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Abstract

Power plant operators increasingly rely on predictive models to diagnose and monitor their
systems. Data-driven prediction models are generally simple and can have high precision,
making them superior to physics-based or knowledge-based models, especially for complex
systems like thermal power plants. However, the accuracy of data-driven predictions depends
on (1) the quality of the dataset, (2) a suitable selection of sensor signals, and (3) an appropriate
selection of the training period. In some instances, redundancies and irrelevant sensors may
even reduce the prediction quality.
We investigate ideal configurations for predicting the live steam production of a solid fuel-
burning thermal power plant in the pulp and paper industry for different modes of operation. To
this end, we benchmark four machine learning algorithms on two feature sets and two training
sets to predict steam production. Our results indicate that with the best possible configuration,
a coefficient of determination of R2 = 0.95 and a mean absolute error of MAE = 1.2 t/h with
an average steam production of 35.1 t/h is reached. On average, using a dynamic dataset for
training lowers MAE by 32 % compared to a static dataset for training. A feature set based
on expert knowledge lowers MAE by an additional 32 %, compared to a simple feature set
representing the fuel inputs. We can conclude that based on the static training set and the
basic feature set, machine learning algorithms can identify long-term changes. When using a
dynamic dataset the performance parameters of thermal power plants are predicted with high
accuracy and allow for detecting short-term problems.

Keywords: Thermal power plant, Live steam prediction, Supervised learning, Monitoring
system, Predictive maintenance

Nomenclature
Acronyms
ANN Artificial neural network
DD Data-driven
KB Knowledge-based
KNN K-nearest neighbors
ML Machine learning
MLP Multilayer perceptron
PB Physics-based
PM Predictive maintenance
RFR Random forest regressor
Symbols
α Regularization parameter (−)

ŷ Predicted value (t/h)
y Arithmetic mean of value (t/h)
n amount (−)
R2 Coefficient of determination (−)
tcalc Calculation Time (s)
y Value (t/h)
MAE Mean absolute error (t/h)
Subscripts
l Layers
max Maximum
min Minimum
n Neighbors
t Trees
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Introduction

