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A first and second order progress rate analysis was conducted for the intermediate multi-
recombinative Evolution Strategy (μ/μI , λ)-ES with isotropic scale-invariant mutations 
on the highly multimodal Rastrigin test function. Closed-form analytic solutions for the 
progress rates are obtained in the limit of large dimensionality and large populations. 
The first order results are able to model the one-generation progress including local 
attraction phenomena. Furthermore, a second order progress rate is derived yielding 
additional correction terms and further improving the progress model. The obtained 
results are compared to simulations and show good agreement, even for moderately large 
populations and dimensionality. The progress rates are applied within a dynamical systems 
approach, which models the evolution using difference equations. The obtained dynamics 
are compared to real averaged optimization runs and yield good agreement. The results 
improve further when dimensionality and population size are increased. Local and global 
convergence is investigated within given model showing that large mutations are needed to 
maximize the probability of global convergence, which comes at the expense of efficiency. 
An outlook regarding future research goals is provided.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

The theoretical analysis of the performance of Evolution Strategies (ES) [8] optimizing functions f (y) in real-valued N-
dimensional search spaces y ∈ RN is a challenge. This is due to the probabilistic nature of these algorithms allowing up to 
now the dynamic progress analysis only on simple test functions such as the sphere model [2,5], the ridge function class 
[3,14], and the ellipsoid model [7]. These test functions are simple w.r.t. their optimization landscape (also referred to as 
fitness landscape) in that they have at most one optimizer (i.e., the location y of the optimum). Analyzing the dynamical 
behavior of ES on more complex and multimodal test functions appears to be even more demanding. However, ES and 
other evolutionary algorithms are especially designated to optimize such problems. There is empirical evidence that ES are 
able to globally optimize highly multimodal optimization problems [11] with in N exponential number of local optima. The 
question arises how and when these ES are able to locate the global optimizer. It is the long term goal to find conditions 
the ES must fulfill to not get trapped in the vast amount of local optimizers. Ideally, a theoretical analysis should provide 
the answers regarding the success probability P S (of locating the global optimum) depending on the ES parameters such as 
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Fig. 1. The heat map shows the optimization landscape for A = 1, α = 2π , and N = 2. The global minimizer located at the origin (dark blue) is surrounded 
by multiple local minima. On the right side the same parameter set is shown for N = 1. For increasing y the oscillation contribution is decreasing. (For 
interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

the population size λ and the test function to be optimized. Furthermore, one is interested in the computational complexity 
of the optimization process.

One approach successfully applied to the analysis of the ES-performance on simple unimodal test functions mentioned 
above is the dynamical systems approach [5] which is based on progress rate analysis. The progress rate is a measure 
of expected positional change in search space between two generations depending on location, strategy and test function 
parameters. The idea of investigating global search behavior from expected local progress was successfully applied, among 
others, in [3,7]. It will be shown in this paper that this approach can be extended to the highly multimodal Rastrigin test 
function

f (y) =
N∑

i=1

f i(yi) =
N∑

i=1

[
y2

i + A(1 − cos(αyi))
]
, (1)

where y ∈RN , with oscillation amplitude A and frequency parameter α. The i-th fitness component in Eq. (1) is defined as

f i(yi) := y2
i + A(1 − cos(αyi)). (2)

Depending on A and α a finite number of local minima M can be observed for each component i. Therefore, the overall 
number of local minima is scaling as MN posing a highly multimodal minimization problem with the global optimizer 
located at ŷ = 0. An exemplary optimization landscape of the Rastrigin function is shown in Fig. 1.

The remarkable observation is that ES – unlike classical nonlinear optimization algorithms (e.g. BFGS) – do not follow 
the local gradient or Hessian ending in one of the MN − 1 local optimizers. That is, ES perform a rather global search. 
A deeper understanding of this behavior is still missing. Recently, attempts have been made to analyze the problem from 
the viewpoint of relaxation using kernel smoothing [15]. However, the sampling process needed to transform the original 
problem into a convex optimization problem is still lacking a link to the ES.

In this paper a simplified and scale-invariant (μ/μI , λ)-ES, see Algorithm 1, is analyzed with step-size control defined 
in Eq. (4). Starting from the so-called parental centroid vector y(g) a population of λ offspring are generated by adding 
isotropic Gaussian mutations x ∼ σN (0, 1) with mutation strength σ in Lines 6 and 7. Thereafter, the fitness is evaluated in 
Line 8. Selection of the μ best individuals is done in Line 10. It is performed for a given selection (truncation) ratio defined 
as

ϑ := μ

λ
, (3)

with ϑ ∈ (0, 1). It will be an essential quantity for the progress rate results in the limit of large population sizes. Using 
intermediate recombination with equal weights the best m = 1, ..., μ individuals are recombined in Line 11 and the new 
parental centroid y(g+1) is obtained. In the following, the subscript “m; λ” can be read as the m-th best solution out of λ
candidate solutions. In Line 12 the simplified step-size adaptation is performed. To this end, a constant normalized mutation 
σ ∗ using the spherical normalization with 

∥∥y(g)
∥∥= R(g) is defined as

σ ∗ := σ (g)N∥∥y(g)
∥∥ = σ (g)N

R(g)
. (4)

This property ensures scale invariance and therefore global convergence of the algorithm, as the mutation strength σ (g)

decreases if and only if the residual distance R(g) decreases. The quantity σ ∗ is unknown during black-box optimizations, 
but it is very useful for theoretical investigations to obtain scale-invariant mutations strengths.
2
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Algorithm 1 (μ/μI , λ)-ES with constant σ ∗ .
1: g ← 0
2: y(0) ← y(init)

3: σ (0) ← σ ∗∥∥y(0)
∥∥/N

4: repeat
5: for l ← 1, ..., λ do
6: x̃l ← σ (g)Nl(0, 1)

7: ỹl ← y(g) + x̃l

8: f̃ l ← f (ỹl)

9: end for
10:

(
ỹ1;λ, . . . , ỹμ;λ

)← sort
(

ỹ w.r.t. ascending f̃
)

11: y(g+1) ← 1
μ

∑μ
m=1 ỹm;λ

12: σ (g+1) ← σ ∗∥∥y(g+1)
∥∥/N

13: g ← g + 1
14: until termination criterion

The remainder of this paper is organized as follows. In the next section the local performance measures will be intro-
duced being the basis for both the progress rate analysis and the dynamical systems approach. Section 3 is devoted to the 
determination and evaluation of the first order progress rate. Section 4 describes the derivation of the second order progress 
rate, which will rely on first order progress rate results. Section 5 uses the local performance measures to establish the evo-
lution equations that govern the dynamical behavior of the ES. Experiments will be presented to show the usefulness of the 
approach. In the final Section 6 conclusions will be drawn and being based on open problems the further research direction 
will be outlined.

2. Local performance measures and quality gain distribution

The performance of an ES between two generations can be evaluated in both fitness and search space. The quality gain 
Q y(x) of fitness f at a position y(g) due to an isotropic mutation x ∼ σN (0, 1) is defined as

Q y(x) := f
(

y(g) + x
)

− f
(

y(g)
)
, (5)

and yields in the case of fitness improvement (minimization considered) a negative value Q y < 0. The definition (5) mea-
sures the fitness change before selection and will be needed for the evaluation of the two progress rates (7) and (8). The 
quality gain components are decomposed using f i from Eq. (2) as Q i := f i(yi + xi) − f i(yi), such that

Q y(x) =
N∑

i=1

Q i(xi) =
N∑

i=1

[
f i

(
y(g)

i + xi

)
− f i

(
y(g)

i

)]
. (6)

That is, the quality gain corresponds to the difference between fitness values before and after the mutation application. 
A probabilistic model for the distribution of quality values will be presented below. It will be important for the subsequent 
progress rate derivations, as selection is based on fitness values.

Analyzing the progress towards the optimizer in search space, the first order progress rate on the Rastrigin function has 
already been investigated in [17] as a first approach. In this paper, a new approach is presented which significantly improves 
the prediction quality.

The first order progress rate between two generations for the parental component yi is defined as

ϕi := E
[

y(g)

i − y(g+1)

i

∣∣y(g), σ (g)
]
, (7)

given parental position y(g) and mutation strength σ (g) at generation g . It is a measure of expected positional difference 
in search space. Positive expected progress ϕi > 0 is defined in the case y(g)

i > E[y(g+1)

i ] for y(g)

i > 0 and E[y(g+1)

i ] > 0. 
In this case the distance to the optimizer ŷi = 0 is reduced in expectation. This assumption is only valid as long as the 
sign of E[y(g+1)

i ] does not change, i.e., for small mutations compared to the residual distance. Therefore ϕi has limited 
applicability when studying the convergence behavior in the vicinity of the optimizer. As has been shown in [7] regarding 
the performance analysis on the ellipsoid model, a second order progress rate is needed. It is defined as

ϕII
i := E

[(
y(g)

i

)2 −
(

y(g+1)

i

)2 ∣∣y(g), σ (g)

]
. (8)

Squaring the positions yields ϕII
i > 0 independent of the sign, if the distance to ŷi = 0 decreases in expectation. Addition-

ally, the derivation will yield expressions containing a progress gain and loss part, which is necessary for a more accurate 
model of convergence. Both progress rates will be expressed using integral equations for the expected values and approxi-
mations will be necessary to find closed-form solutions. In a second step the progress rates can be applied within difference 
equations to model the expected dynamics over many generations in order to investigate the global convergence behavior.
3
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Fig. 2. The histograms show sampled values of Q y(x) from (5) with fixed y by applying random mutations xk ∼ σN (0, 1) (σ = 1 with k = 1, ..., 104

samples) at N = 10 (left) and N = 100 (right) with A = 10. The y-values were initialized randomly at ‖y‖ = 10 where local attraction is significant. The 
red envelope curves show the respective normal approximation (9) using mean value (30) and variance (31). The p-values of the Anderson-Darling-test for 
normality are p = 0.48 (left) and p = 0.53 (right).

The selection of individuals is based on the attained fitness values. The quality gain measures the fitness change before 
selection according to (5). When the progress rate of an ES is modeled, the cumulative distribution function (CDF) P Q (q) of 
the quality gain and its probability density function (PDF) p Q (q) are needed as a function of y and σ . Obtaining an exact 
CDF for Q y(x) is not feasible at this point. Since Q y(x) =∑N

i=1 Q i(xi) with independent random variables Q i , the application 
of the Central Limit Theorem seems appropriate to show that the distribution is asymptotically normal.1 However, proving 
its validity rigorously seems hard or even impossible for arbitrary y. Therefore, we resort to normality as an approximation 
for the quality gain distribution. This is backed up by experimental results in Fig. 2, where sampled Q y(x)-values are 
compared to the normal approximation. A standard Anderson-Darling test was performed to check whether the sampled 
data was drawn from a normal distribution with known mean and variance according to (9). The hypothesis test fails 
to reject the normality assumption at p-values p = 0.48 (left) and p = 0.53 (right), where rejection is usually defined 
for p < 0.05. Even at relatively small N = 10 the results agree well. Good experimental agreement is also observed for the 
variation of the location y and mutation strength σ (not shown). Therefore, the normality assumption does not pose a strong 
restriction on the overall prediction quality of the progress rates in the subsequent sections, such that we approximate

Q y(x) =
N∑

i=1

Q i(xi) ∼ N (E
[

Q y(x)
]
,Var

[
Q y(x)

]
). (9)

Furthermore, the following abbreviations are introduced

E Q := E
[

Q y(x)
]=

N∑
i=1

E [Q i] (10)

D2
Q := Var

[
Q y(x)

]=
N∑

i=1

Var [Q i] . (11)

At this point an additional assumption for the coordinates y = (y1, ..., yN) has to be made to justify subsequent variance 
approximations (13) and (14). Given the search vector y = (y1, ..., yN) and residual distance R2 = ‖y‖2 it is assumed that 
the components contribute approximately equally (in expectation) to the residual distance, i.e., there is no dominating com-
ponent, such that

y2
i

R2
≈ 1

N
, for all i = 1, ..., N. (12)

Property (12) will also be referred to as component equipartition. The concept was introduced in [6] and proven for the noisy 
ellipsoid in [12]. Its applicability to the Rastrigin function was shown in [19]. The equipartition assumption is necessary in 

