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Abstract—Many real-world applications require the joint op-
timization of a large number of flexible devices over some time
horizon. The flexibility of multiple batteries, thermostatically
controlled loads, or electric vehicles, e.g., can be used to support
grid operations and to reduce operation costs. Using piecewise
constant power values, the flexibility of each device over d
time periods can be described as a polytopic subset in power
space. The aggregated flexibility is given by the Minkowski
sum of these polytopes. As the computation of Minkowski sums
is in general demanding, several approximations have been
proposed in the literature. Yet, their application potential is often
objective-dependent and limited by the curse of dimensionality.
In this paper, we show that up to 2d vertices of each polytope
can be computed efficiently and that the convex hull of their
sums provides a computationally efficient inner approximation
of the Minkowski sum. Via an extensive simulation study, we
illustrate that our approach outperforms ten state-of-the-art
inner approximations in terms of computational complexity
and accuracy for different objectives. Moreover, we propose
an efficient disaggregation method applicable to any vertex-
based approximation. The proposed methods provide an efficient
means to aggregate and to disaggregate typical battery storages
in quarter-hourly periods over an entire day with reasonable
accuracy for aggregated cost and for peak power optimization.

Index Terms—distributed energy resources, battery storage,
flexibility aggregation, Minkowski sum, vertex-based approxima-
tion, ancillary services, demand response

I. INTRODUCTION

THE coordinated control of a large number of distributed,
flexible devices offers significant potential for power

grids. For example, the flexibility of shiftable loads in the
distribution grid, such as batteries, refrigerators, heat pumps,
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water heaters, and air conditioners, can be used to support grid
operations and to reduce operation costs. Eventually, for the
sake of computational tractability, the large number of devices
necessitates to cluster units and their flexibilities. To this end,
the concept of an aggregator is introduced in the literature,
cf. [1]. The aggregator is typically an entity located between
consumers, energy markets, and network operators. This entity
manages contracted consumer devices, estimates the collective
flexibility, and assigns power profiles to individual devices.
The aggregator thus serves as an interface to a virtual power
plant, see also [2]. The flexibility of each device can be
described by a subset in the power space and the aggregated
flexibility by the point-wise sum of these sets. However,
the computation of this Minkowski sum is often prohibitive,
cf. [3]. Therefore, various tailored approximations have been
proposed in the literature.

Existing approximations can be roughly divided into top-
down and bottom-up approaches. The former typically use
machine learning, Markov chains, etc. to directly approxi-
mate the aggregated flexibility, cf. [4]–[6]. The latter start
from individual flexibilities, they usually assume a certain
underlying structure, and they can be further divided into
inner and outer approximations. Outer approximations [7]–
[12], compute supersets of the Minkowski sum and therefore
they have the major drawback to potentially contain infeasible
elements. Inner approximations make up the majority of
Minkowski sum approximations in the literature [7], [9]–[11],
[13]–[18], [23]–[25]. However, many of these have drawbacks,
such as poorer optimization results compared to a setting
without flexibility, high computational burden, and objective-
dependent performance, cf. [19]. Indeed the computational
burden limits the application potential of several approaches
significantly. The objective-dependent performance is likely
induced by the employed underlying set parametrizations,
e.g., an ellipsoid inscribed in a polytope covers the interior
rather than the vertices, resulting in poor performance in cost
optimization and in good performance for peak reduction.
An attempt to avoid the underlying structure is made in
[20], where a recursive algorithm is proposed to compute
the vertices of a polytope by computing extreme bounds.
Yet, this approach suffers from combinatorial complexity as it
attempts to compute all vertices with a scheme that may lead
to redundant computations. However, a related idea will also
be used for the method proposed in the present paper. Further
aggregation strategies, such as characterizing the flexibility of
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a fleet of heterogeneous storage units using the so-called E-p
transform, can be found in [26]–[28]; strategies in the presence
of nonlinearities with probabilistic inputs are discussed by
[29]–[31]. There also exist a dynamic programming approach
[32] and an exact aggregation strategy for a population of
electric vehicles using permutahedra [33].

Disaggregation represents the inverse operation to aggrega-
tion, i.e., the distribution of power profiles across individual
flexible devices, cf. [7], [14], [23]. Existing methods are often
based on the solution of optimization problems which may
induce a significant computational burden.

The novelty of the present paper is threefold. First, we
propose an efficient vertex-based inner approximation that can
be computed for a large number of time periods within seconds
and that overcomes the weaknesses of existing approximations.
Second, the proposed approximation method is benchmarked
against ten state-of-the-art inner approximations from the liter-
ature. It is shown to outperform the other methods in terms of
accuracy for various objectives and in terms of computational
performance. Finally, we propose an efficient disaggregation
method that does not require optimization and that can be
combined with any vertex-based approximation.

The remainder of this paper is organized as follows:
Definitions are given in Section II, where we define our
approach for all polytopes satisfying two assumptions, discuss
its properties, and give example polytopes for illustration
purposes. Section III discusses the general results related
to our approach. In Section IV we propose an efficient
algorithm to compute the approximation for battery storages
with unrestricted final energy and extend it to the case of
restricted final energy by applying corrections. In Section V,
we test our approximation against 10 state-of-the-art inner
approximations in terms of accuracy for various objectives
and computational complexity. Section VI is devoted to a
novel disaggregation method that applies to all vertex-based
approximations. Finally, conclusions are drawn in Section VII.

Notation: The set of natural and real numbers are denoted by
N = {1, 2, . . .} and R, respectively. The Minkowski sum of
sets Xi ⊆ Rd, i ∈ {1, . . . , n} is defined by M := {x ∈
Rd : x =

∑n
i=1 xi, xi ∈ Xi}. For a matrix A ∈ Rk×d

and a vector b ∈ Rk, the set P(A, b) := {x ∈ Rd :
Ax ≤ b} is a polyhedron, and a polytope if it is bounded.
The convex hull of a set X is written as Conv(X ). The d-
dimensional vector of zeros and ones are written as 0d and
1d, respectively. For x ∈ Rd and t ≤ d, we use the notation
Projt(x) := (x1, . . . , xt,0d−t)

⊤ for the projection of x onto
its first t components. The vector consisting of the first t
components of a vector x ∈ Rd is denoted by x[t] ∈ Rt. A
matrix with constant diagonals descending from left to right
is called a Toeplitz matrix. We say v ∈ Rd is a proper convex
combination of p, q ∈ Rd if v = tp+(1− t)q, with p ̸= q and
t ∈ (0, 1). The cardinality of a set X is denoted by |X |.

