including the
(constant) noise term NA2/2 within the quality gain variance. The residual
distance Rst for large σ∗ can therefore be attributed to the overall noise effect
of the sum over all cosine terms. The effect of local convergence for small σ∗,
and global convergence for certain intermediate values, e.g. σ∗ ≈ 30 in Fig. 34
(A = 1), needs further investigation.

To gain some knowledge and insight about local attraction, a hybrid model
is used starting from Eq. (4.1). In order to keep the equations tractable the
variance is taken as R-dependent, assuming that the effect of the trigonometric
terms for large dimensionality has an averaging effect, such that it can be ex-
pressed as R-dependent. On the other side, the gain term

∑
i yi sin(αyi) will be

kept yi-dependent, such that following expression will be investigated

φII
R(R,y) = cϑ

σ2

DQ(R, σ)

(
4R2 + e−

1
2 (ασ)

2

2αA

N∑
i=1

yi sin (αyi)

)
−N

σ2

µ
.

(4.43)

As an example for the application of “hybrid” formula (4.43), denoted by
“HYB”, a one generation experiment is shown in Fig. 35. The hybrid for-
mula is able to regenerate the negative progress dip for small σ∗ despite using
an R-dependent variance, similar to purely y-dependent formula B2. Progress
rate R on the other hand does not model local attraction.

102



Figure 34: Dynamic experiments with (100/100, 200)-ES, α = 2π, N = 100,
A = 1 (top), and A = 10 (bottom). The average residual distance Rst is
evaluated over 100 repetitions. The convergence probability is shown along the
right axis (top plot, bottom plot has PS = 0 for all trials).
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Figure 35: The progress rate approximations are compared at a certain y (R ≈
5), where local attraction effects are observed for small σ∗, see also Fig. 58 in
the following section.
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4.3.1 Local attraction along the diagonal

Each attractor region can be considered differently depending on the actual yi-
coordinates. To illustrate the effects of attraction on the progress contour map,
one can set yi = R/

√
N for all i = 1, ..., N given some R in hybrid Eq. (4.43).

This way one moves along the diagonal of strictly positive yi through search
space, see Fig. 36 with overlaid Rst-curve from Fig. 34.

For small mutations local attraction regions are present, where progress is
entirely negative, e.g. for R ∈ [5, 10]. The characteristic of the Rst-curve is not
modeled correctly. However, for large mutations the spherical structure is re-
covered, where the Rst-curve agrees very well with the progress rate result. One
can observe that the strategy faces negative progress regions for a broad range
of mutations strengths. This effect can of course be counteracted by increasing
the population size of the strategy. The population in Fig. 36 was deliberately
chosen too small (for A = 10 and N = 100) to illustrate the problem.

This approach illustrates the problem of local attraction, it is not a complete
model. However, within the effect of component equipartition during dynamic
iterations, see Sec. 5.4, components are reaching values yi = R/

√
N (after many

generations) and the progress rate along the diagonal will be relevant.

Figure 36: Progress rate contour map using hybrid Eq. (4.43) with R-dependent
variance and locations yi = R/

√
N for all i = 1, ..., N given R. The blue curve

shows the result of Fig. 34. The plot illustrates the effects of local attraction
(small σ∗) on the progress rate.

4.3.2 Local attraction via a probabilistic approach

For the second approach the sum in Eq. (4.43) is modeled as a normally dis-
tributed random variable Y using the CLT, which was already introduced in
(4.3). However, now the fluctuations will not be neglected and the progress will
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be treated as a random variable. We define

EY := E [Y ] and D2
Y := Var [Y ] , (4.44)

with EY evaluated in (A.34), and D2
Y in (A.38). Then, one can demand positive

progress

φII
R = cϑ

σ2

DQ(R, σ)

(
4R2 + e−

1
2 (ασ)

2

2αA
[
EY +DYN (0, 1)

])
−N

σ2

µ

!
> 0,

(4.45)

and rearrange the equation to isolate the random variate according to

N (0, 1) >
e

1
2 (ασ)

2

2αADY

(
NDQ

cϑµ
− 4R2

)
− EY

DY
. (4.46)

From (4.46) one can deduce the probability Pφ to have positive progress using
the CDF of the normal distribution for given R and σ according to

Pφ := Pr
{
φII
R > 0|R, σ

}
= 1− Pr

{
φII
R ≤ 0|R, σ

}
= 1− Φ

(
e

1
2 (ασ)

2

2αADY

(
NDQ

cϑµ
− 4R2

)
− EY

DY

)
.

(4.47)

Figure 37 displays the results of (4.47) applied to two parameter configurations.
Dark red regions correspond to Pφ = 1, while dark blue regions show Pφ = 0.
A sharp boundary can be observed for large σ∗ and R corresponding to the
spherical limit including the characteristic dip of low progress (probability).
Within these limits the Rastrigin noise variance term NA2/2 dominates and
the progress probability yields a sharp transition. This can also be explained by
looking at (4.45), where the random variable vanishes with prefactor e−

1
2 (ασ)

2

yielding a deterministic equation.
For small mutations an interesting (orange-yellow) region of decreased progress

probability emerges. This can be attributed to local attraction effects giving
negative (or zero) realizations φII

R ≤ 0. This is in contrast to the sphere func-
tion, where strictly positive progress φ∗ > 0 for σ∗ > 0 in the limit of σ∗ → 0 is
expected.

One can see that a continuous region of decreased Pφ is present w.r.t. σ∗.
This matches the experimental observations of Fig. 34, especially for A = 10.
However, result (4.47) is only an indicator of local convergence effects and not
a complete model. Local attraction can also occur with φII

R > 0, if local and
global attractor are aligned in such a way.

The dynamics of Eq. (4.45) is investigated in Fig. 38 for small σ∗ = 1 and
large A = 10 using three different random number generator seeds compared
to its deterministic expression setting the fluctuation DY = 0. This is done
using the iteration scheme of Eq. (5.6). The overall effect of the fluctuations
of Eq. (4.45) are very small, as there are only minor differences in the overall
R-dynamics. The progress probability Pφ was checked during the iteration and
yields consistent results as shown in Fig. 37. Negative progress occurs, but with
comparably small contributions. All runs are converging globally and Rst of
Fig. 34 is not recovered. Therefore, fluctuations using hybrid Eq. (4.45) are not
sufficient to recover experimental results of local convergence.
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Figure 37: Probability of positive progress Pφ from result (4.47) modeling the
sum over yi-dependent terms from (4.43) as a normally distributed variate.
Decreased Pφ-values for small σ∗ indicate local convergence effects. Top plot
shows A = 1 and bottom plot A = 10 with (100/100, 200)-ES, α = 2π, and
N = 100.
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Figure 38: Dynamics of Eq. (4.45) for (100/100, 200)-ES, α = 2π, N = 100,
σ∗ = 1, and A = 10.
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4.3.3 Positive gain condition

The goal of this section is to derive a condition on the mutation strength, such
that positive progress is ensured for all component-wise progress rates φII

i . Start-
ing from Eq. (3.116) one has

φII
i = cϑ

σ2

DQ

(
4y2i + e−

1
2 (ασ)

2

2αAyi sin (αyi)
)
− σ2

µ
. (4.48)

The gain function G is defined as

G(yi, σ) := 4y2i + e−
1
2 (ασ)

2

2αAyi sin (αyi). (4.49)

Requiring positive progress φII
i > 0 for Eq. (4.48) yields

cϑ
DQ

G(yi, σ) >
1

µ
. (4.50)

The only term of (4.50) which is not necessarily positive is the gain function.
Additionally, even for G > 0, depending on the actual yi- and σ-values the
inequality φII

i (y) > 0 may not be fulfilled. However, one can consider the infi-
nite population size limit µ → ∞, as the only µ-dependent term is on the rhs
of (4.50). Within this limit it suffices to show that G > 0 to satisfy inequal-
ity (4.50). An exemplary numerical evaluation of (4.49) for A = 10, and α = 2π
is shown in Fig. 39 for σ ∈ [0, 1] and yi ∈ [0, 5]. Negative gain values are shown
in darker blue colors and the G = 0 boundary is displayed in bold white. A
derivation of the dashed black line (constant σ) ensuring positive gain for any yi
is given now. The σ-value ensuring G > 0 will be referred to as σesc (escaping
the local attractor).

Besides the condition G = 0 an additional condition is needed. From Fig. 39
it can be inferred that ∂G

∂yi
= 0 must hold at the point of vanishing gain. Due

to the periodicity there will be multiple solutions. However, the contribution of
a negative sine term will be largest for small ∥yi∥ < 1, where y2i < ∥yi∥.

Requiring G
!
= 0 and assuming yi ̸= 0, Eq. (4.49) can be formulated as

G = 2yiG̃, (4.51)

with G̃ defined as

G̃ := 2yi + e−
1
2 (ασ)

2

αA sin (αyi)
!
= 0. (4.52)

The second condition ∂G
∂yi

= 0 yields for (4.51)

∂G

∂yi
= 2G̃+ 2yi

∂G̃

∂yi

!
= 0, (4.53)

As G̃ = 0 and yi ̸= 0, ∂G
∂yi

= 0 is equivalent to ∂G̃
∂yi

= 0, see (4.53). Therefore
one gets

∂G̃

∂yi
= 2 + e−

1
2 (ασ)

2

α2A cos (αyi) = 0, (4.54)
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such that the following condition is obtained

e−
1
2 (ασ)

2

αA = − 2

α cos (αyi)
. (4.55)

Inserting condition (4.55) into (4.52), it follows

2yi −
2

α

sin (αyi)

cos (αyi)
= 0. (4.56)

Introducing the substitution x = αyi and applying sinx/ cosx = tanx yields

2

α
(x− tanx) = 0. (4.57)

The first non-trivial solution of (4.57) satisfying x = tanx is

x0 ≈ 4.493. (4.58)

Multiplying (4.52) by α, identifying x0 = αyi and σ = σesc (point of vanishing
gain) results in

2x0 + e−
1
2 (ασesc)

2

α2A sinx0 = 0

e
1
2 (ασesc)

2

= −α2A sinx0

2x0
.

(4.59)

Resolving (4.59) for σesc yields the final result

σesc =
1

α

√
2 ln

(
−α2A sinx0

2x0

)
σesc ≈

1

α

√
2 ln (0.1086α2A).

(4.60)

Numerical evaluations of (4.60) for α = 2π (default) and different A-values is
shown in Table 1.

A 1 2 5 10
σesc 0.272 0.330 0.394 0.436

Table 1: Evaluation of (4.60) for constant α = 2π and different values of A.

The result of (4.60) can be interpreted as a stability criterion of the ES to
achieve positive component wise-progress. It represents a worst-case scenario
considering the last local attractor and the position requiring the largest σ at
yi ≈ 0.75, see Fig. 39. This criterion is valid for all yi until the global attractor
basin is reached, where σ < σesc must be chosen to have convergence. An
exemplary evaluation of (4.60) is shown in Fig. 39, see black dashed line.

