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ABSTRACT
The highly multimodal Rastrigin test function is analyzed by de-
riving a new aggregated progress rate measure. It is derived as
a function of the residual distance to the optimizer by assuming
normally distributed positional coordinates around the global opti-
mizer. This assumption is justified for successful ES-runs operating
with sufficiently slow step-size adaptation. The measure enables
the investigation of further convergence properties. For moder-
ately large mutation strengths a characteristic distance-dependent
Rastrigin noise floor is derived. For small mutation strengths lo-
cal attraction is analyzed and an escape condition is established.
Both mutation strength regimes combined pose a major challenge
optimizing the Rastrigin function, which can be counteracted by
increasing the population size. Hence, a population scaling relation
to achieve high global convergence rates is derived which shows
good agreement with experimental data.

CCS CONCEPTS
• Theory of computation→ Theory of randomized search
heuristics; Probabilistic computation; • Mathematics of com-
puting→ Bio-inspired optimization.
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1 INTRODUCTION
Evolution Strategies (ES) have proven to be well suited for the
optimization of highly multimodal real-valued fitness functions
due to their underlying stochastic nature. Test functions such as
the Rastrigin function contain a huge number of local minima
scaling exponentially with the search space dimensionality 𝑁 . Sam-
pling the search space and applying multiple restarts with standard
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gradient-based optimization algorithms quickly becomes unfea-
sible. On the other side, ES achieve high success rates for global
convergence on certain multimodal functions, if sufficiently large
population sizes are chosen. Experimental investigations in [9]
indicate a non-exponential population scaling at most of 𝑂 (𝑁 2)
for the tested multimodal functions with the Rastrigin function
scaling sub-linearly in 𝑁 . However, there is little understanding
of how the ES is exploring the fitness landscape to find the global
optimizer without getting trapped in one of the local minima. This
paper investigates the convergence properties on the Rastrigin
function based on progress rate theory results of [11] and [12]. To
this end, a new aggregated progress rate is introduced modeling
the progress as a function of the residual distance to the optimizer.
The obtained results are compared to real ES-runs operating with
isotropic mutations and self-adaptation for step-size control.

In Sec. 2 the ES under investigation is introduced. In Sec. 3
the Rastrigin function is defined and averaging methods are dis-
cussed. Then, the method is applied to component-wise progress
rate equations in Sec. 4 obtaining an aggregated measure. In Sec. 5 a
population sizing relation is derived and compared to experimental
results. Local attraction is discussed in Sec. 6 and a characteristic
"escape" mutation strength is derived. Finally, in Sec. 7 conclusions
and an outlook are provided.

2 THE ES-ALGORITHM
The ES under investigation, see Algorithm 1, consists of 𝜇 parents
and 𝜆 offspring with truncation ratio 𝜗 = 𝜇/𝜆 (1 ≤ 𝜇 < 𝜆). Selection
of the 𝑚 = 1, ..., 𝜇 best individuals (out of 𝜆) is denoted by sub-
script "𝑚; 𝜆". Normally distributed isotropic mutations of strength 𝜎
are applied. Intermediate multi-recombination with equal weights
is used to obtain the parental location y(𝑔) = [𝑦 (𝑔)1 , ..., 𝑦

(𝑔)
𝑁
] in

the 𝑁 -dimensional search space for each generation 𝑔. For the 𝜎-
adaptation (self-adaptation) the offspring mutation strengths are
chosen from a log-normal distribution with learning parameter 𝜏 . A
smaller 𝜏-value therefore yields a slower 𝜎-adaptation, which will
be important later. The default choice is 𝜏 = 1/

√
2𝑁 , see [10], which

ensures optimal performance on the sphere in the limit 𝑁 → ∞.
Recombination also applies to selected 𝜎-values.

3 RASTRIGIN FUNCTION AND AVERAGING
The Rastrigin test function 𝑓 is defined for a real-valued search
vector y = [𝑦1, ..., 𝑦𝑁 ] as

𝑓 (y) =
𝑁∑︁
𝑖=1

[
𝑦2
𝑖 +𝐴(1 − cos(𝛼𝑦𝑖 ))

]
, (1)
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Algorithm 1 (𝜇/𝜇𝐼 , 𝜆)-𝜎SA-ES
1: 𝑔← 0
2: initialize

(
y(0) , 𝜎 (0) )

3: repeat
4: for 𝑙 = 1, ..., 𝜆 do
5: 𝜎̃𝑙 ← 𝜎 (𝑔)e𝜏N𝑙 (0,1)

6: x̃𝑙 ← 𝜎̃𝑙N𝑙 (0, 1)
7: ỹ𝑙 ← y(𝑔) + x̃𝑙
8: 𝑓𝑙 ← 𝑓 (ỹ𝑙 )
9: end for
10: (𝑓1;𝜆, ..., 𝑓𝑚;𝜆, ..., 𝑓𝜇;𝜆) ← sort(𝑓1, ..., 𝑓𝜆)
11: y(𝑔+1) ← 1

𝜇

∑𝜇

𝑚=1 ỹ𝑚;𝜆

12: 𝜎 (𝑔+1) ← 1
𝜇

∑𝜇

𝑚=1 𝜎̃𝑚;𝜆
13: 𝑔← 𝑔 + 1
14: until termination criterion

with oscillation amplitude 𝐴 and frequency 𝛼 . The function is min-
imized and the global minimizer is located at ŷ = 0. All simulations
in this paper will be conducted at default 𝛼 = 2𝜋 (unless stated
otherwise). Depending on 𝐴, the function shows a finite number
𝑀 of local attractors for each of the 𝑁 dimensions, such that the
function contains 𝑀𝑁 − 1 local minima scaling exponentially with
𝑁 . Note that for |𝑦𝑖 | > 𝛼𝐴/2 the derivative 𝜕𝑓 /𝜕𝑦𝑖 ≠ 0 (for any 𝑖),
such that no further local minima occur.

As an introductory example, real optimization runs are shown
in Fig. 1 using Algorithm 1. The global convergence is investigated
by evaluating the dynamics of the parental distance to the global
optimizer denoted by𝑅 (𝑔) =



y(𝑔)

. All runs are initialized far away
from the local attractor landscape. The black line shows the median
of all successful runs (the mean can also be used, but the median
is more robust w.r.t. outliers). The global convergence probability
is denoted as 𝑃𝑆 . After the initial phase, the 𝜎SA-ES maintains
a nearly constant normalized mutation strength 𝜎∗ ≈ 30 with a
characteristic dip at 𝑔 ≈ 200. 𝜎∗ is defined as

𝜎∗ =
𝜎𝑁

𝑅
. (2)

A constant 𝜎∗-level ensures scale-invariance on the sphere function
and therefore linear convergence. The observations from Fig. 1 will
be investigated in more detail throughout the paper.

The Rastrigin fitness (1) is defined as a function of y = [𝑦1, ..., 𝑦𝑁 ].
Convergence however is usually measured as a function of the resid-
ual distance 𝑅, see Fig. 1. Quantity 𝑅 is therefore an aggregated
measure over all components. In general, the convergence proper-
ties can be investigated using progress rate equations (see Sec. 4).
A component-wise progress rate however, derived and discussed in
[11], has the disadvantage of not being an aggregated measure. As
an example, positive progress (convergence) between two genera-
tions occurs for decreasing 𝑅 (𝑔+1) < 𝑅 (𝑔) even if some components
deteriorate and show negative progress. Furthermore, analytic treat-
ment of 𝑁 equations is unfeasible for large dimensionalities. Hence,
the idea will be to express y-dependent functions as average values
over all positions satisfying ∥y∥ = 𝑅 to obtain aggregated measures.
First, the approach is presented on the Rastrigin function and later
transferred to its corresponding progress rate in Sec. 4.

Figure 1: Dynamic runs (500 trials) of Algorithm 1 using
(100/100𝐼 , 200)-𝜎SA-ES on the Rastrigin function with 𝑁 = 100
and 𝐴 = 1 at learning parameter 𝜏 = 1/

√
2𝑁 . The upper plot

shows the 𝑅-dynamics, while the lower plot shows the nor-
malizedmutation strength (2). The green-yellow color palette
depicts globally converging runs, while the cyan-magenta
colors show locally converging runs. The black line marks
themedian of all successful runs. Themeasured success prob-
ability 𝑃𝑆 = 0.91.