The complexity of thermal power plants inevitably leads to downtime, which cannot be com-
pletely avoided by maintenance at predefined intervals or based on conditions. Predictive main-
tenance could be a solution and needs to be investigated more for thermal power plants [1].
The term ”predictive maintenance” (PM) consists of the two words ”predictive” and ”main-
tenance”, which implies that accurate predictions are the foundation of appropriate PM. For
thermal power plants, high-accuracy predictions of performance parameters are of particular
interest. For such predictions, appropriate models are necessary.
Three general methods to model systems like thermal power plants exists [2]: data-driven
(DD), knowledge-based (KB), and physics-based (PB). KB predictions depend on knowledge
from operational personnel, and this knowledge is usually not centralized. Shift changes and
retirements often lead to the loss of information. Physical or mathematical approaches have
limited validity for modeling complex systems, resulting in a high computational effort. On
the other hand, DD methods based on machine learning (ML) are ideal for thermal power plant
modeling. Predictions based on ML are powerful tools for the operator to detect specific issues
and identify the involved equipment in this process. In literature, DD methods are the most
used ones either as standalone or in combination with other methods [1].
Performance predictions are generally more meaningful when they are based on actual data.
We use the data of a project partner who builds thermal power plants and is interested in a
prediction model, which is efficient, accurate, and has a low computational demand. To fulfill
such a task, the dataset in use should be consistent, complete, and easy to process. Performance
parameters of thermal power plants can then be predicted by means of regression. Regression is
commonly understood as the prediction of a continuous target value using attributes or features.
It has plenty of real-world applications. However, the performance of the regression methods
strongly depends on (1) the feature set, (2) the selected training period, and (3) the algorithm
and its working principle.
Khalid et al. [3] developed an optimal sensor selection approach based on ML, however, it
just works when normal and abnormal behavior is labeled, and feature selection becomes sim-
ple. In the case of unknown labels, expert knowledge, and feature selection must be applied
based on the whole dataset. Thota and Syed [4] analyzed different data-driven feature se-
lection methods for predicting boiler efficiency and discovered that dimensionality reduction
can improve the model accuracy and that ensemble learning techniques such as random forest
classifiers are more robust than other methods. Hundi and Shahsavari [5] compared several
supervised and unsupervised learning algorithms such as linear regression, multilayer percep-
tron (MLP), support vector machine, random forest regressor (RFR), and elliptic envelope for
health monitoring of power plants. Their results represent the applicability of ML for health
monitoring. Gu et al. [6] investigated a safety assessment of thermal power plants based on
120 Management Systems Safety Assessment of Thermal Power plants records using different
ML algorithms. Ismail et al. [7] deployed an early prediction of boiler tube leak trip using an
intelligent monitoring system. In this study, two models use artificial neural networks (ANNs)
and hybrid techniques to predict tube leakage based on real value prediction. Allen et al. [8]
showed the difference between supervised, semi-supervised, and unsupervised ML algorithms
in the field of anomaly detection. Additionally, their investigations revealed the necessity of
checking training data when the model fails, checking for physical changes to the machinery
and non-standard configurations. Mohd Nistah et al. [9] investigated the implementation of an
ANN for fault detection to help operators to identify and narrow down the operational boiler
parameters that cause the fault quickly. Although, all of these papers show the use of ML tech-
niques for anomaly detection, the results are closely related to real-time value prediction.
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However, hardly any literature exists on prediction models for thermal power plants. In a com-
prehensive work, Tufekci at al. [10] investigated different ML algorithms to predict the power
output of two gas turbines and a steam turbine in a combined cycle power plant. The author
used ambient conditions and the steam turbine vacuum to show dependencies between the fea-
tures and the power output. Based on these features, the power output was predicted for the
nominal load. In contrast, our project partner has large variations in the steam output, and we
aim to predict the live steam for various loads with high accuracy. In the second paper to con-
sider here, the authors created a k-nearest neighbors (KNN) prediction model on power plant
data to predict the temperature and differential pressure of a coal mill [11]. Their model shows
good accuracy but doesn’t allow for extrapolation to unknown states.
We state that the gap in literature is generic recommendations on algorithms, feature han-
dling, and appropriate training periods for predicting performance parameters in thermal power
plants. In our research, we intend to address this lack. We benchmark several ML algorithms
on actual power plant data to (1) detect and predict short- and long-term changes in the power
plant operational behavior, and (2) investigate the sensitivity of our predictions to different set-
tings with respect to (a) the hyperparameters of the algorithms, (b) the feature set, and (c) the
training set.

Methods
Steam power plant description

A detailed schematic of the investigated thermal power plant is given in Fig. 1.

Figure 1. Scheme of the power plant with auxiliary equipment

The steam power plant investigated includes a water treatment system, a deaerator, a boiler
with superheaters, and an external superheater on the water side. The fuel side contains solid
fuel storages, transporters, feeders, and gas lines with gas burners. Finally, the air side in-
cludes heaters, ash removers, air purifiers, and a flue-gas stack. The boiler unit has several
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ash removers and collecting systems to clean the airflow from impurities. It is evident that a
steam turbine is not installed as the subsequent pulp and paper production uses the live steam
directly. Therefore, the thermal power plant produces live steam with a pressure of 73 bar and
a temperature of 460 ◦C.

Raw data and preprocessing

Our predictions are conducted using a period of half a year between January 1st and July 5th in
2022. The raw data samples have a resolution of 1 Hz. In the first step, we remove redundant,
unnecessary, and incomplete sensor signals, simplifying the dataset to 900 operational features
from more than 3500 signals. The features are then resampled to a quarter hour resolution by
aggregation or calculation of the arithmetic mean.

Prediction algorithms

Python version 3.8.5 [12] and scikit-learn package [13] version 1.1.1. are used for ML predic-
tions. We benchmark four ML algorithms for predicting the target value of live steam flow.

• K-nearest neighbors: When assigning a continuous value to a new sample, the KNN
algorithm compares the features of the sample and the training set. It then calculates a
target value by averaging the target values of the nn values that are in the closest neigh-
borhood with respect to the features. The model complexity is varied by a parameter
representing the number of neighbors nn to consider.

• Random forest regressor: RFR is an example of an ensemble learning algorithm. It
uses a group of decision trees and averages the prediction of the individual trees to
predict a continuous value. The model complexity can be varied using the number of
decision trees nt.

