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Abstract

Grey Box models provide an important approach for control analysis in the Heating, Ventilation
and Air Conditioning (HVAC) sector. Grey Box models consist of physical models where
parameters are estimated from data. Due to the vast amount of component models that can
be found in literature, the question arises, which component models perform best on a given
system or dataset? This question is investigated systematically using a test case system with
real operational data. The test case system consists of a HVAC system containing an energy
recovery unit (ER), a heating coil (HC) and a cooling coil (CC). For each component, several
suitable model variants from the literature are adapted appropriately and implemented. Four
model variants are implemented for the ER and five model variants each for the HC and CC.
Further, three global optimization algorithms and four local optimization algorithms to solve
the nonlinear least squares system identification are implemented, leading to a total of 700
combinations. The comparison of all variants shows that the global optimization algorithms do
not provide significantly better solutions. Their runtimes are significantly higher. Analysis of
the models shows a dependency of the model accuracy on the number of total parameters.
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Introduction

Figure 1. Scheme of the Model Selection

Grey Box modeling of Heating, Ventilation and Air Conditioning (HVAC) systems is used for
control analysis and set point optimization [1, 2] and, therefore, provides an important pillar
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for efficient system operation. Grey Box models are created by formulating physical (White
Box) models and estimating unknown parameters from recorded data of the real system. This
parameter estimation is done through nonlinear optimization, e.g., nonlinear least squares [3].
In contrast to Black Box models (also known as data-driven models) and White Box mod-
els, being the other common modeling approaches, Grey Box models are reported to have the
following benefits [4, 1]:

• usually better generalization capability than Black Box models;
• lower data quality necessary than Black Box models;
• better accuracy possible than White Box models.

In literature, examples for the modeling of HVAC systems with the Grey Box approach can be
found and will be outlined in the following.

Afram and Janabi-Sharifi [4] and Afroz et al. [1] review modelling methods in HVAC sector.
As part of their analysis, they present common component models. Also, Okochi and Yao [5]
present a review of variable-air-volume air-conditioning systems, which also includes compo-
nent models.
Ghiaus, Chicinas, and Inard [6] performed a Grey Box identification of elements of ventilation
systems. Here, the system consists of two electric heating coils (one for preheating and one
for heating), a cooling coil, and an evaporator for air humidification. The relative humidity and
the temperature of the supply air are controlled. The system is divided into small Single Input
Single Output (SISO) elements, which are identified independently. A damped Gauss-Newton
algorithm is used to identify the Grey Box parameters.
Koehler et al. [7] create a simple Grey Box model of a ventilation system for use in model
predictive control.
Very detailed modeling of an entire HVAC system of a prototype residential building using the
Grey Box approach is presented by Afram and Janabi-Sharifi [8]. Among the components con-
sidered is the ventilation system with heat recovery and cooling coil. Nonlinear least squares
optimization is used to find the parameters of the models.

Systems under consideration generally consist of the same principal components including
heating coils (HC), cooling coils (CC), mixing boxes (MB), energy recovery units (ER), hu-
midifiers, ductwork, dampers and valves. Further, components of the energy supply side like
heat pumps, buffer tanks and cooling towers as well as the building zones are commonly mod-
eled.

Very little justification is given on how each model type is selected for each component, espe-
cially, as there is a great variety of model variants. Particularly for the heat exchanger modeling
of ER, HC and CC units, several variations can be found and shall shortly be presented. Com-
mon steady state models are based on the so-called Number of Transfer Unit (NTU) approach
[9]. Modeling examples can be found in [10, 5, 1] and it is also used in the simulation software
TRNSYS® [11] as a simplified model. There, either a constant effectiveness ϵ or a correlation,
to determine the effectiveness, is used. Various correlations for different heat exchangers exist,
basic correlations can be found in [9], and advanced correlations for air-coils can be found for
example in [12]. Dynamic models, mapping time-dependent or capacitive effects, are com-
monly used for control analysis. Chen and Treado [13] use a model which includes a time
constant into the NTU approach, making it dynamic. Other models use simple energy balances
over the heat exchanger, either using one thermal mass (for example presented in [14]) or two
thermal masses (used by [8]). Those models generally map heat transfer in a simplified manner.