Figures 40 and 41 show σesc as a black dashed line in a σ∗-R-plot with
the characteristic declining function R = σN/σ∗. The oscillation amplitude
A = 10 is chosen relatively large and tackled using large ES-populations, which
is in accordance with the assumptions made above. Figure 41 shows different
configurations (by varying τ) of the median of unsuccessful σSA-ES runs. Con-
figurations using larger τ -values tend to converge locally when σ falls below σesc.
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Runs with smaller τ (showing the highest PS) tend to follow the path between
progress rate zero and above σesc to minimize the residual distance (and max-
imize the success rate). However, falling below σesc does not necessarily mean
that local convergence must occur. Due to fluctuations the global attractor can
also be reached (PS > 0 for all τ -values).

Figure 41 shows single ES-runs with constant σ∗ (same parameters as in
Fig. 40). None of the runs are converging globally. Therefore the residual
distance is evaluated for the last 1000 generations and shown as blue dots.
Both the Rastrigin noise (larger σ∗) and σesc (smaller σ∗) pose a challenge for
the ES to find the global attractor. The results are similar to previous results
of Fig. 34.

From these observations one can conclude, that a strategy with constant
σ = σesc should be able to find the global attractor. Figure 42 shows the same
parameter set as Figs. 40 and 41, with three configurations σ = σesc ≈ 0.43,
σ = 0.4, and σ = 0.35 and fixed maximum number of generations NG = 104.
The black line follows the characteristic path of σesc ≈ 0.43 up until the global
attractor is reached, while the two smaller σ-values show stagnating behavior
at larger yi-values, which can be inferred from the distribution of yi-values
in Fig. 43. A second example is shown in Fig. 44, where at A = 5 one has
σesc ≈ 0.39. The distribution indicates that the global attractor is reached.
However, due to smaller µ = 200 the fluctuations tend to be larger and some yi
(over 1000 generations) are found outside [−0.5, 0.5], see axis limits (bars barely
visible, but present). This underlines the importance of the limit µ→∞.

The condition for σesc from Eq. (4.60) contains no dependency on N or
µ. However, increasing A results in an increase of the Rastrigin noise term
σR =

√
N/2A. To reduce the expected residual distance at which the noise

term starts to dominate, µ has to be increased appropriately, see also (4.32).
If µ is too small compared to A, intersection of the zero-progress line and σesc

may occur at R ≈ Rφ0 , see Fig. 45. This is the worst case, in which no further
progress is expected to occur for any σ∗.
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Figure 39: Gain function G(yi) for α = 2π and A = 10, see Eq. (4.49). The
G = 0 boundary is shown in bold white. The value of σesc ≈ 0.436 is shown in
dashed black.
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Figure 40: Dynamics for (400/400, 800)-σSA-ES with N = 100, A = 10, and
α = 2π, showing the median of unsuccessful runs (out of 100 trials). The
τ -values are varied: τ = 1/

√
N (magenta, PS = 0.02), τ = 1/

√
2N (green,

PS = 0.06), and τ = 1/
√
8N (blue, PS = 0.33). The dashed black line marks

the constant σesc ≈ 0.436 according to Table 1.

Figure 41: Dynamics for (400/400, 800)-ES (constant σ∗) with N = 100, A =
10, and α = 2π. The maximum number of generations was set to NG = 104

and different σ∗-values are tested. The blue dots show the mean of the residual
distance of the last 1000 generations, as no local convergence can occur. The
dashed black line marks the constant σesc ≈ 0.436 according to Table 1.
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Figure 42: Dynamics for (400/400, 800)-ES (constant σ) with N = 100, A = 10,
and α = 2π. The maximum number of generations was set to NG = 104 and
different constant σ-values are tested. The black line shows σ = σesc ≈ 0.436,
the magenta line σ = 0.4, and the cyan line σ = 0.35. The distribution of the
yi-values of the three configurations is shown in Fig. 43.
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Figure 43: The distribution of yi-values (for all i, last 1000 generations) of the
three configurations of Fig. 42 is shown with (top to bottom) σ = σesc ≈ 0.43,
σ = 0.4, and σ = 0.35.
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Figure 44: The distribution of yi-values (for all i, last 1000 generations) for
(200/200, 600)-ES (constant σesc ≈ 0.39) with N = 200, A = 5, and α = 2π.
The maximum number of generations was set to NG = 104 and the global at-
tractor is reached. A few values (although rare) can be found outside [−0.5, 0.5].

Figure 45: Progress rate zero and stability condition via σesc from (4.60) inter-
secting at comparably large R ≈ Rφ0 . Due to σesc and noise no further progress
is expected to occur for R-values below the intersection point.
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4.3.4 Optimization under constant σ

In Fig. 42 it was observed that by optimizing the Rastrigin function under
constant σ one can approach the global optimizer for roughly σ ≈ σesc. For
comparably small σ-values however, the ES is jumping between local attractors,
see Fig. 43, such that it gets stuck in the fitness landscape at a large residual
distance.

This effect is studied by comparing real ES-dynamics (constant σ) with
dynamics obtained by iterating the progress rates φi and φII

i (see also (5.4)).
For both real and iterated dynamics, the ES is initialized randomly and far
away from the optimizer (R = 100 ·

√
N). All runs start at the same initial

y-coordinates.
Figure 46 shows the results of a (200/200, 600)-ES, N = 100, α = 2π, and

A = 10 at varying σ-values. Solid lines shows the real dynamics (single trial),
while the dotted lines show the progress rate φi-dynamics. Figure 47 is obtained
using the same parameters as Fig. 46, but via progress rate φII

i . The number of
generations is chosen such that a steady state occurs.

A few observations can be made regarding Figs. 46 and 47. For small σ the
real dynamics shows practically a steady state behavior, or more precisely, a very
slowly converging dynamics. Due to σ being fixed, some progress is observed
over time. For large σ the initial descent is comparably fast, following by a
noise-type steady state (see fluctuations). The progress rates on the other hand
do show a steady state (horizontal line) with vanishing progress. Significant
deviations between real dynamics and iteration occur especially for moderate
σ ≈ σesc = 0.436. In this limit the fluctuations support the escape process, as
the R of real dynamics lies usually below the steady state R of the iterations.

These observations can be explained by looking at Figs. 48 and 49. Figure 48
shows the progress landscape of φII

i (σ) assuming equipartition for the variance
term DQ(R) setting R = yi

√
N . Figure 49 shows the same as Fig. 48, but

displaying all local minima. The progress rate iterations reach a steady state if
(starting from large yi) at any point the zero-progress line is crossed. Finding
the expected steady state therefore corresponds to finding the largest yi at which
φi = 0 (or φII

i = 0). Choosing σ > σesc, see Fig. 48, the iteration reaches the
Rastrigin noise floor and stagnates. This was already observed in Fig. 42. The
prediction of zero-progress due to the noise floor was already investigated before.
An analytic solution can only be obtained for relatively large R (or yi = R/N)
neglecting the exponential functions. For small R no closed-form solution is
available.

Furthermore, the results of φi and φII
i are practically the same for small

σ, as the iteration remains far away from the optimizer (negligible loss term).
Interestingly, φi shows global convergence when σ > σesc. This can be explained
by looking at the positive gain conditions of (4.49) and (4.52). Requiring G = 0

is equivalent to G̃ = 0 and G̃ is the yi-dependent gain prefactor of the progress
rate φi, see (2.82). Furthermore, assuming that the variance DQ(y) does not

change significantly as a single component is varied, the condition ∂G̃
∂yi

= 0

translates to ∂φi

∂yi
= 0. Choosing σ > σesc therefore ensures φi > 0 for any yi

and global convergence occurs (as there is no loss term).
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Figure 46: Real dynamics (solid lines showing a single trial, respectively) and
iterated φi-dynamics (dotted lines) for the (200/200, 600)-ES, N = 100, α = 2π,
and A = 10 at varying σ-values.

Figure 47: Same configuration as Fig. 46, but with φII
i -dynamics shown by the

dotted lines.
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Figure 48: Progress landscape φII
i (σ) for (200/200, 600)-ES, N = 100, α = 2π,

and A = 10. The zero-progress boundary is shown in bold white. The Rastrigin
noise floor is the lowermost white s-shaped line. Due to σ relatively small,
and large population µ, σesc (black dash-dotted line) from Fig. 39 is a good
approximation of the escape condition for φII

i .

Figure 49: Same configuration as Fig. 48, but showing all local minima attrac-
tion basins.
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4.4 Conclusion

In this section the R-dependent progress rate φII
R of Eq. (4.5) was derived based

on the result of the N -dimensional progress rate φII
i from (3.116). The R-

formulation was derived by assuming normally distributed yi-values around
the optimizer. This approximation is justified for large normalized mutation
strengths σ∗ (compared to the sphere progress rate), but deteriorates if σ∗ be-
comes too small where local attraction is dominating.

The R-formulation enables further analytical analysis, as result (4.5) is a two
dimensional function of R and σ∗ given the fitness parameters. Furthermore,
within this formulation relations to the sphere progress rate can be easily estab-
lished by setting A = 0 or α = 0. As a result, an alternative sphere progress rate
was derived yi-dependent in (4.6), and σ∗-dependent in (4.8). It is more accu-
rate at N <∞ compared to φ∗ = cµ/µ,λσ

∗ − σ∗2/(2µ) as it includes additional
correction terms in the variance.

Having investigated the progress rate landscape in Sec. 4.1, the Rastrigin
function shows a large A- and α-dependent progress dip (region of negative
progress relative to the sphere function). Real σSA-runs at small τ -values,
shown in Fig. 23, tend to move close to the negative progress boundary by
operating at large σ∗-values. This also justifies the assumptions made for the
distribution of yi-values. For small σ∗-values on the other hand, no negative
progress φII

R < 0 can be observed independent of fitness or ES-parameters,
which indicates the limits of φII

R not modeling local attraction (see also example
of Fig. 35).

The progress boundary φII
R = 0 is of most interest, especially the charac-

teristic progress dip, as the ES has to move “around” it in R-σ∗-space. This
zero-progress curve can be interpreted as an R-dependent noise due to the cosine
terms in all N -dimensions. It is therefore a cumulative effect of all oscillation
terms present at large mutation strengths. This is in contrast to the local attrac-
tion of a single attractor occurring for σ → 0. Both effects combined therefore
pose a major challenge for the ES, as σ∗ has to be reduced when the noise terms
start to dominate, which then in turn increases the risk of local convergence. In
the limit of constant maximum Rastrigin noise σR =

√
N/2A, the relation to

the noisy sphere model was established in (4.32).
A closed form expression R(σ∗) under the condition that φII

R = 0 can not
be obtained due to the terms containing exponential functions, especially in the
variance DQ(R) from (1.75). An analytic solution of the dip location is therefore
not available. However, assuming a constant (maximum value) Rastrigin noise
strength and defining a characteristic transition of the exponential function, see
(4.33), a solution for the intersection point (4.37) could be obtained as a function
of an (unknown) transition parameter δ. From this result, a population sizing
relation (4.41) with µ = O(

√
N) could be deduced. It can be thought of as a

“lower bound” scaling relation emerging due to the characteristic progress dip
(noise) at a certain transition level parameterized by δ (significance of exponen-
tial terms). Modeling the actual descent into the global attraction basin likely
requires a probabilistic approach, as the progress rate is (only) an expected
value without considering fluctuations in yi-space.