II. PRELIMINARIES

In this section, we introduce necessary assumptions, give
example polytopes that satisfy these assumptions, and we

allowed not allowed

Fig. 1. Illustration of Assumption 2. While the polytope on the left satisfies
the assumption, the polytope on the right does not.

define vectors of extreme actions within these polytopes. We
consider the following assumptions for P(A, b) ⊂ Rd:

Assumption 1 (Required flexibility). If Projt(x) ∈ P(A, b)
for t ∈ {1, . . . , d− 1}, then there exists an ε ∈ R \ {0} such
that (x1, . . . , xt, ε,0d−(t+1))

⊤ ∈ P(A, b). Furthermore, there
exists an ε ∈ R \ {0} such that (ε,0d−1)

⊤ ∈ P(A, b).

Assumption 2 (Projection feasibility). If x ∈ P(A, b), then
Projt(x) ∈ P(A, b) for all t ∈ {1, . . . , d − 1}. Furthermore,
0d ∈ P(A, b).

Assumption 1 requires a minimum flexibility in each time
period, and Assumption 2 requires the feasibility of all pro-
jections of x if x is feasible, cf. Fig. 1. The inclusion of the
zero vector is the extension of the projections beyond t = 1.
It models not using the flexibility.

In the following, we characterize polytopes that are typically
used to model the flexibility of battery storages. These poly-
topes are parameterized by the vector p = (α, x, x, S,∆t)⊤ ∈
(0, 1] × (−∞, 0] × [0,∞)2 × (0,∞) which denotes, respec-
tively, the self-discharge factor, lower and upper bound on the
charging rate (kW), maximum State of Charge (SoC; kWh),
and time step (h). Furthermore, the number of time periods
is denoted by d ∈ N, initial SoC by S0 ∈ [0, S] (kWh), and
minimum final SoC by Sf ∈ [0, S] (kWh). The set of feasible
power profiles given by the system dynamics

x ≤ x(t) ≤ x ∀ t = 1, . . . , d (1a)
S(t) = αS(t− 1) + x(t)∆t ∀ t = 1, . . . , d (1b)

0 ≤ S(t) ≤ S ∀ t = 1, . . . , d− 1 (1c)
S(0) = S0 (1d)

Sf ≤ S(d) ≤ S (1e)

results in the polytope

B(S0, Sf, p) := {x ∈ Rd : A(α)x ≤ b(S0, Sf, p)} (2)

with A(α) ∈ R4d×d and b(S0, Sf, p) ∈ R4d defined by

A(α) :=
(
−I, I,Γ⊤,−Γ⊤)⊤ (3a)

b(S0, Sf, p) :=(
−x1⊤

d , x1
⊤
d ,

1

∆t
(S1d − S0ad)

⊤,
S0

∆t
a⊤d−1,

αdS0 − Sf

∆t

)⊤

.

(3b)
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Moreover, we have ad := (α, α2, . . . , αd)⊤, I ∈ Rd×d is
the identity matrix, and Γ ∈ Rd×d is a Toeplitz matrix
with first column and row defined by (1, α, . . . , αd−1)⊤ and
(1, 0, . . . , 0), respectively. Note that we use x as flexibility
variable as in [7], [8], [13], [16], [19], [20] rather than the
notation with u which is commonly used in systems and
control. The polytopes B(S0, Sf, p) model a variety of real-
world flexibilities such as batteries, thermostatically controlled
loads, cf. [8], [9]. Moreover, if x > 0, x < 0, and S > 0, then
B(S0, 0, p) satisfies Assumptions 1 and 2.

Our approach aims to compute certain vectors of extreme
actions within the polytopes.

Definition 1 (Extreme actions). Let polytopes P(Ai, bi) ⊂
Rd, i ∈ {1, . . . , n} satisfy the Assumptions 1 and 2. Then, for
j ∈ {−1, 1}d the vectors yji ∈ Rd defined by

yji,1 := j1 ·max{j1 · x ∈ R : (x,0d−1)
⊤ ∈ P(Ai, bi)}, (4)

and

yji,t := jt ·max{jt · x ∈ R : (yji,[t−1], x,0d−t)
⊤ ∈ P(Ai, bi)}.

(5)
for t ∈ {2, . . . , d} are called extreme actions.

Note that jt = −1 in (4) and (5) is equivalent to replacing
the maximization with a minimization. Intuitively, the vectors
yji are obtained by moving as far as possible in each axis
in the negative direction if jt = −1, and in the positive
direction if jt = 1, cf. Fig. 2. The vectors yji exist for all
polytopes fulfilling the Assumptions 1 and 2, and it holds
that yji ∈ P(Ai, bi) by construction. The summation over all
i = 1, . . . , n with fixed j ∈ {−1, 1}d is denoted by:

vj :=

n∑
i=1

yji , (6)

and the convex hull of the set of summed vectors leads to

A := Conv({vj : j ∈ {−1, 1}d}). (7)

The set A can be described as a deformed cuboid, cf. Fig. 2.
It follows from (7) that A is a polytope and A ⊆M.

Henceforth, we show that the summed extreme actions (6)
are distinct vertices of the Minkowski sum, and thus the
convex hull of summed vectors turns out to be an inner
approximation of the Minkowski sum.

III. MAIN RESULT

Next, we discuss the properties of the summed extreme
actions. Due to space limitations, standard definitions such as
convex independence, vertex are not given; instead we refer
to, e.g., [21], [22]. Fig. 2 illustrates the following results.

Lemma 1. Let polytopes P(Ai, bi) ⊂ Rd, i ∈ {1, . . . , n},
fulfill the Assumptions 1 and 2. Further, let vj , vk ∈ Rd, j, k ∈
{−1, 1}d satisfy (6). Then, the following hold:

1) vjt

{
≥ 0 for jt = 1

≤ 0 for jt = −1
∀ t ∈ {1, . . . , d},

2) if j ̸= k, then vj ̸= vk.

The proof is given in Appendix-A.
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x 2

y( 1, 1)
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v( 1, 1)
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x1

x 2

v( 1, 1)

v(1, 1)

v(1, 1)
v( 1, 1)

Fig. 2. Left: vectors y
(−1,1)
1 , y(−1,1)

2 within the polytopes shown in dashed
blue and solid green, and the sum v(−1,1) shown in the Minkowski sum
M in dash-dotted black. Right: all possible vectors vj , j ∈ {−1, 1}2 in the
Minkowski sum with the resulting set A in orange.