The averaging problem to be solved is

𝑓 (𝑅) B average
∥y∥=𝑅

[𝑓 (y)] . (3)

An approach to obtain 𝑓 (𝑅) is to integrate the function over the
(𝑁 − 1)-dimensional sphere surface 𝑆𝑁 (𝑅) with radius ∥y∥ = 𝑅

and normalize by the sphere surface according to

𝑓 (𝑅) = 1
𝑆𝑁

∫
∥y∥=𝑅

𝑓 (y) d𝑠 , (4)

where d𝑠 denotes the (hyper-)surface element. The sphere surface
area for 𝑁 ≥ 2 evaluated using the gamma function Γ is given by

𝑆𝑁 (𝑅) =
2𝜋𝑁 /2𝑅𝑁−1

Γ(𝑁 /2) . (5)

Applying (4) to (1), the first two terms can be evaluated easily noting
that 𝑅2 =

∑
𝑖 𝑦

2
𝑖
. Integrating over a constant yields 𝑆𝑁 . Therefore,

one gets the intermediate result

𝑓 (𝑅) = 𝑅2 + 𝑁𝐴 +𝑇 (𝑅), (6)

with

𝑇 (𝑅) B − 𝐴

𝑆𝑁

∫
∥y∥=𝑅

𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 ) d𝑠 . (7)
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Closed-form solutions of (7) can be obtained for 𝑁 = 1 and 𝑁 = 2.
Starting with 𝑁 = 1 only two discrete points are relevant (no inte-
gration necessary) with two possible solutions 𝑦1 = ±𝑅. Averaging
over two points therefore yields

𝑇 (𝑅) = −𝐴
2

∑︁
𝑦1=±𝑅

cos(𝛼𝑦1) = −𝐴 cos(𝛼𝑅) . (8)

For𝑁 = 2 one can use polar coordinates (𝑦1, 𝑦2) = (𝑅 cos𝜙, 𝑅 sin𝜙)
with derivative vector d(𝑦1,𝑦2 )

d𝜙 = (−𝑅 sin𝜙, 𝑅 cos𝜙) on 𝜙 ∈ [0, 2𝜋).
Additionally, one has 𝑆2 = 2𝜋𝑅. Therefore, inserting this parametriza-
tion into (7) and using path element length




 d(𝑦1,𝑦2 )
d𝜙




 = 𝑅 one has

𝑇 (𝑅) = − 𝐴

2𝜋𝑅

∫ 2𝜋

0

2∑︁
𝑖=1

cos [𝛼𝑦𝑖 (𝑅, 𝜙)]




d(𝑦1, 𝑦2)

d𝜙





 d𝜙

= − 𝐴

2𝜋

∫ 2𝜋

0
[cos(𝛼𝑅 cos𝜙) + cos(𝛼𝑅 sin𝜙)] d𝜙 .

(9)

The integrals obtained in (9) can be solved in terms of Bessel func-
tions of the first kind 𝐽𝑛 (𝑥) with 𝑛 ≥ 0 by applying the integral
identity [1, p. 360, 9.1.18]

𝐽0 (𝑥) =
1
𝜋

∫ 𝜋

0
cos(𝑥 sin 𝑡) d𝑡 = 1

𝜋

∫ 𝜋

0
cos(𝑥 cos 𝑡) d𝑡 . (10)

Due to the periodicity integrating cos 𝑡 and sin 𝑡 over [0, 𝜋] yields
the same contribution as the integration over [𝜋, 2𝜋]. Thus, one
can extend the integral bounds of (10) as

2𝐽0 (𝑥) =
1
𝜋

∫ 2𝜋

0
cos(𝑥 sin 𝑡) d𝑡 = 1

𝜋

∫ 2𝜋

0
cos(𝑥 cos 𝑡) d𝑡 . (11)

Comparing (9) with (11) and setting 𝑥 = 𝛼𝑅, the expression (9) is
evaluated as

𝑇 (𝑅) = − 𝐴

2𝜋
[2𝜋 𝐽0 (𝛼𝑅) + 2𝜋 𝐽0 (𝛼𝑅)] = −2𝐴𝐽0 (𝛼𝑅). (12)

The final result for 𝑓 (𝑅) is summarized as

𝑓 (𝑅) = 𝑅2 +𝐴(1 − cos(𝛼𝑅)) for 𝑁 = 1 (13)

𝑓 (𝑅) = 𝑅2 + 2𝐴(1 − 𝐽0 (𝛼𝑅)) for 𝑁 = 2. (14)

Examples of result (13) and (14) are shown in Fig. 2. The analytic
equations are compared to sampled results, where for each 𝑅 ran-
dom isotropic positions are chosen with ∥y∥ = 𝑅 and averaged over
104 trials. Excellent agreement can be observed. Furthermore, one
notices a decrease of the oscillation effect when 𝑁 is increased. This
will be useful for the subsequent approach. Unfortunately, inte-
gral (4) yields analytically exact results only for the cases 𝑁 < 3. In
the context of progress rate theory of Sec. 4 an approach is needed
which can be applied to any arbitrary large dimensionality 𝑁 .

The approach presented now will evaluate the average value of
𝑓 (y) assuming independent, normally distributed random coordi-
nates 𝑦𝑖 with zero mean and variance 𝜎2

𝑦 according to

𝑦𝑖 ∼ 𝜎𝑦N(0, 1) . (15)

The approach can be considered as averaging by stochastic sam-
pling (assuming large 𝑁 ) instead of analytic integration. For the

Figure 2: Average Rastrigin function evaluated for 𝐴 = 10 as
a function of 𝑅. The solid black lines show sampled results
using Eq. (1) for 𝑁 = 1 and 𝑁 = 2, respectively. The overlaid
dotted green line shows (13) and the dashed cyan line (14).

Figure 3: Average Rastrigin function evaluated for 𝐴 = 10 as
a function of 𝑅. The solid black lines show sampled results
of Eq. (1). The overlaid dotted green lines show Eq. (22) for
𝑁 = {3, 10, 100, 1000}, from bottom to top.

determination of 𝜎𝑦 from (15) one demands

𝑅2 !
= E

[
𝑁∑︁
𝑖=1

𝑦2
𝑖

]
= 𝜎2

𝑦 E

[
𝑁∑︁
𝑖=1
N2
𝑖 (0, 1)

]
= 𝜎2

𝑦 E
[
𝜒2
𝑁

]
= 𝜎2

𝑦𝑁 . (16)

It was used that the sum over 𝑁 independent standard normally
distributed variables squared is equal to the chi-squared distributed
variable 𝜒2

𝑁
with E

[
𝜒2
𝑁

]
= 𝑁 . Solving (16) for 𝜎𝑦 , expression (15)

can be rewritten as

𝑦𝑖 ∼
𝑅
√
𝑁
N(0, 1) . (17)

Equation (17) will be useful for averaging sums over trigonometric
functions of 𝑦𝑖 , where analytic integration is unfeasible. Further-
more, successful ES runs on the Rastrigin function operating under
default step-size adaptation also show normally distributed 𝑦𝑖 as
in (17), see also experiments in Fig. 4. This property is used again
in Sec. 4. As 𝑦𝑖 is treated as a random variate for the cosine terms,
Eq. (1) is now rewritten as

𝑓 (𝑅,𝑌 ) ∼ 𝑅2 + 𝑁𝐴 −𝐴𝑌, (18)
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with 𝑌 containing the sum over the random terms

𝑌 B
𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 ) . (19)

By the Central Limit Theorem in the limit 𝑁 → ∞, the sum over
i.i.d. variates approaches a normal distribution with 𝑌 ∼ E [𝑌 ] +√︁

Var [𝑌 ]N (0, 1). Additionally, it is shown in Appendix (A.7) that√︁
Var [𝑌 ]
E [𝑌 ]

𝑁→∞−→ 0, (20)

with ratio
√︁

Var [𝑌 ]/E [𝑌 ] vanishing as 𝑂 (1/
√
𝑁 ). In the asymp-

totic limit the fluctuation term of 𝑌 is negligible, which means
that the random variate can be replaced by its expected value

E [𝑌 ] = 𝑁 e−
1
2
(𝛼𝑅)2
𝑁 evaluated in Appendix (A.1). Equation (18)

therefore yields (overline denoting the average in the limit 𝑁 →∞)

𝑓 (𝑅) = 𝑅2 + 𝑁𝐴 −𝐴 E [𝑌 ] (21)

= 𝑅2 + 𝑁𝐴

(
1 − e−

1
2
(𝛼𝑅)2
𝑁

)
. (22)

Exemplary evaluations of (22) are shown in Fig 3. The derived
results match the sampled results well. Smaller deviations are ob-
served for small values 𝑁 = 3 or 𝑁 = 10, which was expected.
In the limit 𝑁 → ∞ the deviations are smoothed out. The limits
𝑅 → 0 and 𝑅 →∞ yield 𝑅2-dependent functions, i.e., sphere func-
tions. For 𝑅 → ∞ the exponential vanishes and 𝑁𝐴 is negligible,

while for 𝑅 → 0 one has e−
1
2
(𝛼𝑅)2
𝑁 = 1 − 1

2
(𝛼𝑅)2
𝑁
+ 𝑂 (𝑅4) giving

𝑓 (𝑅) = (1 + 𝛼2𝐴
2 )𝑅

2.