While the large σ∗-limit of φII
R is comparably well understood, as it is domi-

nated by R-dependent noise and the zero of the sphere progress rate, the effects
of local attraction need more investigation. An open question is if there are any
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characteristic mutation strengths that enable (statically within one generation,
or dynamically) to escape one local attractor and enter a neighboring attrac-
tor. A first approach by requiring positive gain for the component-wise φII

i was
presented in 4.3.3. First results indicate that it is possible to reach the global
attractor with an ES operating under constant σ.
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5 Dynamical Systems Approach

5.1 Motivation and Introduction

In order to assess the quality of the quadratic progress rate, one-generation
experiments were performed in the previous section given a certain location
y. Having obtained the progress rate, the next goal is to predict the dynamic
behavior (in expectation) of the ES and analyze its convergence properties. To
this end, the dynamical systems approach introduced by Beyer [5] is applied. It
was also used iterating the dynamics of the Ellipsoid model [6].

Given definition (3.1), σ(g) and y
(g)
i at current generation g, and assuming

φII
i is known, one can formulate an iteration g → g + 1 according to(

y
(g+1)
i

)2
=
(
y
(g)
i

)2
− φII

i (σ
(g),y(g)) + ϵi(σ

g, y
(g)
i ), (5.1)

where φII
i yields the expected positional difference (by definition) and ϵi mod-

eling positional fluctuations, which are unknown at this point.
Furthermore, an iteration for the mutations strength σ(g) is needed. As a

first approach, one can introduce the spherical normalization σ∗ of the mutation
strength σ for a residual distance R = ∥y∥, such that for given σ∗ > 0 one has

σ∗ =
σ

R
N = const. (5.2)

This ensures that σ decreases simultaneously with R and global convergence
can be modeled. However, the quantity σ∗ is only known for theoretical models
and not in real world applications. Still, valuable information can be extracted
from these models. The control scheme of σ(g) can therefore be given by

σ(g) = σ∗
∥∥∥y(g)

∥∥∥/N = σ∗R(g)/N. (5.3)

The investigation of step-size adaption schemes such as self-adaption or cumu-
lative step-size adaption is part of future research.

By setting ϵi = 0 in (5.1) as a first step neglecting fluctuations, one arrives at
the deterministic approximation of the dynamic iteration for the i-th component(

y
(g+1)
i

)2
=
(
y
(g)
i

)2
− φII

i (σ
(g),y(g)), (5.4)

which is shown in Alg. 1. Considering relation (3.95), the result (5.4) can be
expressed as a function of R by summing over i according to

N∑
i=1

(
y
(g+1)
i

)2
=

N∑
i=1

(
y
(g)
i

)2
−

N∑
i=1

φII
i (σ

(g),y(g)) (5.5)

(
R(g+1)

)2
=
(
R(g)

)2
− φII

R

(
σ(g), R(g)

)
, (5.6)

where Sec. 4 was used to derive the R-dependent progress rate φII
R.

The iteration schemes will be used for the investigation of the (deterministic)
dynamics obtained from different progress rate approximations. The iterated
dynamics will also be compared to real simulations with constant σ∗, where
fluctuations are of course present.
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Two important issues need to be discussed before iterating. Firstly, the
scheme (5.4) describes the iteration of a single component i. For large N it is
not feasible to analyze each component individually and global convergence is
achieved for all components vanishing at the same time. While the components
will be iterated separately, the dynamics will be presented as a function of the
residual distance R, see also relation (3.95).

Secondly, for the evaluation of φII
i being a function of y, the square root of the

components (y
(g)
i )2 has to be taken after iteration giving two solutions ±y(g)i .

Interestingly, the result of (3.39) shows that corresponding terms of φII
i are

even in y
(g)
i . This also holds for the Rastrigin quality variance D2

Q(y) in (1.29).
This effect is attributed to the progress being second order (quadratic) and the
Rastrigin function being symmetric. Therefore the iteration is equivalent for

both ±y(g)i , see pseudocode of iteration in Alg. 1.

Algorithm 1 Deterministic component-wise iteration using φII
i with σ∗=const.

1: g ← 0
2: y(0) ← y(init)

3: σ(0) ← σ∗
∥∥y(0)

∥∥/N
4: repeat
5: for i = 1, ..., N do

6: (y
(g+1)
i )2 ← (y

(g)
i )2 − φII

i (σ
(g),y(g))

7: y
(g+1)
i ← +

√
(y

(g+1)
i )2 both solutions ±

√
(·) equivalent

8: end for
9: σ(g+1) ← σ∗

∥∥y(g+1)
∥∥/N

10: g ← g + 1
11: until termination criterion

5.2 Experimental Setup

The optimization runs are performed using constant normalized mutation strength
σ∗ according to Alg. 2. As we are interested in the expected convergence behav-
ior of the algorithm, the residual distance R(g) is measured and averaged over
multiple runs.

Position initialization For the initialization, y(0) is chosen randomly such
that

∥∥y(0)
∥∥ = R(0) for a given residual distance R(0). The starting position is

kept constant for consecutive runs of the same experiment. For the magnitude
of R(0) it must be ensured, that the strategy starts outside the local minima
landscape. For A = 1 and α = 2π, the default configuration of the following
experiments, the last local minimum is located at yi ≈ 3. A larger reference
value yi = 20 is chosen to be farther away. Including the dimensionality scaling
R ∼

√
N from (1.79), we therefore set R(0) = 20

√
N as the default initialization

distance, if not explicitly stated otherwise.

Mutation initialization For the choice of σ∗ the sphere progress rate by
Beyer [5, p. 216, Eq. (6.54)] can be used as a reference by numerically solving
to obtain σ̂∗

sph = argmax(φ∗
sph(σ

∗)). This serves a guideline as the Rastrigin
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Algorithm 2 (µ/µI , λ)-ES with constant σ∗

1: g ← 0
2: y(0) ← y(init)

3: σ(0) ← σ∗
∥∥y(0)

∥∥/N
4: repeat
5: for l = 1, ..., λ do
6: x̃l ← σ(g)Nl(0,1)
7: ỹl ← y(g) + x̃l

8: f̃l ← f(ỹl)
9: end for

10: (ỹ1;λ, . . . , ỹµ;λ)← sort
(
ỹ w.r.t. ascending f̃

)
11: y(g+1) ← 1

µ

∑µ
m=1 ỹm;λ

12: σ(g+1) ← σ∗
∥∥y(g+1)

∥∥/N
13: g ← g + 1
14: until termination criterion

function is sphere-like for large R and within the global attractor. However,
for a higher PS in the experiments a larger value than σ̂∗

sph is needed as larger
mutations decrease the probability for local convergence. Therefore σ∗ > σ̂∗

sph

is empirically chosen, such that a high value PS ≈ 1 is obtained (more details
in Sec. 5.3).

5.2.1 Measures for Averaging

The first issue to discuss is the averaging of the dynamic simulations. More
precisely, a measure of central tendency is needed. Experiments have shown
that due to fluctuations large run-time differences among converging runs may
occur for the same parameter set, see as an example Fig. 50. Multiple averaging
approaches are compared against each other.

To simplify the notation, the following definitions are used. The experiment
repetitions are denoted with j = 1, ...,M and the generation counter with g,
such that abbreviated notation is used as

mean(R) = mean
g=const

(
R

(g)
j

)
(5.7)

median(R) = median
g=const

(
R

(g)
j

)
. (5.8)

Measure of central tendency for constant g One group of measures (de-
noted by lines in Fig. 50) evaluates the data for fixed g, such that the measures
mean(R) and median(R) can be easily evaluated. Additionally, the mean of
log(R) is plotted which corresponds to a “visual averaging” in log-space of the
R-values.

In order to discuss the difference between the standard mean(R) and the
other measures, see Fig. 50, the distribution of R-values is plotted in Fig. 51
for g = 10 and in Fig. 52 for g = 75, respectively. The results indicate that
the median is more robust as a statistical measure, if large differences for R by
orders of magnitude are present.
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Evaluating median(R) has another useful property. We have R > 0 and
log(R) is a monotonic transformation thereof. For an odd number of elements
the median is the central value from the corresponding sorted list. Therefore
log(median(R)) yields the same as median(log(R)), which makes it suitable for
evaluation in linear and logarithmic space. For an even number of elements the
median is the average of the two central values, such that the relation above is
not exact. Still, for a large number of runs the central values are expected to
be very close to each other such that the deviations are negligible.

Measure of central tendency for constant R The second group of mea-
sures (denoted by dots in Fig. 50) is an approach to average for fixed R values.
Given a certain range [R,R · δR], the respective generation values are collected
for all trials and evaluated using mean and median, respectively. The constant
factor δR is used to obtain evenly spaced points in log-space.

The results are displayed at the interval center point and show good agree-
ment with averaging methods for constant g. The larger deviations at the
descent point are due to high influence of present fluctuations.

Figure 50: Different averaging approaches for the dynamics of 500 runs with
success probability PS = 1. The simulation parameters are in the title. Mean(R)
with linear R-values is heavily skewed for moderate g-values due to different
orders of magnitudes of R. All other measures yield comparably similar results.
Slightly larger deviations occur before descending into the global attractor basin,
where fluctuation effects are strong.

Concluding averaging discussion From Figures 50, 51, and 52 it was estab-
lished that standard linear averaging of R-values is not suitable for dynamical
simulations with moderate to large run-time differences, which occurs on the
Rastrigin function. This is due to the fact that large outliers create a skewed
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Figure 51: At an early stage with g = 10 the distributions of linear and logarith-
mic R-values are relatively symmetric and not heavily skewed. The measures
mean(R), median(R), and mean(log(R)) therefore yield comparable results.

Figure 52: For moderately large g = 75 the distributions of linear and logarith-
mic R-values are completely different, as the simulations are at different stages
having R-values that are deviating in orders of magnitude. The mean calcu-
lated for the left distribution will therefore be highly influenced by very few
large values (in relation), which is observed in the dynamics of Fig. 50, while
the median as a central value is more robust w.r.t. outliers. The right plot shows
the distribution of exponents of R by taking the logarithm.

distribution, such that large deviations between mean and median values are
observed.

The median is significantly more robust with respect to outliers, as it is rep-
resents the central value. The property of the median being invariant under the
monotonic transformation R 7→ log(R) is also useful. Therefore the median will
be displayed when comparing the real simulation runs with iterated (expected)
dynamics.

The averaging using constant intervals [R,R · δR] was also shown in Fig. 50,
but it will not be displayed for the upcoming dynamics, as no additional value
is provided by the method at this point. It also requires an additional R-
discretization, which is not needed for averaging via constant g.
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5.3 Comparing Real Simulations with Iteration

In this section the median of real simulation runs will be compared to iter-
ated dynamics. Two deterministic iteration schemes are used with following
underlying progress rate evaluations

• Iteration SIM: φII
i by simulating (3.1) over 104 runs for each g and iterating

(5.4); serves as a reference deterministic iteration

• Iteration Y: φII
i using (3.116) with iteration (5.4)

• Iteration R: φII
R (4.5) with iteration (5.6)

The investigations are done for high success probability runs close to one and
lower success probabilities to test the limitations of the approach.