Lemma 2. Let polytopes P(Ai, bi) ⊂ Rd, i ∈ {1, . . . , n}
with Minkowski sum M fulfill the Assumptions 1 and 2, and
p ∈ Rd. Further, let vj ∈ Rd, j ∈ {−1, 1}d satisfy (6). For
t ∈ {2, . . . , d}, if p[t−1] = vj[t−1] and pt > vjt with jt = 1, or
pt < vjt with jt = −1, then p ̸∈ M. Furthermore, if p1 > vj1
with j1 = 1 or p1 < vj1 with j1 = −1, then p /∈M.

The proof is given in Appendix-B. Lemma 2 states that
there can be no vector in M that has t− 1 coordinates equal
to vj and a value greater than vjt in the t-th coordinate if
jt = 1. Similarly, there cannot be a vector with equal t − 1
coordinates inM that has a value less than vjt when jt = −1.
This characteristic behavior is also illustrated in Fig. 2.

Proposition 1. Let polytopes P(Ai, bi) ⊂ Rd, i ∈ {1, . . . , n},
fulfill the Assumptions 1 and 2. Further, let vj ∈ Rd, j ∈
{−1, 1}d satisfy (6), and A satisfy (7). Then, vj is a vertex
of A.

The proof is in Appendix-C. The proposition states that vj

is a vertex of A, and by Lemma 1, the elements of {vj : j ∈
{−1, 1}d} are distinct. Thus, they are distinct vertices of A.

Proposition 2. Let polytopes P(Ai, bi) ⊂ Rd, i ∈ {1, . . . , n},
with Minkowski sum M fulfill the Assumptions 1 and 2.
Further, let vj ∈ Rd, j ∈ {−1, 1}d satisfy (6), A satisfy (7),
and p, q ∈ M with vj = tp + (1 − t)q, t ∈ (0, 1), then,
p, q ∈ A.

The proposition gives that if vj is a proper convex com-
bination of elements p, q ∈ M, then p, q must be in A, see
Appendix-D for the proof. We can now state our first main
result which shows that the readily computable 2d vectors vj

are indeed vertices of the Minkowski sum, and, thus, their
convex hull constitutes an inner approximation.

Theorem 1 (Extreme actions define vertices). Let polytopes
P(Ai, bi) ⊂ Rd, i ∈ {1, . . . , n}, with Minkowski sumM fulfill
the Assumptions 1 and 2. Then, any vj ∈ Rd, j ∈ {−1, 1}d,
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satisfying (6) is a vertex of M.

Proof. Suppose that vj is not a vertex of M, then vj =
tp + (1 − t)q with p, q ∈ M, p ̸= q and t ∈ (0, 1). From
Proposition 2 it follows that p, q ∈ A, which gives vj as a
proper convex combination of elements in A. Thus vj cannot
be a vertex of A, which contradicts Proposition 1. Hence, the
assumption that vj is not a vertex of M must be false.

Theorem 1 combined with Lemma 1 states that the sums of
extreme actions are distinct vertices of M, providing a novel
method to compute a subset of Minkowski sum vertices. Note
that A is exact for cuboids since they have 2d vertices in d-
dimensional space and |{vj : j ∈ {−1, 1}d}| = 2d. Moreover,
for any set V ⊆ {vj : j ∈ {−1, 1}d} holds Conv(V) ⊆ M,
thus Conv(V) is an inner approximation of M.

IV. APPLICATION TO BATTERY STORAGE

Next, we present an efficient algorithm for computing the
yj , j ∈ {−1, 1}d within the set B(S0, 0, p). This approach
is then further extended by a corrective algorithm to com-
pute a subset of vertices of B(S0, Sf , p). Note that this is
necessary because B(S0, Sf , p) may violate Assumption 2 for
arbitrary Sf > 0. Finally, the complete algorithm for polytopes
B(S0,i, Sf,i, pi), i = 1, . . . , n is presented.

Algorithm 1 computes the yj for given S0, p, j ∈ {−1, 1}d,
and Sf = 0 without invoking any numerical optimization
problems. The procedure iterates through the components jt.
If jt = 1, then yjt is determined by charging to the limit
without violating the constraints, and by discharging to the
limit for jt = −1. To this end, Line 5 checks whether the
upper energy constraint for yjt = x is violated. If so, yjt in
Line 6 is chosen to fully charge the battery. Similarly, Line
10 checks whether the lower energy constraint is violated with
yjt = x. If so, yjt in Line 11 is chosen to fully discharge the
battery. The application of Algorithm 1 to all j ∈ {−1, 1}d
yields the set of vectors {yj : j ∈ {−1, 1}d}. The aggregated
vectors are then obtained by storing these vectors in matrices
Vi and further calculating

∑n
i=1 Vi.

Algorithm 1 (Vertex)
Input S0, p, j ∈ {−1, 1}d

1: yj ← 0d

2: for t = 1 to d do
3: if jt = 1 then
4: yjt ← x
5: if αtS0 +

∑t
τ=1 α

t−τyjτ∆t > S then
6: yjt ←

S−(αtS0+
∑t−1

τ=1 αt−τyj
τ∆t)

∆t
7: end if
8: else if jt = −1 then
9: yjt ← x

10: if αtS0 +
∑t

τ=1 α
t−τyjτ∆t < 0 then

11: yjt ←
−(αtS0+

∑t−1
τ=1 αt−τyj

τ∆t)
∆t

12: end if
13: end if
14: end for
Output yj

2 0 2 4 6 8
x1

2

0

2

4

6

8

x 2

(S0, 0, p)
(S0, Sf, p)

Fig. 3. The set B(S0, Sf , p) in solid green and the set B(S0, 0, p) in dashed
blue. The crosses on B(S0, 0, p) indicate the yj , and the arrow with dot
visualizes the correction process.