4 PROGRESS RATE
4.1 Derivation
The method introduced in Sec. 3 will now be applied to results
for the progress rate on the Rastrigin function. The progress rate
(denoted by 𝜑) measures the expected positional change in search
space between two generations𝑔→ 𝑔+1 as a function of fitness and
ES parameters. A positive value corresponds to the ES approaching
the optimizer and vice versa. The second order component-wise
progress rate 𝜑 II

𝑖
for the parental location y(𝑔) is defined as [8]

𝜑 II
𝑖 B E

[ (
𝑦
(𝑔)
𝑖

)2
−

(
𝑦
(𝑔+1)
𝑖

)2 �� y(𝑔) , 𝜎 (𝑔) ] . (23)

The second order refers to the square of 𝑦𝑖 -values which ensures
𝜑 II
𝑖

> 0 for (𝑦 (𝑔+1)
𝑖

)2 < (𝑦 (𝑔)
𝑖
)2 independent of the sign of 𝑦𝑖 . A

second order model is needed for a correct model of convergence
involving large mutation strengths. The expected values for the de-
termination of (23) were already evaluated in [11] in the asymptotic
limit 𝑁, 𝜇, 𝜆 →∞ (𝜗 = 𝜇/𝜆 = const). The result yields

𝜑 II
𝑖 = 𝑐𝜗

𝜎2

𝐷𝑄

(
4𝑦2

𝑖 + e−
1
2 (𝛼𝜎 )

2
2𝛼𝐴𝑦𝑖 sin (𝛼𝑦𝑖 )

)
− 𝜎2

𝜇
. (24)

In (24) the asymptotic progress coefficient [11] is given by

𝑐𝜗 =
e−

1
2 [Φ−1 (𝜗 )]2
√

2𝜋𝜗
, (25)

with Φ−1 (·) denoting the quantile function of the standard normal
variate. The 𝑐𝜗 is related to the progress coefficient 𝑐𝜇/𝜇,𝜆 ≃ 𝑐𝜗 (for
𝜇, 𝜆 →∞ with constant 𝜗 = 𝜇/𝜆), see also [6, p. 249]. The quality
gain variance 𝐷2

𝑄
at location y given 𝜎 was evaluated in [12] giving

𝐷2
𝑄 (y) =

𝑁∑︁
𝑖=1

{
4𝜎2𝑦2

𝑖 + 2𝜎4

+ 𝐴2

2

[
1 − e−(𝛼𝜎 )

2 ] [
1 − cos(2𝛼𝑦𝑖 )e−(𝛼𝜎 )

2 ]
+ 2𝐴𝛼𝜎2e−

1
2 (𝛼𝜎 )

2 [
𝛼𝜎2 cos(𝛼𝑦𝑖 ) + 2𝑦𝑖 sin(𝛼𝑦𝑖 )

]}
.

(26)

The first term of (24) is usually referred to as the gain term, while
the second term is the loss term characteristic for intermediate
recombination. A distinct property of the Rastrigin function is that
the gain term (𝑦𝑖 -dependent) is not necessarily positive as it is the
case for unimodal functions. This property will be discussed later.

The first step to obtain an𝑅-dependent aggregation of expression
(23) is to sum over all 𝑁 components

𝑁∑︁
𝑖=1

𝜑 II
𝑖 = E

[
𝑁∑︁
𝑖=1

(
𝑦
(𝑔)
𝑖

)2
−

𝑁∑︁
𝑖=1

(
𝑦
(𝑔+1)
𝑖

)2
]

= E
[(
𝑅 (𝑔)

)2
−

(
𝑅 (𝑔+1)

)2
]
,

(27)

such that one can define the 𝑅-dependent progress rate

𝜑 II
𝑅 B E

[ (
𝑅 (𝑔)

)2
−

(
𝑅 (𝑔+1)

)2 ��𝑅 (𝑔) , 𝜎 (𝑔) ] . (28)

Given the sphere function 𝑓sph (𝑅) = 𝑅2, one can relate (28) to the

sphere quality gain E
[
𝑓sph (𝑅 (𝑔+1) ) − 𝑓sph (𝑅 (𝑔) )

]
= −𝜑 II

𝑅
, such that

the quality gain normalization [5, p. 173] is applicable. This yields
the normalized 𝑅-dependent progress rate (labeled by the asterisk
"∗")

𝜑
II,∗
𝑅
B

𝑁

2𝑅2𝜑
II
𝑅 . (29)

For 𝑁 → ∞ one has 𝜑 II,∗
𝑅
≃ 𝜑∗sph, see [2, p. 16], yielding the nor-

malized sphere progress rate. Expression (29) has two important
properties. First, it is an aggregated progress rate measure over all
𝑁 components, which is new for the Rastrigin function. Second,
its relation to the sphere function enables direct comparison of
progress rates.

A prerequisite for the further derivation will be the assumption
of normally distributed 𝑦𝑖 ∼ N(0, 𝑅2/𝑁 ), see (17). This property
is experimentally confirmed in Fig. 4, using the data of 500 trials
shown in Fig. 1, displayed at two residual distances. Good agree-
ment is observed between the expected density (red curve) and the
histogram. Each component contributes roughly as 𝑦2

𝑖
≈ 𝑅2/𝑁 to

the overall residual distance 𝑅2. This concept of "equal contribu-
tion" is not new and was investigated in [7] for the quality gain
on the ellipsoid. Slightly larger deviations occur at 𝑅 ≈ 1 (right),
where local attraction is more significant, see also later discussion
of Fig. 12. At small mutation strengths where local attraction occurs
the assumption of course breaks down.
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Figure 4: Distribution of realized 𝑦𝑖 -values (𝑖 = 1, ..., 𝑁 over
500 trials) for (100/100𝐼 , 200)-ES, 𝑁 = 100,𝐴 = 1, and 𝜏 = 1/

√
2𝑁

at 𝑅 ≈ 100 (left) and 𝑅 ≈ 1 (right). The red solid curve shows
the density of the normal distribution with 𝑦𝑖 ∼ N(0, 𝑅2/𝑁 ).

Now 𝜑 II
𝑅
is derived starting from (24). Performing the summation

one gets

𝜑 II
𝑅 (𝑅, y) = 𝑐𝜗

𝜎2

𝐷𝑄

(
4𝑅2 + e−

1
2 (𝛼𝜎 )

2
2𝛼𝐴

𝑁∑︁
𝑖=1

𝑦𝑖 sin (𝛼𝑦𝑖 )
)
− 𝑁 𝜎2

𝜇
.

(30)

Similarly, the summation of the variance terms in (26) yields

𝐷2
𝑄 (𝑅, y) = 4𝜎2𝑅2 + 2𝑁𝜎4

+ 𝐴2

2

[
1 − e−(𝛼𝜎 )

2 ] 𝑁∑︁
𝑖=1

[
1 − cos(2𝛼𝑦𝑖 )e−(𝛼𝜎 )

2 ]
+ 2𝐴𝛼𝜎2e−

1
2 (𝛼𝜎 )

2 [
𝛼𝜎2

𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 ) + 2
𝑁∑︁
𝑖=1

𝑦𝑖 sin(𝛼𝑦𝑖 )
]
.

(31)

Analogous to (19) and (20), the sums over the 𝑦𝑖 -dependent trigono-
metric terms of (30) and (31) will be replaced by their respective
expectation values assuming 𝑦𝑖 ∼ 𝑅√

𝑁
N(0, 1) and neglecting fluc-

tuations for 𝑁 → ∞. The needed expected values are derived in
Appendix (A.1), (A.2), and (A.3) giving

E

[
𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 )
]
= 𝑁 e−

1
2
(𝛼𝑅)2
𝑁 (32)

E

[
𝑁∑︁
𝑖=1

cos(2𝛼𝑦𝑖 )
]
= 𝑁 e−2 (𝛼𝑅)

2
𝑁 (33)

E

[
𝑁∑︁
𝑖=1

𝑦𝑖 sin(𝛼𝑦𝑖 )
]
= 𝛼𝑅2e−

1
2
(𝛼𝑅)2
𝑁 . (34)

Furthermore, it is shown inAppendixA that
√︁

Var [∑𝑖 (·)]/E [
∑
𝑖 (·)]

→ 0 for 𝑁 → ∞ for all three sums. Finally, a fully 𝑅-dependent
expression can be given for the progress rate

𝜑 II
𝑅 = 𝑐𝜗

2𝑅2𝜎2

𝐷𝑄 (𝑅)

(
2 + 𝛼2𝐴e−

𝛼2
2

(
𝜎2+𝑅2

𝑁

) )
− 𝑁 𝜎2

𝜇
. (35)

Figure 5: One generation experiments with 104 repetitions
for (100/100𝐼 , 200)-ES, 𝑁 = 100, 𝐴 = 1 at constant 𝑅 = 7. Black
circles show experimentally evaluated (23), summed over 𝑖,
for constant y = [0.7, ..., 0.7]. Blue crosses show (28), where y
is randomly sampled for each trial, such that ∥y∥ = 𝑅. The
green dash-dotted line shows (24) (summed over 𝑖) and the
red dashed line (35). All values are normalized using (29). The
error bars are vanishing and not shown.

Analogously, the 𝑅-dependent quality gain variance yields

𝐷2
𝑄 (𝑅) = 4𝑅2𝜎2 + 2𝑁𝜎4+

+ 𝑁𝐴2

2

[
1 − e−(𝛼𝜎 )

2 ] [
1 − e−𝛼

2
(
𝜎2+2𝑅2

𝑁

) ]
+ 2𝑁𝐴𝛼2𝜎2e−

𝛼2
2

(
𝜎2+𝑅2

𝑁

) [
𝜎2 + 2

𝑅2

𝑁

]
.