When it comes to a real system, the question one is confronted with is: Which of the given
models performs best for the given system and dataset? To do a systematic evaluation, we
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Figure 2. Scheme of the showcase ventilation system. The symbols represent the following: ER
- Energy Recovery, HC - Heating Coil, CC - Cooling Coil, sa - supply air, ea - exhaust air, i - in, o -
out, s - supply, r - return, bp - bypass and u - control signal

propose a grid search model selection, where suitable models are compared with each other.
We present the approach based on a showcase system using real operational data with limited
sensor and data availability. The principal methodology can be seen in Figure 1. Suitable
model variants are selected representing the above-stated different heat exchanger formulations.
Four variants for the ER, five variants of the HC and five variants of the CC are implemented,
resulting in a total of 100 model combinations. Furthermore, a comparison of seven different
optimization algorithms for system identification (solving the nonlinear least squares problem)
is presented on all model variants, leading to a total of 700 combinations evaluated.

Methods

At first, a short description on how the overall grid search is performed on the given system is
presented. Then all model variants are presented in detail, starting with general heat exchanger
models, followed by the description of the particular component models that are based on the
general heat exchanger models. Eventually, the system identification using the nonlinear least
squares is described.

The system, subject of this project, is a ventilation system of a salesroom, where several months
of recorded operating data is available. It is depicted in Figure 2. Modeling in this particular
case is done, to create a test field to improve the temperature controller for the conditioned
air. The components that need to be modeled are the ER, the HC, and the CC. The two fans
are not modeled as they provide constant airflow, and, are irrelevant for the controller analysis.
Therefore, all components are heat exchangers in different configurations. For each component,
several models were identified from the literature and are adapted, to be applied to this system.

The project is implemented in Python as it provides good capabilities in data preprocessing,
data analysis and optimization. In general, the system identification process developed in this
project consists of three steps:

1. A combination of component models is selected.
2. An optimization algorithm is selected.
3. The model parameters are optimized (identified) by solving the nonlinear least squares

problem with the chosen optimization algorithm.
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Component models will be presented, starting with principal heat exchanger models, which
provide the basis of the components modeled

A simplified model using the so-called effectiveness - NTU method [9] is, for example, used
for modeling by Schito [10], Okochi and Yao [5], and Afroz et al. [1], and is also used in the
simulation software TRNSYS® [11] as a simplified heat exchanger model. The basis of the
method is that a fraction, ϵ, of the maximum transferable heat flow is transferred from the hot
fluid to the cold fluid. In theory, the maximum transferable heat flow is obtained in a counter-
flow heat exchanger of infinite length. Here, the temperature of the fluid with the smaller heat
capacity would take on the input temperature of the fluid with the larger heat capacity [9]. The
heat capacity flows Ċ of each fluid 1 and 2 of the heat exchanger are calculated by Ċ1 = cp1ṁ1

and Ċ2 = cp2ṁ2, where cpn denotes the specific heat capacity and ṁn denotes the mass flow of
fluid n. With Ċmax = max(Ċ1, Ċ2) and Ċmin = min(Ċ1, Ċ2), the maximum transferable heat
can be calculated by

Q̇max = Ċmin(T1i − T2i). (1)

The temperatures at the outputs are then given by

T1o = T1i +
ϵQ̇max

ṁ1cp1
and (2)

T2o = T2i −
ϵQ̇max

ṁ2cp2
, (3)

where indices i and o refer to in and out. Due to [9], the effectiveness ϵ can be calculated as
an analytical expression for all heat exchanger types as a function ϵ = f (NTU,Cr). Here,
Cr =

Ċmin

Ċmax
and the NTU is a dimensionless ratio widely used in heat exchanger analysis. It is

defined according to [9] as NTU = UA
Ċmin

, where U is the heat transfer coefficient in W/K and A

is the area in m2 of the heat exchanger. Many ϵ correlations for common heat exchanger types
can be found in the literature. For the ER, the following correlation is implemented according
to [9], assuming that the heat exchanger is a cross-flow type:

ϵ = 1− e
1
Cr

(NTU)0.22
(
e−Cr(NTU)0.78−1

)
. (4)

Detailed ϵ correlations for air coils can be found in [12], for example. However, here we
implement an ϵ-correlation for counter flow heat exchangers for the HC and the CC according
to [9], as a general assumption, as the exact design of the coil is unknown:

ϵ =
1− e−NTU(1−Cr)

1− Cre−NTU(1−Cr)
for Cr < 1 (5)

ϵ =
NTU

1 +NTU
for Cr = 1. (6)

However, this NTU method only maps the steady state. Chen and Treado [13] use a heating
coil model, that is also based on the ϵ − NTU method, but models the capacitive dynamics
of the coil. In the following, this variant will be referred to as NTU Dyn. Here, the equilib-
rium temperatures are also calculated according to equation (2) and (3). Whereby the dynamic
temperatures are additionally calculated by

dT1o,dyn

dt
=

T1o − T1o,dyn

τ
and (7)

dT2o,dyn

dt
=

T2o − T2o,dyn

τ
. (8)
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According to Chen and Treado, the time constant τ is composed of a capacitive term τc and a
“flush time” τx as τ = 1

τ−1
c +τ−1

x
. In this paper, however, τ is identified as a single parameter in

the system identification.

Another modeling approach is for example used by [14], which will be referred to as UA1C-
method hereafter. The heat exchanger is modeled using a single energy balance as follows:

dT1o

dt
=

1

C
[ṁ2cp2(T2i − T2o) + UA(Tenv − T1o)− ṁ1cp1(T1i − T1o)] . (9)

Where Tenv is the environment temperature. If the heat exchange with the environment
UA(Tenv − T1o) is neglected, Equation (9) becomes

C
dT1o

dt
= ṁ2cp2(T2i − T2o)− ṁ1cp1(T1i − T1o). (10)

From Tashtoush, Molhim, and Al-Rousan [14] it is assumed that the return temperature of fluid
2 is constant T2o = 10◦C, since this temperature is not a model output, unlike in the other
model variants. In this paper, T2o is included as a parameter for system identification.

Another approach using two coupled energy balance equations, one for each fluid, can be found
in a paper by Afram and Janabi-Sharifi [8]. This method is referred to as UA2C hereafter. The
ER model is formulated as such, following [8]:

dT1o

dt
=

1

Cam

[
ṁ1cp1(T1i − T1o) − UA

(
T1i + T1o

2
− T2i + T2o

2

)]
+ c1 (11)

dT2o

dt
=

1

Cam

[
UA

(
T1i + T1o

2
− T2i + T2o

2

)
− ṁ2cp2(T2o − T2i)

]
+ c2. (12)

Cam is the heat capacity of the air and metal in the heat exchanger. Here, Cam, UA, c1 and
c2 are identified in the system identification where parameters c1 and c2 represent correction
terms intended to compensate for modeling inaccuracies. This variant is implemented in two
separate sub-variants, once using the correction terms (named UA2C c) and, once, without
correction terms to study their influence. Afram and Janabi-Sharifi [8] also present a model for
an air handling unit (here equivalent to a cooling coil) model similar to their ER model. Here,
heat transfer is characterized by the term UA(T1o − T2o) unlike with the ER model. Thus, the
differential equations are as follows:

dT1o

dt
=

1

C1

[ṁ1cp1(T1i − T1o)− UA(T1o − T2o)] + c1 (13)

dT2o

dt
=

1

C2

[UA(T1o − T2o)− ṁ2cp2(T2o − T2i)] + c2. (14)

With C2 = 1∗ cp2, all other parameters are identical to the ER model stated before. Here again,
it is implemented in two separate sub-variants with and without correction terms c1 and c2.