5.3.1 High Success Probability Investigation

Figure 53: Median dynamics compared to iterated dynamics using three
progress rate calculations. Parameters are given in the title. Approximations Y
and R show the same convergence speed for large and small R (parallel lines).
The offset emerges during the transition at R ≈ 1. Iterations Y and R slightly
overestimate the convergence speed compared to the median and SIM. The off-
set between median and SIM is due to fluctuations, as the accuracy of simulated
φII
i is expected to be very high. Differences between SIM and iterations Y and

R, respectively, are due to the underlying approximations. The agreement is
relatively good considering small N and small populations with lower trunca-
tion ratio ϑ = 0.25.
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Figure 54: Median dynamics compared to iterated dynamics for N = 100 with
population and σ∗ set accordingly. For larger N and population size better
agreement is observed between the median and the iterations. Furthermore,
the difference between the iterations tends to decrease, as the approximation
quality increases for larger N . This is also shown in Fig. 55. Again, an offset
between Y and R emerges before the descent at R ≈ 1 due to the underlying
approximations.

Figure 55: The dynamics is shown for large dimensionality N = 1000 with
population and σ∗ set accordingly. Within this limit fluctuations are decreasing
(loss term scaling as 1/µ) and different runs tend to follow the same path.
Deviations between iterations R and Y are decreasing compared to Fig. 54 as
the approximation quality increases.

128



5.3.2 Lower Success Probability Investigation

Figure 56: The experiment of Fig. 54 is repeated with decreased σ∗. Now
σ∗ ≈ 18.4 is chosen to be very close to the sphere optimal value by numerically
solving [5, p. 216, Eq. (6.54)]. All iterations now lie below the median curve
and are overestimating the overall progress, as fluctuations are not modeled.
The median is taken over the globally converging runs. A relatively sharp
splitting point occurs between locally (light gray) and globally (gray) converging
runs. This example illustrates the problem of smaller mutation strengths on the
Rastrigin function and why σ∗ = 29 was chosen in Fig. 54.

Figure 57: The value of σ∗ is further reduced compared to Fig. 56 and no global
convergence occurs. Iterations SIM and Y correctly predict a stagnation point
around R ≈ 5, while R predicts global convergence. This is due to the R-
dependent model being an average over all locations with ∥y∥ = R, while SIM
and Y are actual y-dependent models. The issue is explained in Fig. 58.
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Figure 58: The difference between Y and R from Fig. 57 is explained by looking
at φII,*

R (σ∗ = 5). Iteration Y in Fig. 57 was stopped the first time negative
progress φII

R =
∑

i φ
II
i < 0 is observed, which triggers at g = 146. At this

point the Cartesian coordinates y are saved and φII,*
R is evaluated to study the

difference (approximation B2 corresponds to iteration Y). Between red (R) and
blue (B2) there is a gap at σ∗=5 with B2 showing (small) negative progress and
R positive progress. This can be attributed to the positional dependence of the
progress rates. The black dots show φII,*

R for one-generation experiments with
constant y (trigger point), where good agreement with B2 is observed. The

orange dots show φII,*
R for the R-value of the trigger point, but for each trial y

newly chosen with ∥y∥ = R, where good agreement with R is seen. Therefore R
is not able to reproduce the local convergence behavior observed with Y, where
the actual y-values are iterated. But it is a good approximation when evaluating
the progress over ∥y∥ = R. For small σ∗ significant deviations occur compared
to Beyer (6.54), while for larger σ∗ the sphere-like structure is recovered. This
also explains the better agreement between SIM, Y, and R in Fig. 54 with larger
σ∗ = 29.

5.4 Component Equipartition

During the iteration of squared locations via (5.4) it could be experimentally

observed that all the components converge to a value (y
(g)
i )2 = (R(g))2/N for

g and σ∗ sufficiently large. This was observed independent of the initial value
provided that there is linear convergence of the overall residual distance. This
observation, which is referred to as “component equipartition”, is investigated
here in more detail. The effect happens on both Rastrigin and sphere function,
such that the analysis here is performed on the sphere by investigating the
difference equations.

For better readability of the subsequent derivations the following abbrevia-
tions are introduced

yg := (y
(g)
i )2

rg := (R(g))2

φ∗ := φII,*
R .

(5.9)
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Recalling the deterministic iteration (5.4) of a single component one has

yg+1 = yg − φ
II,(g)
i . (5.10)

The i-th component progress rate of the sphere function for constant σ∗ at
generation g was given in (4.6). By applying σ2 = σ∗2rg/N

2 one gets

φ
II,(g)
i =

2cϑσ
∗

N
√
1 + σ∗2/2N

yg −
σ∗2

N2µ
rg. (5.11)

Now gain and loss prefactors (constant during iteration) are defined as follows

β :=
2cϑσ

∗

N
√

1 + σ∗2/2N
(5.12)

γ :=
σ∗2

N2µ
, (5.13)

such that

φ
II,(g)
i = βyg − γrg. (5.14)

Hence, Eq. (5.10) becomes

yg+1 = yg − βyg + γrg. (5.15)

Summing (5.11) over all N components, multiplying by 1/rg, and using normal-

ization
φII

R

rg
= 2

Nφ∗ yields the rg-dependent progress rate of the sphere in terms

of β and γ

N∑
i=1

φ
II,(g)
i = φ

II,(g)
R =

2cϑσ
∗

N
√
1 + σ∗2/2N

rg −
σ∗2

Nµ
rg

2

N
φ∗ = β −Nγ,

(5.16)

which will be needed later for solving the difference equations.
Returning to (5.15) one has

yg+1 = (1− β)yg + γrg. (5.17)

An expression for the residual distance rg is needed. The analysis of the yg-
dynamics is performed under the condition that there is convergence of the rg-
dynamics. Using iteration (5.6), normalization φ∗ = φII

R
N
2rg

, and abbreviation

φII,*
R = φ∗, one can write

rg+1 = rg − φ
II,(g)
R

= rg −
2rg
N

φ∗

= rg

(
1− 2

N
φ∗
)
. (5.18)
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Assuming constant φ∗ > 0, the dynamics of Eq. (5.18) given initial value r0 can
be easily evaluated as

rg = r0

(
1− 2

N
φ∗
)g

. (5.19)

Inserting (5.19) into Eq. (5.17), one has a first order linear difference equation
in variable yg with constant coefficient a := (1−β) and a generation-dependent
term bg := γrg, which couples to the yg-evolution. The linear difference equation
is now written as

yg+1 = ayg + bg. (5.20)

Starting from y0 and repeatedly evaluating expression (5.20), the value at g can
be given as

yg = agy0 +

g∑
k=1

ag−kbk−1. (5.21)

This can be verified by inserting (5.21) into (5.20) giving

ayg + bg = a

(
agy0 +

g∑
k=1

ag−kbk−1

)
+ bg

= ag+1y0 +

g∑
k=1

ag−k+1bk−1 + a0bg

= ag+1y0 +

g+1∑
k=1

ag+1−kbk−1

= yg+1.

(5.22)

Therefore (5.21) is the generic solution to iteration scheme (5.17), which yields

yg = (1− β)gy0 + γ

g∑
k=1

(1− β)g−krk−1. (5.23)

The term rk−1 needs to be rewritten using (5.19) according to

rg = rk

(
1− 2

N
φ∗
)g−k

, such that

rk−1 = rg

(
1− 2

N
φ∗
)k−1−g

= r0

(
1− 2

N
φ∗
)k−1

. (5.24)

Inserting (5.24) into (5.23) and moving all k-independent terms out of the sum
yields

yg = (1− β)gy0 + γr0
(1− β)

g(
1− 2

Nφ∗
) g∑

k=1

(
1− 2

Nφ∗

1− β

)k

. (5.25)
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The sum in Eq. (5.25) can be evaluated using the formula for the n first terms

of a geometric series with q :=
1− 2

N φ∗

1−β according to

n∑
k=1

qk−1 = 1 + q1 + ...+ qn−1 =
1− qn

1− q
, such that

q1 + ...+ qg =
1− qg+1

1− q
− 1

=
q − qg+1

1− q
, (5.26)

under the condition that q ̸= 1, see denominator in Eq. (5.28).
First, evaluating the numerator q − qg+1 of (5.26) yields

q − qg+1 = q(1− qg) =
1− 2

Nφ∗

1− β

[
1−

(
1− 2

Nφ∗

1− β

)g
]
. (5.27)

Evaluating the denominator 1 − q of (5.26) using 2
Nφ∗ = β − Nγ from (5.16)

gives

1− q = 1−
1− 2

Nφ∗

1− β
=

1− β −
(
1− 2

Nφ∗)
1− β

= − Nγ

1− β
, (5.28)

which is well defined for β ̸= 1, see also Eq. (5.32).
The result of the sum can be given as

q − qg+1

1− q
= −

1− 2
Nφ∗

Nγ

[
1−

(
1− 2

Nφ∗

1− β

)g
]
. (5.29)

Substituting the sum in (5.25) with result (5.29) one gets

yg = (1− β)gy0 −
r0
N

(1− β)
g

[
1−

(
1− 2

Nφ∗

1− β

)g
]

= (1− β)g
(
y0 −

r0
N

)
+

r0
(
1− 2

Nφ∗)g
N

.

(5.30)

Using rg = r0(1− 2φ∗/N)
g
and resolving abbreviations defined in (5.9), the

final result yields

(y
(g)
i )2 = (1− β)g

(
(y

(0)
i )2 − (R(0))2

N

)
+

(R(g))2

N
. (5.31)

One can immediately see from result (5.31) that the initial values (y
(0)
i )2 and

(R(0))2 are decaying for g > 0 as long as 0 < β < 1. For g large enough the initial
values are suppressed and the term (R(g))2/N is dominating. Therefore within

the deterministic iteration any (squared) component (y
(g)
i )2 will approach the

value (R(g))2/N for g large enough. At g = 0 the initial value (y
(0)
i )2 is recovered.

Figure 59 shows an example where the iteration is compared to analytic
solutions of the difference equations. As σ∗ is relatively small, the approaching
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of components to the value (R(g))2/N is relatively slow (see generation axis).
There is no (visible) difference between the two calculations, as the equations
are solved analytically.

Figure 60 shows the same experimental setup of Fig. 59 but with increased
σ∗ = 20. Now the adaption time is much faster (see generation axis) due to
larger β, see (5.12), and both components quickly approach the target value
(R(g))2/N .

Additional investigation is needed concerning the gain parameter β occurring
in solution (5.31). In order to have convergence it must hold

0 < β < 1. (5.32)

The lower bound is satisfied for any σ∗ > 0 with

0 <
2cϑσ

∗

N
√

1 + σ∗2/2N
. (5.33)

The upper bound is given by (assuming σ∗ ̸= 0)

2cϑσ
∗

N
√
1 + σ∗2/2N

< 1

4c2ϑσ
∗2 < N2

(
1 + σ∗2/2N

)
4c2ϑσ

∗2 − Nσ∗2

2
< N2

4c2ϑ −
N

2
<

N2

σ∗2 .

(5.34)

Equation (5.34) is satisfied for most practical cases with moderate to large
N . The right side is strictly positive. Additionally, the (asymptotic) progress
coefficient is usually a relatively small number for moderate ϑ, such that 4c2ϑ <
N
2 yields negative values on the left side.