1 For independently distributed quality gain components Q i(xi) with finite mean and variance the Central Limit Theorem holds [10], if for some δ > 0
the Lyapunov condition

lim
N→∞

∑N
i=1 E

[
|Q i − E [Q i ]|2+δ

]
D2+δ

Q

= 0

holds. The validation of the condition could be approached using Eqs. (24), (25), and (26) for the respective quantities by evaluating higher order moments.
4
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order to justify certain approximation steps and to provide a closed-form solution for the progress rate. Furthermore, it will 
be a reasonable assumption to obtain a model of the algorithm’s progress and dynamics in expectation. This assumption 
also justifies a linear scaling of the variance with dimensionality N provided that the components are contributing equally 
to the overall variance, such that

D2
Q =

N∑
i=1

Var [Q i] = 	(N). (13)

Additionally, for large N an important approximation will be used for the variance to significantly simplify the obtained 
lengthy results. If no single i-th component is dominating the sum, i.e., Var [Q i]/ 

∑
j 
=i Var

[
Q j
]→ 0 (for any i in the limit 

N → ∞), the contribution of a single term is negligible for N → ∞. Therefore, the two sums over N and N − 1 terms, 
respectively, are asymptotically equal with

D2
Q =

N∑
i=1

Var [Q i] �
∑
j 
=i

Var
[

Q j
]= D2

i . (14)

Note that quantity D2
i is formally introduced in (20). Returning to Eq. (9), the expression is rewritten using a standardized 

random variate Z as

Z = Q y(x) − E Q

D Q

N→∞∼ N (0,1). (15)

Approximation 1 (Quality gain distribution). The local quality gain at position y due to random mutation vector x ∼
N (0, σ 21) is approximately normally distributed. Therefore, P Q (q) and p Q (q) can be approximated as

P̃ Q (q) = 


(
q − E Q

D Q

)
(16)

p̃ Q (q) = 1√
2π D Q

exp

[
−1

2

(
q − E Q

D Q

)2
]

. (17)

Within the normal approximation (16) the inverse P̃−1
Q (p) given some probability p can be easily obtained by using the 

quantile function 
−1(p) of the normal distribution. This relation will be used later to obtain a quality gain for some given 
probability p using

q = E Q + D Q 
−1(p). (18)

For the derivation of the i-th component progress rate the conditional distribution function P Q (q|xi) of the quality gain is 
needed for a given component xi . In this case expected value and variance are given by

E Q |xi := E
[

Q y(x)|xi
]= Q i(xi) +

∑
j 
=i

E
[

Q j
]

(19)

D2
i := Var

[
Q y(x)|xi

]=
∑
j 
=i

Var
[

Q j
]
, (20)

where the sum j 
= i is taken for fixed i over the remaining N − 1 components. Therefore, a normal approximation for the 
conditional CDF is introduced using (19) and (20).

Approximation 2 (Quality gain distribution given xi). The quality gain distribution at position y given fixed mutation compo-
nent xi and random mutation vector (x) j 
=i ∼ (N (0, σ 21)) j 
=i is approximately normally distributed. Therefore, P Q (q|xi) and 
p Q (q|xi) can be approximated as

P̃ Q (q|xi) = 


(
q − E Q |xi

Di

)
(21)

p̃ Q (q|xi) = 1√
2π D

exp

[
−1

2

(
q − E Q |xi

Di

)2
]

. (22)

i

5
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Having derived approximations of the quality gain distribution functions, the quantities E [Q i] and Var [Q i] remain to 
be determined. As the components are independent, it is sufficient to consider a single component and then perform the 
summation. Starting from definition (6), one can evaluate the quality gain of a single component Q i(xi). After applying 
trigonometric identity cos (α(yi + xi)) = cos (αyi) cos (αxi) − sin (αyi) sin (αxi), one gets

Q i(xi) = f i(yi + xi) − f i(yi) (23)

= x2
i + 2yi xi + A cos (αyi) − A cos (αyi) cos (αxi) + A sin (αyi) sin (αxi), (24)

of which E [Q i] and Var [Q i] = E
[

Q 2
i

] − E [Q i]
2 need to be evaluated. The results will be expressed as expected values 

containing trigonometric functions. As a remark, terms containing moments of xi ∼ N (0, σ 2), i.e., E
[
xk

i

]
with k ≥ 1, are 

silently evaluated as they are assumed to be widely known. Starting with E [Q i] one has

E [Q i] = σ 2 + A cos (αyi)(1 − E [cos (αxi)]), (25)

where odd powers of E
[
xk

i

]= 0, which also yields E [sin (αxi)] = 0. Evaluating Var [Q i] yields

Var [Q i] = E
[

Q 2
i

]
− E [Q i]

2

= 2σ 4 + 4y2
i σ

2 + A2 sin2 (αyi)Var [sin (αxi)]

+ A2 cos2 (αyi)Var [cos (αxi)] − 2A cos (αyi)E
[

x2
i cos (αxi)

]
+ 2Aσ 2 cos (αyi)E [cos (αxi)] + 4Ayi sin (αyi)E [xi sin (αxi)] .

(26)

Expectations of the form E
[
xk

i cosαxi
]

and E
[
xk

i sinαxi
]

for k ≥ 0 can be obtained by using the definition of the characteristic 
function χ of a random variate x ∼N (μ, σ 2) and its known result [1]

χx(α) = E
[
eıαx]= eıαμ− 1

2 α2σ 2 = e− 1
2 α2σ 2 [cos (αμ) + ı sin (αμ)], (27)

with the imaginary unit denoted by ı = √−1 in (27) and (28). Now the k-th derivatives with respect to α can be applied 
to both sides

dk

dαk
E
[
eıαx]= E

[
dk

dαk
eıαx

]
= E

[
dk

dαk
cos(αx)

]
+ ı E

[
dk

dαk
sin(αx)

]
!= dk

dαk

[
e− (ασ )2

2 [cos (αμ) + ı sin (αμ)]
]

,

(28)

such that corresponding real and imaginary parts can be identified by comparing both sides (denoted by !=) of Eq. (28). 
Given μ = 0 for k = {0, 1, 2} the required expectations of trigonometric terms can be derived. Additionally, trigonometric 
identities cos2(x) = 1/2 + cos(2x)/2 and sin2(x) = 1/2 − cos(2x)/2 are used. The results are

E [cos (αx)] = e− (ασ )2
2 , E

[
cos2 (αx)

]
= 1

2
+ 1

2
e− (2ασ)2

2

E
[

sin2 (αx)
]

= 1

2
− 1

2
e− (2ασ)2

2 , E [x sin (αx)] = ασ 2e− (ασ )2
2

E
[

x2 cos (αx)
]

= (σ 2 − α2σ 4)e− (ασ )2
2 , Var [(·)] = E

[
(·)2

]
− E [(·)]2 .

(29)

Inserting relations (29) into (25) and (26), summing over all N components and collecting the resulting terms one obtains 
the expected value

E Q =
N∑

i=1

[
σ 2 + A cos (αyi)

(
1 − e− (ασ )2

2

)]
. (30)

Analogously, the variance of the Rastrigin quality gain yields

D2
Q =

N∑
i=1

[
4σ 2 y2

i + 2σ 4 + A2

2

(
1 − e−(ασ )2

)(
1 − cos(2αyi)e−(ασ )2

)
+ 2Aασ 2e− 1

2 (ασ )2
(
ασ 2 cos(αyi) + 2yi sin(αyi)

)]
.

(31)
6
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The quantities E Q |xi from (19) and D2
i from (20) are given analogously by summing over N − 1 components. Expressions 

E Q and D Q could be inserted into (16), and E Q |xi with Q i(xi) and Di into (21). However, it is omitted at this point for 
better readability.

As an important remark, expression (23) can be linearized w.r.t. mutation xi to obtain analytically solvable progress rate 
integrals, see also discussion after Eq. (51). Taylor-expanding f i around yi for small xi gives f i(yi + xi) = f i(yi) + ∂ f i

∂ yi
xi +

O  
(
x2

i

)
, such that after setting f ′

i := ∂ f i
∂ yi

and evaluating the derivative one has

Q i(xi) = f i(yi + xi) − f i(yi) = f ′
i xi + O

(
x2

i

)
= (2yi + αA sin (αyi))xi + O

(
x2

i

)
= (ki + di)xi + O

(
x2

i

)
,

(32)

with following definitions applied to (32)

f ′
i := ki + di, with ki := 2yi, and di := αA sin (αyi). (33)

Component ki is the derivative of the quadratic term y2
i , cf. Eq. (2), which follows the global quadratic structure of the 

function. Conversely, derivative di follows the local oscillation, such that it will be very important for the model of local 
attraction during the progress rate derivations in Secs. 3 and 4.

3. First order progress rate

While the first order progress rate (7) does not suffice to completely describe the convergence behavior of the ES on 
Rastrigin, see Sec. 5, it is a necessary step in the calculation of the second order progress rate in Sec. 4. Given definition (7)

and the parental location y(g) , one has to find the expected value over the i-component location E
[

y(g+1)

i

]
. The positional 

update y(g) → y(g+1) performed by the ES is realized by consecutively applying mutation, selection, and recombination (see 
Algorithm 1), such that one can write

y(g+1) = 1

μ

μ∑
m=1

(y(g) + xm;λ) = y(g) + 1

μ

μ∑
m=1

xm;λ, (34)

where xm;λ denotes the mutation vector of the m-th best offspring after selection. Considering the i-th component of 
Eq. (34), abbreviating the mutation component as xm;λ := (xm;λ)i , and taking the expected value thereof yields

E
[

y(g+1)

i

∣∣y(g), σ (g)
]

= y(g)

i + 1

μ

μ∑
m=1

E
[

xm;λ
∣∣y(g), σ (g)

]
. (35)

The progress rate can therefore be evaluated by inserting (35) into (7) giving

ϕi = − 1

μ

μ∑
m=1

E
[

xm;λ
∣∣y(g), σ (g)

]
. (36)

Before starting the derivation of (36), the important large population theorem is stated which will be used during the 
derivation of both first and second order progress rate. Its application also yields the so-called asymptotic generalized 
progress coefficients presented in Eq. (45).

Theorem 1. Let λ > μ + 1 and μ > a with a ≥ 1 and ϑ = μ/λ with 0 < ϑ < 1, such that tλ−μ−1(1 − t)μ−a exhibits its maximum 
on (0, 1) and vanishes at t ∈ {0, 1}. Let fx(t) be a function defined for constant x ∈ R, such that fx : [0, 1] → [0, 1] with bounded 
derivatives on [0, 1] and let B denote the beta function. Furthermore, let px denote the PDF of a normally distributed variate and let 
pn(x) denote a polynomial of degree n in x. For infinitely large μ, λ → ∞ and constant ϑ = μ/λ the following limit holds

lim
μ,λ→∞
ϑ=const.

∞∫
−∞

pn(x)px(x)
1

B(λ − μ,μ)

1∫
0

tλ−μ−1(1 − t)μ−a fx(t)dt dx

= 1

ϑa−1

∞∫
pn(x)px(x) fx(1 − ϑ)dx .

(37)
−∞

7
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Proof. The dominated convergence theorem is applied. First, the following sequence is defined for μ = 1, 2, ..., with λ(μ) =
μ/ϑ and constant ϑ

gμ(x) := 1

B(λ − μ,μ)

1∫
0

tλ−μ−1(1 − t)μ−a fx(t)dt . (38)

Note that gμ is measured over the density of the normal distribution. In [18] it was shown that gμ(x) converges for any x
according to

lim
μ,λ→∞
ϑ=const.

gμ(x) = fx(1 − ϑ)

ϑa−1 . (39)

An upper bound of gμ can be estimated using 0 ≤ fx ≤ 1 and the definition of the beta function B(z1, z2) =
∫ 1

0 tz1−1(1 −
t)z2−1 dt as∣∣gμ(x)

∣∣≤ B(λ − μ,μ − a + 1)

B(λ − μ,μ)
= (λ − μ − 1)!(μ − a)!

(λ − a)!
(λ − 1)!