These mentioned heat exchanger models are then adapted accordingly to fit the test case system.
Therefore, power control for each component needs to be modeled. The ER is equipped with a
bypass for power control as can be seen in Figure 2. The bypass diverts a part of the air stream
around the heat exchanger to control the recovered power. Under the assumption of linear valve
behavior, the two air streams after the valve can be modeled as

ṁER,2 = ṁsai uER and (15)
ṁbp = ṁsai (1− u). (16)
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Where ṁbp denotes the air stream through the bypass, ṁER,2 denotes the air stream through the
heat exchanger, ṁsai denotes the total supply airflow into the ER and uER denotes the control
signal for the three-way valve of the ER. Note, that the notation here is following Figure 2. The
mixing temperature at the ER outlet (HC inlet), assuming a constant specific heat capacity of
the air, is obtained from the energy balance by

THC,2i = TER,2ouER + Tsai(1− uER). (17)

For the heat exchanger of the ER, four of the above-mentioned models were used: NTU, NTU
Dyn, UA2C, UA2Cc. The UA1C model was excluded due to expected low performance. The
fluid flows 1 and 2 of the heat exchanger models correspond to the exhaust and supply air,
respectively.

Similar to the energy recovery, the heating coil is composed of two subcomponents, the water-
air heat exchanger and a three-way valve, which controls the power of the coil. The mass flow in
the heat exchanger itself is constant and, depending on the valve position, water from the return
is proportionally added to the flow through the heat exchanger. The constant mass flow ṁHC,1

can be determined as a parameter of the model during system identification. The temperature
at the inlet of the heat exchanger is therefore formed as a mixed temperature from the supply
temperature and the return temperature of the heat exchanger. From the energy balance of the
three-way valve follows for the mixed temperature THC,1i depending on the control input uHR

of the valve:
THC,1i = THC,1suHC + THC,1o(1− uHC). (18)

For the water-to-air heat exchanger, all five of the above-described variants from the litera-
ture were implemented. Fluids 1 and 2 of the heat exchanger models refer to water and air
respectively.

The cooling coil power is controlled via a valve to control the power output. Different from the
heating coil, this is done with a throttle valve. Therefore, under the assumption of linearity of
the valve uCC ∼ ṁCC,1i, the equation for the mass flow can be formulated as follows:

ṁCC,1i = uCC · ṁ1,max. (19)

Here the maximum mass-flow ṁ1,max can be determined as a parameter during system iden-
tification. To model the water-to-air heat exchanger, the same variants can be used as in the
heating coil. This modeling implies, that there is no condensation taking place during the cool-
ing process.

All used model variants for each component, including their start parameters and bounds for
the optimization, are shown in Table 1.

Since the components have no feedback within the system boundaries, they can be solved
independently. Thus, the first component of the model forms the input of the second component
and the second the input of the third. All components are transformed into general time-discrete
input-output models with a time resolution of one minute in the following form:

y∗i = f(y∗i−1, xi). (20)

Where y∗i is the output vector of model f at time i, y∗i−1 is the model output vector at time i− 1
and xi is the model input vector at time i. To get all models into the given form, differential
equations need to be solved. The solution of the differential equations is obtained analytically.
Models containing coupled systems of differential equations are solved, by transformation into



3rd to 6th of September 2023
The University of Edinburgh, Scotland

Table 1. Component Models
Component Model Parameter Start value lb ub Unit
ER NTU UA 3933.9 1 5000 W/K

NTU Dyn UA 3933.9 1 5000 W/K
τ 60 1 500 s

UA2C UA 3933.9 1 5000 W/K
Cam 25000.0 1 500000 J/K

UA2C c UA 3933.9 1 5000 W/K
Cam 25000.0 1 500000 J/K
c1 0 -10 10
c2 0 -10 10

HC NTU ṁHC,1 0.2908 0.1 5 kg/s
UA 258.76 1 5000 W/K

NTU Dyn ṁHC,1 0.2908 0.1 5 kg/s
UA 258.76 1 5000 W/K
τ 60 1 500 s

UA1C ṁHC,1 0.2908 0.1 5 kg/s
C 500000 1 500000 J/K
T1o 40.0 1 70 °C

UA2C ṁHC,1 0.2908 0.1 5 kg/s
UA 258.76 1 5000 W/K
Cwm 250000 1 500000 J/K

UA2C c ṁHC,1 0.2908 0.1 5 kg/s
UA 258.76 1 5000 W/K
ṁHC,1 250000 1 500000 J/K
c1 0 -10 10
c2 0 -10 10