(36)

Result (35) is important as it measures the progress on the Rastrigin
function in 𝑅-space aggregating the individual progress rates 𝜑 II

𝑖
.

Note that the first term of (35), i.e., the gain term, is now strictly
positive, which is in contrast to Eq. (24).

One-generation experiments are conducted in Fig. 5 by perform-
ing single optimization steps for given mutation strength and av-
eraging the results of progress rates (23) and (28), respectively,
over 104 trials. Furthermore, the simulations are compared to an-
alytic expressions (24) and (35). To this end, two configurations
(constant 𝑅 = 7) are overlaid with one having y fixed, and one
randomly sampled y-values with ∥y∥ = 𝑅. The values are normal-
ized using (29) and displayed using scale-invariant mutations 𝜎∗
of Eq. (2). All results are similar for moderate and large 𝜎∗-values
showing good agreement. Differences emerge at small 𝜎∗. The fixed
y = [0.7, ..., 0.7] was chosen to lie within a local attractor. In this
case

∑
𝑖 𝜑

II
𝑖
(y) correctly predicts negative progress for small 𝜎∗,

while 𝜑 II
𝑅
falsely assumes normally distributed 𝑦𝑖 -coordinates and

predicts positive progress. This error vanishes for large 𝜎∗, i.e.,
when the ES is searching at larger scales. Therefore, one can con-
clude that 𝜑 II

𝑅
is a suitable aggregated measure of component-wise

𝜑 II
𝑖
, if sufficiently large mutations are applied. Indeed, real (success-

ful) ES-runs, such as in Fig. 1 or later in Fig. 6, tend to maintain high
𝜎∗-levels, such that the normal assumption for 𝑦𝑖 stays valid. Local
attraction (assuming small 𝜎∗) is investigated further in Sec. 6.

A few important remarks regarding results (35) and (36) are
made now. Given expression (36), the variance can be written more
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compactly as

𝐷2
𝑄 = 𝐷2

sph + 𝐷
2
Ras, (37)

where 𝐷2
sph = 4𝑅2𝜎2 + 2𝑁𝜎4 corresponds to the quality gain vari-

ance of the sphere function [6] . The term 𝐷2
Ras = 𝐷2

𝑄
(𝑅) − 𝐷2

sph is
Rastrigin-specific. In the limit of vanishing exponential functions
(𝑅 → ∞), see later in Sec. 5, the term will simplify significantly
giving the so-called Rastrigin (maximum) noise strength

𝐷2
Ras ≃

𝑁𝐴2

2
C 𝜎2

Ras . (38)

Having derived (35) and (36), the sphere progress rate𝜑∗sph can be
recovered as a special case. It can be obtained from 𝜑 II

𝑅
in multiple

ways. The technical details are not shown since the calculations are
simple and straightforward, only the main steps are explained now.
As the normalized progress is constant on the sphere for constant
scale-invariant mutations 𝜎∗, Eqs. (35) and (36) need to be rewritten
as 𝜑 II

𝑅
(𝜎∗) and 𝐷𝑄 (𝜎∗) by setting 𝜎 = 𝜎∗𝑅/𝑁 via (2). Furthermore,

normalization (29) needs to be applied. One way to recover 𝜑∗sph
is by setting 𝐴 = 0 or 𝛼 = 0, which removes all Rastrigin-specific
terms. Another way is applying the limit 𝑅 →∞, which suppresses
the exponential terms. Additionally, the constant term 𝑁𝐴2/2 is
negligible in (36) for 𝑅 → ∞, see also Appendix (B.5). The third
way is the limit 𝑅 → 0. All exponentials contain arguments being
a function 𝑔(𝑅2) after inserting 𝜎 = 𝜎∗𝑅/𝑁 . Performing a Taylor
expansion yields e−𝑔 (𝑅

2 ) = 1−𝑔(𝑅2)+𝑂
(
𝑅4) with negligible higher

order terms. After simplification, all three approaches yield

𝜑
II,∗
𝑅

= 𝜑∗sph =
𝑐𝜗𝜎
∗√︁

1 + 𝜎∗2/2𝑁
− 𝜎∗2

2𝜇
, (39)

and for 𝑁 →∞ the well-known asymptotic formula

𝜑∗sph = 𝑐𝜗𝜎
∗ − 𝜎∗2

2𝜇
. (40)

Both (39) and (40) are scale-invariant (𝑅-independent) expressions.
As a conclusion, the Rastrigin progress rate yields the sphere progress
rate in the limits 𝑅 →∞ and 𝑅 → 0. This result is important and
was expected from (1), as 𝑦2

𝑖
is dominating at large scales. For

𝑦𝑖 → 0 the global attractor is essentially a quadratic function.
An important property of 𝜑∗sph is that for sufficiently small 𝜎∗

one has 𝜑∗sph > 0, while for too large 𝜎∗-values the progress rate
becomes negative. The second (non-trivial) zero of (39), denoted by
𝜎∗𝜑0 , is derived in Appendix B by setting 𝜑∗sph = 0 and yields in (B.8)

𝜎∗𝜑0 =

[(
𝑁 2 + 8𝑁𝑐2

𝜗
𝜇2

)1/2
− 𝑁

]1/2
. (41)

Due to the same global (quadratic) structure, result (41) will also be
applicable to the Rastrigin function as an upper bound for 𝜎∗.

4.2 Progress Landscape
A more detailed analysis of the progress rate (35) is provided now.
Given fitness parameters 𝐴, 𝛼 , and 𝑁 , the expression 𝜑

II,∗
𝑅
(𝜎∗, 𝑅) is

essentially a function of only two variables. Therefore, the results
will be displayed in a two-dimensional 𝜎∗-𝑅-space denoted as the
progress landscape. Note that for the sphere function, see Eqs. (39)
and (40), the progress rate is constant for all 𝑅 (given 𝜎∗ and 𝑁 ).

Figure 6: Progress rate 𝜑 II,∗
𝑅

for (100/100𝐼 , 200)-ES with 𝑁 = 100
and𝐴 = 1. High progress rate values are shown in yellow and
blue values indicate small (negative) progress. The boundary
𝜑

II,∗
𝑅

= 0 is shown in bold white. The black (left) curve is
displaying the median dynamics of Fig. 1 (𝜏 = 1/

√
2𝑁 , 𝑃𝑆 =

0.91), while the red (right) curve is showing the same ES with
𝜏 = 1/

√
8𝑁 and 𝑃𝑆 = 0.99.

Figure 6 shows an example progress landscape, evaluated for
𝜎∗ ∈ [0, 𝜎∗

𝑒𝑛𝑑
] and 𝑅 ∈ [10−1, 102]. The value 𝜎∗

𝑒𝑛𝑑
is chosen

slightly larger than 𝜎∗𝜑0 , see Eq. (41), as for 𝜎
∗ > 𝜎∗𝜑0 the progress

rate gets negative. The 𝑅-range was chosen large enough to pro-
vide good visibility of the relevant characteristics. Thin black lines
display regions of equal progress rate level. For 𝑅 →∞ and 𝑅 → 0
the sphere limit is recovered (vertical lines of constant progress).

The median of real runs (black and red curves) show a charac-
teristic 𝜎∗-drop (also visible in Fig. 1), which is directly related to
the progress rate zero. The ESs are moving around the progress
dip in 𝜎∗-𝑅-space. Interestingly, the 𝜎SA-ES with 𝜏 = 1/

√
2𝑁 has a

global convergence probability 𝑃𝑆 = 0.91, while 𝜏 = 1/
√

8𝑁 yields
𝑃𝑆 = 0.99. Maximizing 𝜎∗ ⪅ 𝜎∗𝜑0 therefore maximizes 𝑃𝑆 , which
is associated with a smaller learning parameter 𝜏 . This effect can
also be observed for the CSA-ES (cumulative step-size adaptation),
where a higher 𝑃𝑆 is observed for smaller cumulation constant
values (due to a slower change of 𝜎). The downside of large muta-
tion strengths is less efficiency optimizing the sphere limits (the
sphere-optimal value for the (100/100𝐼 , 200)-ES, see Fig. 6, is at
𝜎∗ ≈ 19). The respective median 𝑅-dynamics reaches the stop-
ping value 𝑅 = 10−3 at 𝑔 ≈ 400 (𝜏 = 1/

√
2𝑁 ), while 𝑔 ≈ 1100 for

𝜏 = 1/
√

8𝑁 .
One observes that 𝜑 II,∗

𝑅
> 0 for sufficiently small 𝜎∗. This means

that positive progress is expected at any𝑅 for arbitrary small𝜎∗ > 0,
which contradicts experimental observations, see also Fig. 5, as
small 𝜎∗ significantly increases the local convergence probability.
Hence, local attraction is not modeled correctly by 𝜑 II,∗

𝑅
. Further-

more, the progress dip of Fig. 6 is not related to single local attractors.
It is a cumulative effect of oscillations in all 𝑁 dimensions related
to Rastrigin noise term (38). This is investigated in the next section.
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5 CONVERGENCE AND POPULATION SIZING
In this section the convergence properties on the Rastrigin function
are discussed. Global convergence (in expectation) requires𝜑 II,∗

𝑅
> 0

for 𝑅 ∈ (0,∞). The boundary 𝜑
II,∗
𝑅

= 0, see Fig. 6, is therefore of
most interest, especially the progress dip and its location in 𝜎∗-𝑅-
space. As it is shown in Appendix B, a closed-form solution can only
be obtained under certain (simplified) assumptions. An analytical
solution for 𝑅(𝜎∗), such that 𝜑 II,∗

𝑅
= 0, cannot be given due to the

non-linearity of the underlying equations.
In the limit of 𝑅 → ∞, all exponentials of (35) and (36) vanish.