Component equipartition on Rastrigin The argumentation made on the
sphere function can also be transferred to the Rastrigin function, as long as one
has negligible influence of the local attractors. As the iteration experiments are
usually initialized far away from the optimizer, equipartition is established by
the time the iteration reaches the local attractors.

The argumentation can also be illustrated by looking at component-wise
progress φII

i (3.116) and comparing it with Eq. (5.16). As long as the gain
factor β > 0 (the loss terms are equal) and R(g)-convergence is present over
many generations, equipartition can be observed, which is the case for Rastrigin
within the spherical limits of negligible local attractors.
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Figure 59: Iteration compared to analytic solution of difference equations for
(100/100, 200)-ES on the sphere function with N = 100 at σ∗ = 1. The left
plot shows the (R(g))2-iteration and solution (5.19). The right plot shows the

(y
(g)
i )2-iteration and solution (5.31) for two components i = 1 and i = 97. The

latter component was chosen as its initial value is relatively small, such that
one can observe the initialization dynamics. The value σ∗ = 1 yields relatively
small value β ≈ 0.016 giving slow adaption compared to Fig. 60.

Figure 60: Iteration compared to analytic solution of difference equations for
(100/100, 200)-ES on the sphere function with N = 100 at larger σ∗ = 20. The
left plot shows the (R(g))2-iteration and solution (5.19). The right plot shows

the (y
(g)
i )2-iteration and solution (5.31). The larger mutation strength yields

β ≈ 0.18 and therefore faster adaption.
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Appendix A Expectation Values

A.1 Expectation Value of cos(αx)

For a normally distributed random variable x ∼ N (µ, σ2), the expectation value
of a function g(x) is given by

E [g(x)] =
1√
2πσ

∫ ∞

−∞
g(x)e−

1
2

(x−µ)2

σ2 dx . (A.1)

The characteristic function φY (t) of a random variable Y with density pY (y) is
defined as

φY (t) = E
[
eity
]
=

∫ ∞

−∞
eitypY (y) dy . (A.2)

The expectation value of sin(αx) and cos(αx) can be obtained using the defini-
tion of the complex exponential eiαx = cos(αx) + i sin(αx) according to

E
[
eiαx

]
= E [cos(αx)] + iE [sin(αx)] . (A.3)

Calculating the expectation of eiαx using definition (A.1) one obtains

E
[
eiαx

]
=

1√
2πσ

∫ ∞

−∞
eiαxe−

1
2

(x−µ)2

σ2 dx . (A.4)

Given integral can be identified as the definition of the characteristic function
of a normally distributed variable [7, p. 160]

E
[
eiαx

]
= φN(µ,σ2)(α) = eiαµ−

1
2α

2σ2

(A.5)

= e−
1
2α

2σ2

[cos (αµ) + i sin (αµ)]. (A.6)

Using (A.3) the expectation values read

E [cos (αx)] = e−
1
2α

2σ2

cos (αµ) (A.7)

E [sin (αx)] = e−
1
2α

2σ2

sin (αµ). (A.8)

Since mutations of the ES are distributed according to x ∼ N (0, σ2), we obtain
simplified equations

E [cos (αx)]
µ=0
= exp

[
−1

2
(ασ)2

]
(A.9)

E [sin (αx)]
µ=0
= 0. (A.10)
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A.2 Expectation Value of cos2(αx) and sin2(αx)

These expectation values can be easily simplified by applying trigonometric
identities and cos2(x)+sin2(x) = 1 and using the previous results for E [cos(αx)]
with a scaled constant. We obtain

E
[
cos2(αx)

]
= E

[
1

2
[1 + cos(2αx)]

]
=

1

2

(
1 + e

(2ασ)2

2 cos (2αµ)

)
(A.11)

µ=0
=

1

2

(
1 + exp

[
−1

2
(2ασ)2

])
(A.12)

and analogously

E
[
sin2(αx)

]
= E

[
1

2
[1− cos(2αx)]

]
=

1

2

(
1− e

(2ασ)2

2 cos (2αµ)

)
(A.13)

µ=0
=

1

2

(
1− exp

[
−1

2
(2ασ)2

])
. (A.14)

A.3 Expectation Values of x cos(αx) and x sin(αx)

The quantities E [x cos(αx)] and E [x sin(αx)] can be deduced by differentiating
the expression (A.6) on both sides with respect to α and identifying real and
imaginary parts. The left-hand side yields

d

dα
E
[
eiαx

]
= E

[
ixeiαx

]
= E [ix(cos (αx) + i sin (αx))]

= iE [x cos (αx)]− E [x sin (αx)] .

(A.15)

Evaluating the derivative of the right-hand side gives

d

dα

[
e−

1
2α

2σ2

[cos (αµ) + i sin (αµ)]
]
= ...

= −µe− 1
2 (ασ)

2

sin (αµ)− ασ2e−
1
2 (ασ)

2

cos (αµ)

+ i
[
−ασ2e−

1
2 (ασ)

2

sin (αµ) + µe−
1
2 (ασ)

2

cos (αµ)
]
.

(A.16)

By identifying the real and imaginary part one gets

E [x cos(αx)] = e−
1
2 (ασ)

2

[µ cos (αµ)− ασ2 sin (αµ)] (A.17)

µ=0
= 0 (A.18)

E [x sin(αx)] = e−
1
2 (ασ)

2

[µ sin (αµ) + ασ2 cos (αµ)] (A.19)

µ=0
= ασ2 exp

[
−1

2
(ασ)2

]
. (A.20)

A.4 Expectation Value of x2 cos(αx)

The expected value can be derived by differentiating the result from Eqs. (A.15)
and (A.16) a second time with respect to α. One obtains

d2

dα2
E
[
eiαx

]
=

d

dα
E
[
ixeiαx

]
= E

[
−x2eiαx

]
(A.21)

= −E
[
x2 cos (αx)

]
− iE

[
x2 sin (αx)

]
. (A.22)
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for the left-hand side. Evaluating the right-hand side gives

d2

dα2

[
e−

1
2α

2σ2

[cos (αµ) + i sin (αµ)]
]
= ...

− µ2e−
1
2 (ασ)

2

cos (αµ) + 2αµσ2e−
1
2 (ασ)

2

sin (αµ)

− σ2e−
1
2 (ασ)

2

cos (αµ) + α2σ4e−
1
2 (ασ)

2

cos (αµ)

+ i
[
−µ2e−

1
2 (ασ)

2

sin (αµ)− σ2e−
1
2 (ασ)

2

sin (αµ)

− 2αµσ2e−
1
2 (ασ)

2

cos (αµ) + α2σ4e−
1
2 (ασ)

2

sin (αµ)
]
.

(A.23)

Using the real part one obtains the result

E
[
x2 cos(αx)

]
= e−

1
2 (ασ)

2 [
µ2 cos (αµ) + σ2 cos (αµ)

−2αµσ2 sin (αµ)− α2σ4 cos (αµ)
] (A.24)

µ=0
= (σ2 − α2σ4) exp

[
−1

2
(ασ)2

]
. (A.25)

A.5 Expectation Value of x2 cos2(αx) and x2 sin2(αx)

First the identities cos2(x) = 1
2 [1 + cos(2x)] and sin2(x) = 1

2 [1 − cos(2x)] are
applied, respectively. Afterwards, the result (A.24) can be applied with rescaled
frequency α. One has

E
[
x2 cos2(αx)

]
= E

[
x2

2
+

x2 cos(2αx)

2

]
(A.26)

=
1

2
(µ2 + σ2) +

1

2
e−

1
2 (2ασ)

2[
µ2 cos(2αµ) + σ2 cos(2αµ)

− 4αµσ2 sin(2αµ)− (2α)2σ4 cos(2αµ)
]

(A.27)

µ=0
=

1

2
σ2 +

1

2

(
σ2 − (2α)2σ4

)
e−

1
2 (2ασ)

2

. (A.28)

Analogously one gets

E
[
x2 sin2(αx)

]
= E

[
x2

2
− x2 cos(2αx)

2

]
(A.29)

=
1

2
(µ2 + σ2)− 1

2
e−

1
2 (2ασ)

2[
µ2 cos(2αµ) + σ2 cos(2αµ)

− 4αµσ2 sin(2αµ)− (2α)2σ4 cos(2αµ)
] (A.30)

µ=0
=

1

2
σ2 − 1

2

(
σ2 − (2α)2σ4

)
e−

1
2 (2ασ)

2

. (A.31)

A.6 Sums Over Expected Values and Variances

In Sec. 1.5.2 the expected values and variances over the sums of i = 1, ..., N
trigonometric terms with random variable yi ∼ N (0, σ2

y) and σy = R√
N

is needed

assuming independent components. The expected values and variances are taken
over sums of the terms cos (αyi), cos(2αyi) and y sin (αyi), respectively.
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First, the expected values are evaluated according to

E

[
N∑
i=1

cos(αyi)

]
= Ne−

1
2 (ασy)

2

= Ne−
1
2

(αR)2

N (A.32)

E

[
N∑
i=1

cos(2αyi)

]
= Ne−

1
2 (2ασy)

2

= Ne−2
(αR)2

N (A.33)

E

[
N∑
i=1

yi sin(αyi)

]
= Nασ2

ye
− 1

2 (ασy)
2

= αR2e−
1
2

(αR)2

N . (A.34)

Now the corresponding variances are calculated. Applying Var [
∑

i(·)] =
∑

i E
[
(·)2
]
−

E [(·)]2 and using previously obtained results of Appendix A with µy = 0 and

σy = R/
√
N yields for the variances

Var

[
N∑
i=1

cos(αyi)

]
=

N∑
i=1

E
[
cos2(αyi)

]
− E [cos(αyi)]

2

= N

(
1

2
+

1

2
e−

1
2

(2αR)2

N − e−
(αR)2

N

)
(A.35)

Var

[
N∑
i=1

cos(2αyi)

]
=

N∑
i=1

E
[
cos2(2αyi)

]
− E [cos(2αyi)]

2

= N

(
1

2
+

1

2
e−

1
2

(4αR)2

N − e−
(2αR)2

N

)
(A.36)

Var

[
N∑
i=1

yi sin(αyi)

]
=

N∑
i=1

E
[
y2i sin

2(αyi)
]
− E [yi sin(αyi)]

2

= N

(
1

2

R2

N
− 1

2

[
R2

N
− (2α)2

R4

N2

]
e−

1
2

(2αR)2

N − α2 R
4

N2
e−

(αR)2

N

)
(A.37)

= R2

(
1

2
− 1

2
e−

1
2

(2αR)2

N + 2α2R
2

N
e−

1
2

(2αR)2

N − α2R
2

N
e−

(αR)2

N

)
. (A.38)

The obtained results are used for the evaluation of ratio (1.67) in Sec. 1.5.2.
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Appendix B Large Population Identity

Let λ > µ + 1 and µ > a with a ≥ 1 and ϑ = µ/λ, such that tλ−µ−1(1 −
t)µ−a exhibits its maximum on (0, 1) and vanishes at t ∈ {0, 1}. Furthermore,
let f(t) be function defined and differentiable on (0, 1), and let B(·, ·) be the
beta function. For infinitely large populations (µ, λ) → ∞ (constant ϑ) the
asymptotic equality holds

Iaµ,λ[f ] =
1

B(λ− µ, µ)

∫ 1

0

f(t)tλ−µ−1(1− t)µ−a dt

≃ f(1− ϑ)

ϑa−1
,

(B.1)

with higher order terms vanishing with O(1/µ) and O(1/λ).