(λ − μ − 1)!(μ − 1)!
= (λ − 1)(λ − 2) · · · (λ − a + 1)(λ − a)!

(μ − 1)(μ − 2) · · · (μ − a + 1)(μ − a)!
(μ − a)!
(λ − a)!

=
(

λ

μ

)a−1
(1 − 1/λ) · · · (1 − (a − 1)/λ)

(1 − 1/μ) · · · (1 − (a − 1)/μ)

≤ 1

ϑa−1

1

(1 − (a − 1)/μ)a−1 . (40)

A lower bound for the denominator of (40) can be given as(
1 − a − 1

μ

)a−1

≥ 1

aa−1 . (41)

Inequality (41) can be shown easily by setting μ = a + k with integers a ≥ 1 and k ≥ 1 (ensuring μ > a). This yields

1 − a − 1

μ
= a + k − a + 1

a + k
≥ 1

a

ak ≥ k,

(42)

which is fulfilled for any a ≥ 1 and k ≥ 1. Using (41) in (40) one gets∣∣gμ(x)
∣∣≤ ( a

ϑ

)a−1
. (43)

As there is a constant upper bound of 
∣∣gμ(x)

∣∣, it remains to show that

∞∫
−∞

|pn(x)|px(x)dx ≤
∞∫

−∞

∣∣∣∣∣
n∑

k=0

akxk

∣∣∣∣∣px(x)dx ≤
∞∫

−∞

n∑
k=0

|ak|
∣∣∣xk
∣∣∣px(x)dx

≤ 2
n∑

k=0

|ak|
∞∫

0

xk px(x)dx < ∞,

(44)

which is finite due to normal density px(x). Hence, the limit in Eq. (37) can be exchanged with the integral over x. Using 
the limit of (39) the desired result is obtained. �

The limit (39) is readily used in [16] to define the so-called asymptotic generalized progress coefficients for integers 
a ≥ 1, b ≥ 0, and truncation ratio 0 < ϑ < 1 as

ea,b
ϑ

:=
⎡⎣e− 1

2

[

−1(ϑ)

]2
√

2πϑ

⎤⎦a [−
−1(ϑ)
]b

. (45)

These are characteristic coefficients describing the progress in the limit μ, λ → ∞ with constant ϑ = μ/λ, and are related 
to the generalized progress coefficients [5, Eq. (5.112)]. They will reappear during the derivation of both ϕi and ϕII

i . The 
derivation of ϕi is presented now.
8



A. Omeradzic and H.-G. Beyer Theoretical Computer Science 978 (2023) 114179
Proposition 1. Let μ, λ ∈N with μ ≥ 1 and μ < λ and let px denote the PDF of the random mutation x ∼N (0, σ 2). Let xm;λ denote 
the m-th best value (out of λ) of the i-th mutation component (xm;λ)i . Furthermore, let P Q and P−1

Q denote the quality gain CDF (and 
its inverse), respectively, with B denoting the beta function. Then, the first order component-wise progress rate is given by

ϕi = − 1

μ

μ∑
m=1

E
[
xm;λ

]

= − λ

μ

xi=∞∫
xi=−∞

xi px(xi)
1

B(λ − μ,μ)

t=1∫
t=0

tλ−μ−1(1 − t)μ−1 P Q (P−1
Q (1 − t)|xi)dt dxi .

(46)

Proof. From now on the conditional dependency on y(g) and σ (g) will be implicitly assumed as given for better readability 
of the equations. The expected value of the i-th mutation component xm;λ after selection can be expressed as an integral 
over the order statistic density pm;λ(xi) of the m-th best individual, such that (36) is rewritten as

ϕi = − 1

μ

μ∑
m=1

E
[
xm;λ

]= − 1

μ

μ∑
m=1

∞∫
−∞

xi pm;λ(xi)dxi . (47)

The subsequent task will be to derive the density pm;λ as a function of mutation and quality gain distributions. Mutations 
are distributed normally with zero mean and variance σ 2 according to the normal density

px(xi) = 1√
2πσ

exp

[
−1

2

( xi

σ

)2
]

. (48)

Given mutation xi (and implicitly position y), a random quality gain value Q is distributed according to a conditional 
probability density p Q (q|xi). Given that the m-th best individual attains a quality gain within [q, q + dq], there must be 
m −1 better individuals having a smaller quality value with probability [Pr{Q ≤ q}]m−1 = [

P Q (q)
]m−1

, and λ −m individuals 
having a larger value with [Pr{Q > q}]λ−m = [

1 − P Q (q)
]λ−m . To account for all relevant combinations one has λ!

(m−1)!(λ−m)! , 
where 1/(m −1)! and 1/(λ −m)! exclude the irrelevant combinations among the two groups of better and worse individuals, 
respectively. The conditional density for the m-th individual as a function of the quality gain q yields

p Q ;m;λ(q|xi) = λ!
(m − 1)!(λ − m)! p Q (q|xi)P Q (q)m−1[1 − P Q (q)]λ−m. (49)

By integrating (49) over all attainable quality gain values q ∈ [ql, qu], one arrives at the density

pm;λ(xi) = px(xi)
λ!

(m − 1)!(λ − m)!

qu∫
ql

p Q (q|xi)P Q (q)m−1[1 − P Q (q)]λ−m dq . (50)

Inserting the order statistic density from (50) into the progress rate (47), one obtains the intermediate result

ϕi = − 1

μ

μ∑
m=1

λ!
(m − 1)!(λ − m)!

∞∫
−∞

xi px(xi)

qu∫
ql

p Q (q|xi)P Q (q)m−1[1 − P Q (q)]λ−m dq dxi . (51)

A few important remarks can be made regarding Eq. (51). A closed-form analytic solution cannot be obtained without 
applying further approximations. It can be approached in an analogous way to the ϕi -derivation of the Ellipsoid in [13]
to obtain a solution in terms of the well-known progress coefficient cμ/μ,λ [5, p. 216]. However, a closed-form solution 
with this approach requires a linear relation of Q i w.r.t. xi , see relation (32). The effect of a linearized quality gain on the 
progress rate of the Rastrigin function was already studied in [17] and showed that the progress due to local attraction is 
not modeled correctly, as the oscillation terms have to be either dropped or linearized for small xi .

Therefore a different approach is followed here assuming the infinite population limit, an approach which was applied 
within the analysis of functions with noise-induced multi-modality [9]. The approach will yield correction terms including 
the effects of the trigonometric terms from (24), in contrast to only taking linearized terms from (32). Starting from Eq. (51)
and moving the sum including the m-dependent prefactors into the innermost integral yields

ϕi = −λ!
μ

∞∫
−∞

xi px(xi)

qu∫
ql

p Q (q|xi)

μ∑
m=1

P Q (q)m−1[1 − P Q (q)]λ−m

(m − 1)!(λ − m)! dq dxi . (52)
9
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Now a transformation can be applied for the sum 
∑

m(·) yielding an expression as a function of the regularized incomplete 
beta function [5, p. 147]. One has

μ∑
m=1

P (q)m−1[1 − P (q)]λ−m

(m − 1)!(λ − m)! = 1

(λ − μ − 1)!(μ − 1)!

1−P (q)∫
0

tλ−μ−1(1 − t)μ−1 dt . (53)

Furthermore, one can rewrite the resulting population-dependent factor as follows

λ!
μ

1

(λ − μ − 1)!(μ − 1)! = λ

μ

(λ − 1)!
(λ − μ − 1)!(μ − 1)! = λ

μ


(λ)


(λ − μ)
(μ)
= λ

μ

1

B(λ − μ,μ)
, (54)

where we have used the property of the gamma function 
(n) = (n − 1)! (for any integer n > 0) and the known relation 
between gamma and beta functions 
(x)
(y)


(x+y)
= B(x, y). These replacements will be useful later. After replacing the sum and 

refactoring we arrive at the following progress rate integral

ϕi = − λ

μ

1

B(λ − μ,μ)

xi=∞∫
xi=−∞

xi px(xi)

q=qu∫
q=ql

p Q (q|xi)

t=1−P Q (q)∫
t=0

tλ−μ−1(1 − t)μ−1 dt dq dxi . (55)

Now the integration order of t and q is exchanged. In Eq. (55) one has the bounds

ql ≤ q ≤ qu, 0 ≤ t ≤ 1 − P Q (q). (56)

Defining the inverse transformation q = P−1
Q (1 − t) and integrating over t first, one obtains the new ranges

0 ≤ t ≤ 1, ql ≤ q ≤ P−1
Q (1 − t). (57)

The progress rate yields

ϕi = − λ

μ

1

B(λ − μ,μ)

xi=∞∫
xi=−∞

xi px(xi)

t=1∫
t=0

tλ−μ−1(1 − t)μ−1

q=P−1
Q (1−t)∫

q=ql

p Q (q|xi)dq dt dxi . (58)

Now the innermost integral can be solved using p Q (q|xi) = dP Q (q|xi)/dq

P−1
Q (1−t)∫
ql

p Q (q|xi)dq = P Q (P−1
Q (1 − t)|xi) − P Q (ql|xi) = P Q (P−1

Q (1 − t)|xi), (59)

where the probability P Q (ql|xi) = Pr(Q ≤ ql|xi) = 0 for any lower bound value ql . Inserting (59) into (58), we arrive at the 
progress rate integral (46). �

Unfortunately a closed-form solution of (46) after inserting Approximation 1 and Approximation 2 for the quality gain 
CDF is not possible due to the underlying structure of the integrand. Hence, asymptotic approximations will be introduced 
assuming large populations and large dimensionality to successively simplify the integral in a way that closed-form solutions 
can be provided. First, the large population theorem will be applied and then the quality gain CDF is inserted. Thereafter, 
the normal CDF is Taylor-expanded with the first two terms yielding analytically solvable results and higher order terms 
vanishing as O (1/N). The results are further simplified in the end assuming component equipartition (12), which finally 
gives the progress rate result in (96).

Theorem 2. Let px denote the PDF of the random mutation x ∼ N (0, σ 2). Let P Q denote the quality gain CDF with its quantile 
function given by P−1

Q . For a truncation ratio ϑ = μ/λ with 0 < ϑ < 1 the component-wise progress rate for large populations yields

lim
μ,λ→∞
ϑ=const.

ϕi = − 1

ϑ

∞∫
−∞

xi px(xi)P Q (P−1
Q (ϑ)|xi)dxi . (60)

Proof. Starting from Eq. (46) and applying the infinite population size limit, the result of Theorem 1 can be applied with 
a = 1, pn(xi) = xi , and fx(t) = P Q (P−1

Q (1 − t)|xi). Evaluating fx(t) at t = 1 − ϑ gives

fx(t)
∣∣
t=1−ϑ

= P Q (P−1
Q (1 − t)|xi)

∣∣
t=1−ϑ

= P Q (P−1
Q (ϑ)|xi), (61)

which yields the result (60). �

10



A. Omeradzic and H.-G. Beyer Theoretical Computer Science 978 (2023) 114179
The next step requires the use of Approximation 1 and Approximation 2 for the quality gain distributions in Eq. (60). 
To this end, one uses the conditional normal distribution function 
 

(
q−E Q |xi

Di

)
, see (21), and the inverse transformation 

q = E Q + D Q 
−1(p) evaluated at p = ϑ , see (18). One obtains

P̃ Q ( P̃−1
Q (ϑ)|xi) = 


(
E Q + D Q 
−1(ϑ) − E Q |xi

Di

)
. (62)

Given the normal approximation (62), an expression for E Q |xi is needed. Using definition (19) with Q i -result (24) the 
(conditional) expected value is written as

E Q |xi = Q i(xi) +
∑
j 
=i

E
[

Q j
]= ki xi + δi(xi) + Ei . (63)

In (63) the following definitions are introduced as abbreviations

ki := 2yi

δi(xi) := x2
i + A cos (αyi)(1 − cos (αxi)) + A sin (αyi) sin (αxi)

Ei :=
∑
j 
=i

E [Q i] .
(64)

Given Eq. (63), quantity δ(xi) includes all non-linear terms in xi . This will be important when the normal CDF is expanded 
and analytically solved. Inserting relation (63) into (62) and the result into (60) yields

ϕi � − 1

ϑ

∞∫
−∞

xi px(xi)