The resulting equation for 𝜑 II,∗
𝑅
(𝜎∗, 𝑅) = 0 simplifies significantly

with 𝐷2
𝑄

= 𝐷2
sph + 𝑁𝐴2/2, see (37), such that a fourth order poly-

nomial is obtained in Eq. (B.9) as

𝜎∗4 + 2𝑁𝜎∗2 + 𝑁 4𝐴2

4𝑅4 − 8𝑁𝑐2
𝜗
𝜇2 = 0. (42)

Solving (42) for 𝑅 yields the zero-progress line

𝑅𝜑0 (𝜎∗) =
(

1
4

𝑁 4𝐴2

8𝑁𝑐2
𝜗
𝜇2 − 2𝑁𝜎∗2 − 𝜎∗4

)1/4

, (43)

which is visualized in Fig. 7 as a black dashed line. An important
relation to the noisy sphere model can be made. In [3] the resid-
ual location error 𝑅∞ was derived for the (𝜇/𝜇𝐼 , 𝜆)-ES assuming a
constant noise strength 𝜎𝜖 in the limit 𝜎∗ → 0 as

𝑅∞ ≃
√︄

𝜎𝜖𝑁

4𝑐𝜇/𝜇,𝜆𝜇
. (44)

Applying the limit 𝜎∗ → 0 to Eq. (43), identifying the constant
noise strength of the Rastrigin function (for sufficiently large 𝑅) as
𝜎2
Ras = 𝑁𝐴2/2 via (38) yields

𝑅𝜑0

��
𝜎∗=0 =

(
𝑁 3𝐴2

32𝑐2
𝜗
𝜇2

)1/4

=

√︄
𝜎Ras𝑁

4𝑐𝜗 𝜇
, (45)

which corresponds to result (44) with 𝑐𝜇/𝜇,𝜆 ≃ 𝑐𝜗 and 𝜎𝜖 = 𝜎Ras.
Results (43) and (45) explain the 𝜎∗-decrease observed in Fig. 1

and Fig. 6, occurring for the ES approaching the Rastrigin noise
floor. The red curve (𝜏 = 1/

√
8𝑁 ) decreases 𝜎∗ to have positive

progress at all, while the black curve (𝜏 = 1/
√

2𝑁 ) exhibits smaller
𝜎∗-values keeping a larger distance to the 𝜑 II,∗

𝑅
= 0 boundary. Thus,

the latter realizes a larger local progress. This is the result of the
faster adaptation of 𝜎 (due to the larger 𝜏). As a result, one has
smaller mutations which are in turn more prone to be trapped in
a local attractor. This is reflected by a lower success probability
𝑃𝑆 . The smaller 𝜏 , however, yields a larger 𝑃𝑆 -value by keeping a
higher 𝜎∗-level.

In the limit of 𝑅 → 0, 𝜎∗ increases again, as the ES reaches
the global attractor optimizing a sphere function with constant 𝜎∗
(same level as for 𝑅 →∞). Since there is no closed-form solution of
the progress dip location, a different approach is needed to model
the transition point. Recalling that 𝑅𝜑0 of (43) was derived in the
limit of vanishing exponential terms, a natural extension of this
model is to parametrize the point at which the terms are vanishing.
This can also be motivated by looking at Eq. (22) and Fig. 3, where
the exponential term models the transition between the sphere
limits. Hence, a transition relation 𝑅tr (𝜎∗) is introduced. It can

Figure 7: Progress rate 𝜑 II,∗
𝑅

for (100/100𝐼 , 200)-ES with 𝑁 = 100
and 𝐴 = 3. The black dashed line shows Eq. (43). Two lines
show Eq. (46) with 𝛿 = 5 (yellow, top) and 𝛿 = 1 (magenta,
bottom), respectively. Crosses indicate the intersection points
obtained by Eq. (49). Note that the progress dip at 𝐴 = 3 is
significantly larger compared to 𝐴 = 1 from Fig. 6.

be obtained by investigating the characteristic exponential term
of 𝜑 II

𝑅
in (35), which also occurs in variance (36). Introducing an

attenuation factor 𝛿 > 0 and setting 𝜎 = 𝜎∗𝑅tr/𝑁 , one can demand

e−𝛿 !
= e
− (𝛼𝑅tr )2

2

[(
𝜎∗
𝑁

)2
+ 1
𝑁

]
, such that

𝑅tr (𝜎∗) =
√

2𝛿𝑁
𝛼

1√︁
1 + 𝜎∗2/𝑁

.

(46)

It is assumed that 𝛿 is independent of the fitness and strategy
parameters. Figure 7 shows 𝑅𝜑0 from (43) and 𝑅tr from (46) with
two exemplary evaluations 𝛿 = 1 and 𝛿 = 5. One observes that
𝑅𝜑0 (black dashed line) follows the zero-progress line up until the
dip minimum is reached. The dip location along the 𝑅-axis is well
approximated by the constant noise limit (45) at 𝜎∗ = 0. The 𝑅tr-
curves (magenta and yellow, respectively) follow a characteristic
path depending on the chosen attenuation factor 𝛿 . The intersection
point 𝜎∗sec of both curves, namely

𝑅𝜑0 (𝜎∗sec)
!
= 𝑅tr (𝜎∗sec), (47)

is parametrizing the dip location and will give insight on the pop-
ulation scaling 𝜇 (𝑁, 𝛼,𝐴). Setting 𝑅𝜑0 = 𝑅tr, one obtains a fourth
order polynomial in 𝜎∗ as

𝜎∗4 + 2𝑁𝜎∗2 +
𝑁 2

(
𝛼4𝐴2 − 128𝛿2𝑐2

𝜗
𝜇2/𝑁

)
𝛼4𝐴2 + 16𝛿2 = 0. (48)

The real non-negative solution of (48) yields after simplification
the intersection point

𝜎∗sec =


𝑁

(
1 + 8𝑐2

𝜗
𝜇2

𝑁

)1/2

(
1 + 𝛼4𝐴2

16𝛿2

)1/2 − 𝑁


1/2

, (49)
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which is visualized in Fig. 7. Convergence on the sphere requires

0 < 𝜎∗sec < 𝜎∗𝜑0 , (50)

with the sphere-zero 𝜎∗𝜑0 given in Eq. (41). The relation 𝜎∗sec < 𝜎∗𝜑0
follows immediately for any 𝐴, 𝛼, 𝛿 > 0 and setting 𝐴 = 0 or 𝛼 = 0
yields 𝜎∗sec = 𝜎∗𝜑0 . Demanding 𝜎∗sec > 0 in (49) it must hold

8𝑐2
𝜗
𝜇2

𝑁
>

𝛼4𝐴2

16𝛿2 . (51)

Solving (51) for 𝜇 one arrives at the important population sizing
result

𝜇 >

√︂
𝑁

2
𝛼2𝐴

8𝑐𝜗𝛿
. (52)

Expression (52) relates the fitness-dependent parameters to the
population size 𝜇. For the subsequent experiments we will investi-
gate the scaling properties of (52) without considering the potential
prefactors of Eq. (52). To this end, repeated experiments of Algo-
rithm 1 are performed and the success probability 𝑃𝑆 is measured.
Then, the necessary population size 𝜇 is evaluated to achieve a high
success rate of 𝑃𝑆 ≥ 0.99. The results of Figs. 8, 9, and 10 show
good agreement with the parameter scaling predicted in Eq. (52).
The 𝜇 (𝑁 )-scaling from experimental results is clearly sub-linear
(as already observed in [9]) and indicates a scaling slightly larger
than 𝑁 1/2. Some fluctuations can be observed which is practically
inevitable, as very large 𝑁 and 𝜇 are tested posing limits on the
available CPU resources. Furthermore, certain deviations of the ex-
periments to prediction (52) are expected to occur as the underlying
model is based on an expected value, see (23), without consider-
ing possible higher order moments of the 𝑦𝑖 -distribution causing
fluctuations.