The previous approach can be extended to compute a subset
of vertices of B(S0, Sf , p), which may violate Assumption 2
for arbitrary Sf > 0, cf. Fig. 3. Suppose yj satisfying
Definition 1 is obtained for the set B(S0, 0, p). The set {x ∈
R : (yj[d−1], x)

⊤ ∈ B(S0, Sf , p)} is equivalent to {x ∈ R : x ≤
x ≤ x, Sf ≤ αdS0+

∑d−1
τ=1 α

d−τyjτ∆t+x∆t ≤ S}. Hence, if
yj /∈ B(S0, Sf , p), then Sf > αdS0 +

∑d
τ=1 α

d−τyjτ∆t since
yj ∈ B(S0, 0, p) and the remaining inequalities are identical
for both sets. Thus, increasing the values in yj without violat-
ing the power constraints so that the inequality associated with
Sf is satisfied yields yj ∈ B(S0, Sf , p). The set B(S0, Sf , p)
models a battery with a minimum final energy constraint. The
charging and discharging in B(S0, 0, p) may result in a final
energy less than Sf . Thus, by correcting—i.e., increasing the
values in yj—one can achieve the given final energy Sf ,
and the corrected vectors ỹj fulfill ỹj ∈ B(S0, Sf , p), cf.
Lemma 3. The correction process starts at the last period
d by checking in Line 2 of Algorithm 2 whether Sf can
be reached without violating the power constraints. If this
is possible, the d-th coordinate of yj is changed in Line 3
and the algorithm terminates, otherwise, the coordinate d− 1
is changed to the highest possible value x and it is checked
again whether the final SoC can be reached without violating
the power constraints. If possible, the d-th coordinate of yj is
changed in Line 9 and the algorithm terminates, otherwise, it
is continued with the coordinate d−2 and so forth until Sf is
reached. This correction process is visualized in Fig. 3. First,
the yj are computed within B(S0, 0, p), i.e., the four crosses
in Fig. 3, then the coordinates of the crosses not contained in
B(S0, Sf , p) are increased, so that Sf is reached, indicated by
the arrow and dot in Fig. 3.

Lemma 3. Let B(S0, Sf , p),B(S0, 0, p) ⊂ Rd with parameter
vector p = (α, x, x, S,∆t)⊤ be given. Further, let yj ∈ Rd,
j ∈ {−1, 1}d satisfy Definition 1 for B(S0, 0, p). Then, ỹj

defined by Algorithm 2 is in B(S0, Sf , p) if B(S0, Sf , p) ̸= ∅.
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Algorithm 2 (Correction)
Input S0, Sf , p, y

j ∈ B(S0, 0, p)

1: if yj /∈ B(S0, Sf , p) then
2: if x ≤ Sf−(αdS0+

∑d−1
τ=1 αd−τyj

τ∆t)
∆t ≤ x then

3: yjd ←
Sf−(αdS0+

∑d−1
τ=1 αd−τyj

τ∆t)
∆t

4: end if
5: t← d− 1
6: while Sf ̸= αdS0 +

∑d
τ=1 α

d−τyjτ∆t and t > 0 do
7: yjt ← x

8: if x ≤ Sf−(αdS0+
∑d−1

τ=1 αd−τyj
τ∆t)

∆t ≤ x then
9: yjd ←

Sf−(αdS0+
∑d−1

τ=1 αd−τyj
τ∆t)

∆t
10: end if
11: t← t− 1
12: end while
13: end if
14: ỹj ← yj

Output ỹj

For the proof see Appendix-E. The next result shows that
the corrected vector ỹj is a vertex of B(S0, Sf , p); its proof
is given in Appendix-F.

Theorem 2. Let nonempty sets B(S0, Sf , p),B(S0, 0, p) ⊂ Rd

with parameter vector p = (α, x, x, S,∆t)⊤ be given. Further,
let yj ∈ Rd, j ∈ {−1, 1}d satisfy Definition 1 for B(S0, 0, p).
Then, ỹj defined by Algorithm 2 is a vertex of B(S0, Sf , p).

Algorithm 3 now uses the polytopes B(S0,i, 0, pi), i =
1, . . . , n to compute a subset of their vertices, and then corrects
these yji with Algorithm 2 such that vertices of polytopes
B(S0,i, Sf,i, pi), i = 1, . . . , n are obtained. The parameter g
in Algorithm 3 allows to consider a subset of {vj : j ∈
{−1, 1}d}. It allows to adjust accuracy and computational
complexity. Line 1 guarantees that the maximum amount is
limited to 2d. If g < 2d, we propose to stochastically select
the j ∈ {1,−1}d using a uniform distribution. In Line 7, the
vector of zeros modeling the non-use of flexibility is inserted
into the g + 1-th column of V . This is not necessary when
g = 2d because then all vectors are computed, and it can be
shown that in this case 0d ∈ A. Note that the vector is to be
appended only if Sf,i ≤ S0,iα

d
i ∀i ∈ {1, . . . , n}, otherwise

0d is not included in B(S0,i, Sf,i, pi). In Lines 15 and 16, the
Algorithms 1 and 2 are invoked, respectively.

V. BENCHMARK RESULTS

Now we compare the proposed method using the bench-
mark for Minkowski sum approximations previously pub-
lished in [19]. The considered scenario models households
with real demand curves and stationary batteries modeled by
B(S0,i,

1
2S0,i, pi), pi = (1, xi, xi, Si,

1
4 ). The battery param-

eters are sampled from intervals: Si ∈ [10.5, 13.5] (KWh),
S0,i ∈ [0, 10.5] (kWh), xi ∈ [4, 6] (kW), and xi ∈ [−6,−4]
(kW) ∀i ∈ {1, . . . , n}, cf. [19] for details and for an indepth
discussion of the bnechmark.

Algorithm 3 (Complete Algorithm)
Input S0,i, Sf,i, pi, i = 1, . . . , n, g

1: if g < 2d then
2: init J ▷ chose g distinct elements in {−1, 1}d
3: else
4: J ← {−1, 1}d
5: end if
6: if Sf,i ≤ S0,iα

d
i ∀i ∈ {1, . . . , n} then

7: V ← 0d×(g+1) ▷ d× (g + 1) matrix of zeros
8: else
9: V ← 0d×(g) ▷ d× (g) matrix of zeros

10: end if
11: for i = 1 to n do
12: Vi ← 0d×g

13: k ← 1
14: for j ∈ J do
15: yji ← Vertex(S0,i, pi, j)
16: ỹji ← Correction(S0,i, Sf,i, pi, y

j
i )

17: Vi[:, k]← ỹji
18: k ← k + 1
19: end for
20: end for
21: V [:, 1 : g]←

∑n
i=1 Vi

Output V

We assess the quality of inner approximations via the
Unused Potential Ratio (UPR) defined as

UPR :=
zapprox − zexact

zno flex − zexact
· 100. (8)

Here zapprox represents the solution of an optimization prob-
lem, e.g., the minimal cost or peak power, based on the
approximation, zexact the solution of the same optimization
using the exact feasible region, and zno flex the solution in a
setting without flexibility. If the UPR is close to 0 %, then the
approximation and the Minkowski sum yield almost the same
result, otherwise, if the UPR is close to 100 %, then there is
a large (unused) improvement available in the approximation.
There is also the possibility that the UPR value is greater than
100 %, in which case the solution without flexibility, i.e., 0d,
gives better results than using the approximation.