• Multilayer perceptron: MLP is a representer of ANNs, which utilize a supervised
learning technique called backpropagation for training. The ANN consists of at least
three layers (nl = 3), and adding additional layers increases the model complexity.

• Lasso regression: Lasso is an adaptation of a simple linear regression algorithm. It uses
an additional regularization parameter (α) to vary the model complexity. The feature
weights are reduced for large values of α, lowering the algorithm’s complexity.

Internal parameters, feature and training sets

Most ML algorithms have parameters for varying the complexity. A high complexity indicates
that the algorithm tries to extract as much information as possible from the training set, to fit
the target most accurately. This can lead to overfitting on the training set and to a specified
solution, which doesn’t generalize very well. A suitable model complexity, on the other hand,
prevents overfitting of the data and leads to a more generic solution. In Tab. 1 the complexity
parameters of the individual algorithms are listed with their respective minimum and maximum
values. Variations of these hyperparameters have an impact on the accuracy and on the time
consumption of the algorithm.

Table 1. Hyperparameters of all algorithms

Algorithm Complexity parameter Minimum Maximum
KNN nn 1 100
RFR nt 1 200
MLP nl 1 500
Lasso α 0.001 500

We investigate the impact of different training periods and how these periods affect individual
predictions by comparing two training sets: a static and a dynamic training set (Fig. 2).
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Figure 2. Different types of training sets (each square represents one day of operation)

• Static training set: The first seven days of the investigated period of 185 days are
selected as the training period. The live steam flow is then predicted for the entire
remaining dataset.

• Dynamic training set: To predict a certain day of the 185 days, the previous seven days
are used for training the algorithm. Retraining the dataset every day is computationally
extensive but allows for an adaption of the algorithm to occurring changes in the power
plant operation.

The period of seven days for training the algorithm is not chosen arbitrarily. We conducted
preliminary test runs and concluded that a training period between three and ten days gives the
best prediction results. As a power plant has weekly patterns regarding the live steam flow we
select seven days as the training period. In addition to using two training sets, the impact of the
features for training the algorithm is of interest. Two different feature sets are used:

• Basic feature set: We use the natural gas and solid fuel flows as features and consider
this the basic feature set.

• Extended feature set: For the extended feature set, 13 signals are selected based on
expert knowledge. All the selected features are related to the target value and influence
it to some extent.

Fig. 3 shows the natural gas and solid fuel flows (which comprise the basic feature set) and the
target value live steam flow for an exemplary period. The left y-axis represents the fuel flows,
while the right y-axis shows the live steam flow.

According to Fig. 3 the boiler works either on gas or solid fuel and sometimes on both to sustain
the burning stability. It is also evident that solid fuel usage results in a higher live steam flow.
When solid fuel only powers the boiler, the live steam flow is not constant and hasn’t reached
its maximum.

Fig. 4 represents the correlations between the 13 signals that are chosen based on expert knowl-
edge and the target value. Trivial features like the feed water flow are not considered for the
feature selection process. While most of the selected signals are highly correlated, some don’t
correlate at all. We still included these low-correlated signals in the extended feature set. The
reason for this is that while they are not beneficial to the accuracy of the prediction, they are
indicators of typical anomalies in thermal power plants. For example, the level in the steam
drum is usually constant but will decrease for tube leakages, resulting in a deviation between
the prediction and the actual values.
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Figure 3. Basic feature set containing natural gas (top) and solid fuel (bottom), and the target
value live steam flow with respect to time for nine days

Figure 4. Correlation between selected sensor signals and the target value live steam flow

Flow scheme and quality estimators

Fig. 5 depicts a summary of the conducted methods in a flow chart. The raw dataset consisting
of 3518 signals is first pre-processed, then resampled to a quarter hour resolution and finally
used for various predictions of the live steam flow. KNN, RFR, MLP and lasso regression
are used as ML algorithms. For each of the tested algorithms, the prediction is computed
multiple times to find optimized values for the respective hyperparameters. This is done for
two different feature sets (the basic feature set consisting of four features and the extended
feature set consisting of 13 features) and two different training sets (a static and a dynamic
training set).
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Figure 5. Flow chart of the prediction process

The coefficient of determination R2 and the mean absolute error (MAE) are calculated to es-
timate the quality of the individual predictions. R2, as given by Eq. 1, explains how well the
variance in the target variable can be explained by the variances of the features.