B.1 Derivation

Properties of the integrand Given the definition above it can be observed
that tλ−µ−1(1 − t)µ−a exhibits a single increasingly sharp maximum on the
interval (0, 1) given a fixed truncation ratio as the population size tends to
infinity, see also Fig. 61.

This observation suggests performing a Taylor series expansion of the func-
tion f(t) around the sharp peak located at t̂ defined by

t̂ = argmax
t∈[0,1]

[
tλ−µ−1(1− t)µ−a

]
. (B.2)

The first terms of the series should already yield a good approximation for large
populations. The maximum of the sharp peak can be obtained by setting the
first derivative to zero and deriving the corresponding t̂ according to

d

dt
[tλ−µ−1(1− t)µ−a] = 0 (B.3)

(λ− µ− 1)tλ−µ−2(1− t)µ−a − tλ−µ−1(µ− a)(1− t)µ−a−1 = 0

(λ− µ− 1)(1− t)− (µ− a)t = 0

(λ− µ− 1)− (λ− µ− 1)t− (µ− a)t = 0

(λ− µ− 1) = (λ− a− 1)t

⇒ t̂ =
λ− µ− 1

λ− a− 1
= 1− µ− a

λ− a− 1
= 1− µ(1− a/µ)

λ(1− a/λ− 1/λ)
. (B.4)

Looking at the limit of infinitely large populations it can be observed that the
maximizer approaches a constant value. Setting µ/λ = ϑ one gets

lim
(µ,λ)→∞
ϑ=const.

t̂ = 1− ϑ. (B.5)

Taylor expansion Taylor-expanding f(t) around t̂ yields

f(t) =

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

(t− t̂)k, (B.6)
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Figure 61: Integrand 1
B(λ−µ,µ) t

λ−µ−1(1− t)µ−1 plotted for a = 1, λ = 20 (left)

and λ = 200 (right) for two different truncation ratios ϑ = 1/4 and ϑ = 1/2. The
peak sharpness increases with growing λ and the factor 1/B(λ − µ, µ) rescales
the peak heights.

such that integral (B.1) is expressed as

Iaµ,λ[f ] =
1

B(λ− µ, µ)

∫ 1

0

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

(t− t̂)ktλ−µ−1(1− t)µ−a dt

=

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a(t− t̂)k dt

=

∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

C(k).

(B.7)

The introduced coefficients C(k) are defined as

C(k) :=
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a(t− t̂)k dt . (B.8)

It will be shown that only the 0-th order coefficient C(0) will yield significant
contributions and all higher orders k ≥ 1 will vanish with O(1/λ) for large
populations.

Starting with k = 0 the coefficient can be evaluated as

C(0) =
1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a dt

=
B(λ− µ, µ− a+ 1)

B(λ− µ, µ)
=

Γ(λ− µ) Γ(µ− a+ 1)

Γ(λ− a+ 1)

Γ(λ)

Γ(λ− µ) Γ(µ)

=
(λ− µ− 1)!(µ− a)!

(λ− a)!

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
(λ− 1)!(µ− a)!

(λ− a)!(µ− 1)!
=

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=

a−1∏
n=1

λ

µ

1− n/λ

1− n/µ

=

{
1 for a = 1,

1
ϑa−1

∏a−1
n=1

1−n/λ
1−n/µ . for a > 1.

(B.9)
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It was used that for a > 1 one has

(λ− 1)!

(λ− a)!
=

a−1∏
n=1

λ− n and
(µ− a)!

(µ− 1)!
=

1∏a−1
n=1 µ− n

. (B.10)

Therefore the limit yields for any a ≥ 1

lim
(µ,λ)→∞
ϑ=const.

C(0) =
1

ϑa−1
. (B.11)

with O(1/µ) and O(1/λ). The analysis of C(k) with k ≥ 1 is slightly more
involved and is tackled now. Noting that (t− t̂)k = (−t̂)k(1− t/t̂)k one has

C(k) =
(−t̂)k

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a

(
1− t

t̂

)k

dt . (B.12)

By applying the binomial theorem the expression can be reformulated

C(k) =
(−t̂)k

B(λ− µ, µ)

∫ 1

0

tλ−µ−1(1− t)µ−a
k∑

i=0

(
k

i

)
1k−i

(
− t

t̂

)i

dt

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)i

(
1

t̂

)i
1

B(λ− µ, µ)

∫ 1

0

titλ−µ−1(1− t)µ−a dt

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)iF i,a

1 F i,a
2 ,

(B.13)

with additional treatment needed for the factors F i,a
1 and F i,a

2

F i,a
1 :=

(
1

t̂

)i

(B.14)

F i,a
2 :=

1

B(λ− µ, µ)

∫ 1

0

tλ−µ−1+i(1− t)µ−a dt . (B.15)

Factor F i,a
1 is easily evaluated using (B.5) and yields

F i,a
1 =

(
1

t̂

)i

=

(
λ− a− 1

λ− µ− 1

)i

=

(
1− a/λ− 1/λ

1− ϑ− 1/λ

)i

. (B.16)

Factor F i,a
2 yields

F i,a
2 =

B(λ− µ+ i, µ− a+ 1)

B(λ− µ, µ)

=
(λ− µ− 1 + i)!(µ− a)!

(λ− a+ i)!

(λ− 1)!

(λ− µ− 1)!(µ− 1)!

=
(λ− µ− 1 + i)!

(λ− µ− 1)!

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!
.

(B.17)
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The first ratio of result (B.17) yields

(λ− µ− 1 + i)!

(λ− µ− 1)!
=

i∏
j=1

(λ− µ− 1 + j) = λi
i∏

j=1

(1− ϑ− 1/λ+ j/λ). (B.18)

For the second ratio of result (B.17) one can use (B.10) and write (λ − 1)! =

(λ− a)!
∏a−1

n=1 λ− n, such that

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!

a>1
=

(λ− a)!

(λ− a+ i)!

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=
1∏i

j=1(λ− a+ j)

∏a−1
n=1 λ− n∏a−1
n=1 µ− n

=
1

λi
∏i

j=1(1− a/λ+ j/λ)

λa−1
∏a−1

n=1 1− n/λ

µa−1
∏a−1

n=1 1− n/µ

(λ− 1)!(µ− a)!

(λ− a+ i)!(µ− 1)!

a=1
=

1

λi
∏i

j=1(1− 1/λ+ j/λ)
.

(B.19)

The result of (B.19) for a > 1 is also valid for a = 1 when defining the product

over n with no elements as
∏0

n=1(·) = 1, which is assumed for the following
derivations.

Using (B.18) and (B.19) factor F i,a
2 therefore yields for a ≥ 1

F i,a
2 =

λi
∏i

j=1(1− ϑ− 1/λ+ j/λ)

λi
∏i

j=1(1− a/λ+ j/λ)

λa−1
∏a−1

n=1(1− n/λ)

µa−1
∏a−1

n=1(1− n/µ)

=
1

ϑa−1

i∏
j=1

(1− ϑ− 1/λ+ j/λ)

(1− a/λ+ j/λ)

a−1∏
n=1

(1− n/λ)

(1− n/µ)
.

(B.20)

Finally the result for C(k) from (B.13) can be evaluated using (B.16) and (B.20)

C(k) = (−t̂)k
k∑

i=0

(
k

i

)
(−1)iF i,a

1 F i,a
2

= (−t̂)k
k∑

i=0

(
k

i

)
(−1)i (1− a/λ− 1/λ)

i

(1− ϑ− 1/λ)
i

× 1

ϑa−1

i∏
j=1

(1− ϑ− 1/λ+ j/λ)

(1− a/λ+ j/λ)

a−1∏
n=1

(1− n/λ)

(1− n/µ)

=
(−t̂)k

ϑa−1

a−1∏
n=1

(1− n/λ)

(1− n/µ)

×
k∑

i=0

(
k

i

)
(−1)i

i∏
j=1

(1− ϑ− 1/λ+ j/λ)(1− a/λ− 1/λ)

(1− ϑ− 1/λ)(1− a/λ+ j/λ)
.

(B.21)

In the second line of (B.21) factors F i,a
1 and F i,a

2 were inserted and in the
last line the product over n was moved out of the sum as no i dependency
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is given. Additionally the factors (1− a/λ− 1/λ)
i
and 1/ (1− ϑ− 1/λ)

i
were

moved into the product over j = 1, ..., i which is important for the following
limit consideration.

Applying the limit (µ, λ) → ∞ significantly simplifies (B.21), as the pop-
ulation dependent terms vanish with O(1/µ) and O(1/λ), respectively. The
two products yield asymptotically one. Using the property that the sum of
alternating binomial coefficients yields zero for any k ≥ 1, one obtains the limit

lim
(µ,λ)→∞
ϑ=const.

C(k≥1) =
(−t̂)k

ϑa−1

k∑
i=0

(
k

i

)
(−1)i = 0. (B.22)

Collecting results Having established the large population limit of C(k) in
(B.11) and (B.22) one can return to the Taylor expansion of (B.7) and evaluate
corresponding expressions. Noting that t̂ = 1− ϑ from (B.5) the result is

lim
(µ,λ)→∞
ϑ=const.

Iaµ,λ[f ] = lim
(µ,λ)→∞
ϑ=const.

[ ∞∑
k=0

1

k!

∂kf

∂tk

∣∣∣∣
t=t̂

C(k)

]

=
1

ϑa−1
f(1− ϑ),

(B.23)

with higher order terms vanishing as O(1/µ) and O(1/λ). Therefore within the
large population limit it is sufficient to consider only the 0-th order term of the
Taylor expansion evaluated at the integrand maximum t̂. All these considera-
tions hold provided that the derivatives of f(t) are well defined at t̂.

B.2 Applications

Progress Rate Identity (B.1) is used to solve the progress rate integral of
(2.25) for large populations with parameter a = 1 and f(t) defined in Eq. (2.24).
The result is given in Eq. (2.28).

Generalized Progress Coefficient A second application emerges investi-
gating the generalized progress coefficients introduced by Beyer [5, p. 172]

ea,bµ,λ =
λ− µ

(2π)
a+1
2

(
λ

µ

)∫ ∞

−∞
xbe−

a+1
2 x2

[Φ(x)]
λ−µ−1

[1− Φ(x)]
µ−a

dx , (B.24)

for which asymptotic properties can be derived assuming large populations. The
population depend prefactors are rewritten as

(λ− µ)

(
λ

µ

)
=

λ

µ

(λ− 1)!

(λ− µ− 1)!(µ− 1)!
=

1

ϑ

1

B(λ− µ, µ)
. (B.25)

Introducing the substitution t = Φ(x) with x = Φ−1(t), dx =
√
2πex

2/2 dt and
changing the bounds 0 ≤ t ≤ 1 the progress coefficients yields

ea,bµ,λ =
1

ϑ

1

B(λ− µ, µ)

1

(2π)
a/2

∫ 1

0

[
Φ−1(t)

]b
e−

a
2 [Φ

−1(t)]
2

tλ−µ−1(1− t)µ−a dt .