We consider the objectives c⊤
(
x+

∑N
i=1 di

)
∆t for eco-

nomic cost and
∥∥∥x+

∑N
i=1 di

∥∥∥
∞

for peak power, where c is
the associated cost and di the household demand.

To account for uncertainties, UPR values are calculated for
each month of a year along with 5 random villages, i.e., sets
of households with stationary batteries, the median of which
is used for further analysis.

We use Algorithm 3 and a uniformly sampled subset
J ⊆ {−1, 1}d with d2 distinct vectors to calculate the yj ,
i.e., g = d2. Note that g needs to be a function of d, as
the number of vertices increases with increasing dimension,
e.g., a hypercube has 2d vertices in d dimensions. To motivate
the quadratic dependence, we conducted an experiment with
100 batteries for 12, 24, . . . 96 time periods. For each tuple
(n, d) ∈ {100} × {12, 24, . . . , 96}, the approximation and
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Fig. 4. Boxplot for UPR values with 100 batteries, d = 12, 14, . . . , 96 time
periods, and g = d2. For each time period, the approximation is calculated
50 times.

TABLE I
MAX UPR VALUES AND MAX CALCULATION TIME FOR 2, 5, 10, 15 TIME

PERIODS AND 5, 10, 15, 20 BATTERIES FOR DIFFERENT INNER
APPROXIMATION METHODS

Algorithm Ref. Time (s) UPR (%)
Peak Cost

Cuboid Homothets Stage 0 [15] 0.25 111.92 17.44
Battery Homothets [9] 37.65 27.25 39.66

Battery Homothet Projection
with LDR [17] - - -

Zonotopes l∞ [13] 24.64 134.23 21.10
Zonotopes l1 [13] 27.10 199.32 16.24
Zonotopes l2 [13] 9.45 121.87 17.34

Zonotopes weighted [14] 9.23 180.08 14.02
Cuboid Homothets Stage 1 [15] 7.52 111.92 16.21

Ellipsoid Projection with LDR [16] 8.73 25.07 54.34
Ellipsoid Projection [7] - - -

Proposed Vertex Generation 0.07 5.38 4.19

UPR values are calculated 50 times to measure the variation
in UPR values with different choices of J ⊆ {1,−1}d. The
results are shown in Fig. 4. The maximum range of the UPR
values for the peak power and cost objectives is 6.3 % and
14.9 %, respectively, indicating a good degree of robustness
with different choices of J ⊆ {1,−1}d. Since Algorithm 3
computes n · d2 vertices for n devices, the total number of
vectors to compute is nd2. Thus the computational complexity
is quadratic in the number of time periods and linear in the
number of devices.

Table I shows the evaluation of 11 approximation algorithms
for 5, 10, 15, and 20 batteries and 2, 5, 10, and 15 time
periods. For each tuple (n, d) ∈ {5, 10, 15, 20}×{2, 5, 10, 15},
the UPR values and calculation times are computed similar to
[19]. The maximum computation time and the maximum UPR
value for cost and peak objectives across all tuples are listed in
the columns for each algorithm. The reason for empty entries
is a limitation in the benchmark, which skips algorithms that
take longer than 5 minutes for a tuple (n, d) and are thus not
calculated for further tuple combinations. Table I shows that

TABLE II
MAXIMUM UPR VALUES AND MAX CALCULATION TIME FOR 12, 24, . . .,

96 TIME PERIODS AND 10, 20, . . ., 100 BATTERIES.

Algorithm Time (s) UPR (%)
Peak Cost

Proposed Vertex Generation 173.33 6.70 37.60

our proposed vertex generation achieves the lowest computa-
tion time and UPR values. This solves one of the problems
in [19], namely the objective dependent performance, e.g., the
algorithm ”Ellipsoid Projection with LDR” achieves the sec-
ond best results at Peak, but the worst results at Cost. Another
problem identified in [19] is that the inner approximations may
have worse performance than the setting without flexibility, in
which case UPR > 100 %. This behavior is observable in
the Peak column of Table I for all algorithms except for our
approach as well as the algorithms ”Battery Homothets” and
”Ellipsoid Projection with LDR”. This problem is tackled in
Line 7 of Algorithm 3, where the vector 0d is implicitly added
in the g + 1-th column of V . The last problem mentioned in
[19] is the computational complexity. Indeed most algorithms
listed in Table I have unrealistic runtimes for day ahead
predictions, cf. [19]. However, as the results of Table II show
our approach enable efficient day-ahead predictions with 96
time periods. Indeed for a set of 100 batteries the maximal
computation time and UPR values are calculated for tuples
(n, d) ∈ {10, 20, . . . , 100} × {12, 24, . . . , 96} and listed in
Table II. It can be seen that the maximum computation time is
about 3 minutes. Furthermore, Table II shows that our method
exhibits a maximum UPR value for the peak power objective
of 6.7 %, which occurs at (80, 12) and is lower than that of
the other algorithms, considering only 20 batteries and 15 time
periods, cf. Table I. The maximum cost UPR value is reported
to be 37.6%, which occurs at (10, 60) and is again better than
two of the other algorithms in settings with up to 20 devices
and 15 time periods, cf. Table I, and can be further improved
by considering more than d2 vectors.

