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ABSTRACT
A model is presented that allows for the calculation of the success
probability by which a vanilla Evolution Strategy converges to
the global optimizer of the Rastrigin test function. As a result a
population size scaling formula will be derived that allows for an es-
timation of the population size needed to ensure a high convergence
security depending on the search space dimensionality.
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• Theory of computation→ Random search heuristics; •Mathe-
matics of computing→ Bio-inspired optimization.
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1 INTRODUCTION
Finding global optimal solutions in highly multimodal real-valued
fitness landscapes by means of Evolution Strategies (ES) [8] de-
pends on the choice of algorithm-specific parameters. Considering
highly multimodal test functions such as Rastrigin, Ackley, Fletcher-
Powell, and Bohachevsky to name a few, the probability of success
of the ES locating the global optimizer is strongly influenced by
the choice of the population size. This observation has been made
already in [10] regarding the CMA-ES [11], however, this also holds
for simple (𝜇/𝜇𝐼 , 𝜆)-ES using isotropic mutations in conjunction
with 𝜎 self-adaptation (𝜎SA) or cumulative stepsize adaptation
(CSA) for mutation strength control. Consider the minimization
problem ŷ := argminy𝐹 (y), y ∈ R𝑁 , where ŷ is the global mini-
mizer of 𝐹 and 𝑁 is the search space dimensionality. In order to
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reach ŷ with high probability it seems intuitively clear that suffi-
ciently large population sizes for both the number of parents 𝜇 and
offspring 𝜆 are needed. Furthermore, if the number of local minima
increases with the search space dimensionality 𝑁 it seems plausible
that also the population sizes, i.e., 𝜇 and 𝜆 should increase as well.
Since the number of local minima increases exponentially with
dimensionality 𝑁 one could expect that the population size should
increase in a similar manner as it would be the case of the num-
ber of multi-starts in classical non-linear numerical optimization
strategies. Therefore, the empirical findings in [10] came as a big
surprise: In most of the cases considered the population sizes did
not scale exponentially with 𝑁 , but seemingly in-between O(𝑁 )
and O(𝑁 2) (with the Griewank test function as an exception where
the population sizes even decreased with 𝑁 ).

What can be learned from these experimental observations?
First of all, the ES does not perform some kind of gradient following
strategy to locate the global optimizer as sometimes claimed [16,
p. 75f]. This raises the question how the ES does locate a global
optimizer under a huge number of local optima. Furthermore, from
the viewpoint of algorithmic efficiency the question of computa-
tional complexity would be of interest here. However, this question
is intimately connected to the question how to choose the popula-
tion size since using a population size too small the probability to
reach the global optimizer will be very small while choosing the
population size too large would be a waste of computing resources.
Therefore, this paper is devoted to the derivation of a population
sizing equation.

The theoretical analysis of the behavior of ES on highly multi-
modal test functions is still in its infancy. There are first attempts
to extend the progress rate analysis [6] to the Rastrigin function
[15]. While this approach is able to take into account many specific
details of the ES algorithms and also the influence of the population
size parameters 𝜇 and 𝜆 it is still restricted to the derivation of
mean value dynamics. Another approach models the ES mutation
process as some kind of convolution. As has been shown in [14] the
convolution of Rastrigin like functions with a Gaussian kernel can
transform the original non-convex minimization problem into a
convex one depending on the kernel parameter (being the mutation
strength 𝜎). However, the convolution is an 𝑁 -fold integration per-
formed only approximately by the ES mutation sampling process.
That is, the question of how many samples are needed to get a
reliable convex result cannot be easily answered. Therefore, the
question still remains how to choose the population size.

It is the goal of this paper to develop a model that describes the
convergence behavior of the (𝜇/𝜇𝐼 , 𝜆)-ES to the global optimizer of
the Rastrigin function. As a result, a population sizing equation will
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be obtained that scales like O(
√
𝑁 ln𝑁 ). That is, for the Rastrigin

test function the population size scales even sublinearly with the
search space dimensionality 𝑁 . The remainder of this paper is
organized as follows. First, the ES algorithms to be considered are
briefly reviewed. In Section 3 the Rastrigin test function will be
introduced. In Section 4 the convergence model will be developed
and the success probability will be derived. Section 5 is devoted to
the derivation of the population sizing equation. In the concluding
Section 6 a summary will be given and an outlook regarding future
research will be presented.

2 ES-ALGORITHMS
It is assumed that the reader is acquainted with the basic (𝜇/𝜇𝐼 , 𝜆)-
ES algorithms and the order statistics notation “𝑚; 𝜆” used. The
control of the strength 𝜎 of the isotropic Gaussian mutations used
is done by either 𝜎 self-adaptation (𝜎SA), see Alg. 1, or cumulative
stepsize adaptation (CSA), see Alg. 2. The performance of the algo-
rithms depends on the choice of the learning parameter 𝜏 and the
cumulation time constant 1/𝑐 and 𝐷 , respectively, where 𝐷 = 1/𝑐
has been chosen. The standard choice of the learning parameter
𝜏 = 1/