CC NTU ṁ1,max 0.4625 0.1 5 kg/s
UA 1485.2 1 5000 W/K

NTU Dyn ṁ1,max 0.4625 0.1 5 kg/s
UA 1485.2 1 5000 W/K
τ 60 1 500 s

UA1C ṁ1,max 0.4625 0.1 5 kg/s
C 500000 1 500000 J/K
T1o 18.0 1 20 °C

UA2C ṁ1,max 0.4625 0.1 5 kg/s
UA 1485.2 1 5000 W/K
Cwm 250000 1 500000 J/K

UA2C c ṁ1,max 0.4625 0.1 5 kg/s
UA 1485.2 1 5000 W/K
Cwm 250000 1 500000 J/K
c1 0 -10 10
c2 0 -10 10
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their eigenbasis. The heating coil, where the return temperature is at the same time its input
temperature, requires the models to be solved iteratively for each time step.

The parameters of the models are identified using optimization technics. This optimization
aims to minimize the error between the model output and the dataset. In the presented test case,
there are two model outputs with corresponding measurements in the dataset. Therefore, the
calculated error is the sum of the individual errors of each model output and the minimization
can be formulated as

min
p

∑
i∈I

(
(y∗1,i(p)− y1,i)

2 + (y∗2,i(p)− y2,i)
2
)

(21)

s.t. lb ≤ p ≤ ub. (22)

Where y∗1,i(p) and y∗2,i(p) are the outputs of a model at time i with the parameter-vector p. y1,i
and y2,i are the corresponding measurements from the dataset at the same time and lb and ub
are the lower and upper bounds for the parameter vector p. Values for the upper and lower
bound of each parameter are given in Table 1. For the optimization, the parameters p are scaled
logarithmically. The algorithms require an initial guess for the parameters p as a starting point
for the optimization (start parameters). These values were taken from the data sheet of the
system if available. They are also given in Table 1.

For the optimization algorithms, the choice was made from a selection of global and local op-
timization algorithms available in the Python SciPy library [15, 16] which provides a selection
of common optimization routines. The selection criteria were, that the algorithm has to ac-
cept bounds and no derivatives are needed. Furthermore, some algorithms were excluded due
to unreasonable long runtimes based on a preliminary study. The selected local optimization
algorithms are:

• Nelder-Mead
• L-BFGS-B
• Powell
• TNC

The global optimization algorithms are:

• Differential-Evolution
• Dual-Annealing
• DIRECT

Data for the system identification was extracted from the control unit of the showcase system
over several months. Relevant measurement points of the system are displayed in Table 2. Tsao

and THC,1r correspond to outputs of the model and can therefore be used to formulate the error
function of the optimization (Equation (21)). However, not all outputs of the model are repre-
sented in the dataset, which means they cannot be used in the error calculation. Intermediate
measurements of the supply air are, for example, not available which is assumed to limit the
accuracy of the model variants. Further, the measurements of the plant are taken in irregular
time steps, based on a constant delta. To mimic this behavior in the model, a sensor model is
implemented. Also, the data needs to be pre-processed. This preprocessing is done by resam-
pling the irregularly sampled dataset to a one-minute time resolution for usability in the time
discrete model. Further, suitable days, when model assumptions hold, and no faulty behavior
is detected in the dataset are selected based on formulated conditions, systematically. Further
details on the data preprocessing can be found in [17].
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Table 2. Measurements of the test case system
Position Quantity Unit Symbol
Supply air Mass flow kg/s ṁsa

Supply air in Temperature °C Tsai

Supply air out Temperature °C Tsao

Return air Mass flow kg/s ṁra

Return air in Temperature °C Trai

Heating coil supply Temperature °C THC,1s

Heating coil return Temperature °C THC,1r

Cooling coil supply Temperature °C TCC,1s

Controller Output uER, uHC, uCC

The available dataset starts on 03/03/2022 and ends on 08/06/2022, thus containing 98 days.
After applying the preprocessing rules, only eight days show to be suitable for system identi-
fication. Then a training- and a test dataset are selected from the suitable days for parameter
identification and model verification respectively. The outdoor temperature provides a good
indication of the operating state of the plant. The training and test data sets each contain a
range of outdoor temperatures from about 0◦C to just over 30◦C. However, the distributions are
different, so the extrapolation ability of the model can be verified by the test data set.