VI. DISAGGREGATION FOR VERTEX-BASED
APPROXIMATIONS

Next, we describe a novel disaggregation method for vertex-
based approximations. Once an estimate of the collective
flexibility is available, a grid operator, for example, can select
a power profile that needs to be distributed (disaggregated) by
the aggregator to the individual flexible devices. Mathemati-
cally, disaggregation is the inverse operation of aggregation.
Aggregation can be described as a mapping f : P(A1, b1) ×
P(A2, b2)×· · ·×P(An, bn) 7→ Rd, f(x1, . . . , xn) :=

∑n
i=1 xi

for polytopes P(Ai, bi) ⊂ Rd, i = 1, . . . , n. However, this
mapping is in general not injective and therefore not invertible,
since there may be different sets of vectors with equal sum.
Usually, optimization problems are formulated and solved in
the literature to obtain feasible vectors whose sum is the
aggregated vector, cf. [7], [14]. However, in high-dimensional
spaces, this is time-consuming and, indeed, for vertex-based
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Algorithm 4 (Disaggregation)

Input αj , y
j
i , i = 1, . . . , n,J

1: D ← 0d×n

2: for i = 1 to n do
3: D[:, i]←

∑
j∈J αjy

j
i

4: end for
Output D

approximations it is not necessary. Each aggregate vector x
can be described as a convex combination of its vertices, i.e.,

x =
∑
j∈J

αjv
j ,
∑
j∈J

αj = 1, αj ≥ 0 ∀j ∈ J (9)

for some index set J . Each vj in the aggregation is a
summation of vertices in P(Ai, bi), hence vj =

∑n
i=1 y

j
i with

yji ∈ P(Ai, bi). Inserting this equality in (9) yields:

x =
∑
j∈J

αj

n∑
i=1

yji =

n∑
i=1

∑
j∈J

αjy
j
i (10)

Thus, the contribution of flexibility i is the sum
∑

j∈J αjy
j
i .

Note that the αj are fixed by the chosen vector x, e.g., from
a previously performed optimization by the grid operator, the
yji are known from Algorithm 1, and thus the inner sum can
be calculated. Therefore, the disaggregation reduces to the
calculation of the sum for each flexibility, cf. Algorithm 4.

VII. CONCLUSIONS

This paper proposed a novel vertex-based inner approxima-
tion for the collective flexibility of multiple flexible devices.
Our method is applicable to polytopes satisfying two rather
mild assumptions and we provide an extension to polytopes
modeling battery storages. In a benchmark against ten state-of-
the-art inner approximations from the literature, our proposed
approach outperforms in terms of computational complexity
and in terms of accuracy for different objectives. In addition,
an efficient disaggregation method is proposed which is appli-
cable to any vertex-based approximation. In combination, the
presented methods are to the best of the authors’ knowledge
the first ones to provide a computationally efficient mean to
(dis-)aggregate typical battery storages in quarter-hourly peri-
ods over an entire day with reasonable accuracy for aggregate
cost and peak power optimization objectives.

Future research will focus on the consideration of active and
reactive power, and it will attempt to relax the assumptions to
other polytopes. In particular, storages with limited availabil-
ity and (dis-)charging efficiencies, such as electric vehicles,
should be considered in this context. Furthermore, it will be
investigated if and how cases that violate the assumptions, like
storages with terminal energy constraints, can be handled via
suitable problem reformulations. Finally, in order to increase
the optimization performance at the aggregated level the
optimal choice for the vertices subset J ⊆ {1,−1}d is to
be investigated.

A. Proof of Lemma 1

Proof. (Property 1) For t = 2, . . . , d we have vjt =
∑n

i=1 jt ·
max{jt · x ∈ R : (yji,[t−1], x,0d−t)

⊤ ∈ P(Ai, bi)}. By con-
struction yji ∈ P(Ai, bi), and by Assumption 2 Projt−1(yji ) ∈
P(Ai, bi), hence (yji,[t−1], 0,0d−t)

⊤ ∈ P(Ai, bi). Therefore,
if jt = 1, then max{x ∈ R : (yji,[t−1], x,0d−t)

⊤ ∈
P(Ai, bi)} ≥ 0 ∀ i, hence vjt ≥ 0. Otherwise, if jt = −1, then
−max{−x ∈ R : (yji,[t−1], x,0d−t)

⊤ ∈ P(Ai, bi)} ≤ 0 ∀ i,
thus vjt ≤ 0.

For t = 1 we have vj1 =
∑n

i=1 j1 · max{j1 · x ∈ R :
(x,0d−1)

⊤ ∈ P(Ai, bi)}. Assumption 2 gives 0d ∈ P(Ai, bi),
and by the same reasoning it follows that vj1 ≥ 0 if j1 = 1
and vj1 ≤ 0 if j1 = −1.

Proof. (Property 2) Suppose that vkt = vjt for kt ̸= jt.
Without loss of generality let jt = 1 and kt = −1. Then,
vjt =

∑n
i=1 y

j
t =

∑n
i=1 y

k
t = vkt . Since yjt ≥ 0 and ykt ≤ 0

(Property 1), we have yjt = ykt = 0 ∀ i. This is however
impossible as by Assumption 2 Projt−1(yji ) ∈ P(Ai, bi),
which implies that (yji,[t−1], 0,0d−t)

⊤ ∈ P(Ai, bi). Further-
more, Assumption 1 ensures the existence of an ε ∈ R \ {0}
with (yji,[t−1], ε,0d−t)

⊤ ∈ P(Ai, bi), which gives at least two
elements, and therefore max{x ∈ R : (yji,[t−1], x,0d−t)

⊤ ∈
P(Ai, bi)} ≠ −max{−x ∈ R : (yki,[t−1], x,0d−t)

⊤ ∈
P(Ai, bi)}. Thus, the assumption that vkt = vjt must be false,
which yields vkt ̸= vjt .

For j ̸= k, there exists an index t with jt ̸= kt and by the
above reasoning holds vkt ̸= vjt , hence vj ̸= vk.