(
E Q + D Q 
−1(ϑ) − (ki xi + δi(xi) + Ei)

Di

)
dxi . (65)

A closed-form solution of (65) cannot be obtained with 
(δi(xi)) containing non-linear terms in xi . However, a solution in 
terms of a Taylor expansion can be provided by introducing the decomposition 
(g(xi) + h(xi)) with g(xi) being a linear 
function, and h(xi) being a small non-linear perturbation according to

g(xi) := − ki

Di
xi + E Q i + D Q 
−1(ϑ)

Di
(66)

h(xi) := −δ(xi)

Di
. (67)

In (66), the abbreviation E Q i = E Q − Ei = E [Q i], cf. Eq. (10), is used to denote the expected value of the i-th summand of 
the quality gain (6). Using functions g(xi) and h(xi) Eq. (65) becomes

ϕi � − 1

ϑ

∞∫
−∞

xi px(xi)
(g(xi) + h(xi)) dxi . (68)

Approximation 3 (Truncated cumulative distribution function series). Under the assumption of a normally distributed quality 
gain, see Approximation 1 and Approximation 2, and a quality gain variance scaling with N according to Eq. (13), the CDF 
of the normal distribution is expanded at g(xi) in the limit of N → ∞ as

ϕi � − 1

ϑ

∞∫
−∞

xi px(xi)

(

(g(xi)) + φ(g(xi))h(xi) + O

(
1

N

))
dxi . (69)

Relation (69) is derived now. Starting from (68), the Taylor-expansion of 
(·) up to first order with the remainder 
denoted by r yields


(g + h) =
∞∑

n=0

1

n!
dn


dgn
hn = 
(g) + φ(g)h + r(N). (70)

Note that all derivatives of the normal distribution exist as dnφ(x)
dxn = (−1)n Hen (x)φ(x) with Hen (x) denoting the n-th order 

probabilist’s Hermite polynomials. In the following the scaling properties of the remainder as a function of N are investi-
gated. It will be shown that r = O (1/N). To this end, (70) is rewritten as
11
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r(N) = 
(g + h) − 
(g) − φ(g)h. (71)

For the further analysis of r(N) the equipartition of components is assumed as introduced in Eqs. (12), (13), and (14). Hence, 
the variance Di can be written as a function of N as

Di = s
√

N, (72)

where the prefactor s 
= s(N) depends on A, α, y, and σ . With these assumptions the functions g and h are written as 
(using E := E Q i , 


−1
ϑ

:= 
−1(ϑ), dropping the subscript i for brevity and using Di � D Q )

g = E − kx

s
√

N
+ 
−1

ϑ , h = − δ

s
√

N
. (73)

As h → 0 for N → ∞, the remainder (71) vanishes accordingly. Therefore, in order to show r(N) = O (1/N), limN→∞ r(N)N
is investigated applying l’Hôpital’s rule

lim
N→∞ r(N)N = lim

N→∞
r(N)

1/N
= lim

N→∞

∂r(N)
∂N

∂(1/N)
∂N

= − lim
N→∞ N2 ∂r(N)

∂N
. (74)

To evaluate (74) the derivative of r from (71) w.r.t. N is evaluated as

∂r

∂N
= 1√

2π
e− 1

2 (g+h)2
(

∂ g

∂N
+ ∂h

∂N

)
− 1√

2π
e− 1

2 g2 ∂ g

∂N
+ gh√

2π
e− 1

2 g2 ∂ g

∂N
− 1√

2π
e− 1

2 g2 ∂h

∂N

= 1√
2π

e− 1
2 g2
[(

e−gh− 1
2 h2 − 1

)( ∂ g

∂N
+ ∂h

∂N

)
+ gh

∂ g

∂N

]
. (75)

The term (e−gh− 1
2 h2 − 1) of (75) is expanded up to first order discarding higher orders O ((gh + 1

2 h2)2)

∂r

∂N
� 1√

2π
e− 1

2 g2
[(

−gh − 1

2
h2
)(

∂ g

∂N
+ ∂h

∂N

)
+ gh

∂ g

∂N

]
= 1√

2π
e− 1

2 g2
[
−1

2
h2
(

∂ g

∂N
+ ∂h

∂N

)
− gh

∂h

∂N

]
. (76)

The derivatives of g and h from Eq. (73) are

∂ g

∂N
= − E − kx

2sN3/2
,

∂h

∂N
= δ

2sN3/2
. (77)

Inserting (73) and (77) into (76) yields after refactoring

∂r

∂N
� 1√

2π
e
− 1

2

(
E−kx
s
√

N
+
−1

ϑ

)2[
− δ2

2s2N

(
− E − kx

2sN3/2
+ δ

2sN3/2

)
+
(

E − kx

s
√

N
+ 
−1

ϑ

)
δ2

2s2N2

]
= 1√

2π
e
− 1

2

(
E−kx
s
√

N
+
−1

ϑ

)2(
− δ2

2s2N2

)[
δ

2s
√

N
− 3

2

E − kx

s
√

N
− 
−1

ϑ

]
. (78)

Taking the limit (74) of (78) therefore yields

lim
N→∞ r(N)N = − lim

N→∞ N2 ∂r(N)

∂N
= lim

N→∞

{
1√
2π

e
− 1

2

(
E−kx
s
√

N
+
−1

ϑ

)2
δ2

2s2

[
δ

2s
√

N
− 3

2

E − kx

s
√

N
− 
−1

ϑ

]}

= − δ2
−1
ϑ

2
√

2π s2
e
− 1

2

(

−1

ϑ

)2

, (79)

such that the remainder r(N) can be given as

r(N) � − δ2
−1
ϑ

2
√

2π s2
e
− 1

2

(

−1

ϑ

)2 1

N
= O

(
1

N

)
, (80)

which concludes the derivation of (69).
Both integrals of (69) are analytically solvable.2 The zeroth order term yields a closed form solution due to g(xi) being 

linear w.r.t. xi and gives progress contributions due to the sphere function, i.e., the linear part of the quality gain (63). The 

2 Actually, using the result from (80) one could even calculate a closed-form second-order approximation for (69). However, the resulting formula would 
be rather complex.
12
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first order term can be solved by applying quadratic completion to the Gaussian product px(xi)φ(g(xi)) yielding an expected 
value over a normal density. The expected value over h(xi) can be regarded as a perturbation of the sphere containing A
and α dependencies.

The determination of ϕi via (69) was done in [18] by evaluating both integrals. As the derivation and the final result for 
ϕi are very lengthy and therefore not practical for further analytic treatment, the obtained expression for ϕi was simplified 
as a last step assuming large dimensionality N . However, the same result as in [18] can be obtained in a quicker way 
by simplifying the integrands of (69) under the same assumptions before the integration, instead of simplifying the result 
afterwards. This will enable a more concise derivation of the final progress rate result.

First the functions g and h from (66) and (67), respectively, are simplified. For large N , the quality gain variance Di � D Q

using (14). As E Q i is just the quality gain expectation of a single component, it can be neglected compared to D Q scaling 
as 

√
N using (13). Hence, one has

g(xi) � −ki xi

D Q
+ 
−1(ϑ) (81)

h(xi) � −δ(xi)

D Q
. (82)

Another approximation is introduced regarding the density px(xi)φ(g(xi)) for the second term of (69). By completing the 
square one can derive a resulting normal density with mean m and variance ς2 by demanding

px(xi)φ(g(xi)) = 1√
2πσ

e− 1
2

x2
i

σ2
1√
2π

e− 1
2 g(xi)

2 != Ce
− 1

2
(xi−m)2

ς2 . (83)

Simple calculations yield

m = 
−1(ϑ)
D Q kiσ

2

D2
Q + k2

i σ
2
, ς2 = 1

1/σ 2 + (k2
i /D2

Q )
, C = e− 1

2

[

−1(ϑ)

]2
2πσ

. (84)

Noting that D2
Q = 	(N) and neglecting contributions of single components for N → ∞, i.e., k2

i � D2
Q , (kiσ)2 � D2

Q , the 
quantities m and ς2 from (84) yield the asymptotic results

m � 0, ς2 � σ 2, (85)

such that the density of the first order term yields

px(xi)φ(g(xi)) � e− 1
2

[

−1(ϑ)

]2
√

2π
px(xi). (86)

Using the results from Eqs. (81), (82), and (86), the progress rate integral (69) is further simplified. The prefactors of the 
resulting integral yield the asymptotic progress coefficient (45)

cϑ := e1,0
ϑ = 1√

2πϑ
e− 1

2

[

−1(ϑ)

]2
. (87)

Approximation 4 (Progress rate integral for large dimensionality). Based on the result of Approximation 3 only the first two 
terms are considered. Furthermore, the integrands of (69) are approximated and simplified assuming large dimensionality 
using Eqs. (81), (82), (86), and (87). Hence, one obtains

ϕi � I0
i + I1

i , with (88)

I0
i := − 1

ϑ

∞∫
−∞

xi px(xi)


(
−ki xi

D Q
+ 
−1(ϑ)

)
dxi , and (89)

I1
i := cϑ

D Q

1√
2πσ

∞∫
−∞

xiδ(xi)px(xi)dxi . (90)

Calculating I0
i from (89) by inserting mutation density px(xi) from (48) and applying the substitution z = xi/σ , one gets

I0
i = − σ√

2πϑ

∞∫
−∞

ze− 1
2 z2




(
−kiσ

D Q
z + 
−1(ϑ)

)
dz . (91)
13
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The following integral identity [5, Eq. (A.12)] can be applied

∞∫
−∞

te− 1
2 t2


(at + b)dt = a√
1 + a2

exp

[
−1

2

b2

1 + a2

]
. (92)

Evaluating (92) with a = −kiσ/D Q and b = 
−1(ϑ) yields for the right-hand side of (92)

a√
1 + a2

exp

[
−1

2

b2

1 + a2

]
= −kiσ

D Q

1√
1 + (kiσ/D Q )2

exp

[
−1

2

[

−1(ϑ)

]2

1 + (kiσ/D Q )2

]
. (93)

Again assuming (kiσ)2 � D2
Q , expression (93) simplifies and the result for (89) is obtained with (87) as

I0
i � e− 1

2 [
−1(ϑ)]2

√
2πϑ

kiσ
2

D Q
= cϑ

kiσ
2

D Q
. (94)

Now I1
i is solved. One notices that xiδ(xi) = xi(x2

i + A cos (αyi)(1 −cos (αxi)) + A sin (αyi) sin (αxi)), see (64), is integrated 
over density px with zero mean. Therefore, all odd functions of xi yield no contribution and only the term xi sin (αxi) needs 
to be evaluated. One gets

I1
i � cϑ

A sin (αyi)

D Q

1√
2πσ

∞∫
−∞

xi sin (αxi)e
− 1

2

(
xi
σ

)2

dxi

= cϑ

A sin (αyi)

D Q
E [xi sin (αxi)]

= cϑ

A sin (αyi)

D Q
ασ 2e− 1

2 (ασ )2

= cϑ

diσ
2

D Q
e− 1

2 (ασ )2
.

(95)

In the second line of (95) the expected value definition is used. From second to third line the expected value of xi sin (αxi)

is evaluated using (29). In the last line the derivative di = αA sin (αyi) from (33) is recovered. Using the results from (94)
and (95) the first order progress rate approximation for large N and μ can finally be given.