√
2𝑁 [12] guarantees optimal performance on the sphere

model. As for the choice of 𝑐 in the CSA-ES, 1/𝑁 to 1/
√
𝑁 defines

Algorithm 1 The (𝜇/𝜇𝐼 , 𝜆)-𝜎SA Evolution Strategy

1: Initialize
(
y(0) , 𝜎 (0) , 𝜎stop, 𝑔 = 0

)
2: repeat
3: for 𝑙 = 1 to 𝜆 do
4: 𝜎̃𝑙 = 𝜎 (𝑔)e𝜏N(0,1) ⊲ mutate parental 𝜎
5: ỹ𝑙 = y(𝑔) + 𝜎̃𝑙 (N (0, 1), . . . ,N(0, 1)) ⊲ mutate y
6: 𝐹𝑙 = 𝐹

(
ỹ𝑙

)
⊲ evaluate offspring

7: end for
8: Sort Individuals Ascendingly w.r.t. Fitness 𝐹
9: 𝑔 = 𝑔 + 1
10: y(𝑔) = 1

𝜇

∑𝜇

𝑚=1 ỹ𝑚;𝜆 ⊲ recombine the 𝜇 best ỹ
11: 𝜎 (𝑔) = 1

𝜇

∑𝜇

𝑚=1 𝜎̃𝑚;𝜆 ⊲ recombine the 𝜇 best 𝜎̃
12: until 𝜎 (𝑔) < 𝜎stop

Algorithm 2 The (𝜇/𝜇𝐼 , 𝜆)-CSA Evolution Strategy

1: Initialize
(
y(0) , 𝜎 (0) , 𝜎stop, s = 1, 𝑔 = 0

)
2: repeat
3: for 𝑙 = 1 to 𝜆 do
4: z̃𝑙 = (N (0, 1), . . . ,N(0, 1)) ⊲ generate search direction
5: ỹ𝑙 = y(𝑔) + 𝜎 (𝑔) z̃𝑙 ⊲ mutate y
6: 𝐹𝑙 = 𝐹

(
ỹ𝑙

)
⊲ evaluate offspring

7: end for
8: Sort Individuals Ascendingly w.r.t. Fitness 𝐹
9: 𝑔 = 𝑔 + 1
10: y(𝑔) = 1

𝜇

∑𝜇

𝑚=1 ỹ𝑚;𝜆 ⊲ recombine the 𝜇 best ỹ
11: s = (1 − 𝑐)s +

√︁
𝜇𝑐 (2 − 𝑐) 1

𝜇

∑𝜇

𝑚=1 z̃𝑚;𝜆 ⊲ update s-path

12: 𝜎 (𝑔) = 𝜎 (𝑔−1)exp
(
∥s∥2−𝑁
2𝐷𝑁

)
⊲ update 𝜎 , see [2, p.13]

13: until 𝜎 (𝑔) < 𝜎stop

Figure 1: 3D-plot of an 𝑁 = 2 dimensional Rastrigin func-
tion (1) with 𝛼 = 2𝜋 and 𝐴 = 3.

an admissible range [2, 9] where the latter results in faster conver-
gence rate at the price of lower global success probability 𝑃s on the
Rastrigin function (1).

3 THE RASTRIGIN FUNCTION
The Rastrigin test function 𝐹 for an 𝑁 -dimensional search vector
y = (𝑦1, . . . , 𝑦𝑁 ) is given by

𝐹 (y) =
𝑁∑︁
𝑖=1

[
𝑦2𝑖 +𝐴 (1 − cos(𝛼𝑦𝑖 ))

]
(1)

where the parameter 𝐴 > 0 denotes the oscillation amplitude and
𝛼 denotes the frequency. Unless otherwise stated, the parameters
𝐴 = 1 and 𝛼 = 2𝜋 are used in all experiments. The global optimizer
located at ŷ = 0 is surrounded by 𝜅𝑁 − 1 local minima (e.g., for
𝛼 = 2𝜋 , 𝐴 = 1: 𝜅 = 7 and for 𝛼 = 2𝜋 , 𝐴 = 10: 𝜅 = 63). Figure 1
shows an example 3D-plot of the Rastrigin function. Looking at
the contour map in Fig. 2 that includes the global optimizer at
ŷ = 0 one sees a squared domain (bounded by green lines) in which
the negative gradient flow (expressed by small arrows) is directed
towards the global minimizer. That is, a gradient strategy initialized

-1 -0.5 0 0.5 1 1.5
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-0.5

0

0.5

1
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Figure 2: Global attractor region of the Rastrigin function for
𝑁 = 2 (green dashed square), 𝛼 = 2𝜋 and𝐴 = 1. The star shows
the global optimizer, squares the nearest stationary points,
and circles the farthest stationary points. Arrows show the
negative gradient flow.
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in this global attractor region would converge to the global attractor.
The global attractor region is defined by the hypercube

A0 := [−Δ0,Δ0]𝑁 , (2)

where Δ0 is the distance from the global optimizer 0 (the star) to
the nearest stationary point(s) (the small filled squares in Fig. 2).
The value of Δ0 is determined by a non-linear equation. One finds
for 𝐴𝛼 ≫ 2 asymptotically (see Appendix A)

Δ0 ≃
𝐴𝛼𝜋

𝐴𝛼2 − 2
. (3)

Unlike gradient strategies, it cannot be guaranteed that the (𝜇/𝜇𝐼 , 𝜆)-
ES converges globally if the parental centroid y is inA0. Especially,
parents y located in the vicinity of the corners of A0 will produce
better offspring only with a probability of about 2−𝑁 , thus, requir-
ing an exponentially large population size for improvements. On
the other hand, parents in the vicinity of the stationary points can
even be located outside A0 and still produce better offspring allow-
ing for convergence to the global optimizer. That is, for fixed values
of 𝐴 and 𝛼 , the global attractor domain of an ES denoted by AES,
depends on the strategy-specific parameters such as the truncation
ratio 𝜗 := 𝜇/𝜆, the actual mutation strength 𝜎 , the learning param-
eter 𝜏 and the time constant 1/𝑐 , respectively. Simplifications are
needed to get a manageable model AES. It turns out that

AES = [−(Δ0 + 𝜀),Δ0 + 𝜀]𝑁 , (4)

can serve as such a model. 𝜀 is a small correction term that varies
depending on the specific strategy.