6 LOCAL ATTRACTION
In this section the limitations of the 𝑅-dependent progress rate 𝜑 II

𝑅
are discussed by investigating local attraction effects. In case of
local convergence one has 𝜎 → 0 (equivalently 𝜎∗ → 0) while
𝑅 stagnates. In this case the local structure of the fitness land-
scape is dominating. Hence, the assumption 𝑦𝑖 ∼ 𝑅√

𝑁
N(0, 1) being

normally distributed around the optimizer cannot hold. While the
progress landscapes show positive progress for small 𝜎∗-values, this
does not imply global convergence of real ES runs, see e.g. Fig. 12.
It should be intuitively clear that for too small mutation strengths
local convergence occurs. This issue was also observed in one-
generation experiments in Fig. 5, where negative progress rates are
obtained at certain y, if local attraction is present. As the aggregated
(𝑅-dependent) formula (35) is not able to model local attraction, a
different approach is needed based on the 𝑦𝑖 -dependent formula
(24). The goal is to derive a 𝜎-condition avoiding local attraction (in
expectation). To this end, a characteristic "escape"mutation strength
𝜎esc is derived. It can serve as an additional stability criterion for
the ES.

Starting with 𝜑 II
𝑖
of Eq. (24), the gain function 𝐺 is defined as

𝐺 (𝑦𝑖 , 𝜎) B 4𝑦2
𝑖 + e−

1
2 (𝛼𝜎 )

2
2𝛼𝐴𝑦𝑖 sin (𝛼𝑦𝑖 ). (53)

Figure 8: Population sizing 𝜇 (𝑁 ) using𝜎SA-ESwith 𝜏 = 1/
√

2𝑁
and 𝛼 = 2𝜋 . The top plot shows 𝜗 = 1/4 with 𝐴 = 1, while
the bottom plot shows 𝜗 = 1/2 with 𝐴 = 10. The dotted
cyan lines depict 𝜇 ∝

√
𝑁 , dash-dotted green lines 𝜇 ∝ 𝑁 5/8,

and dashed red lines 𝜇 ∝ 𝑁 . The number of evaluated tri-
als, for increasing 𝑁 , is 2000, 2000, 1000, 700, 500, 400 (top) and
3000, 3000, 1500, 1000, 700, 600 (bottom).

Figure 9: Population sizing 𝜇 (𝐴) using 𝜎SA-ES with 𝜗 = 1/4,
𝑁 = 100, 𝜏 = 1/

√
2𝑁 , and 𝛼 = 2𝜋 . The dotted cyan lines show

𝜇 ∝ 𝐴. For each data point 2000 trials were evaluated.

Requiring positive progress 𝜑 II
𝑖
> 0, Eq. (24) yields

𝑐𝜗

𝐷𝑄
𝐺 (𝑦𝑖 , 𝜎) >

1
𝜇
. (54)

At this point the infinite population limit 𝜇 → ∞ is assumed in
order to obtain closed-form solutions. As 1/𝜇 → 0 it suffices to
show that 𝐺 > 0 for 𝜑 II

𝑖
> 0 to hold. The function 𝐺 is plotted



Convergence Properties of the (𝜇/𝜇𝐼 , 𝜆)-ES on the Rastrigin Function FOGA ’23, August 30-September 1, 2023, Potsdam, Germany

Figure 10: Population sizing 𝜇 (𝛼) using 𝜎SA-ES with 𝜗 = 1/4,
𝑁 = 100, 𝜏 = 1/

√
2𝑁 , and 𝐴 = 1. The dotted cyan lines show

𝜇 ∝ 𝛼2. For each data point 2000 trials were evaluated.

Figure 11: Gain function (53) visualized for 𝐴 = 10 and 𝛼 = 2𝜋 .
The boundary𝐺 = 0 is shown in bold white, enclosing regions
of negative progress. 𝜎esc from (64) is shown as black dotted.
Only the first five local attractors are shown (out of 31).

in Fig. 11 as a function of 𝜎 and 𝑦𝑖 . One observes local attraction
regions for small mutations located at𝑦0 ≈ {1, 2, 3, 4, 5}. For small 𝜎
each of the attractors is a "stable" point, as 𝑦0 +𝜖 (with 𝜖 > 0) yields
positive gain (decreasing 𝑦𝑖 in expectation), while 𝑦0 − 𝜖 yields
negative gain (increasing 𝑦𝑖 ). For sufficiently large 𝜎 > 𝜎esc (black
dotted line) positive progress can be ensured. The threshold 𝜎esc

is derived now. Starting with (53), requiring 𝐺 !
= 0 and assuming

𝑦𝑖 ≠ 0, 𝐺 is refactored as

𝐺 = 2𝑦𝑖𝐺, (55)

with 𝐺 defined as

𝐺 B 2𝑦𝑖 + e−
1
2 (𝛼𝜎 )

2
𝛼𝐴 sin (𝛼𝑦𝑖 )

!
= 0, (56)

yielding a first condition. The second condition 𝜕𝐺
𝜕𝑦𝑖

= 0 (at 𝜎 = 𝜎esc)
can be inferred from Fig. 11, which yields for (55)

𝜕𝐺

𝜕𝑦𝑖
= 2𝐺 + 2𝑦𝑖

𝜕𝐺

𝜕𝑦𝑖

!
= 0. (57)

As 𝐺 = 0 and 𝑦𝑖 ≠ 0, 𝜕𝐺
𝜕𝑦𝑖

= 0 is equivalent to 𝜕𝐺
𝜕𝑦𝑖

= 0. Therefore,
one has

𝜕𝐺

𝜕𝑦𝑖
= 2 + e−

1
2 (𝛼𝜎 )

2
𝛼2𝐴 cos (𝛼𝑦𝑖 ) = 0, (58)

such that the following condition is obtained

e−
1
2 (𝛼𝜎 )

2
𝛼𝐴 = − 2

𝛼 cos (𝛼𝑦𝑖 )
. (59)

Inserting condition (59) into (56), it follows

2𝑦𝑖 −
2
𝛼

sin (𝛼𝑦𝑖 )
cos (𝛼𝑦𝑖 )

= 0. (60)

Introducing the substitution 𝑥 = 𝛼𝑦𝑖 and applying sin𝑥/cos𝑥 =

tan𝑥 yields
2
𝛼
(𝑥 − tan𝑥) = 0. (61)

The first non-trivial solution of (61) is the most interesting, as it
corresponds to 𝐺 = 0 of the first local attractor at 𝑦𝑖 ≈ 0.75, see
Fig. 11. Furthermore, negative gain contributions are due to the
sine term in (53). For small |𝑦𝑖 | < 1 one has 𝑦2

𝑖
< |𝑦𝑖 |, such that

the first local attractor corresponds to the worst case requiring the
largest 𝜎 to obtain 𝐺 = 0. Numerical solving yields the zero of (61)
as

𝑥0 ≈ 4.493. (62)

Multiplying (56) by 𝛼 , identifying 𝑥0 = 𝛼𝑦𝑖 and 𝜎 = 𝜎esc (point of
vanishing gain) results in

2𝑥0 + e−
1
2 (𝛼𝜎esc )2𝛼2𝐴 sin𝑥0 = 0

e
1
2 (𝛼𝜎esc )2 = −𝛼

2𝐴 sin𝑥0
2𝑥0

.
(63)

Resolving (63) for 𝜎esc yields the final result

𝜎esc =
1
𝛼

√︄
2 ln

(
−𝛼

2𝐴 sin𝑥0
2𝑥0

)
≈ 1

𝛼

√︃
2 ln

(
0.1086𝛼2𝐴

)
.

(64)

Figure 12 shows experiments of the (400/400𝐼 , 800)-𝜎SA-ES with
𝛼 = 2𝜋 , and relatively large 𝐴 = 10, such that one has 𝜎esc ≈ 0.436
from result (64). A constant 𝜎 translates to 𝑅(𝜎∗) = 𝜎𝑁 /𝜎∗, see
normalization (2), showing a 1/𝜎∗ characteristics (red dashed line)
in the progress landscape. The median of real unsuccessful runs
is shown for different learning parameters 𝜏 . The sharp decrease
𝜎∗ → 0 indicates local convergence, which agrees well with the
𝜎esc-line. However, dropping below the threshold 𝜎 < 𝜎esc does not
imply that local convergence must occur (see success rate 𝑃𝑆 > 0 for
all 𝜏). Conversely, it is a stability criterion that maintains positive
component-wise progress in expectation, if 𝜎 > 𝜎esc is kept large
enough. Of course, this can only hold up to the global attractor, at
which 𝜎 → 0 must be ensured to have convergence.

Figure 13 shows numerically evaluated progress dip locations,
see e.g. the dip at 𝜎∗ ≈ 25 and 𝑅 ≈ 2 in Fig. 12, for increasing 𝜇-
values while keeping𝜗 and the fitness parameters constant. It shows
how increasing 𝜇 shifts the dip location to larger 𝜎∗-values and
smaller residual distances𝑅. Using larger populations enables the ES
to operate at larger mutation strengths and approach the optimizer
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Figure 12: Median dynamics of unsuccessful runs (out of
100 trials) for (400/400𝐼 , 800)-𝜎SA-ES, 𝑁 = 100, 𝐴 = 10, with
𝜎esc ≈ 0.436 (red dashed line). The learning parameter was set
to 𝜏 = 1/

√
𝑁 (blue, left, 𝑃𝑆 = 0.01), 𝜏 = 1/

√
2𝑁 (black, center,

𝑃𝑆 = 0.08), and 𝜏 = 1/
√

8𝑁 (magenta, right, 𝑃𝑆 = 0.29).
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Figure 13: Numerically evaluated progress dip locations
(black dots) for 𝜗 = 1/2, 𝑁 = 100, and 𝐴 = 10 with increasing
values 𝜇 = {10, 50, 100, 200, ..., 1000} from left to right. The red
dashed curve shows 𝜎esc (displayed as 𝑅 = 𝜎esc𝑁 /𝜎∗).

more closely resulting in higher global convergence probabilities.
The 𝜎esc-line (red dashed) remains constant as it was derived for
𝜇 →∞. A progress dip located below the 𝜎esc-line is critical, as both
noise floor and local attraction effects overlap yielding effectively
zero success rates.