First order progress rate The first order component-wise progress rate on the Rastrigin function in the asymptotic limits of infinitely 
large population size μ (constant ϑ = μ/λ) and infinitely large dimensionality N yields

ϕi � cϑ

σ 2

D Q

(
ki + e− 1

2 (ασ )2
di

)
= cϑ

σ 2

D Q

(
2yi + e− 1

2 (ασ )2
αA sin (αyi)

)
. (96)

The expressions for cϑ = e1,0
ϑ from (45) and D Q from (31) were not inserted to improve readability. Result (96) shows very 

interesting properties compared to [17, Eq. (26)], where a linearized quality gain approximation resulted in

ϕi,lin � cμ/μ,λ

σ 2√
( f ′

i σ)2 + D2
i

f ′
i . (97)

First note that the progress coefficient was replaced by its asymptotic form cμ/μ,λ � cϑ . The difference for the variance 
terms in the denominators of (96) and (97) is negligible for large N with D2

Q ≈ D2
i + ( f ′

i σ)2, see also (14). However, the 
most notable difference lies between the derivative term f ′

i = ki + di , see definition (33), and the newly obtained term 
ki + e− 1

2 (ασ )2
di . It contains an unchanged sphere-dependent term ki and an exponentially decaying Rastrigin-specific term 

di . This characteristic form will be discussed in the subsequent part. The result (96) will be essential for the determination 
of the second order ϕII

i .
At this point one-generation experiments can be performed and compared to the progress rate (96) to investigate its 

accuracy. To this end, a random position vector y is initialized isotropically with ‖y‖ = R given some residual distance R . 
Then, repeated simulations are performed and quantity (7) is averaged over 106 trials. The issue with the choice of R is that 
the “interesting” region with high density of local minima scales with N , such that a relation R(N) is needed. The following 
argumentation can be given. Assuming w.l.o.g. y > 0 and that all components of the parental position are at some given 
local minimum denoted by ŷ( j) . Index j identifies the local attractor along the half-axis, e.g. j ∈ {1, 2, 3} in Fig. 1 on the 
right side. For N = 1 one has y = [ ŷ( j)] and therefore R2 = ( ŷ( j))2. Having N components at the same j-th local minimum 
14
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Fig. 3. One-generation experiments with (10/10, 40)-ES for N = 20, A = 10, α = 2π at randomly chosen ‖y‖ = R = √
N . The results for ϕi of Eq. (96) are 

shown for the exemplary components i = 2 with yi = 1.16 (left) and i = 12 with yi = 0.78 (right) to illustrate the effect of local attraction on the progress 
rate. The plots show additionally Eq. (96) with ϕi(ki) = ϕi(di , ki)|di =0 [cyan, dashed] and ϕi(di) = ϕi(di , ki)|ki=0 [green, dotted], respectively.

Fig. 4. Progress rate ϕi as a function of the normalized mutation σ ∗ for (10/10, 40)-ES with N = 20, A = 1, α = 2π , at two residual distances R = 10
√

N
with yi = 11.6 (left) and R = 0.1

√
N with yi = 0.116 (right). As in Fig. 3, black dots depict the simulation, while the red dash-dotted line shows result 

(96). The error bars are very small and therefore not visible.

yields y = [ ŷ( j), ŷ( j), ..., ŷ( j)], such that R2 = N( ŷ( j))2. A scaling R = O (
√

N) is therefore needed to stay within a certain 
region of local attractors when N is increased.

The progress rates of two exemplary components for a single experiment are shown in Fig. 3. For both plots σ ∈ [0, 1]
was chosen in order to investigate the effects of the oscillation as α = 2π . On the left, one observes enhanced progress 
for moderate σ -values due to local attraction, as both local and global attractor are aligned along the same direction. 
On the right, there is negative progress for moderate σ , as the local attractor is driving the ES away from the global 
attractor. For larger σ , the overall spherical shape is dominating and both exhibit positive progress. A decomposition of the 
progress rate in terms of ϕi = ϕi(di, ki)|ki=0 + ϕi(di, ki)|di=0 is displayed in Fig. 3. It shows the large-scale behavior of the 
ki -term, dashed cyan, and limited range of the di -term, dotted green. As ki = ∂(y2

i )/∂ yi , its progress term models the global 
quadratic structure of Rastrigin, see derivative definitions (33). The second term e− 1

2 (ασ )2
di models the Rastrigin-specific 

local oscillation having limited range depending on the mutation strength σ (or α). By defining scale-invariant mutations 
using (4) with σ = σ ∗R/N , the oscillations vanish via e− 1

2 (ασ ∗ R/N)2
for large residual distance R , where the sphere function 

is recovered. This model significantly improves the progress rate formula (97) from [17].
As a note, changing one of the fitness parameters A or α directly affects Fig. 3. The change of amplitude A rescales both 

the (local) peak and dip heights accordingly, increasing the effects of local attraction for larger A. Increasing frequency α
has mostly short-range effects as the overall range is reduced due to suppression via e− 1

2 (ασ )2
of (96). In the subsequent 

parts, the progress rate is investigated for A = 1 and α = 2π as an example.
In Figs. 4 and 5 the progress rate is evaluated over scale-invariant σ ∗ for two different N-values and population sizes. 

One can see that the approximation quality improves for larger N and μ, as expected from the applied approximations. 
The overall agreement between simulation and approximation is good for larger and smaller residual distances R , see left 
and right plots, respectively. The σ ∗-range was chosen large enough, such that the progress rate of the corresponding 
sphere function [5, Eq. (6.54)] reaches negative values due to mutations being too large. This boundary directly translates 
to Rastrigin, as the global structure is the same. However, due to ϕi being first order, no negative progress occurs even for 
large σ ∗ . Therefore the second order progress rate ϕII

i needs to be derived in Sec. 4, where loss terms will provide additional 
correction terms.

4. Second order progress rate

The second order progress rate (8) requires the evaluation of E
[
(y(g+1)

i )2
]

. Starting with intermediate result (34) and 
referring to the i-th component, the expression yields after squaring
15
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Fig. 5. Progress rate ϕi as a function of the normalized mutation σ ∗ for (100/100, 200)-ES with N = 100, A = 1, α = 2π , at two residual distances 
R = 10

√
N with yi = 11.9 (left) and R = 0.1

√
N with yi = 0.119 (right). The approximation quality improves compared to Fig. 4 and shows very good 

agreement.

(
y(g+1)

i

)2 =
(

y(g)

i + 1

μ

μ∑
m=1

xm;λ

)2

=
(

y(g)

i

)2 + 2y(g)

i

1

μ

μ∑
m=1

xm;λ + 1

μ2

(
μ∑

m=1

xm;λ

)2

.

(98)

Squaring the last term can be evaluated by separating the sum into equal and unequal indices(
μ∑

m=1

xm;λ

)2

=
(

μ∑
k=1

xk;λ

)(
μ∑

l=1

xl;λ

)
=

μ∑
m=1

(
xm;λ

)2 +
∑
k 
=l

xk;λxl;λ

=
μ∑

m=1

(
xm;λ

)2 + 2
μ∑

l=2

l−1∑
k=1

xk;λxl;λ.

(99)

Inserting (99) into (98) and taking the expected value (conditional variables y(g) and σ (g) are implicitly assumed to be 
given) yields

E

[(
y(g+1)

i

)2
]

=
(

y(g)

i

)2 + 2y(g)

i

1

μ

μ∑
m=1

E
[
xm;λ

]+ 1

μ2

μ∑
m=1

E
[(

xm;λ
)2
]
+ 2

μ2

μ∑
l=2

l−1∑
k=1

E
[
xk;λxl;λ

]
. (100)

Noting that ϕi = − 1
μ

∑μ
m=1 E

[
xm;λ

]
, see Eq. (36), and using (100) in ϕII

i -definition (8) yields the second order i-th compo-
nent progress rate

ϕII
i = 2y(g)

i ϕi − 1

μ2
E(2) − 2

μ2
E(1,1), (101)

for which the two following expected values need to be determined

1

μ2
E(2) := 1

μ2

μ∑
m=1

E
[(

xm;λ
)2
]

(102)

1

μ2
E(1,1) := 1

μ2

μ∑
l=2

l−1∑
k=1

E
[
xk;λxl;λ

]
. (103)

In the subsequent parts the solutions to Eqs. (102) and (103) will be derived. Starting with (102), the solution requires order 
statistic density (50) for the m-th individual, large population identity (37), and the expansion of the normal CDF (69) up to 
first order. The resulting two integrals can then be solved analytically for large N and the results will simplify significantly.

Proposition 2. Let μ, λ ∈N with μ ≥ 1 and μ < λ and let px denote the PDF of the random mutation x ∼N (0, σ 2). Let xm;λ denote 
the m-th best value (out of λ) of the i-th mutation component (xm;λ)i . Furthermore, let P Q and P−1

Q denote the quality gain CDF (and 
its inverse), respectively, with B denoting the beta function. Then, the second order expected value reads

1

μ

μ∑
m=1

E
[(

xm;λ
)2
]

= λ

μ

xi=∞∫
x2

i px(xi)
1

B(λ − μ,μ)

t=1∫
tλ−μ−1(1 − t)μ−1 P Q (P−1

Q (1 − t)|xi)dt dxi . (104)
xi=−∞ t=0
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Proof. Starting from (102) and rewriting the expected value as an integral over order statistic density pm;λ(xi) yields

1

μ

μ∑
m=1

E
[(

xm;λ
)2
]

= 1

μ

μ∑
m=1

∞∫
−∞

x2
i pm;λ(xi)dxi . (105)

Both (47) and (105) have the same structure after inserting pm;λ(xi) from (50) and the integration over the squared mutation 
component is performed as the last step. The same steps as presented in the proof of Proposition 1 can therefore be applied 
with squared quantity x2

i , which directly gives the result (104). �
Analogously to the derivation of the first order progress rate in Sec. 3, a closed-form solution for (104) can only be 

provided by first applying the limit of large populations and then introducing approximations assuming large dimensionality 
N .

Theorem 3. Let px denote the PDF of the random mutation x ∼N (0, σ 2) and let xm;λ denote the m-th best value (out of λ) of the i-th 
mutation component (xm;λ)i . Let P Q denote the quality gain CDF with its quantile function given by P−1

Q . For a truncation ratio ϑ the 
limit of the second order expected value reads

lim
μ,λ→∞
ϑ=const.

1

μ

μ∑
m=1

E
[(

xm;λ
)2
]

= 1

ϑ

∞∫
−∞

x2
i px(xi)P Q (P−1

Q (ϑ)|xi)dxi . (106)

Proof. Starting from Eq. (104) and applying the infinite population size limit, the result of Theorem 1 can be applied with 
a = 1, pn(xi) = x2

i , and fx(t)
∣∣
t=1−ϑ

= P Q (P−1
Q (ϑ)|xi), which yields the result (106). �

Given result (106), approximations are again applied to provide closed-form solutions. Inserting quality gain Approxima-
tion 1 and Approximation 2 via Eq. (62) into (106) leads (again) to an analytically not solvable integral due to non-linear 
terms in xi within 
(·). Therefore, the CDF is expanded using Approximation 3 neglecting higher order terms O (1/N). Fi-
nally, the integrands are simplified assuming large dimensionality using Approximation 4. The result is therefore given after 
inserting g(xi) and h(xi) from (81) and (82) as

1

μ2
E(2) � I0

i + I1
i , with (107)

I0
i := 1

μϑ

∞∫
−∞

x2
i px(xi)


(
−ki xi

D Q
+ 
−1(ϑ)

)
dxi , and (108)

I1
i := − cϑ

μD Q

1√
2πσ

∞∫
−∞

x2
i δ(xi)px(xi)dxi . (109)

The two integrals abbreviated as I0
i and I1

i are evaluated now. For I0
i , the substitution z = xi/σ is introduced

I0
i = σ 2

√
2πμϑ

∞∫
−∞

z2e− 1
2 z2




(
−kiσ z

D Q
+ 
−1(ϑ)

)
dz . (110)

The following integral identity [16] is applied for real parameters a and b

1√
2π

∞∫
−∞

t2e− 1
2 t2


(at + b)dt = 


(
b

(1 + a2)1/2

)
− 1√

2π

a2b

(1 + a2)3/2
e
− 1

2
b2

1+a2 . (111)

Evaluating (111) with a = −kiσ/D Q , b = 
−1(ϑ) from (108) yields for the right-hand side of (111)




(
b

(1 + a2)1/2

)
− 1√

2π

a2b

(1 + a2)3/2
e
− 1

2
b2

1+a2

= 


(

−1(ϑ)

(1 + (kiσ)2/D2
Q )1/2

)
− 1√

2π

(kiσ)2
−1(ϑ)

D2
Q (1 + (kiσ)2/D2

Q )3/2
e
− 1

2

[

−1(ϑ)

]2

1+(kiσ )2/D2
Q .