Results

The model outputs, T ∗
sao and T ∗

HC,1r of the model with the lowest error can be seen in Figure 3.
They are plotted against the corresponding measurements Tsao and THC,1r. Both outputs capture
the general swinging dynamics of the system, noting, that the swinging dynamics are already
present in the controller output of the dataset. The deviation is mostly (90% of time) below
1.6 K for Tsao and below 3.7 K for THC,1r, however, still significant.

09:00 10:00 11:00 12:00 13:00 14:00
Time 3/21/2022

24

26

28

30

T 
in

 
 C

THC, 1r T *
HC, 1r Tsao T *

sao

Figure 3. Exemplary model output (T ∗
HC,1r, T

∗
sao) and corresponding measurements (THC,1r, Tsao)

Calculated performance metrics of the final model (on training and test data) can be seen in
Table 3. Notably, the metrics are comparably worse than other Grey Box modeling approaches,
for example Afram and Janabi-Sharifi [8], who reach RMSEs between 0.224 and 1.127, how-
ever, for individual component models.

The grid search approach, applied to the test case system, yields a total of 700 combinations of
models and optimization algorithms. The test dataset is primarily used, to test the extrapolation
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Table 3. Metrics of the final model.
THC,1r,train THC,1r,test Tsao,train Tsao,test

RMSE Root Mean Square Error 2.377 2.320 1.050 1.281
R2 Coefficient of multiple determination 0.992 0.992 0.998 0.997
MSE Mean Squared Error 5.650 5.381 1.102 1.642
MAE Mean Absolute Error 1.603 1.430 0.831 0.931

ability of the models or the overfitting tendency of the models. This is done by comparing the
achieved errors of the training and test dataset. For analysis purposes, the RMSE (Root Mean
Squared Error) of each model is used. Figure 4 shows the division of the RMSE of the training
dataset divided by the RMSE of the test dataset. A value smaller than one indicates, that the
model performs better on the training dataset than on the test dataset, which indicates a low
extrapolation ability or overfitting. Values greater than one indicate, that the model performs
better on the test dataset, which can be coincidental. Plot 1 of Figure 4 shows the sum of
the errors of both model outputs (Tsao and THC,1r). As the values are close to one, overfitting
appears to be insignificant. However, the second and the third plots show, that the RMSE of
Tsao tends to overfit more significantly, which seems to be compensated by the RMSE of THC,1r.
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Figure 4. Histogram of the ratios of the RMSEtrain/RMSEtest of all 700 model variants, which
provide an indicator for overfitting. Plot 1 shows the ratio for the summed errors of both model
outputs. Plot 2 shows the ratio for the error of Tsao, and plot 3 for THC,1r.

Figure 5 shows the comparison of the optimization algorithms. Again, the RMSE is used for
evaluation. Note, that some algorithms did not converge, however, the results are included,
as long as they were returned by the algorithm. As can be seen, the distributions of all opti-
mization algorithms have similar minimum and maximum values except for some outliers of
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Figure 5. Comparison of performance of optimization algorithms in all 700 variants. Plot 1:
Distributions of the sum of RMSE of Tsao and THC,1r grouped by the optimization algorithm. Plot
2: Distribution of runtimes and the number of function evaluations grouped by the optimization
algorithm.

the L-BFGS-B, the TNC algorithms, and the DIRECT method which performs worse in the
optimization setting at hand. Further, the second plot shows that the global optimization algo-
rithms Differential-Evolution and Dual-Annealing have significantly higher runtimes and more
function evaluations compared to the local optimization algorithms. The global optimizer DI-
RECT also has lower runtimes and function evaluations. However, the achieved errors are, as
mentioned, worse compared to the other algorithm.