In Fig. 3 the dynamics of the distance of the parental centroid
to the global optimizer, i.e., 𝑅(𝑔) := ∥y(𝑔) ∥ is displayed for 200
independent runs of the (100/100𝐼 , 200)-𝜎SA-ES, Alg. 1, on the Ras-
trigin function. One observes a certain percentage of runs getting
trapped in local minima. The other runs converge to the global
optimizer. Similar graphs can be obtained when running the CSA-
ES, Alg. 2. Determining the success probability 𝑃s by which the ES
approaches the global optimizer will be the task of the following
section. Having a closer look at the dynamics, one sees that there
are basically three phases in the evolution process. The first phase
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Figure 3: Residual distance dynamics for 200 (100/100𝐼 , 200)-
𝜎SA-ES runs with 𝜏 = 1/

√
2𝑁 for 𝑁 = 100. For each run, the

ES was initialized randomly at an expected residual distance
𝑅(0) = 100. The success probability is 𝑃s = 0.88.

can be observed when the initial parental centroid is initialized
far enough from the global optimizer. In that case, the ES “sees”
basically a sphere model. The influence of the cosine terms in (1)
can be neglected and one observes a linear convergence behavior.
Getting closer to the global optimizer, the 𝑦2

𝑖
parts get comparable

to the magnitude of the cosine terms, defining the phase II. The
influence of the local attractors becomes dominant, slowing down
the speed by which the global optimizer is approached. This slow-
down can also be seen in the mean value dynamics displayed in
Fig. 4. There, the averaged dynamics of the successful individual ES
runs is displayed, symbolized by angular brackets. At the end of
phase II, the ES is either confined in a local attractor or it has hit
the global attractor AES. This defines the begin of phase III where
one observes again increased linear convergence order.
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Figure 4: Mean value dynamics of the (100/100𝐼 , 200)-𝜎SA-
ES with 𝜏 = 1/

√
2𝑁 for 𝑁 = 100 derived from the success-

ful runs displayed in Fig. 3. In addition to the 𝑅 dynamics,
the mutation strength 𝜎 and its normalization 𝜎∗ are dis-
played. The distance Δ0 ≈ 0.527, cf. Eq. (3), (dashed line)
indicates the 𝑅 = ∥y∥ below which any parental compo-
nent 𝑦𝑖 ∈ [−Δ0,Δ0]. The remaining curves regarding 𝜎ES, cf.
Eq. (30), and ⟨

√︁
Var[𝐶]⟩ are discussed in Sect. 4.1. The asymp-

tote 𝐴
√︁
𝑁 /2 indicates the maximum of the 𝜎ES curve.

In addition to the mean value dynamics of 𝑅, Fig. 4 shows also
the dynamics of the mutation strength and its normalization

𝜎∗ := 𝜎𝑁 /𝑅. (5)

As one can see, the initial 𝜎 = 10 was (intentionally) chosen too
small. Therefore, self-adaptation increased the normalized 𝜎∗ to
reach typical sphere model values. Entering the phase II, one ob-
serves a certain decrease of 𝜎∗. This reflects the tendency of getting
trapped in local attractors. This phase ends at about generation
𝑔 = 125. At 𝑔 = 150 it already holds 𝑅 < Δ0 and the ES evolves
safely in the global attractor. The central question to be answered
in the next section concerns the conditions under which the global
attractor is reached with the success probability 𝑃s.
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4 THE SUCCESS PROBABILITY MODEL
4.1 The Frozen Noise Model
The Rastrigin function (1) can be divided into two parts. The first is
the sphere function 𝑅2 :=

∑𝑁
𝑖=1 𝑦

2
𝑖
indicating the squared distance

to the global optimizer. The second

𝐶 (y) := 𝑁𝐴 −𝐴

𝑁∑︁
𝑖=1

cos (𝛼𝑦𝑖 ) (6)

is called cosine part. It describes the oscillations of the Rastrigin
function where 𝐶 (y) ∈ [0, 2𝑁𝐴].