B. Proof of Lemma 2

Proof. Assume that p ∈ M and t > 1, then there are pi ∈
P(Ai, bi) with p =

∑n
i=1 pi, and p[t−1] =

∑n
i=1 pi,[t−1] =∑n

i=1 y
j
i,[t−1] = vj[t−1]. We distinguish two cases:

Case 1: Let pi,[t−1] = yji,[t−1] ∀ i. If pt > vjt and jt = 1, then
there is a k ∈ {1, . . . , n} with pk,t > yjk,t. Since pk,[t−1] =

yjk,[t−1] and yjk,t = max{x ∈ R : (yjk,[t−1], x,0d−t)
⊤ ∈

P(Ak, bk)} it follows that (pk,[t−1], pk,t,0d−t)
⊤ ̸∈ P(Ak, bk),

thus Projt(pk) ̸∈ P(Ai, bi). Assumption 2 yields pk ̸∈
P(Ak, bk), which contradicts the assumption p ∈ M. If
pt < vjt and jt = −1, then by similar reasoning it follows
that p ̸∈ M.
Case 2: ∃ l, k ∈ {1, . . . , n} with pl,[t−1] ̸= yjl,[t−1] and
pk,[t−1] ̸= yjk,[t−1]. Note that the negation of Case 1 yields
at least two indices l, k ∈ {1, . . . , n}, and a minimum index
m ∈ {1, . . . , d} with pl,m < yjl,m and pk,m > yjk,m. For
m ̸= 1 we have pl,[m−1] = yjl,[m−1] and yjl,[m−1] = pk,[m−1].
If jm = −1 then Projm(pl) ̸∈ P(Al, bl) and by Assumption 2
pl ̸∈ P(Al, bl). Otherwise, if jm = 1, then Projm(pk) ̸∈
P(Ak, bk) and by Assumption 2 pk ̸∈ P(Ak, bk). For m = 1
we have that pl,1 < yjl,1 and pk,1 > yjk,1. If j1 = 1, then
pk /∈ P(Ak, bk). Otherwise, if j1 = −1, then pl /∈ P(Al, bl).

For t = 1 holds that if p1 > vj1 and j1 = 1, then
there is an index k ∈ {1, . . . , n} with pk,1 > yjk,1 therefore
Proj1(pk) /∈ P(Ak, bk) and by Assumption 2 pk /∈ P(Ak, bk).
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Otherwise, if p1 < vj1 and j1 = −1, then by similar reasoning
pk /∈ P(Ak, bk). Hence, all cases lead to contradictions and
therefore p /∈M.

C. Proof of Proposition 1

Proof. We prove the convex independence of the set of vectors
{vj : j ∈ {−1, 1}d} by induction over d. It then follows that
vj is a vertex in A.
Base case: (d = 1) In one-dimensional space two distinct
numbers v(0), v(1) are computed cf. Lemma 1, which are
convex independent by definition.
Induction hypothesis: Let the set of vectors {vj : j ∈
{−1, 1}d} be convex independent for a d ∈ N.
Induction step: (d → d + 1) The d + 1 dimensional vectors
are constructed by {v(j,−1), v(j,1) : j ∈ {−1, 1}d}. Assume
the set of vectors {v(j,−1), v(j,1) : j ∈ {−1, 1}d} is convex
dependent, then for some k ∈ {−1, 1}d we have without loss
of generality that

v(k,−1) =
∑

j∈{−1,1}d,j ̸=k

αjv
(j,−1) +

∑
j∈{−1,1}d

βjv
(j,1) (11)

∑
j∈{−1,1}d,j ̸=k

αj +
∑

j{−1,1}d

βj = 1 (12)

αj , βj ≥ 0 (13)

Projecting (11) to the first d coordinates gives:

vk = βkv
k +

∑
j∈{−1,1}d,j ̸=k

(αj + βj)v
j

(1− βk)v
k =

∑
j∈{−1,1}d,j ̸=k

(αj + βj)v
j

where 0 ≤ βk ≤ 1. We distinguish two cases:
Case 1: If βk < 1, then 1− βk > 0 and we have:

vk =
∑

j∈{−1,1}d,j ̸=k

(αj + βj)

(1− βk)
vj

where (αj+βj)
(1−βk)

≥ 0 and
∑

j∈{−1,1}d,j ̸=k
(αj+βj)
(1−βk)

= 1, hence
vk is convex combination of vectors in {vj : j ∈ {−1, 1}d} \
{vk}, which contradicts the induction hypothesis.
Case 2: If βk = 1, then αj = βj = 0 ∀j ∈ {−1, 1}d\{k}, and
it follows from (11) that v(k,−1) = v(k,1), which is impossible
as the vectors are distinct by Lemma 1. These contradictions
show the convex independence of the vectors.
Since A = Conv({vj : j ∈ {−1, 1}d}), and vk for any
k ∈ {−1, 1}d is not a convex combination of vectors in
{vj : j ∈ {−1, 1}d} \ {vk}, it follows that vk is not a convex
combination of vectors in A \ {vk}, which proofs that vk is
a vertex of A.

D. Proof of Proposition 2

Proof. This statement is obvious if M\A = ∅, i.e., M = A.
Therefore, we temporarily suppose that M \ A ≠ ∅ and we
distinguish two cases:
Case 1: Let p, q ∈ M \ A. Assume that vj = tp + (1 − t)q
with t ∈ (0, 1). Since vj ∈ A and p, q ̸∈ A, it follows that
p ̸= vj and q ̸= vj . Since t ∈ (0, 1), it follows that p ̸= q,

hence there are indices in {1, . . . , d} where the entries in p
and q are different. Let m be the minimum of these indices.
For this index holds vjm = tqm + (1 − t)pm, t ∈ (0, 1) and
pt ̸= qt. Without loss of generality, suppose that pm < qm,
then pm < vjm < qm. Since m is the minimum index, we
have equality in v, p and q for the indices {1, . . . ,m − 1}.
If jm = 1, then by Lemma 2 we have q ̸∈ M. Otherwise, if
jm = −1, then by Lemma 2 we see that p ̸∈ M. Therefore we
have a contradiction in both cases and the assumption must be
false. Hence there are no p, q ∈M\A with vj = tp+(1−t)q
and t ∈ (0, 1).
Case 2: Let p ∈ M \ A and q ∈ A. The proof for this
case is almost a copy of the previous one. Assume that vj =
tp + (1 − t)q with t ∈ (0, 1). Since p ̸∈ A, q ∈ A and
t ∈ (0, 1) it follows that vj ̸= p and p ̸= q. Since p ̸= q,
there is a minimum index m where the components of p and
q are different. For this index holds vjm = tpm+(1−t)qm and
qm ̸= pm. Without loss of generality assume that pm < qm.
Since m is the minimum index, we have equality in the indices
{1, . . . ,m − 1}. If jm = 1, then it follows by Lemma 2 that
q ̸∈ M otherwise, if jm = −1, then by the same reasoning it
follows that p ̸∈ M. This shows that there are no p ∈M\A
and q ∈ A with vj = tp+ (1− t)q and t ∈ (0, 1).

In conclusion, we see that the only possible case is p, q ∈ A.
This concludes the proof.