The results obtained from Fig. 12 suggest a synthetic explicit
𝜎-control rule for understanding the meaning of 𝜎esc. This rule uses
a constant mutation strength 𝜎 for a sufficiently high number of
generations until the global attractor is reached, and then decreases
𝜎 → 0. This is realized by defining a 𝜎 (𝑔) -schedule being constant
for the first𝑔 < 9000 generations. For 9000 ≤ 𝑔 ≤ 104 it is decreased
multiplicatively as 𝜎 (𝑔+1) = 𝑐𝜎 (𝑔) (0 < 𝑐 < 1), such that the
stopping criterion 𝜎 < 10−6 is reached at the last generation. The
corresponding experiments are conducted in Fig. 14. The single-
trial dynamics show that only the run at 𝜎esc converges globally
(repeated experiments shown in Fig. 15). ES-runs with 𝜎 < 𝜎esc
tend to converge locally at large 𝑅 due to the ES getting stuck in
the local minima landscape. ES-runs operating at 𝜎 > 𝜎esc are less
prone to local attraction and they reach the Rastrigin noise floor at
moderately large 𝑅 (see intersection of red and white line in Fig. 12).

Figure 14: Single runs using constant 𝜎 for (400/400𝐼 , 800)-ES,
𝑁 = 100, and 𝐴 = 10. A schedule for 𝜎 (𝑔) was defined being
constant during the first 9000 generations and converging
exponentially within the last 1000 generations. One has 𝜎 =

{0.1, 0.2, 0.3, 0.4, 𝜎esc, 0.5, 0.6}, from top to bottom (see ordering
at 𝑔 = 2000).

Figure 15: The success probability 𝑃𝑆 is evaluated using pa-
rameters of Fig. 14 and 500 repetitions for each 𝜎 . The peak
occurs around 𝜎 ≈ 𝜎esc = 0.436.

In Fig. 15 different 𝜎-values are tested and the success rate 𝑃𝑆 is
evaluated over 500 repetitions. One observes that 𝑃𝑆 is maximized
at 𝜎 ≈ 𝜎esc. As expected, values 𝜎 < 𝜎esc are less successful due to
local attraction. For 𝜎 > 𝜎esc local attraction is avoided, but the ES
fluctuates at a larger residual distance before 𝜎 → 0, such that it is
more likely to miss the global attractor.

7 CONCLUSIONS AND OUTLOOK
In this paper results from progress rate theory were applied and
extended to investigate the convergence properties on the Rastrigin
function. An aggregated residual distance dependent progress rate
was obtained assuming normally distributed 𝑦𝑖 -locations around
the optimizer. The progress rate yields useful insights on the search
behavior of the ES, which can be illustrated by recalling Fig. 1.
Far away from local attraction the ES is optimizing the sphere
keeping a constant scale-invariant mutation strength. Approaching
the local attractor landscape leads to a significant reduction of
the (normalized) mutation strength compared to the initial level.
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As the mutation strength 𝜎 decreases together with 𝜎∗, it may fall
below the 𝜎esc-threshold (see Fig. 12). Having 𝜎 ≫ 𝜎esc (at 𝜎∗-levels
comparable to sphere-optimal values) the ES is performing a global
search. It is not significantly influenced by single local attractors. For
𝜎 ⪅ 𝜎esc the search can be regarded as rather local and individual
attractors gain importance, such that local convergence occurs
with higher probability. Within the global attractor the sphere
function is optimized again. Considering the ES performance a
two-fold positive effect of large populations on the success rate can
be identified. First, large 𝜇-values decrease the expected residual
distance (45) to the global optimizer (similar to optimizing the
sphere under constant noise). Second, intermediate recombination
reduces the magnitude of the loss term −𝜎∗2/(2𝜇) in (39). Large
𝜇 and recombination therefore allow the ES to operate at larger
𝜎-levels keeping 𝜎 > 𝜎esc and enabling a global search.

Furthermore, the progress rate analysis enabled the derivation of
the population scaling result in (52), which could be experimentally
verified. The result can serve to some extent as a guidance for the
investigation of other highly multimodal test functions, provided
that a global (spherical) structure exists with local perturbations.

There are multiple issues requiring further research. While it is
now clear why large populations and mutation strengths are bene-
ficial optimizing Rastrigin, a detailed analysis of the full 𝜎SA-ES or
CSA-ES including the step-size adaptation is still pending. Addition-
ally, the ES-efficiency in terms of fitness evaluations as a function
of population size, truncation ratio, and learning parameter was not
yet investigated. As the population size is a crucial parameter, the
idea of using dynamic population control methods seems natural,
see e.g. [4]. Actually, the theoretical analysis of population size
control strategies is an uncharted research field. Furthermore, a
probabilistic model would be useful to predict the success rate 𝑃𝑆
as a function of fitness and ES parameters. Whether the obtained re-
sults can be transferred to other multimodal functions also remains
part of future research.
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A EXPECTED VALUES
In Secs. 3 and 4 the expected values and variances over the sums
of 𝑖 = 1, ..., 𝑁 trigonometric terms with random variable 𝑦𝑖 ∼
𝜎𝑦N(0, 1), 𝜎𝑦 = 𝑅√

𝑁
, are needed assuming i.i.d. components. The

expected values and variances are taken over sums of the terms
cos (𝛼𝑦𝑖 ), cos(2𝛼𝑦𝑖 ), and 𝑦 sin (𝛼𝑦𝑖 ), with 𝑖 = 1, ..., 𝑁 , respectively.
They were already derived in [12], such that one has

E

[
𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 )
]
= 𝑁 e−

1
2
(𝛼𝑅)2
𝑁 (A.1)

E

[
𝑁∑︁
𝑖=1

cos(2𝛼𝑦𝑖 )
]
= 𝑁 e−2 (𝛼𝑅)

2
𝑁 (A.2)

E

[
𝑁∑︁
𝑖=1

𝑦𝑖 sin(𝛼𝑦𝑖 )
]
= 𝛼𝑅2e−

1
2
(𝛼𝑅)2
𝑁 . (A.3)

Now the corresponding variances are established. Applying
Var [∑𝑖 (·)] =

∑
𝑖 E

[
(·)2

]
− E [(·)]2 and using previously obtained

results (supplementary material of [12]) with 𝜎𝑦 = 𝑅/
√
𝑁 yields

for the variances

Var

[
𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 )
]
=

𝑁∑︁
𝑖=1

E
[
cos2 (𝛼𝑦𝑖 )

]
− E [cos(𝛼𝑦𝑖 )]2

= 𝑁

(
1
2
+ 1

2
e−

1
2
(2𝛼𝑅)2

𝑁 − e−
(𝛼𝑅)2
𝑁

)
(A.4)

Var

[
𝑁∑︁
𝑖=1

cos(2𝛼𝑦𝑖 )
]
=

𝑁∑︁
𝑖=1

E
[
cos2 (2𝛼𝑦𝑖 )

]
− E [cos(2𝛼𝑦𝑖 )]2

= 𝑁

(
1
2
+ 1

2
e−

1
2
(4𝛼𝑅)2

𝑁 − e−
(2𝛼𝑅)2

𝑁

)
(A.5)

Var

[
𝑁∑︁
𝑖=1

𝑦𝑖 sin(𝛼𝑦𝑖 )
]
=

𝑁∑︁
𝑖=1

E
[
𝑦2
𝑖 sin2 (𝛼𝑦𝑖 )

]
− E [𝑦𝑖 sin(𝛼𝑦𝑖 )]2

= 𝑁

(
1
2
𝑅2

𝑁
− 1

2

[
𝑅2

𝑁
− (2𝛼)2 𝑅

4

𝑁 2

]
e−

1
2
(2𝛼𝑅)2

𝑁 − 𝛼2 𝑅
4

𝑁 2 e−
(𝛼𝑅)2
𝑁

)
= 𝑅2

(
1
2
− 1

2
e−

1
2
(2𝛼𝑅)2

𝑁 + 2𝛼2 𝑅
2

𝑁
e−

1
2
(2𝛼𝑅)2

𝑁 − 𝛼2 𝑅
2

𝑁
e−
(𝛼𝑅)2
𝑁

)
. (A.6)

All required expected values for (A.4), (A.5), and (A.6) can be eval-
uated using the equations in the supplementary material of [12].
Given aforementioned results, ratio