In the case where the distance to the global optimizer 𝑅 is very
large, i.e. 𝑅2 ≫ 𝑁𝐴 (being phase I), the perturbations caused by
the cosine parts are relatively small compared to the sphere model
part 𝑅2. In this case the behavior of the ES on Rastrigin is similar
to that of the sphere model. In real runs of the 𝜎SA-ES (cf. Fig. 4)
and the CSA-ES one observes 𝜎∗ values, Eq. (5), that are in an
order of magnitude of the asymptotically optimal sphere model
value 𝜎∗ = 𝜇𝑐𝜇/𝜇,𝜆 [4, 13]. 𝑐𝜇/𝜇,𝜆 is the progress coefficient [6]
which is in the range of roughly [0.8, 1.2] for truncation ratios
𝜗 ∈ [1/4, 1/2] and sufficiently large 𝜆. Due to (5) it holds 𝜎 =

𝜎∗𝑅/𝑁 = 𝜇𝑐𝜇/𝜇,𝜆𝑅/𝑁 . Since cos(𝛼𝑦𝑖 ) is periodic, the minimum
distance between two of its maxima is at 2𝜋/𝛼 . This determines the
extent of the local attractor regions. As long as 𝜎 ⪆ 2𝜋/𝛼 , there will
be a high probability to jump over those regions. This yields the
condition 𝜇𝑐𝜇/𝜇,𝜆𝑅/𝑁 ⪆ 2𝜋/𝛼 that will be fulfilled for sufficiently
large 𝑅, i.e., if one is far apart from the global optimizer.

If the ES is getting closer to the global optimizer (phase II) the
influence of the cosine parts becomes more pronounced compared
to the 𝑅2-part in (1). The ripples caused by the cosine parts (6) can
be interpreted as frozen noise. Thus, the evolution process can be
modeled as optimizing a noisy sphere model

𝐹 (y) = 𝑅2 + 𝑁𝐴 + 𝜎ES (𝑅)N (0, 1) with 𝑅 = ∥y∥, (7)

where 𝜎ES is the noise strength depending on the distance 𝑅 to
the global optimizer. This needs further justifications: Under the
assumption of a sufficient largemutation strength𝜎 the ES performs
a restricted random walk that can be interpreted as exploration. As
described in [5] the exploitation step towards the global optimizer is
only of order 1/

√
𝑁 compared to the exploration step, i.e., the step

perpendicular to the optimizer. This is a random sampling process
of global kind (i.e., it is not confined in a local attractor region
provided that 𝜎 is sufficiently large). The assumption of N(0, 1)
Gaussian noise in (7) can be justified by considering the cosine part
𝐶 (y), Eq. (6), as a sum of independent random variables cos (𝛼𝑦𝑖 )
for which the central limit theorem of statistics holds. The standard
deviation 𝜎ES (𝑅) of this noise produced by the offspring ỹ

𝜎ES =
√︁
Var [𝐶] = 𝐴

√√√
Var

[
𝑁∑︁
𝑖=1

cos(𝛼𝑦𝑖 )
]

(8)

will be derived in Appendix B, it is also displayed in Fig. 4 both
experimentally as ⟨

√︁
Var[𝐶]⟩ and by a theoretical estimate 𝜎ES (for

further discussion, see below).
Accepting the noise model (7), converging to the global optimizer

of Rastrigin is equivalent to optimize a noisy sphere model. It is
important to note that in the case of constant noise strength 𝜎ES, an

Figure 5: Histogram of all individual components 𝑦𝑖 at dis-
tance 𝑅 to the optimum for 𝑅 = 3 (left graph) and 𝑅 = 2.1
(right graph) for 𝜎SA-ES runs 𝑁 = 100, 𝜇 = 50, 𝜗 = 0.5. The
blue line is the pdf of the N

(
0, 𝑅

2

𝑁

)
variate.

ES optimizing a noisy sphere reaches a steady state 𝑅-distribution
with 𝑅st := E [𝑅] ≠ 0 and

𝑅st ≃
√︄

𝜎ES𝑁

4𝜇𝑐𝜇/𝜇,𝜆
, (9)

see [3, 12]. That is, the parental centroid y calculated in Line 10 of
Alg. 1 and 2 has the expected distance 𝑅st to the global optimizer.
Furthermore, each component of y is normally distributed [7]

𝑦𝑖 = (y)𝑖 ∼ N(0, 𝑅2st/𝑁 ). (10)

This also holds approximately for the parental distribution of the
ES on Rastrigin as long as the ES is not trapped in one of the local
attractors. Figure 5 shows two examples of the distribution of a
single parent component at two different distances 𝑅 to the global
optimizer. The histogram on the rhs has been obtained for an 𝑅

in the critical range where the ES has a higher probability getting
trapped into one of the local attractors.

With model (7), the evolution of the ES on Rastrigin can be
analyzed as a noisy minimization problem where the ES reaches the
vicinity of the global optimizer up to a distance 𝑅st. If this distance
is sufficiently small, the ES has reached the global attractor region
AES and can converge successfully (phase III). Since 𝜎ES is bounded
(see Fig. 4) one can infer from Eq. (9) that global convergence mainly
depends on the choice of a sufficiently large 𝜇 (assuming 𝜗 = const.).

4.2 Estimating the Success Probability
In order to have convergence to the global optimizer, the parental
centroid has to be in the global attractor region, i.e., y ∈ AES, Eq. (4).
Using (4), the success probability 𝑃s is therefore

𝑃s = Pr[y ∈ AES]
= Pr [(−Δ0 − 𝜀 ≤ 𝑦1 ≤ Δ0 + 𝜀) ∧ · · ·

· · · ∧ (−Δ0 − 𝜀 ≤ 𝑦𝑁 ≤ Δ0 + 𝜀)]

= Pr [−Δ0 − 𝜀 ≤ 𝑦 ≤ Δ0 + 𝜀]𝑁 . (11)

Here, the independence of the parental centroid components in the
steady state has been used and 𝑦 is distributed according to (10).
Using