(B.26)
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Comparing (B.26) with identity (B.1) the function fa,b(t) (with a and b in
superscript emphasizing the parameter dependence) can be identified as

fa,b(t)
∣∣
t=1−ϑ

=
[
Φ−1(t)

]b
e−

a
2 [Φ

−1(t)]
2
∣∣∣∣
t=1−ϑ

=
[
Φ−1(1− ϑ)

]b
e−

a
2 [Φ

−1(1−ϑ)]
2

.

(B.27)

Therefore the coefficients can be expressed as

ea,bµ,λ =
1

ϑ

1

(2π)
a/2

Iaµ,λ
[
fa,b

]
≃ 1

ϑ

1

(2π)
a/2

f(1− ϑ)

ϑa−1

=
1

(2π)
a/2

1

ϑa

[
Φ−1(1− ϑ)

]b
e−

a
2 [Φ

−1(1−ϑ)]
2

=

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]a [
−Φ−1(ϑ)

]b
.

(B.28)

In the second line the asymptotic equality is used. For the last line the properties
Φ−1(1 − ϑ) = −Φ−1(ϑ), [Φ−1(1 − ϑ)]2 = [Φ−1(ϑ)]2 are applied and all factors
being powers of a and b are collected. Defining the asymptotic generalized
progress coefficient as

ea,bϑ := lim
(µ,λ)→∞
ϑ=const.

ea,bµ,λ, (B.29)

the final result yields

Asymptotic Generalized Progress Coefficient

ea,bϑ =

[
e−

1
2 [Φ

−1(ϑ)]
2

√
2πϑ

]a [
−Φ−1(ϑ)

]b
. (B.30)

The result (B.30) is numerically validated in Fig. 62 showing ea,bµ,λ as a function

of µ (constant ϑ) and the corresponding asymptote ea,bϑ .
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Figure 62: Generalized progress coefficient ea,bµ,λ numerically calculated (dashed)

with the corresponding asymptotic limit ea,bϑ (dotted) from Eq. (B.30) for ϑ ∈
{0.3, 0.6}. The coefficient orders are e1,0 (blue), e1,1 (red), e2,0 (green) and e2,1

(orange).

Appendix C Noisy Order Statistics

Modeling the distribution of z The underlying distribution from which
the not selected z in (3.14) are drawn is modeled in terms of its cumulants κi by
expanding a normally distributed density function using a Gram-Charlier series

pz(z) =
1√
2πκ2

exp

[
− z2

2κ2

](
1 +

γ1
6

He3

(
z
√
κ2

)
+

γ2
24

He4

(
z
√
κ2

)
+ ...

)
,

(C.1)

with skewness γ1 and excess γ2

γ1 = κ3/κ
3/2
2

γ2 = κ4/κ
2
2.

(C.2)

The probabilist’s Hermite polynomials are defined by

dkϕ(x)

dxk
= (−1)k Hek (x)ϕ(x). (C.3)

For z being the mutation variable with z ∼ N
(
0, σ2

)
, as in our case, the second

cumulant κ2 = σ2 and κi = 0 for i = 1 and i ≥ 3. In this case the expansion is
exact.

If the series is truncated with some cumulants κi ̸= 0 (i ≥ 3), the expression
(C.1) is only an approximation of a probability density and may yield pz(z) < 0
for some values of z. However the integral

∫∞
−∞ pz(z) dz = 1 as the Hermite

terms have vanishing contribution. As higher order approximations are usually
not required, Arnold has neglected cumulants of higher order than four.

146



Considering the case s = −1 of (3.14), an expression for the density is needed
evaluated at (−z) giving

pz(−z) =
1√
2πκ2

exp

[
− (−z)2

2κ2

](
1 +

γ1
6

He3

(
−z
√
κ2

)
+

γ2
24

He4

(
−z
√
κ2

)
+ ...

)
,

=
1√
2πκ2

exp

[
− z2

2κ2

](
1 +

(−γ1)
6

He3

(
z
√
κ2

)
+

γ2
24

He4

(
z
√
κ2

)
+ ...

)
,

=: p−z(z)

(C.4)

where we have used that Hek (−x) = Hek (x) for even k and Hek (−x) =
−Hek (x) for odd k. The transformed density yields −γ1 instead of γ1, which
is equivalent to the third cumulant being −κ3 instead of κ3. In general, all odd
Hermite terms yield a negative sign. Due to truncation they are not shown here.

Transition density Starting at Eq. (3.14) and assuming z, s are given, the
transition density p(v|z, s) is obtained by reformulating the expression to

v − sz

σϵ
= N (0, 1), (C.5)

such that

p(v|z, s) = 1

σϵ
ϕ

(
v − sz

σϵ

)
. (C.6)

Modeling density and distribution of v The density of measured values
pv(v) can be obtained by integrating pz(z) from series (C.1) over transition
density (C.6) according to

pv(v) =

∫ ∞

−∞
p(v|z, s)pz(z) dz

=

∫ ∞

−∞

1

σϵ
ϕ

(
v − sz

σϵ

)
pz(z) dz .

(C.7)

Having two cases integral (C.7) yields

∫ ∞

−∞

1

σϵ
ϕ

(
v − sz

σϵ

)
pz(z) dz =


∫∞
−∞

1
σϵ
ϕ
(

v−z
σϵ

)
pz(z) dz for s = 1,∫∞

−∞
1
σϵ
ϕ
(

v−z
σϵ

)
pz(−z) dz for s = −1,

(C.8)

using the substitution z = −z for the second line, which moves the sign from
1
σϵ
ϕ
(

v+z
σϵ

)
into pz(−z). One can see that given the case s = −1 the density

pv(v) can be described in terms of pz(−z) which in turn only changes the sign
of κ3 (and therefore γ1) compared to s = 1. This property is used throughout
the subsequent derivations.

In principal, the integrals (C.8) can be solved in a straightforward manner
inserting the densities and applying Identity 2 [2, p. 115] with Hermite terms
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integrated over the given exponential factors. However, the resulting density
can also be established in an easier way using following argumentation.

As z and ϵ are independent variates and v = sz + ϵ, the cumulants of pv(v)
denoted by κ̃i can be obtained by addition of respective cumulants

κ̃1 = 0, κ̃2 = κ2 + σ2
ϵ , κ̃3 = sκ3, κ̃4 = κ4, ... (C.9)

Note that sign s appears for κ̃3 to include both cases. Due to truncation higher
orders are not shown. Density pv(v) must therefore have the same form as ex-
pansion (C.1) with corresponding skewness and excess due to added cumulants,
such that one gets

pv(v) =
1√
κ̃2

ϕ

(
v√
κ̃2

)[
1 +

γ̃1(s)

6
He3

(
v√
κ̃2

)
+

γ̃2
24

He4

(
v√
κ̃2

)
+ ...

]
.

(C.10)

By defining a noise coefficient a according to [2, p. 139]

a =

√
κ2

κ2 + σ2
ϵ

, (C.11)

resulting skewness and excess quantities for pv(v) can be expressed as

γ̃1 =
κ̃3

κ̃
3/2
2

=
sκ3

(κ2 + σ2
ϵ )

3/2
= sγ1a

3

γ̃2 =
κ̃4

κ̃2
2

=
κ4

(κ2 + σ2
ϵ )

2
= γ2a

4.

(C.12)

Density pv(v) can therefore be expressed in terms of the original cumulants of
expansion (C.1) using the noise coefficient a giving

pv(v) =
1√

κ2 + σ2
ϵ

ϕ

(
v√

κ2 + σ2
ϵ

)
[
1 + s

γ1a
3

6
He3

(
v√

κ2 + σ2
ϵ

)
+

γ2a
4

24
He4

(
v√

κ2 + σ2
ϵ

)
+ ...

]
.

(C.13)

The resulting distribution function can be obtained by integration

Pv(v) =

∫ v

−∞
pv(v

′) dv′ . (C.14)

The terms of pv(v) are easily integrated using (C.3) with ϕ(x)Hek (x) = (−1)k dkϕ(x)
dxk ,

then performing integration on the k-th differential yielding order k − 1, and
then back-transforming again using (C.3).

Integrating the first term of (C.13) yields∫ v

−∞

1√
κ2 + σ2

ϵ

ϕ

(
v′√

κ2 + σ2
ϵ

)
dv′ =

∫ x=v/
√

κ2+σ2
ϵ

x=−∞
ϕ(x) dx

= Φ

(
v√

κ2 + σ2
ϵ

)
,

(C.15)
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using the substitution x = v′/
√
κ2 + σ2

ϵ . For the coefficient γ1 of (C.13) one
has

s
γ1a

3

6

∫ v

−∞

1√
κ2 + σ2

ϵ

ϕ

(
v′√

κ2 + σ2
ϵ

)
He3

(
v′√

κ2 + σ2
ϵ

)
dv′

= s
γ1a

3

6

∫ v/
√

κ2+σ2
ϵ

−∞
ϕ(x)He3 (x) dx

= s
γ1a

3

6

∫ v/
√

κ2+σ2
ϵ

−∞

[
(−1)3 d

3ϕ(x)

dx3

]
dx

= s
γ1a

3

6
(−1)d

2ϕ(x)

dx2

∣∣∣∣
x=v/
√

κ2+σ2
ϵ

= −sγ1a
3

6
ϕ

(
v√

κ2 + σ2
ϵ

)
He2

(
v√

κ2 + σ2
ϵ

)
.

(C.16)

Analogously, for the last term with coefficient γ2 one gets

γ2a
4

24

∫ v

−∞

1√
κ2 + σ2

ϵ

ϕ

(
v′√

κ2 + σ2
ϵ

)
He4

(
v′√

κ2 + σ2
ϵ

)
dv′

= −γ2a
4

24
ϕ

(
v√

κ2 + σ2
ϵ

)
He3

(
v√

κ2 + σ2
ϵ

)
.

(C.17)

Therefore the distribution function of (C.14) yields

Pv(v) = Φ

(
v√

κ2 + σ2
ϵ

)
− ϕ

(
v√

κ2 + σ2
ϵ

)
[
s
γ1a

3

6
He2

(
v√

κ2 + σ2
ϵ

)
+

γ2a
4

24
He3

(
v√

κ2 + σ2
ϵ

)
+ ...

]
.

(C.18)

During later derivations, the sum of (C.25) is converted into an integral, such
that after substitution the quantile function P−1

v (·) evaluated at Φ(x) is needed,
see also [2, p. 138, D.14].

As Pv(v) is given by an expansion w.r.t. a normal distribution, its inverse
can be approximated using a Cornish-Fisher series assuming small deviations
from a normal distribution. The idea is given the case v ∼ N (0, 1) with κ̃2 = 1
and κi = 0 for i ≥ 3, the series expansion for P−1

v should be exact giving
P−1
v (Φ(x)) = x. For v defined by cumulants (C.9) the series needs correction

terms and rescaling, such that using expansion [2, p. 111, A.14] one gets

P−1
v (Φ(x)) =

√
κ2 + σ2

ϵ

(
x+ s

γ1a
3

6
He2 (x) +

γ2a
4

24
He3 (x) + ...

)
. (C.19)

Having defined the densities and distribution functions, the problem can be
formulated as follows.