(112)
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Assuming (kiσ)2 � D2
Q for large N further simplifies (112) and one obtains the result

I0
i � σ 2

μ

⎡⎣1 − 
−1(ϑ)

⎡⎣e− 1
2

[

−1(ϑ)

]2
√

2πϑ

⎤⎦ (kiσ)2

D2
Q

⎤⎦ . (113)

For (113) the asymptotic generalized progress coefficient definition e1,1
ϑ from (45) can be applied with parameters a = 1 and 

b = 1

e1,1
ϑ = −
−1(ϑ)

⎡⎣e− 1
2

[

−1(ϑ)

]2
√

2πϑ

⎤⎦ . (114)

This leads to following result for the first integral I0
i

I0
i � σ 2

μ

[
1 + e1,1

ϑ

(kiσ)2

D2
Q

]
. (115)

Second integral I1
i from (109) is expressed using expected values over the normal density px of the terms given by 

x2
i δ(xi). With δ(xi) given in Eq. (64) one gets

I1
i � − cϑ

μD Q

(
E
[

x4
i

]
+ A sin (αyi)E

[
x2

i sin (αxi)
]
+ A cos (αyi)E

[
x2

i

]
− A cos (αyi)E

[
x2

i cos (αxi)
])

. (116)

One has E
[
x4

i

]= 3σ 4 and E
[
x2

i

]= σ 2. Using results from (29) the remaining expected values read

E
[

x2
i sin (αxi)

]
= 0, E

[
x2

i cos (αxi)
]

= (σ 2 − α2σ 4)e− 1
2 (ασ )2

. (117)

Therefore, one gets

I1
i � − cϑσ 2

μD Q

[
3σ 2 + A cos (αyi)

(
1 − e− 1

2 (ασ )2 + α2σ 2e− 1
2 (ασ )2

)]
. (118)

Collecting the results (115) and (118) with ki = 2yi and inserting them back into (107) the expected value finally reads

1

μ2
E(2) � σ 2

μ

{
1 + e1,1

ϑ

(2yi)
2σ 2

D2
Q

− cϑ

D Q

[
3σ 2 + A cos (αyi)

(
1 − e− 1

2 (ασ )2 + α2σ 2e− 1
2 (ασ )2

)]}
. (119)

The solution of the second expected value 1
μ2 E(1,1) from (103) is presented now. First an exact integral is derived. Then, 

approximations are applied to give closed-form solutions.

Proposition 3. Let μ, λ ∈N with μ ≥ 1 and μ < λ and let px denote the PDF of the random mutation x ∼N (0, σ 2). Let xk;λ denote 
the k-th best value (out of λ) of the i-th mutation component (xk;λ)i . Furthermore, let P Q and P−1

Q denote the quality gain CDF (and 
its inverse), respectively, with B denoting the beta function. Then, the second order expected value reads

1

μ2

μ∑
l=2

l−1∑
k=1

E
[
xk;λxl;λ

]= 1

2

λ

μ

μ − 1

μ

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

×
(

1

B(λ − μ,μ)

1∫
0

tλ−μ−1(1 − t)μ−2 P Q (P−1
Q (1 − t)|x1)P Q (P−1

Q (1 − t)|x2)dt

)
dx2 dx1 .

(120)

Proof. First, a joint order statistic density has to be derived for the expected value. Then, the double sum is converted into 
a single integral using a known identity. The resulting five-fold integration is restructured by exchanging bounds and then 
successively solved.

Starting with (103), the double sum includes mixed contributions from the k-th and l-th best elements of the i-th 
mutation component. To avoid confusion with the summation indices k and l, the integration variables associated with k-th 
element will be denoted as x1 (mutation) and q1 (quality), while the l-th element is integrated over x2 and q2. The ordering 
1 ≤ k < l ≤ λ is assumed with k yielding a smaller (better) quality value q1 < q2. Additionally, the joint probability density 
pk,l;λ(x1, x2) is needed, such that the expected value can be formulated as
18
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1

μ2
E(1,1) = 1

μ2

μ∑
l=2

l−1∑
k=1

∞∫
−∞

∞∫
−∞

x1x2 pk,l;λ(x1, x2)dx2 dx1 . (121)

The mutation densities are independent and denoted by px(x1) and px(x2), respectively. Given mutation components x1

and x2, the conditional density obtaining the quality values q1 and q2 is p Q (q1|x1) and p Q (q2|x2), respectively. Given q1

and q2, one has k − 1 values smaller than q1, l − k − 1 values between q1 and q2 and λ − l values larger than q2 with 
probabilities

Pr{Q ≤ q1}k−1 = P Q (q1)
k−1

Pr{q1 ≤ Q ≤ q2}l−k−1 = [P Q (q2) − P Q (q1)]l−k−1

Pr{Q > q2}λ−l = [1 − P Q (q2)]λ−l,

(122)

and P Q (q) denoting the quality gain CDF. The joint probability density can therefore be written as

pk,l;λ(x1, x2) = px(x1)px(x2)

∞∫
qmin

p Q (q1|x1)

∞∫
q1

p Q (q2|x2)

× λ! P Q (q1)
k−1[P Q (q2) − P Q (q1)]l−k−1[1 − P Q (q2)]λ−l

(k − 1)!(l − k − 1)!(λ − l)! dq2 dq1 ,

(123)

with integration ranges qmin ≤ q1 < ∞ and q1 < q2 < ∞ as k < l. Lower bound qmin denotes the smallest possible quality 
value, which is resolved later. The factorials exclude the irrelevant combinations among the three groups given in (122). 
Plugging (123) into (121) and moving the sum into the innermost integral gives

1

μ2
E(1,1) = λ!

μ2

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

∞∫
qmin

p Q (q1|x1)

∞∫
q1

p Q (q2|x2)

×
μ∑

l=2

l−1∑
k=1

P Q (q1)
k−1[P Q (q2) − P Q (q1)]l−k−1[1 − P Q (q2)]λ−l

(k − 1)!(l − k − 1)!(λ − l)! dq2 dq1 dx2 dx1 .

(124)

The double sum of (124) over the P Q -values will be expressed by an integral. This can be done using an identity from [4, 
p. 113]. Setting ν = 2 and identifying the indices as i1 = l and i2 = k, the identity yields

μ∑
l=2

l−1∑
k=1

Q λ−l
1 [Q 2 − Q 1]l−k−1[1 − Q 2]k−1

(λ − l)!(l − k − 1)!(k − 1)! = 1

(λ − μ − 1)!(μ − 2)!
Q 1∫

0

tλ−μ−1(1 − t)μ−2 dt , (125)

for real values Q 1 and Q 2, with integers ν ≤ μ < λ. Now the substitution Q 1 = 1 − P Q (q2), Q 2 = 1 − P Q (q1) can be 
performed and the double sum of (124) can be recognized by comparing with (125). Applying the identity therefore yields

μ∑
l=2

l−1∑
k=1

[1 − P Q (q2)]λ−l[P Q (q2) − P Q (q1)]l−k−1[P Q (q1)]k−1

(λ − l)!(l − k − 1)!(k − 1)!

= 1

(λ − μ − 1)!(μ − 2)!

1−P Q (q2)∫
0

tλ−μ−1(1 − t)μ−2 dt .

(126)

Hence, Eq. (124) is expressed as

1

μ2
E(1,1) = λ!

μ2

1

(λ − μ − 1)!(μ − 2)!
∞∫

−∞
x1 px(x1)

∞∫
−∞

x2 px(x2)

×
∞∫

qmin

p Q (q1|x1)

∞∫
q1

p Q (q2|x2)

1−P Q (q2)∫
0

tλ−μ−1(1 − t)μ−2 dt dq2 dq1 dx2 dx1 .

(127)

The prefactor of Eq. (127) can be evaluated as
19
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λ!
μ2

1

(λ − μ − 1)!(μ − 2)! = λ(λ − 1)!(μ − 1)

μ2(λ − μ − 1)!(μ − 1)! = 1

ϑ

μ − 1

μ

1

B(λ − μ,μ)
. (128)

Now the integration order will be exchanged twice in (127). First the order between t and q2 is exchanged. Then the 
order between t and q1 is exchanged, such that both q-integrations are performed before the t-integration enabling the 
application of the large population identity (37). Starting with integration bounds

q1 ≤ q2 < ∞, 0 ≤ t ≤ 1 − P Q (q2), (129)

and using the inverse function P−1
Q with q2 = P−1

Q (1 − t) the exchanged bounds between t and q2 are

0 ≤ t ≤ 1 − P Q (q1), q1 ≤ q2 ≤ P−1
Q (1 − t). (130)

Using factor (128) and exchanged bounds (130), the expression (127) is reformulated as

1

μ2
E(1,1) = 1

ϑ

μ − 1

μ

1

B(λ − μ,μ)

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

×
∞∫

qmin

p Q (q1|x1)

1−P Q (q1)∫
0

tλ−μ−1(1 − t)μ−2

P−1
Q (1−t)∫
q1

p Q (q2|x2)dq2 dt dq1 dx2 dx1 .

(131)

Now the integration order between t and q1 is exchanged starting from

qmin ≤ q1 < ∞, 0 ≤ t ≤ 1 − P Q (q1), (132)

yielding exchanged bounds

0 ≤ t ≤ 1, qmin ≤ q1 ≤ P−1
Q (1 − t). (133)

Therefore, one arrives at the following integral to be solved (beta function has been moved inside as it will be evaluated 
during the t-integration)

1

μ2
E(1,1) = 1

ϑ

μ − 1

μ

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

×
(

1

B(λ − μ,μ)

1∫
0

tλ−μ−1(1 − t)μ−2

×
[ P−1

Q (1−t)∫
qmin

p Q (q1|x1)

{ P−1
Q (1−t)∫
q1

p Q (q2|x2)dq2

}
dq1

]
dt

)
dx2 dx1 .

(134)

Now the integrals in (134) will be successively solved. Starting with integral {·} over q2 one has

P−1
Q (1−t)∫
q1

p Q (q2|x2)dq2 =
[

P Q (q2|x2)
]P−1

Q (1−t)

q1
= P Q (P−1

Q (1 − t)|x2) − P Q (q1|x2). (135)

The q1-integration within [·] using (135) yields

P−1
Q (1−t)∫
qmin

p Q (q1|x1)
(

P Q (P−1
Q (1 − t)|x2) − P Q (q1|x2)

)
dq1 (136)

= P Q (P−1
Q (1 − t)|x2)

P−1
Q (1−t)∫
qmin

p Q (q1|x1)dq1 (137)

−
P−1

Q (1−t)∫
qmin

p Q (q1|x1)P Q (q1|x2)dq1 . (138)
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First integral (137) is easily evaluated, as the conditional density is integrated over its support giving

P Q (P−1
Q (1 − t)|x2)

P−1
Q (1−t)∫
qmin

p Q (q1|x1)dq1 = P Q (P−1
Q (1 − t)|x2)

[
P Q (q1|x1)

]P−1
Q (1−t)

qmin

= P Q (P−1
Q (1 − t)|x2)P Q (P−1

Q (1 − t)|x1),

(139)

with P Q (qmin|x1) = Pr{Q ≤ qmin|x1} = 0. Note that the resulting factors are equal up to the conditional variables x1 and x2.
The second integral (138) will be simplified using integration by parts. Thereafter, one can exchange the x1 and x2

variables to find a simpler expression for the original integral. Integration by parts yields

P−1
Q (1−t)∫
qmin

p Q (q1|x1)P Q (q1|x2)dq1

= P Q (P−1
Q (1 − t)|x1)P Q (P−1

Q (1 − t)|x2) −
P−1

Q (1−t)∫
qmin

P Q (q1|x1)p Q (q1|x2)dq1 .