𝜎st :=
𝑅st√
𝑁

(9)
=

√︄
𝜎ES

4𝜇𝑐𝜇/𝜇,𝜆
, (12)
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for the standard deviation in (10), one gets for a single component

Pr [−Δ0 − 𝜀 ≤ 𝑦 ≤ Δ0 + 𝜀] = Pr
[
−Δ0 + 𝜀

𝜎st
≤ 𝑧 ≤ Δ0 + 𝜀

𝜎st

]
= Φ

(
Δ0 + 𝜀

𝜎st

)
− Φ

(
−Δ0 + 𝜀

𝜎st

)
(13)

where Φ(𝑧) is the cdf of the standard normal variate 𝑧 ∼ N(0, 1).
Thus, one gets for the success probability

𝑃s =

[
2Φ

(
Δ0 + 𝜀

𝜎st

)
− 1

]𝑁
. (14)

Due to Eq. (12), 𝜎st depends on 𝜎ES of the offspring generated frozen
noise. This standard deviation which depends on the parental 𝑅 will
be derived for the CSA-ES in Appendix B and is displayed in Fig. 4
together with an experimentally obtained curve for the 𝜎SA-ES
labeled as ⟨

√︁
Var[𝐶]⟩. Apart from small deviations caused by the

different offspring 𝜎̃𝑙 values in 𝜎SA-ES which do not exist for CSA-
ES the general curve tendency is the same: The frozen noise strength
𝜎ES stays constant and only starts to drop if the distance 𝑅 is of the
order of Δ0. That is, even if the ES enters the global attractor region
AES, 𝜎ES is still in the vicinity of its maximum value. Therefore,
one can replace 𝜎ES by its maximum value 𝜎ES = 𝐴

√︁
𝑁 /2. Plugging

this into (12) yields

𝜎st =

√√
𝐴
√
𝑁

4
√
2𝜇𝑐𝜇/𝜇,𝜆

. (15)

If inserted into (14), one finally obtains the success probability
formula

𝑃s =

2Φ ©­«
√︄

4
√
2𝜇𝑐𝜇/𝜇,𝜆
𝐴
√
𝑁

(Δ0 + 𝜀)ª®¬ − 1

𝑁

. (16)

4.3 Comparison with Experiments
The predictive quality of the success probability formula (16) with
(3) is evaluated for the 𝜎SA-ES and the CSA-ES in Fig. 6 using 𝜀 = 0.
As for the 𝜎SA-ES the learning parameter 𝜏 = 1/

√
2𝑁 was used

and for the CSA-ES 𝑐 = 1/
√
𝑁 was chosen. Each data point was

obtained by at least 500 independent runs of the ES. As expected,
there are differences between experimental data and the predictions.
However, the general tendencies are well covered by (16). One can
obtain better predictions in the case of the 𝜎SA-ES if one chooses
𝜏 = 1/

√
4𝑁 (not shown in this paper).

In order to improve the predictions one needs the correction term
𝜀 ≠ 0 in (16). The results are presented in Fig. 7 where 𝜀 was chosen
according to Fig. 8. The 𝜀 values were determined experimentally
by minimizing the sum of the squares from the differences between
(16) and the experimental values. As one can see, the model of a
global success domain AES in terms of (4) provides success curves
that do well agree with the real ES runs. Therefore, Eq. (16) can
be used to derive a population sizing formula and to evaluate its
scaling behavior.
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Figure 6: Success 𝑃s vs. population size 𝜇 predicted by Eq. (16)
with 𝜀 = 0. Experimental results are displayed by the stars.
𝜎SA-ES in top row with 𝜗 = 1/2 (left) and 𝜗 = 1/4 (right).
CSA-ES in bottom row with 𝜗 = 1/2 (left) and 𝜗 = 1/4 (right).
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Figure 7: 𝑃s predicted by Eq. (16) with 𝜀 values according to
Fig. 8 for 𝜗 = 1/2 (left column) and 𝜗 = 1/4 (right column).
Upper row displays the 𝜎SA-ES with 𝜏 = 1/

√
2𝑁 . Middle row

displays the CSA-ES with 𝑐 = 1/
√
𝑁 . Bottom row displays the

CSA-ES with 𝑐 = 1/𝑁 .
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Figure 8: The dependence of 𝜀 on 𝑁 such that the deviations
between Eq. (16) and the experimental values are minimal
in Fig. 7.

5 POPULATION SIZING
5.1 Derivation of Parent Population Size
The central question of this paper regards the choice of 𝜇 and 𝜆

that guarantees convergence of the ES towards the global optimizer.
Given a fixed truncation ratio 𝜗 , it suffices to derive a formula
that predicts 𝜇 (𝑃s). Solving Eq. (16) for 𝜇 under the assumption
𝑐𝜇/𝜇,𝜆 ≃ 𝑓 (𝜗) [6, p.249] yields after a simple calculation

𝜇 ≃ 𝐴
√
2𝑐𝜇/𝜇,𝜆

√
𝑁

4(Δ0 + 𝜀)2

[
Φ−1

(
1
2
+ 1
2
𝑃

1
𝑁
s

)]2
, (17)

where Φ−1 is the quantile function of the standard normal distribu-
tion.