Figure 6 shows an analysis grouped by the number of parameters. The first plot shows that with
an increasing number of parameters, the mean absolute error decreases up to nine parameters.
Then, the error does not decrease significantly with an increase in the number of parameters.
The last plot shows that the median of the runtime for each optimization routine and the median
of the number of function evaluations tend to increase with the number of parameters.

Discussion
The data selection process shows, that much of the recorded data does not fulfill the require-
ments for the model fit. This is mainly due to the low resolution and the resampling of the
data. The low resolution is also expected to be the main cause of the comparably low model
performance compared to results from the literature. A further cause for the low performance
in the test case is the lack of intermediate measurements between the components, i.e., only the
complete system can be identified as a whole in one process. In Figure 3, the drop in THC,1r

and Tsao at around 12:45 clearly shows that some effects are not represented in the dataset or
that some dynamics are not modeled correctly. That shows the difficulties that arise with the
usage of real operational data which is only addressed in literature very rarely.

One aspect to consider is, that the component models which are relevant, strongly depend on



3rd to 6th of September 2023
The University of Edinburgh, Scotland

5

10

RM
SE

RMSEtrain,

0

100

n v
ar

ia
nt

s

 5  6  7  8  9 10 11 12 14
Number of Parameter

102

103

104

105

Ru
nt

im
e 

in
 s trun

102

103

104

105

Nr
. o

f F
un

c.
 e

va
ls

nfev

Figure 6. Analysis of sum of RMSE of Tsao and THC,1r, runtime and the number of function eval-
uations in dependency of the number of total model parameters. Note: There are more variants
towards the middle of the spectrum as there are more possible component combinations with a
given number of parameters, there is no possible combination of components that results in 13
parameters.
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the later use case of the model. For example models for control analysis usually need to map
capacitive effects, whereas quantitative energy analysis can usually cope with static models.
Also, the time necessary for modeling, running system identification and evaluating several
model variants for each component presents a significant drawback of the presented approach.
This is especially the case, as there are no software solutions available for this kind of analysis.
The lack of software solutions in modeling has already been addressed by [18].

However, interesting observations stem from the study results.

First, the runtime of the global optimizers is much longer than that of the local optimizers, the
achieved model errors, however, do not show a significant difference in accuracy.

Secondly, the analysis of the number of parameters of the models shows that also simple models
can yield results comparable to those of more complex modeling approaches.

Thirdly, the validation of the models with the test dataset shows, that some models tend to
overfit on single outputs, whereas the overall error does not. This shows, that overfitting can
be a relevant issue and, that the selection of the error function can be of great importance and
multi-objective optimization should be considered.

Conclusions
In this project, a methodology for the selection of Grey Box models is presented on a real
test case system. Therefore, several component models are identified for each component of
the plant that needs to be modeled. Here, the energy recovery is modeled in four different
variants and the heating coil and the cooling coil are each modeled in five different variants.
For comparison, all possible model combinations are created and the parameters of the model
are identified using four different local optimization algorithms and three global optimization
algorithms. In total that leads to 700 system identifications.

The comparison of the optimization algorithms shows that the global optimizers have gener-
ally much longer runtimes and the achieved model errors are of comparable quality as those
achieved by the local optimizers.

The analysis of different model variants shows that there is a dependency of the accuracy of
the model and the number of parameters. Here, the achieved errors show a minimum at around
nine parameters and the runtimes increase significantly with the number of parameters.

Further work should be done in evaluating the presented approach on different datasets with
better quality to be able to make more general statements about suitable model types. A succes-
sive reduction in data quality, e.g., reducing the number of sensors and measurement intervals,
could further yield results about necessary data quality for each type of model.

Even though the methodology provided probably renders to be too complex and time-
consuming for most common modeling tasks, it can give insights into the system behavior and
system identification process. Future works with Grey Box models should consider a system-
atic approach for system identification as this can help to determine the best-suited complexity
of the model for a given system or dataset.
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