E. Proof of Lemma 3

Proof. If yj ∈ B(S0, Sf , p), then there is nothing to show.
Hence we assume that yj /∈ B(S0, Sf , p). If the assignments
in Lines 3 or 9 are applied, then

αdS0 +

d∑
τ=1

αd−τ ỹjτ∆t = αdS0 +

d−1∑
τ=1

αd−τ ỹjτ∆t

+
Sf − (αdS0 +

∑d−1
τ=1 α

d−τ ỹjτ∆t)

∆t
∆t = Sf . (14)

Therefore, ỹj ∈ B(S0, Sf , p) if there is a correction index
k ∈ {1, . . . , d} such that one of the assignments are applied.
If k ∈ {1, . . . , d−1} it holds that yjτ = x ∀τ ∈ {k, . . . , d−1},
and k = d implies correction in Line 3 only.

Assume that Sf−(αdS0+
∑d−1

τ=1 αd−τ ỹj
τ∆t)

∆t > x for all cor-
rection indices k = 1, . . . , d, then also for k = 1. We have
x <

Sf−(αdS0+
∑d−1

τ=1 αd−τx∆t)
∆t . Therefore, Sf > αdS0 +∑d−1

τ=1 α
d−τx∆t + x∆t. Since B(S0, Sf , p) ̸= ∅, there exists

an x ∈ B(S0, Sf , p) with Sf ≤ αdS0 +
∑d

τ=1 α
d−τxτ∆t.

This gives αdS0 +
∑d

τ=1 α
d−τx∆t < Sf ≤ αdS0 +∑d

τ=1 α
d−τxτ∆t hence

∑d
τ=1 α

d−τx <
∑d

τ=1 α
d−τxτ ,

which implies that there is an index m with x < xm and
therefore x /∈ B(S0, Sf , p), contradicting x ∈ B(S0, Sf , p).

From the above, we have that there are indices k

such that Sf−(αdS0+
∑d−1

τ=1 αd−τ ỹj
τ∆t)

∆t ≤ x. Hence we use
the maximum correction index l with Sf ≤ αdS0 +∑l−1

τ=1 α
d−τ ỹjτ∆t +

∑d
τ=l α

d−τx∆t and Sf > αdS0 +∑l
τ=1 α

d−τ ỹjτ∆t +
∑d

τ=l+1 α
d−τx∆t. Note that this index

exists since we assumed that yj /∈ B(S0, Sf , p). Suppose that
Sf−(αdS0+

∑d−1
τ=1 αd−τ ỹj

τ∆t)
∆t < x for this index, then Sf <
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αdS0+
∑l−1

τ=1 α
d−τ ỹjτ∆t+

∑d−1
τ=l α

d−τx∆t+x∆t. This gives
with −Sf < −αdS0−

∑l
τ=1 α

d−τ ỹjτ∆t−
∑d

τ=l+1 α
d−τx∆t

that 0 < −αd−lỹjl∆t+αd−lx∆t−x∆t+x∆t. Thus αd−lỹjl <
(αd−l − 1)x + x ≤ x and hence ỹjl < 0. Since αd−l ∈ (0, 1]
we have that αd−lỹjl ≥ ỹjl . Therefore, ỹjl ≤ αd−lỹjl < x,
hence ỹjl < x, which is impossible as yj ∈ B(S0, 0, p) an all
corrections were within [x, x]. We conclude that there exists
an index such that the assignments in Line 3 or 9 are applied,
and ỹj ∈ B(S0, Sf , p).

F. Proof of Theorem 2

Proof. Assume that ỹj is not a vertex of B(S0, Sf , p), then
there are p, q ∈ B(S0, Sf , p) with ỹj = pt + q(1 − t), p ̸= q
and t ∈ (0, 1). We distinguish two cases.
Case 1: ỹj = yj and therefore yj is not changed by Al-
gorithm 2. Since p, q ∈ B(S0, Sf , p), and B(S0, Sf , p) ⊆
B(S0, 0, p) we have that p, q ∈ B(S0, 0, p). Therefore we have
yj = ỹj = pt + q(1 − t), p ̸= q and t ∈ (0, 1). Hence yj is
not a vertex of B(S0, 0, p), contradicting Theorem 1.
Case 2: ỹj ̸= yj and therefore yj is changed by Algorithm 2.
Since ỹj ̸= yj , there exists a maximum correction index f
with ỹj[f−1] = yj[f−1] and ỹjt = x ∀t ∈ {f, . . . , d − 1}. Since
p ̸= q, there is a minimum index m with p[m−1] = p[m−1] and
pm ̸= qm. Without loss of generality let pm > qm. If f > m,
then ỹj[m] = yj[m], hence p[m−1] = yj[m−1] = q[m−1] and pm >

yjm > qm. From this it follows that Projm(p) /∈ B(S0, 0, p)
or Projm(q) /∈ B(S0, 0, p). With Assumption 2 we have that
p /∈ B(S0, 0, p) or q /∈ B(S0, 0, p), which contradicts p, q ∈
B(S0, Sf , p). Hence, it holds that f ≤ m. Moreover, ỹjt = x,
∀t ∈ {f, . . . , d−1} holds. For m ̸= d, the inequality ỹjm < qm
implies that q /∈ B(S0, Sf , p). Hence m = d, which gives
q[d−1] = p[d−1] = ỹj[d−1] and pd < ỹjd < qd. This is, however,
impossible as by Algorithm 2 αdS0,k +

∑d
τ=1 α

d−τ ỹjk∆t =

Sf,k. Using p instead leads to αdS0,k +
∑d

τ=1 α
d−τpk∆t <

Sf,k. Hence we conclude p /∈ B(S0,k, Sf,k, pk).
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[19] E. Öztürk, K. Rheinberger, T. Faulwasser, K. Worthmann, and M.
Preißinger, “Aggregation of Demand-Side Flexibilities: A Comparative
Study of Approximation Algorithms,” Energies, vol. 15, no. 7, p. 2501,
Mar. 2022, doi: 10.3390/en15072501.

[20] K. Trangbaek, M. Petersen, J. Bendtsen, and J. Stoustrup, “Exact power
constraints in smart grid control,” in IEEE Conference on Decision and
Control and European Control Conference, Orlando, FL, USA, Dec. 2011,
pp. 6907–6912. doi: 10.1109/CDC.2011.6160539.
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