5.2 Comparison with Experiments
Figure. 9 compares the prediction of the population size Eq. (17)
depending on 𝑁 and 𝑃s for 𝜀 = 0 with experiments. 300 runs were
executed to obtain the experimental data displayed by the markers
(+, ×, and ◦). While the theoretical predictions of (17) with 𝜀 = 0
differ from the experimental values, Eq. (17) predicts the general
functional tendency well. The deviations are due to the different
sizes of AES encoded in 𝜀. As for the 𝜎SA-ES the population size
is underestimated in accordance with the negative values of 𝜀 in
Fig. 8. In contrast to that, 𝜀 = 0 results in an overestimation of
the population size for the CSA-ES in both cases 𝑐 = 1/𝑁 and
𝑐 = 1/

√
𝑁 .

As will be shown in Appendix C, (17) with 𝜀 = 0 behaves asymp-
totically like

𝜇 = O
(√

𝑁 ln(𝑁 )
)
. (18)

Respective curves proportional to
√
𝑁 ln(𝑁 ) are displayed by gray

dashed-dotted curves in Fig. 9. As one can infer from the data in
Fig. 9 and 8, the population size scaling of O(

√
𝑁 ln(𝑁 )) can serve

as an upper bound for the CSA-ES versions considered. As for the
𝜎SA-ESwith 𝜏 = 1/

√
2𝑁 the growth rate is slightly above

√
𝑁 ln(𝑁 )

for 𝑃s = 0.5. However, corrections to the scaling law
√
𝑁 ln(𝑁 )

cannot be obtained indicating the limits of the model used that does
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Figure 9: Population size for 𝑃s = 50% (blue curve and mark-
ers) and 𝑃s = 99% (purple curve andmarkers). The data points
obtained by ES runs represent the 𝜎SA-ES (+) with 𝜏 = 1/

√
2𝑁 ,

the CSA-ES with 𝑐 = 1/
√
𝑁 (×), and with 𝑐 = 1/𝑁 (◦). Gray

dashed-dotted lines show functions ∝
√
𝑁 ln(𝑁 ) for compari-

son.

not take into account the influence of 𝜏 and 𝑐 , respectively, on the
𝜎 adaptation.

Besides the 𝑁 -scaling the influence of the Rastrigin parameters
𝐴 and 𝛼 on the population sizing is of interest. To this end, a closer
look at (3) reveals that for 𝐴 → ∞ ⇒ Δ0 → 𝜋/𝛼 . Thus, the
influence of 𝐴 in (17) becomes linear for sufficiently large 𝐴. This
can be verified by the experiments presented in the left column of
Fig. 10 for both the 𝜎SA-ES and the CSA-ES. 𝜀 in (17) was calculated
by minimizing the difference between the slope of the experimental
values and those of Eq. (17) for values larger than 𝐴 = 4.

In order to derive the scaling behavior w.r.t. 𝛼 it is important, to
realize, that 𝛼 → ∞ ⇒ Δ0 → 𝜋/𝛼 . That is, the extension of AES
shrinks with increasing 𝛼 . Therefore, 𝜀 must shrink analogously
𝜀 → 𝜀/𝛼 . As a result the term in (17) yields (Δ0+𝜀)−2 ≃ 𝛼2/(𝜋 +𝜀)2.
Therefore, the population size must grow quadratically with 𝛼 . This
is experimentally confirmed on the rhs of Fig. 10. 𝜀 in (17) was
determined experimentally for values of 𝛼 larger than 2.5𝜋 by
minimizing the sum of the squares from the differences between
the experimental values and Eq. (17) using (Δ0 +𝜀)−2 = 𝛼2/(𝜋 +𝜀)2.

6 CONCLUSIONS
Reaching the global minimum of Rastrigin, a function that has a
huge number of local minima, is a hopeless endeavor when tackled
by gradient based nonlinear optimization techniques. Yet, Evolution
Strategies are able to find the global optimizer provided that the
population size has been chosen sufficiently large. The question
answered in this paper is how large is ”sufficiently large?” To this
end, a model has been developed that allows for the calculation of
the probability 𝑃s of reaching the global optimizer of the Rastrigin
function depending on the population size parameters 𝜇 and 𝜆. The
basic idea was the separation of Rastrigin into a Sphere model part
and a noise term and to apply the theory of ES performance on
noisy Sphere models. Given a fixed noise strength, an ES with fixed
𝜇, 𝜆 cannot reach the optimizer of the Sphere model arbitrarily close.
Instead, its parents fluctuate about the optimizer with an expected
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Figure 10: Scaling behavior of 𝜇, Eq. (17), depending on the
Rastrigin parameters 𝐴 (left column) and 𝛼 (right column).
Top row represents the 𝜎SA-ES and the bottom row the CSA-
ES with 𝑐 = 1/𝑁 and 𝜗 = 1/2 optimizing the 𝑁 = 100 case.
Markers with dashed lines represent the experiments, where
each data point was obtained by 500 independent runs. The
grey dashed-dotted straight lines are linear and quadratic
growth curves for comparison purpose.

distance 𝑅st to the optimizer. However, if this 𝑅st is sufficiently
small such that the parents hit the global attractor region, the ES
will converge to the global minimum. The model abstracts from
the details of the ES used, i.e., whether 𝜎SA or CSA-ES are used.
Therefore, the influence of those strategy specific parameters as
𝜏 and 𝑐 are not incorporated in the model. Yet, the model yields
remarkable predictions. Basically the parental population size scales
like O(

√
𝑁 ln(𝑁 )) in order to get reliable convergence to the global

optimizer. That is, the growth is sublinear and slightly above
√
𝑁 .