(140)

Equation (140) inserted into (134) has to be integrated over x1 and x2, of which the order can be exchanged. For the follow-
ing step the t-integration and the prefactors of (134) have no influence, such that they are dropped for better readability. 
Integrating both sides of (140) yields

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

P−1
Q (1−t)∫
qmin

p Q (q1|x1)P Q (q1|x2)dq1 dx2 dx1

=
∞∫

−∞
x1 px(x1)

∞∫
−∞

x2 px(x2)P Q (P−1
Q (1 − t)|x1)P Q (P−1

Q (1 − t)|x2)dx2 dx1

−
∞∫

−∞
x2 px(x2)

∞∫
−∞

x1 px(x1)

P−1
Q (1−t)∫
qmin

P Q (q1|x2)p Q (q1|x1)dq1 dx1 dx2 ,

(141)

where in the last line the integration order of x1 and x2 was exchanged, such that an expression equivalent to the left-hand 
side of (141) is obtained with given arguments for p Q and P Q . Collecting the terms, Eq. (141) can be formulated as

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

P−1
Q (1−t)∫
qmin

p Q (q1|x1)P Q (q1|x2)dq1 dx2 dx1

= 1

2

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)P Q (P−1
Q (1 − t)|x1)P Q (P−1

Q (1 − t)|x2)dx2 dx1 .

(142)

Noting that the right-hand side of result (142) is one half of the first integration result (139) after x-integration and noting 
the minus sign in (138), one gets for (136) the expression

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)

P−1
Q (1−t)∫
qmin

p Q (q1|x1)
(

P Q (P−1
Q (1 − t)|x2) − P Q (q1|x2)

)
dq1 dx2 dx1

=
∞∫

−∞
x1 px(x1)

∞∫
−∞

x2 px(x2)

(
1 − 1

2

)
P Q (P−1

Q (1 − t)|x1)P Q (P−1
Q (1 − t)|x2)dx2 dx1 .

(143)

Inserting the results of (143) back into [·] of (134) and including all prefactors, the five-fold integral simplifies providing the 
desired result of Eq. (120). �
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Theorem 4. Let px denote the density of the i-th component mutation x ∼N (0, σ 2) and let xk;λ denote the k-th best value (out of λ) 
of the i-th mutation component (xk;λ)i . Let P Q denote the quality gain CDF with its quantile function given by P−1

Q . For a truncation 
ratio ϑ the limit of the second order expected value reads

lim
μ,λ→∞
ϑ=const.

1

μ(μ − 1)

μ∑
l=2

l−1∑
k=1

E
[
xk;λxl;λ

]= 1

2

⎡⎣ 1

ϑ

∞∫
−∞

xi px(xi)P Q (P−1
Q (ϑ)|xi)dxi

⎤⎦2

. (144)

Proof. Starting from Eq. (120) the μ-dependent prefactor was rearranged in a way that the factor (μ − 1)/μ in (120)
is retained in the final result. Formally one could include (μ − 1)/μ in the sequence (38) and take the limit. How-
ever, it is desirable to keep the factor in the progress rate as a correction for finite μ-values. As a next step, one 
can define fx(t) = P Q (P−1

Q (1 − t)|x1)P Q (P−1
Q (1 − t)|x2). As 0 ≤ fx(t) ≤ 1 the same bound estimation as in (43) holds. 

Furthermore, both mutation integrals over density px are finite, see also (44). Therefore, the limit is evaluated with 
fx(t)

∣∣
t=1−ϑ

= P Q (P−1
Q (ϑ)|x1)P Q (P−1

Q (ϑ)|x2) and a = 2 as

lim
μ,λ→∞
ϑ=const.

1

μ(μ − 1)
E(1,1) = 1

2

1

ϑ2

∞∫
−∞

x1 px(x1)

∞∫
−∞

x2 px(x2)P Q (P−1
Q (ϑ)|x1)P Q (P−1

Q (ϑ)|x2)dx2 dx1

= 1

2

1

ϑ2

∞∫
−∞

x1 px(x1)P Q (P−1
Q (ϑ)|x1)dx1

∞∫
−∞

x2 px(x2)P Q (P−1
Q (ϑ)|x2)dx2

= 1

2

⎡⎣ 1

ϑ

∞∫
−∞

xi px(xi)P Q (P−1
Q (ϑ)|xi)dxi

⎤⎦2

,

(145)

with xi re-introduced in the last line to denote the i-th mutation component, which gives Eq. (144). �
In [·] of result (144), one can identify the first order progress rate −ϕi within the large population limit derived in 

Eq. (60). Refactoring (144) to obtain 1
μ2 E(1,1) , one can insert the ϕi -approximation from (96). Noting that c2

ϑ = e2,0
ϑ via (45), 

one gets

1

μ2
E(1,1) � 1

2

μ − 1

μ
ϕ2

i

� 1

2

μ − 1

μ
e2,0
ϑ

σ 4

D2
Q

(
2yi + e− 1

2 (ασ )2
αA sin (αyi)

)2
.

(146)

Finally, inserting the results from (119) and (146) into (101), one obtains the second order progress rate

ϕII
i � cϑ

σ 2

D Q

(
4y2

i + e− 1
2 (ασ )2

2αAyi sin (αyi)
)

− σ 2

μ

{
1 + e1,1

ϑ

(2yi)
2σ 2

D2
Q

− cϑ

D Q

[
3σ 2 + A cos (αyi)

(
1 − e− 1

2 (ασ )2 + α2σ 2e− 1
2 (ασ )2

)]

+ (μ − 1)e2,0
ϑ

σ 2

D2
Q

(
2yi + e− 1

2 (ασ )2
αA sin (αyi)

)2
}

,

(147)

which serves as an approximation in the asymptotic limit of infinitely large dimensionality and population size. However, 
experimental investigations will also show good agreement for finite N , μ, and λ.

For future investigations of the convergence and step-size adaptation properties of the (μ/μI , λ)-ES, a simpler expression 
than (147) is needed. To this end, the N-dependency of the terms within {·} of (147) is investigated. It will be shown that 
for N → ∞ and μ = o (N) only the term −σ 2/μ yields relevant contributions. The relevant terms in {·} of Eq. (147) are 
abbreviated according to their respective factors as e1,1

ϑ , cϑ/D Q and e2,0
ϑ . In order to maximize the absolute value of the 

individual terms a lower bound for D2
Q is needed. Given the form of D2

Q from Eq. (31), no useful lower bound for the 
variance could be established satisfying D2

Q > 0 for any yi due to the trigonometric terms. Therefore, we will restrict the 
analysis to the sphere limit case A → 0. This assumption might seem crude. However, the most important characteristics are 
already contained in the first ϕi -dependent term of (147) referred to as the gain term in sphere model theory [5]. On the 
other hand, the loss terms in {·} are mostly dominated by the first term −σ 2/μ. Experiments will affirm this assumption.
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As the ϕII
i -approximation shall be valid for a constant σ ∗ given any R-value, the mutation strength is re-normalized 

using (4)

σ = σ ∗R

N
. (148)

Setting A = 0, σ = σ ∗R/N , and 
∑

i y2
i = R2 in (31), one obtains the sphere variance for constant normalized mutation 

strength as

D2
Q ,sph =

N∑
i=1

[4σ 2 y2
i + 2σ 4] = 4σ 2 R2 + 2Nσ 4 = 4R4

(
σ ∗

N

)2

+ 2N

(
σ ∗R

N

)4

= 4R4
(

σ ∗

N

)2(
1 + σ ∗2

2N

)
. (149)

In the limit N → ∞ the second term of (149) is negligible for constant σ ∗ giving

D2
Q ,sph � 4R4

(
σ ∗

N

)2

. (150)

Having obtained the sphere variance asymptotic in (150), the terms within {·} of (147) are evaluated. The term with pref-
actor e1,1

ϑ yields with σ = σ ∗R/N and using (150)

e1,1
ϑ

σ 2

D2
Q

(2yi)
2 = e1,1

ϑ

(
σ ∗ R

N

)2

4R4(σ ∗/N)2
(2yi)

2 = e1,1
ϑ

y2
i

R2
= O

(
1

N

)
. (151)

It was used in (151) that a single component y2
i contributes in expectation 1/N to the residual distance R2 =∑N

j=1 y2
j , see 

also (12). The second term with prefactor cϑ/D Q using D Q � 2R2σ ∗/N with A = 0 as

3cϑ

(
σ ∗ R

N

)2

D Q
= 3cϑ

(
σ ∗ R

N

)2

2R2σ ∗/N
= O

(
1

N

)
. (152)

The last term with prefactor e2,0
ϑ yields with A = 0 and using (150)

(μ − 1)e2,0
ϑ

σ 2

D2
Q

(2yi)
2 = (μ − 1)e2,0

ϑ

(
σ ∗ R

N

)2

4R4(σ ∗/N)2
(2yi)

2

= (μ − 1)e2,0
ϑ

y2
i

R2
=
{

O
( 1

N

)
if μ(N) = const.

O
(

μ(N)
N

)
else.

(153)

In (153) the notation μ(N) was introduced to emphasize that the population size is usually chosen depending on the 
dimensionality of the search space. Finally, inserting the results of the loss term investigation for the three terms (151), 
(152), and (153) back into progress rate (147), one gets for the loss term in {·} of (147)

−σ 2

μ

{
1 + O

(
1

N

)
+ O

(
μ(N)

N

)}
. (154)

Provided that the population size μ = o (N), i.e., increasing sub-linearly with N , all terms except “1” in {·} can be neglected 
for N → ∞. Theoretical results concerning population sizing, i.e., choosing the necessary μ(N) to achieve high global con-
vergence probability (success probability), are not available at this point. It is one of the main future goals of the current 
research project. Note that treating μ as a constant is also not satisfactory, since for large N an increase of μ is necessary 
to maintain a high success rate on a highly multimodal problem. However, experimental investigations on the Rastrigin 
function including step-size adaptation suggest a sub-linear relation, which validates the approximation. Finally, the lengthy 
result (147) is simplified using the loss term asymptotic of (154) and the second order progress rate approximation is 
obtained.

Second order progress rate The second order component-wise progress rate on the Rastrigin function in the asymptotic limits of 
infinitely large population size μ (constant ϑ = μ/λ) and infinitely large dimensionality N with μ = o (N) yields
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Fig. 6. Second order progress rate ϕII
i as a function of σ ∗ for (10/10, 40)-ES with N = 20, A = 1, α = 2π , at two residual distances R = 10

√
N with 

yi = 11.6 (left) and R = 0.1
√

N with yi = 0.116 (right). The dashed blue curves show Eq. (147) and the dash-dotted red curves Eq. (156).

ϕII
i � 2yiϕi − σ 2

μ
(155)

� cϑ

σ 2

D Q

(
4y2

i + e− 1
2 (ασ )2

2αAyi sin (αyi)
)

− σ 2

μ
. (156)

The expressions for cϑ = e1,0
ϑ from (45) and D Q from (31) were not inserted to improve readability. The first line (155)

emphasizes the dependence of ϕII
i (ϕi) and can be thought of as a more general formula provided that ϕi is known and the 

loss term behaves similarly to the sphere function loss term −σ 2/μ. The second line (156) shows the explicit results for the 
Rastrigin function. The results (155) and (156) can be mapped to the Evolutionary Progress Principle [5] as the expressions 
contain a progress gain and loss term, respectively. Here, the gain part scales with cϑ and it is a yi -dependent expression. 
Hence, depending on the sign of yi sin (αyi) it may also yield negative contributions due to local attraction moving the 
ES away from the global optimizer, cf. Fig. 3. The loss term −σ 2/μ is characteristic for intermediate recombination. It 
introduces significant loss for large σ , but can be decreased using a larger μ due to recombination effects.

Results of one-generation experiments are presented in Figs. 6 and 7 by evaluating (8) over 106 trials (black dots with 
vanishing error bars) and comparing with the obtained approximations. The red dash-dotted line is showing simplified 
result (156), while the blue dashed line is showing (147). The positions y were initialized randomly (given R) and kept 
constant over all repetitions. Fig. 6 shows a smaller dimensionality N = 20 and truncation ratio ϑ = 1/4, while Fig. 7 shows 
larger values N = 100 with ϑ = 1/2. This was done to exemplarily investigate the results at different parameter sets.