√︁
Var [𝑌 ]/E [𝑌 ] can be evalu-

ated in the limit 𝑁 →∞. As 𝑌 ∼ E [𝑌 ] +
√︁

Var [𝑌 ]N (0, 1), this will
give a reasoning to neglect the fluctuation term

√︁
Var [𝑌 ] relative to

https://opus.fhv.at/frontdoor/index/index/docId/4722
https://opus.fhv.at/frontdoor/index/index/docId/4722
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E [𝑌 ] in the limit of infinite dimensionality. The ratios are evaluated
as

Var
[∑𝑁

𝑖=1 cos(𝛼𝑦𝑖 )
] 1

2

E
[∑𝑁

𝑖=1 cos(𝛼𝑦𝑖 )
] =

(
1
2 +

1
2 e−

1
2
(2𝛼𝑅)2

𝑁 − e−
(𝛼𝑅)2
𝑁

) 1
2

√
𝑁 e−

1
2
(𝛼𝑅)2
𝑁

𝑁→∞−→ 0

(A.7)

Var
[∑𝑁

𝑖=1 cos(2𝛼𝑦𝑖 )
] 1

2

E
[∑𝑁

𝑖=1 cos(2𝛼𝑦𝑖 )
] =

(
1
2 +

1
2 e−

1
2
(4𝛼𝑅)2

𝑁 − e−
(2𝛼𝑅)2

𝑁

) 1
2

√
𝑁 e−2 (𝛼𝑅)

2
𝑁

𝑁→∞−→ 0

(A.8)

Var
[∑𝑁

𝑖=1 𝑦𝑖 sin(𝛼𝑦𝑖 )
] 1

2

E
[∑𝑁

𝑖=1 𝑦𝑖 sin(𝛼𝑦𝑖 )
]

=

(
1
2 −

1
2 e−

1
2
(2𝛼𝑅)2

𝑁 + 2𝛼2 𝑅2

𝑁
e−

1
2
(2𝛼𝑅)2

𝑁 − 𝛼2 𝑅2

𝑁
e−
(𝛼𝑅)2
𝑁

) 1
2

𝛼𝑅e−
1
2
(𝛼𝑅)2
𝑁

𝑁→∞−→ 0.

(A.9)

Note that the limit considerations hold for constant 𝑅 and for a
scaling relation 𝑅2 = 𝑁 , see (46). This scaling can also be motivated
by investigating Fig. 3, where the increase of 𝑁 shifts the central
region (i.e. the region between the sphere limits) to larger 𝑅-values.
For constant 𝑅 the exponential factors yield “1" in the limit 𝑁 →∞,
such that the numerators of (A.7), (A.8), and (A.9) vanish. The
denominators of (A.7) and (A.8) are also suppressing the ratio with
𝑂

(
1/
√
𝑁

)
, while the denominator of (A.9) remains constant.

B PROGRESS RATE
In Sec. 5 the convergence properties are analyzed. To derive con-
ditions satisfying 𝜑 II

𝑅
= 0 (or equivalently 𝜑

II,∗
𝑅

= 0), the relevant
quantities are transformed to be functions of the normalized muta-
tion 𝜎∗. This ensures scale-invariance on the sphere function.

Setting 𝜎 = 𝜎∗𝑅/𝑁 in (36), the variance yields

𝐷2
𝑄 (𝜎

∗, 𝑅) = 4𝑅4
(
𝜎∗

𝑁

)2 [
1 + 𝜎∗2

2𝑁
+ ℎ(𝜎∗, 𝑅)

]
, (B.1)

with ℎ defined as

ℎ(𝜎∗, 𝑅) B 𝑁 2

4𝑅4𝜎∗2

×
{
𝑁𝐴2

2

[
1 − e−

(
𝛼𝑅𝜎∗
𝑁

)2 ] 1 − e
−(𝛼𝑅)2

[(
𝜎∗
𝑁

)2
+ 2
𝑁

] 
+ 2𝑁𝐴𝛼2𝑅4

(
𝜎∗

𝑁

)2
[(
𝜎∗

𝑁

)2
+ 2
𝑁

]
e
− (𝛼𝑅)

2
2

[(
𝜎∗
𝑁

)2
+ 1
𝑁

]}
.

(B.2)

The function ℎ was introduced to later solve 𝜑 II
𝑅
= 0 on both the

sphere (ℎ = 0) and the Rastrigin function.
The progress rate (35) yields after normalization 𝜑

II,∗
𝑅

= 𝜑 II
𝑅

𝑁
2𝑅2

and setting 𝜎 = 𝜎∗𝑅/𝑁

𝜑
II,∗
𝑅
(𝜎∗, 𝑅) = 𝑐𝜗

2𝑅2 (𝜎∗𝑅/𝑁 )2 [2 + 𝑔]

2𝑅2 𝜎∗
𝑁

√︃
1 + 𝜎∗2

2𝑁 + ℎ

𝑁

2𝑅2 −
𝑁 (𝜎∗𝑅/𝑁 )2

𝜇

𝑁

2𝑅2 ,

(B.3)

with 𝑔 defined as

𝑔(𝜎∗, 𝑅) B 𝛼2𝐴e−
(𝛼𝑅)2

2

(
𝜎∗2
𝑁 2 + 1

𝑁

)
. (B.4)

Analogous to ℎ, function 𝑔 was introduced to discern between the
sphere (𝑔 = 0) and the Rastrigin function. After simplification, (B.3)
yields

𝜑
II,∗
𝑅

=
𝑐𝜗𝜎
∗

2
2 + 𝑔√︃

1 + 𝜎∗2
2𝑁 + ℎ

− 𝜎∗2

2𝜇
. (B.5)

Setting 𝑔 = ℎ = 0 in (B.5) recovers the sphere progress rate (39).
Requiring 𝜑 II,∗

𝑅
= 0 in (B.5), the expression can be reformulated as

𝜎∗4 + 2𝑁𝜎∗2 (1 + ℎ(𝜎∗, 𝑅)) − 2𝑁 (𝑐𝜗 𝜇)2
(
2 + 𝑔(𝜎∗, 𝑅)

)2
= 0. (B.6)

The functional dependencies of𝑔 andℎ are explicitly written in (B.6)
to illustrate the problem of solvability. We want to solve for 𝜎∗ (𝑅),
which would give a relation yielding 𝜑 II,∗

𝑅
= 0. One can immediately

see that with𝑔(𝜎∗, 𝑅) andℎ(𝜎∗, 𝑅) containing exponential functions
of 𝜎∗ and 𝑅, no closed form solution of (B.6) can be given. To obtain
the zero of the sphere function 𝜎∗𝜑0 , one sets 𝑔 = ℎ = 0 in (B.6), such
that

𝜎∗4 + 2𝑁𝜎∗2 − 8𝑁𝑐2
𝜗
𝜇2 = 0. (B.7)

The only positive non-complex solution of the fourth order Eq. (B.7)
is

𝜎∗𝜑0 =

[ [
𝑁 2 + 8𝑁𝑐2

𝜗
𝜇2]1/2 − 𝑁

]1/2
, (B.8)

which is the maximum normalized mutation strength giving posi-
tive progress on the sphere function (in the limit 𝑁 →∞).

The limit of vanishing exponentials corresponds to 𝑔 = 0, see
(B.4), and ℎ = 𝑁 3𝐴2

8𝑅4𝜎∗2
, see (B.2), such that (B.6) yields the polynomial

𝜎∗4 + 2𝑁𝜎∗2 + 𝑁 4𝐴2

4𝑅4 − 8𝑁𝑐2
𝜗
𝜇2 = 0. (B.9)

Solving (B.9) for 𝑅 = 𝑅𝜑0 (𝜎∗), i.e., the residual distance of zero
progress, yields

𝑅𝜑0 (𝜎∗) =
(

1
4

𝑁 4𝐴2

8𝑁𝑐2
𝜗
𝜇2 − 2𝑁𝜎∗2 − 𝜎∗4

)1/4

. (B.10)

The smallest attainable value 𝑅𝜑0 (𝜎∗) is given at 𝜎∗ = 0 yielding
the constant noise limit (45) for 𝜎2

Ras = 𝑁𝐴2/2 according to

𝑅𝜑0

��
𝜎∗=0 =

(
𝑁 3𝐴2

32𝑐2
𝜗
𝜇2

)1/4

=

(
𝑁𝐴2

2
𝑁 2

16𝑐2
𝜗
𝜇2

)1/4

=

√︄
𝜎Ras𝑁

4𝑐𝜗 𝜇
. (B.11)

The maximum 𝜎∗-value yielding a real solution of (B.10) can be
found by setting the denominator to zero, which can be identified
as the (negative) polynomial of Eq. (B.7). Hence, 𝑅𝜑0 (𝜎∗) is defined
on 𝜎∗ ∈ [0, 𝜎∗𝜑0 ).

It can be easily shown, that the progress rate 𝜑 II,∗
𝑅

> 0 for any
𝑅 > 𝑅𝜑0 . This can be done by setting 𝑔 = 0 and ℎ = 𝑁 3𝐴2

8𝑅4𝜎∗2
in (B.5),

and solving for 𝑅 by demanding 𝜑
II,∗
𝑅

> 0. The calculations are
straightforward and therefore not shown here.
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