This is in contrast to gradient-based restart strategies that need an
exponential number of restarts. Besides the influence of the search
space 𝑁 , the influence of the Rastrigin parameters on the necessary
population size came out of the analysis. While for sufficiently large
𝐴 the population size scales linearly the influence of the spacial
frequency 𝛼 is quadratic.

It seems that the analysis method presented can be extended to
other highly multimodal test functions provided that a reasonable
noisy Sphere model can be constructed. This will be a future road
of research.
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A DERIVATION OF Δ0
The saddle point Δ0 nearest to the global optimizer ŷ = 0 is defined
by the 2nd zero of the derivative of (1) w.r.t. 𝑦𝑖 , i.e.,

2𝑦𝑖 +𝐴𝛼 sin(𝛼𝑦𝑖 ) = 0 ⇔ 𝑦𝑖 = Δ0 . (19)

This is a non-linear equation that must be solved numerically,
however, it can be asymptotically approximated. For sufficiently
large 𝐴𝛼 ≫ 2, Δ0 is given by the 2nd zero of the sinus function
𝛼Δ0 = 𝜋 leading to Δ0 = 𝜋/𝛼 . This holds exactly for 𝐴𝛼 → ∞. For
𝐴𝛼 < ∞ one can expand (19) in a Taylor series at 𝑦𝑖 = 𝜋/𝛼 such
that Δ0 = 𝜋/𝛼 + ℎ

0 = 2
(𝜋
𝛼
+ ℎ

)
+𝐴𝛼 sin

(
𝛼

(𝜋
𝛼
+ ℎ

))
= 2

𝜋

𝛼
+ 2ℎ +𝐴𝛼2 cos(𝜋)ℎ + O(ℎ2). (20)

Neglecting higher order terms, one gets ℎ = 2𝜋
𝛼 (𝐴𝛼2−2) and finally

Δ0 =
𝜋

𝛼
+ ℎ =

𝜋

𝛼
+ 2𝜋
𝛼 (𝐴𝛼2 − 2)

=
𝐴𝛼𝜋

𝐴𝛼2 − 2
. (21)

B DERIVATION OF 𝜎ES
The derivation of 𝜎ES defined by Eq. (8) differs for the 𝜎SA-ES
and the CSA-ES. While in the CSA-ES each offspring individual
ỹ𝑙 is generated from the parent y by the same mutation strength
𝜎 in Line 5 of Alg. 2, the 𝜎SA-ES produces each offspring ỹ𝑙 by
an individual 𝜎̃𝑙 in Lines 4 and 5 in Alg. 1. This may increase the
variance due to the variation of 𝜎 (see the slight superelevation of

https://doi.org/10.1145/3450218.3477307


GECCO ’23, July 15–19, 2023, Lisbon, Portugal L. Schönenberger and H.-G. Beyer

𝜎ES in Fig. 4) and it complicates the calculations. While 𝜎ES can
also be derived for the 𝜎SA-ES, it will be presented for the CSA-ES
for brevity.

The offspring components in CSA-ES are generated according to
𝑦𝑖 = 𝑦𝑖 +𝜎𝑧𝑖 where the 𝑧𝑖 are iid 𝑧𝑖 ∼ N(0, 1). Due to the stochastic
independence of the 𝑧𝑖 the sum in the variance expression in (8)
can be taken out of the variance

Var

[
𝑁∑︁
𝑖=1

𝑐𝑜𝑠 (𝛼𝑦𝑖 )
]
=

𝑁∑︁
𝑖=1

Var [𝑐𝑜𝑠 (𝛼𝑦𝑖 + 𝛼𝜎𝑧𝑖 )] . (22)

In the next step, the variance of a single component of the sum in
(22) will be calculated using the variance formula

Var[𝑐𝑜𝑠 (𝑤𝑖 )] = E[𝑐𝑜𝑠 (𝑤𝑖 )2] − E[𝑐𝑜𝑠 (𝑤𝑖 )]2 . (23)

where𝑤𝑖 = 𝛼𝑦𝑖 was substituted. Therefore, the first two moments
of 𝑐𝑜𝑠 (𝑤𝑖 ) are needed where𝑤𝑖 ∼ N(𝛼𝑦𝑖 , (𝛼𝜎)2). According to [1,
p.406], the characteristic function of𝑤𝑖 reads using Euler’s formula

E[e𝚤𝑡𝑤𝑖 ] = exp
(
𝚤𝛼𝑦𝑖𝑡 −

1
2
(𝛼𝜎)2𝑡2

)
= exp

(
−1
2
(𝛼𝜎)2𝑡2

)
(cos(𝛼𝑦𝑖𝑡) + 𝚤 sin(𝛼𝑦𝑖𝑡))

= E[cos(𝑡𝑤𝑖 )] + 𝚤E[sin(𝑡𝑤𝑖 )] . (24)

Comparing the real parts in the 2nd and 3rd line of (24), one gets
for 𝑡 = 1

E[cos(𝑤𝑖 )] = exp
(
−1
2
(𝛼𝜎)2

)
cos(𝛼𝑦𝑖 ). (25)

Taking the identity cos(𝑤𝑖 )2 = 1
2 + 1

2 cos(2𝑤𝑖 ) into account, one
gets with (25)

E[cos(𝑤𝑖 )2] =
1
2
+ 1
2
E[cos(2𝑤𝑖 )]