First thing to note is that the loss term allows negative progress for large σ ∗ , which was not the case for ϕi . The 
approximation quality is good for different R-values (see left and right plots, respectively) and improves for larger N and μ
in Fig. 7, which was expected. Simplified expression ϕII

i from (156) [red, dash-dotted] yields good results compared to (147)
[blue, dashed], with (147) giving slightly better results for smaller σ ∗ and (156) better results at larger σ ∗ . This indicates 
that additional terms of the Taylor expansion (70) would be needed to further improve the results of (147). However, 
this would make the expression more involved, which is not desired. Furthermore, the results of Fig. 6 are relatively good 
considering that a rather small population (10/10, 40)-ES was used at low dimensionality N = 20. One can conclude that 
(156) yields very good results considering its “simplicity”. It will therefore be used in Sec. 5 to investigate the dynamical 
behavior of the ES. It should be noted that at this point there is no aggregated progress measure over all N components, 
such as the R-dependent sphere progress rate. Given some y(g) one can evaluate all i = 1, ..., N values for ϕII

i and obtain 
a progress vector, but the overall effect on R(g) → R(g+1) is not known. This will be part of future research. However, the 
cumulative effect of all N progress rates can be evaluated within a dynamical systems model to be shown in the next 
chapter.

5. Evolution equations

In the previous sections one-generation experiments were conducted and compared against progress rate results (96), 
(147), and (156). In order to have an aggregated measure over all components and many generations, ϕi and ϕII

i will be 
used within the evolution equations and compared to real optimization runs of Algorithm 1. Using this method the (mean) 
global convergence behavior can be investigated.

Given definitions for first and second order progress (7) and (8), the expressions can be reformulated as stochastic 
iterative mappings between two generations g → g + 1 according to

y(g+1)

i = y(g)

i − ϕi(σ
(g),y(g)) + ε(1)(σ (g),y(g)) (157)(

y(g+1)

i

)2 =
(

y(g)

i

)2 − ϕII
i (σ (g),y(g)) + ε(2)(σ (g),y(g)). (158)
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Fig. 7. Second order progress rate ϕII
i as a function of σ ∗ for (100/100, 200)-ES with N = 100, A = 1, α = 2π , at two residual distances R = 10

√
N with 

yi = 11.9 (left) and R = 0.1
√

N with yi = 0.119 (right). The dashed blue curves show Eq. (147) and the dash-dotted red curves Eq. (156).

The two terms ε(1) and ε(2) can be interpreted as fluctuations w.r.t. the expected values (provided by ϕi and ϕII
i ). Thus, it 

holds E
[
ε(1)

]= 0 = E
[
ε(2)

]
. However, the exact transition densities for g → g + 1 are not known at this point. In principle, 

they could be approximated using a finite number of higher order moments (or cumulants) to model the fluctuations [5, 
Ch. 7]. However, for a first study of the progress rate results on the dynamics, the fluctuations are neglected by setting 
ε(1) = 0 = ε(2) . Therefore, one arrives at the (deterministic) equations describing the mean-value dynamics of the parental 
position coordinates

y(g+1)

i = y(g)

i − ϕi(σ
(g),y(g)) (159)(

y(g+1)

i

)2 =
(

y(g)

i

)2 − ϕII
i (σ (g),y(g)), (160)

with constant normalized mutation strength σ ∗ from Eq. (4) giving

σ (g) = σ ∗
∥∥∥y(g)

∥∥∥/N. (161)

Two important issues need to be discussed. Firstly, the positional iterations are defined for a single component i. For large 
N however, it is not feasible to display each component individually. While the components will be iterated separately, the 
dynamics will be presented as a function of the residual distance R = ∥∥y(g)

∥∥. Secondly, for the evaluation of ϕII
i being a 

function of y(g) , the square root of the components (y(g)

i )2 has to be taken after iteration giving two solutions ±y(g)

i . As 
the corresponding terms of ϕII

i and D2
Q (y) are even in y(g)

i , both solutions are equivalent.
In the following, the deterministic iterations (159) and (160) using mutation strength rescaling (161) are compared to 

real optimization runs. For the initialization, y(0) is chosen randomly such that 
∥∥y(0)

∥∥= R(0) for a given R(0) . The starting 
position is kept constant for consecutive runs of the same experiment. For the magnitude of R(0) it is ensured that the 
strategy starts far enough away from the local minima landscape. Given Fig. 1 with A = 1, the farthermost local minimizer 
is at yi ≈ 3 with resulting R ≈ 3

√
N for N-components, such that R(0) = 20

√
N > 3

√
N is chosen.

Considering the choice of σ ∗ one observes in experiments that larger mutation strengths (compared to a sphere-optimal 
σ ∗) increase the success probability P S of individual trials to converge to the global optimizer. This is due to the fact that 
large steps tend to overcome local attraction more easily. However, this comes at the expense of efficiency, since large steps 
are often overshooting the global optimizer. Therefore in Fig. 8, σ ∗ is chosen larger than the sphere-optimal value σ̂ ∗

sph, 
which can be obtained numerically from [5, Eq. (6.54)], but small enough to prevent negative progress. The aim was to 
obtain P S ≈ 1.

In order to aggregate the R(g)-data of multiple dynamic experiments, the median has shown to be a suitable measure 
of central tendency. The main issue is that due to fluctuations the R(g)-values of distinct ES-runs may differ by orders of 
magnitude, such that the mean yields biased results due to a skewed distribution. The median is more suitable in this case 
and a more stable measure.

In Fig. 8 one can observe three phases within the dynamics. First, linear convergence is observed for large R(g)-values, 
where the sphere function dominates. Then, a slow down is observed due to increasing effects of local attraction. For small 
R(g)-values, the ES descends into the global attractor basin and linear convergence can be observed again. One can see that 
the ϕi -iteration (blue) shows by far too much progress compared to ϕII

i -iteration. This is due to the first order model, which 
does not include loss terms and overestimates the progress significantly, see also discussion of result (96). Iteration via ϕII

i
(red) shows good results compared to the median curve, especially for larger μ and N (right plot). Better agreement for 
large populations is also due to reduced fluctuation effects, which were neglected at the beginning of Sec. 5.

In Fig. 9 the effect of reduced σ ∗ is investigated, which increases the probability of local convergence. The left plot 
shows σ ∗ = 5 with no globally converging runs, as the mutation strength is too low. Technically, for constant σ ∗ there 
is no local convergence as the algorithm never stops if R is not decreasing. Still, the experiments are stopped after some 
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Fig. 8. Comparison of real optimization runs with mean value dynamics using progress rates ϕi via (157) [dashed blue] and ϕII
i via (158) [dash-dotted red]. 

Gray lines show all 100 successful runs of Algorithm 1 and the black line shows the median thereof. The left plot shows (10/10, 40)-ES for N = 20 with 
σ ∗ = 7 (σ̂ ∗

sph = 5.7) and the right one (100/100, 200)-ES for N = 100 with σ ∗ = 30 (σ̂ ∗
sph = 18.3). For both experiments A = 1, and α = 2π are chosen. The 

resulting success probability P S = 1.

Fig. 9. Variation of σ ∗ for (100/100, 200)-ES for N = 100, A = 1, and α = 2π . From left to right σ ∗ = {5, 18.3, 25}, with σ̂ ∗
sph = 18.3, and success rate 

P S = {0, 0.45, 0.97}. The experiment with σ ∗ = 30 (P S = 1) was already shown in Fig. 8. Globally converging trials are shown in gray, and non-converging 
runs in light-orange. The median is taken over the globally converging runs, except for the left plot where none exist, in which the median over all 
unsuccessful runs is taken.

g-threshold is reached. The stagnating behavior of the ES around some R(g) can be illustrated using Fig. 3. For σ = 0.2
one has σ ∗ = σ N/R ≈ 0.9, which is small compared to σ̂ ∗

sph ≈ 5.7. Both left and right progress components of Fig. 3 are 
significantly influenced by the local attraction region at σ = 0.2. While some components may be improved (positive value 
left), others are worsened (negative value right) resulting in a cumulative effect of R(g)-stagnation. One way out can be 
increasing σ (or equivalently σ ∗). However, the local minima landscape changes with changing R and arbitrary σ ∗-increase 
is not possible. Stagnation may appear at different σ ∗ and R(g)-values depending on fitness and strategy parameters. For an 
active step-size adaptation, changing σ appropriately – without converging locally – poses a major challenge.

In the central plot of Fig. 9 roughly half of the runs are globally converging at increased σ ∗ = σ̂ ∗
sph. In this case the 

deterministic iteration follows a single converging path, as no fluctuations are modeled. The residual distance of the locally 
converging runs is reduced compared to ES-runs with σ ∗ = 5. Note that the convergence speed is faster (steeper negative 
slope) for the globally converging runs compared to σ ∗ = 30 of Fig. 8 due to sphere-optimal σ̂ ∗

sph. However, this comes with 
the disadvantage of a lower P S , as more trials are converging locally. The right plot with σ ∗ = 25 is similar to σ ∗ = 30
of Fig. 8, but with several non-converging runs. Again, the ES convergence speed is faster, if σ ∗ is chosen closer to σ̂ ∗

sph, 
but shows a slightly reduced P S -value. The overall prediction quality of the iterative mapping (160) is good and the results 
affirm the expectation, that relatively large mutations are favorable to maximize P S on the Rastrigin function.

To confirm the expectation that the approximation quality increases further for larger μ and N , experiments are shown 
in Fig. 10. First thing to notice is that positional fluctuations of the ES trials decrease further, such that nearly all runs 
show a similar R-dynamics. This is related to the intermediate recombination, see Eq. (34), as position y(g+1) is obtained by 
averaging over a large number of individuals. One can see good agreement, but for the left plot there is still some room for 
improvement. This is related to truncation ratio ϑ = 1/4, such that the Taylor expansion point in Eq. (70) via function g(xi)

is shifted by 
−1(ϑ). For ϑ = 1/2 and even larger N and μ (right plot), very good agreement is observed.
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Fig. 10. The left plot shows (1000/1000, 4000)-ES with σ ∗ = 110 for N = 1000, A = 1, and α = 2π . The right plot shows (10000/10000, 20000)-ES with 
σ ∗ = 400 for N = 10000 (same α and A), evaluated for 50 trials due to CPU resource restrictions.

6. Conclusion and outlook

In this paper the full first and second order progress rate analysis of the (μ/μI , λ)-ES has been presented. In order to 
obtain closed-form expressions for ϕi and ϕII

i it was necessary to consider the large dimensionality and large population 
assumption. While the latter does not present a serious issue because large populations are needed to ensure global con-
vergence, it was the key prerequisite to solve and simplify the expected value integrals. As the experiments have shown, 
the approximation quality of the progress rate expressions is rather good even for N as small as 20 and comparably small 
populations of μ = 10. For larger N and μ the approximation quality improves further, as expected. The first order progress 
rate result is able to model the local attraction effects on the Rastrigin function. This is a very important step, as all subse-
quent investigations in this paper are based on ϕi -results. The second order progress rate derivation was needed to obtain 
additional loss terms completing the progress model, which was especially needed for larger mutation strengths and close 
to the global optimizer.

Using the progress rate expressions, the dynamics of the evolution process have been investigated. There is a good 
agreement between the iterations and real ES-runs using median aggregation of the residual distance R to the global 
optimizer. As has been shown, depending on the choice of the normalized mutation strength, one can model global as 
well as local convergence behavior. Additionally, one observes a trade-off between efficiency and success rate, as relatively 
large mutations have to be chosen to maximize the success probability.

The conducted experiments assume scale-invariance, i.e., the mutation strength is controlled by the residual distance R . 
This is in contrast to the full self-adaptive ES where σ evolves during the ES run either by mutative self-adaptation (SA), 
cumulative step-size adaptation (CSA), or Meta-ES. The incorporation of the self-adaptation process will be the next step 
completing the analysis of the (μ/μI , λ)-ES on Rastrigin. To this end, the self-adaptation response (SAR) function must be 
derived. Combining N progress rates with the SAR function yields N + 1 evolution equations. In order to get manageable 
expressions that allow for analytic population sizing and expected runtime investigations, additional aggregation is needed. 
One possible approach would be the aggregation of individual parental yi components into the parental distance R modeling 
the expected progress as a function of the residual distance. This would reduce the number of evolution equations to two 
and making further analytic treatment more accessible. A first step in this direction has been done in [19].

Finally, the presented approach to model the ES-dynamics is based on mean value considerations. That is, fluctuations are 
not considered so far. Whether the approach presented can be extended to allow for the calculation of the global attractor 
convergence probability as a function of strategy and fitness parameters remains an open question.
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