Problem formulation A sum SP of products of noisy ordered variates con-
taining ν terms per summand can be expressed as

SP =
∑

{n1,...,nν}

zp1

n1;λ
· · · zpν

nν ;λ
, (C.20)
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where the vector P = (p1, ..., pν) denotes the positive exponents. Distinct sum-
mation indices are denoted by the set {n1, ..., nν}. The goal is to provide a
generic solution to E [SP ] for arbitrary ν and P (up to some order).

In order to apply certain integral identities during the derivation, the sum
has to be reordered. Defining πP as the permutation of z variates, such that for
each summand the ordering n1 < ... < ni < ... < nν is always maintained with
the rightmost element being the largest. The sum (C.20) is rewritten

SP =

µ∑
n1=ν

n1−1∑
n2=ν−1

· · ·
nν−1−1∑
nν=1

πP (zn1;λ, ..., znν ;λ). (C.21)

Evaluating the expectation E [SP ] requires modeling the joint probability
density of ν ordered elements pn1,...,nν ;λ(z1, ..., zν). As an example, the joint
density for ν = 2 and {n1, n2} = {k, l} will be constructed, which corresponds
to the sum of Eq. (3.9).

The variates zk and zl are distributed with pz(zk) and pz(zl) using (C.1),
respectively, and each variate is independently disturbed by noise σ2

ϵ . Therefore
measured value v is realized with conditional density of Eq. (C.6) depending on
sign s.

For the measured values ordering 1 ≤ k < l ≤ λ is assumed with k denoting
the k-th best (largest) value. Given measured values vk and vl with the distri-
bution function Pv(v) of Eq. (C.18), the selection of the k-th and l-th largest
values gives the probabilities

Pr{V > vl} = [1− Pv(vl)]
l−1

Pr{vk ≤ V ≤ vl} = [Pv(vl)− Pv(vk)]
k−l−1

Pr{V < vk} = [Pv(vk)]
λ−k,

(C.22)

with l− 1 denoting larger values than vl and λ− k smaller values than vk. The
number of intermediate values is obtained by λ− (λ−k)− (l−1)−2 = k− l−1.

Finally the joint density pk,l;λ(zk, zl) can be given using pz(zk), pz(zl), the
transition densities p(vk|zk, s), p(vl|zl, s) and probabilities from (C.22) by inte-
grating over all vk and vl according to

pk,l;λ(zk, zl) = pz(zk)pz(zl)

∫ ∞

−∞

∫ ∞

vk

1

σϵ
ϕ

(
vk − szk

σϵ

)
1

σϵ
ϕ

(
vl − szl

σϵ

)
× λ!

[1− Pv(vl)]
l−1[Pv(vl)− Pv(vk)]

k−l−1[Pv(vk)]
λ−k

(λ− k)!(k − l − 1)!(l − 1)!
dvl dvk .

(C.23)

Note that the integration range vk ≤ vl <∞ and integration order was set due
to the ordering k < l. The factor λ!/[(λ− k)!(k− l− 1)!(l− 1)!] incorporates all
combinations, but excluding the irrelevant ones among the three groups (larger,
smaller and values in between). The result of Eq. (C.23) can be generalized to
the ν-fold density
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pn1,...,nν ;λ(z1, ..., zν) =
λ!

σν
ϵ

∫ ∞

−∞

∫ ∞

v1

· · ·
∫ ∞

vν−1

[
ν∏

k=1

pz(zk)ϕ

(
vk − szk

σϵ

)]

×

[
ν∏

k=0

[Pv(vk+1)− Pv(vk)]
nk−nk+1−1

(nk − nk+1 − 1)!

]
dvν · · · dv1 .

(C.24)

Setting s = 1 yields the density derived by Arnold [2, p. 136, D.12], while
s = −1 will require some additional steps in order to apply Arnold’s equations.
The expectation value of sum (C.21) has to be calculated over density (C.24)
by integrating over all contributions of z

E [SP ] =

∫ ∞

−∞
· · ·
∫ ∞

−∞

µ∑
n1=ν

n1−1∑
n2=ν−1

· · ·
nν−1−1∑
nν=1

πP (zn1;λ, ..., znν ;λ)

× pn1,...,nν ;λ(z1, ..., zν) dzν · · · dz1 .

(C.25)

Now one can insert density (C.24) and replace the ν-fold sum by an additional
integral, similar to Eq. (2.15). The problem is reformulated as

E [SP ] =
µ!

(µ− ν)!

λ− µ√
2π

(
λ

µ

)∫ ∞

−∞
e−

1
2x

2

[Φ(x)]
λ−µ−1

[1− Φ(x)]
µ−ν

IP (x) dx ,

(C.26)

with IP (x) and s = ±1 giving

IP (x)
s=1
=

1

σν
ϵ

∫ ∞

P−1
v (Φ(x))

∫ ∞

v1

· · ·
∫ ∞

vν−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
πP (z1, ..., zν)[

ν∏
k=1

pz(zk)ϕ

(
vk − zk

σϵ

)]
dzν · · · dz1 dvν · · · dv1 (C.27)

IP (x)
s=−1
=

1

σν
ϵ

∫ ∞

P−1
v (Φ(x))

∫ ∞

v1

· · ·
∫ ∞

vν−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
πP (z1, ..., zν)[

ν∏
k=1

pz(zk)ϕ

(
vk + zk

σϵ

)]
dzν · · · dz1 dvν · · · dv1 . (C.28)

By exchanging the sums with an integral, an intermediate result in [2, p. 138]
yields the upper integration bound Pv(v1), see also Identity 1 [2, p.113] explain-
ing the transformation. After substitution and exchanging orders of integration,
the expression P−1

v (Φ(x)) is the lower integration bound of v1 in IP (x), which
is the reason for deriving Eq. (C.19).

The subsequent derivations by Arnold aim to find an approximate solution
to the integration (C.27). As Eq. (C.28) differs only by the sign within the
transition density, Arnold’s results can be reused by transforming (C.28) into
the form of (C.27).

Starting with (C.28) the substitution z = −z is introduced for all ν terms
and the switched integration bounds and minus sign of the differential cancel
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each other. The function arguments change according to

IP (x)
s=−1
=

1

σν
ϵ

∫ ∞

P−1
v (Φ(x))

∫ ∞

v1

· · ·
∫ ∞

vν−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
πP (−z1, ...,−zν)[

ν∏
k=1

pz(−zk)ϕ
(
vk − zk

σϵ

)]
dzν · · · dz1 dvν · · · dv1 . (C.29)

The density pz(−zk) was derived in Eq. (C.4) and yields a negative sign for the

resulting skewness γ1 = −κ3/κ
3/2
2 . The resulting distribution function Pv(v)

due to density (C.7) is given in (C.18) and its quantile function P−1
v in (C.19).

Both yield a negative sign for the resulting skewness γ̃1 = −κ3/(κ2+σ2
ϵ )

3/2, see
relations (C.12).

Considering the permutation πP (−z1, ...,−zν) with negative arguments one
can construct a simple example. Assuming P = (1, 1, 1) the permutation with
positive and negative arguments, respectively, yields

π(1,1,1)(z1, z2, z3) = z1z2z3, with z3 largest,

π(1,1,1)(−z1,−z2,−z3) = (−z1)(−z2)(−z3), with (−z3) smallest,

= (−1)3z1z2z3
(C.30)

Therefore, for a generic vector P = (·) we have

πP (−z1, ...,−zν) = (−1)∥P∥1πP (z1, ..., zν). (C.31)

Using the results (C.4) and (C.31) expression (C.29) changes to

IP (x)
s=−1
=

1

σν
ϵ

∫ ∞

P−1
v (Φ(x))

∫ ∞

v1

· · ·
∫ ∞

vν−1

∫ ∞

−∞
· · ·
∫ ∞

−∞
(−1)∥P∥1πP (z1, ..., zν)[

ν∏
k=1

p−z(zk)ϕ

(
vk − zk

σϵ

)]
dzν · · · dz1 dvν · · · dv1 . (C.32)

As a conclusion, the obtained result (C.32) has the form of (C.27), where the
quantities p−z(zk) and P−1

v (Φ(x)) differ only be the sign of the skewness value
κ3 (and therefore γ1), neglecting higher orders. Depending on P the sign of the
permutation operator may also change. Still, the same solution method can be
applied to both equations with s = ±1.

The final result of Arnold’s derivation including the modification due to sign
of z is summarized in Eq. (3.17).
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Appendix D Identities

Identity 1 For real parameters a and b we have

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

Φ(at+ b) dt

= Φ

(
b

(1 + a2)1/2

)
− 1√

2π

a2b

(1 + a2)3/2
e
− 1

2
b2

1+a2 .

(D.1)

Proof It is shown starting from the known identity [5, p.330, A.9]

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

e−
1
2 (at+b)2 dt =

1 + a2 + a2b2

(1 + a2)5/2
e
− 1

2
b2

1+a2 . (D.2)

Both sides can be integrated with respect to b, such that

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

∫ b′

−∞
e−

1
2 (at+b)2 dbdt

=

∫ b′

−∞

[
1 + a2

(1 + a2)5/2
+

a2b2

(1 + a2)5/2

]
e
− 1

2
b2

1+a2 db

(D.3)

Integration of left-hand side yields simply

1√
2π

∫ ∞

−∞
t2e−

1
2 t

2

∫ b′

−∞
e−

1
2 (at+b)2 dbdt =

∫ ∞

−∞
t2e−

1
2 t

2

Φ(at+ b′) dt , (D.4)

which is the left side of (D.1) by renaming b = b′, up to constant 1/
√
2π.

Considering the right-hand side the first term yields

1

(1 + a2)3/2

∫ b′

−∞
e
− 1

2
b2

1+a2 db =

√
2π

1 + a2
Φ

(
b′

(1 + a2)1/2

)
. (D.5)

For the second term of rhs following integral is used∫
xe−

1
2

x2

s2 dx =

∫
x
s2

x
e−ydy = −s2e−y = −s2e−

1
2

x2

s2 , (D.6)

using the substitution y = x2

2s2 with dx = s2 dy /x. The second term of rhs of
(D.3) is partially integrated using (D.6), such that

a2

(1 + a2)5/2

∫ b′

−∞
b

[
be

− 1
2

b2

1+a2

]
db

=
a2

(1 + a2)5/2

{[
−b(1 + a2)e

− 1
2

b2

1+a2

]b′
−∞

+

∫ b′

−∞
(1 + a2)e

− 1
2

b2

1+a2 db

}

= − a2b′

(1 + a2)3/2
e
− 1

2
b′2

1+a2 + a2
√
2π

1 + a2
Φ

(
b′

(1 + a2)1/2

)
.

(D.7)

Adding results (D.5) and (D.7) for the rhs, renaming b = b′ and dividing by√
2π yields the result (D.1). The results can be verified by differentiating (D.1)

with respect to b and showing that (D.2) is obtained again.
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Appendix E Additional Plots

Figure 63: Additional plot of Sec. 3.5 for (10/10, 40)-ES with N = 100, A = 1
and α = 2π.
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Figure 64: Additional plot of Sec. 3.5 for (10/10, 40)-ES with N = 100, A = 1
and α = 2π.
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