=
1
2
+ 1
2
exp

(
−1
2
(2𝛼𝜎)2

)
cos(2𝛼𝑦𝑖 ). (26)

Plugging (25) and (26) into (23), one obtains

Var[𝑐𝑜𝑠 (𝛼𝑦𝑖 )] =
1
2
+ 1
2
exp

(
−1
2
(2𝛼𝜎)2

)
cos(2𝛼𝑦𝑖 )

− exp
(
−(𝛼𝜎)2

) (
1
2
+ 1
2
cos(2𝛼𝑦𝑖 )

)
=
1
2

(
1 − e−(𝛼𝜎 )2

) (
1 − e−(𝛼𝜎 )2 cos(2𝛼𝑦𝑖 )

)
(27)

and finally for (22)

Var

[
𝑁∑︁
𝑖=1

𝑐𝑜𝑠 (𝛼𝑦𝑖 + 𝛼𝜎𝑧𝑖 )
]

=
𝑁

2

(
1 − e−(𝛼𝜎 )2

) (
1 − e−(𝛼𝜎 )2 1

𝑁

𝑁∑︁
𝑖=1

cos(2𝛼𝑦𝑖 )
)
. (28)

This result still depends on the actual location of the parent y in
the search space. In order to get an aggregated measure of 𝜎ES (𝑅)
that only depends on the distance 𝑅 to the global minimizer, the
condition in the variance expression (28) must be removed by taking
the expected value w.r.t. the 𝑦𝑖 . As has been explained in Sect. 4.1,
under steady state conditions, Eq. (10) holds, i.e., 𝑦𝑖 ∼ N(0, 𝑅2/𝑁 ).

Using the helper variable𝑤𝑖 := 2𝛼𝑦𝑖 , it holds𝑤𝑖 ∼ N(0, (2𝛼𝑅)2/𝑁 )
and (25) can be used yielding mutatis mutandis the expected value

E[cos(2𝛼𝑦𝑖 )] = exp
(
−1
2
(2𝛼𝑅)2
𝑁

)
cos(0) . (29)

Inserting this in (28) one finally obtains for 𝜎ES in (8)

𝜎ES (𝑅) = 𝐴

√︂
𝑁

2

√︄(
1 − e−(𝛼𝜎 )2

) (
1 − e−(𝛼𝜎 )2e−2

(𝛼𝑅)2
𝑁

)
. (30)

This result was already displayed in Fig. 4. The deviations to the
experimental values ⟨

√︁
Var[𝐶]⟩ are 𝜎SA-ES specific and are not

observed in CSA-ES runs. As one can easily infer from (30), it holds

𝜎ES (𝑅) ≤ 𝐴

√︂
𝑁

2
. (31)

That is, for the CSA-ES 𝜎ES (𝑅) takes its maximum of𝐴
√︁
𝑁 /2. In the

case of the 𝜎SA-ES slightly larger values are expected. This is due
to the additional variance caused by the variance of the mutation
strength within a single generation.

C ASYMPTOTIC POPULATION SIZE
In order to derive the 𝑁 -asymptotics of (17) it is noted that apart
from the

√
𝑁 , only

𝑓 (𝑁 ) := Φ−1
(
1
2
+ 1
2
𝑃

1
𝑁
s

)
(32)

needs closer scrutiny. Taking Φ(·) on both sides yields

Φ(𝑓 (𝑁 )) = 1
2
+ 1
2
𝑃

1
𝑁
s . (33)

The lhs is expressed by the first term of an asymptotic expansion [1,
26.2.12, p.408]Φ(𝑥) ≃ 1−exp(− 1

2𝑥
2)/

√
2𝜋𝑥 and the rhs is expanded

in a Taylor series neglecting terms of O(1/𝑁 2)

𝑃
1
𝑁
s = exp

(
1
𝑁

ln(𝑃s)
)
= 1 + 1

𝑁
ln(𝑃s) + O(1/𝑁 2). (34)

Thus, (33) becomes

−
exp

(
− 1
2 𝑓 (𝑁 )2

)
√
2𝜋 𝑓 (𝑁 )

≃ 1
2𝑁

ln(𝑃s) . (35)

Multiplying by −
√
2𝜋 𝑓 (𝑁 ) and taking the logarithm on both sides

yields

−1
2
𝑓 (𝑁 )2 ≃ ln

(√
2𝜋 𝑓 (𝑁 ) 1

2𝑁
ln(𝑃−1s )

)
= ln(

√︁
𝜋/2) + ln(𝑓 (𝑁 )) − ln(𝑁 ) + ln ln(𝑃−1s ). (36)

Multiplying by −2, one gets
𝑓 (𝑁 )2 ≃ 2 ln(𝑁 ) − 2 ln(𝑓 (𝑁 )) − 2 ln ln(𝑃−1s ) − ln(𝜋/2) . (37)

This equation can be used to generate successively better 𝑓 (𝑁 )2
approximations. However, for the purpose of this paper it suffices to
note that for sufficiently large𝑁 the term ln(𝑓 (𝑁 )) can be neglected
compared to ln(𝑁 ). Thus, from viewpoint of order notations one
gets 𝑓 (𝑁 )2 = O(ln(𝑁 )). Recalling that the square of (32), i.e., 𝑓 (𝑁 )2

appears in (17), one finally gets 𝜇 = O
(√

𝑁 ln(𝑁 )
)
.
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