R2 = 1−

∑
i

(yi − ŷi)
2∑

i

(yi − ȳi)2
(1)

In addition, we compute MAE, a model evaluation metric for regression models. The mean
absolute error is computed as the arithmetic mean of the absolute prediction errors of all indi-
vidual samples in the test set. It is given in Eq. 2:

MAE =

∑
i

|ŷi − yi|

n
(2)

Although, MAE and R2 typically correlate, mean absolute error is helpful as a quality estimator,
as absolute numbers are often more intuitive and aid in interpreting the data.

Discussion and Results
Variation of algorithms

Fig. 5 shows that we use two non-extrapolative (KNN, RFR) and two extrapolative (MLP,
Lasso) algorithms. We test the general accuracy and the capability of these algorithms to ex-
trapolate by selecting a designated period of our dataset, where the test period includes values
that do not occur in the training period. In Fig. 6 the comparison between the actual and the
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predicted values are visualized for the training and the testing period. Fig. 6 shows that the abil-
ity to extrapolate has a crucial impact on the algorithm’s precision. While KNN and RFR suffer
from the lack of information in training data, MLP and lasso can still give a decent prediction
quality for values that are outside the range of the target in the training period.

Figure 6. The showcase of algorithms constraints (a) KNN (b) RFR (c) MLP (d) Lasso

Variation of training sets

Fig. 7 visualizes the impact of using a static or a dynamic dataset for training. The average live
steam flow is 35.1 t/h in the investigated period. Additionally, a planned shutdown, which is
excluded from the prediction, is shown as greyed-out area. We use daily average values to make
the figure more presentable. In general, training the algorithms on a dynamic dataset increases
the accuracy of the prediction compared to training on the static dataset. Moreover, before the
shutdown, the predictions exclusively overestimate the actual live steam flow, whereas, after the
shutdown, they underestimate it. This behavior indicates that some critical changes happened
during the shutdown period. Due to the higher prediction accuracy, the dynamic training set
can be of great use to power plant operators for detecting changes on a much shorter time scale.

Tab. 2 lists the calculation time, the coefficient of performance R2, the MAE, and the rela-
tive difference in MAE between the static and the dynamic training set for all investigated
algorithms. Calculation time does not include the time needed for the tuning of the hyper-
parameters. For the static dataset, the fastest algorithm is more than 30 times faster than the
slowest algorithm. As for the dynamic dataset, KNN (fastest) is more than 700 times faster
than MLP (slowest). Even though we predict half a year of data, it is still possible to use MLP
for daily predictions, but not on live data, because training the algorithm is linked to a high
computational effort. With the same training dataset, all algorithms perform similarly in terms
of MAE, while R2 is approximately 20% lower for KNN and RFR than for MLP and lasso. The
usage of a dynamic training set leads to a 33% improvement on average in both MAE and R2,
with small variations for the individual algorithms. Although MAE never exceeds 3.5 t/h with
a 35.1 t/h average, R2 ≤ 0.73 and must be improved.
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Figure 7. Prediction results in comparison between static and dynamic datasets (a) KNN (b) RFR
(c) MLP (d) Lasso (the grey period represents a planned shutdown which was excluded for the
prediction)

Table 2. Calculation time, coefficient of performance MAE and the relative difference in MAE
between the static and the dynamic training set for the basic feature set

Algorithm Training Set tcalc (s) R2 (−) MAE (t/h) ∆MAE (%)

KNN Static 1 0.37 3.19 35.6Dynamic 1 0.65 2.05

RFR Static 1 0.35 3.25 32.6Dynamic 8 0.61 2.19

MLP Static 22 0.46 3.06 37.6Dynamic 718 0.73 1.91

Lasso Static 11 0.46 3.06 28.4Dynamic 37 0.66 2.19

Variation of feature sets

Tab. 3 lists the calculation time, the coefficient of performance R2, and the MAE for the ex-
tended feature set. For RFR and MLP, the calculation time for the dynamic dataset with an
extended feature set is more than 90 times and more than 20 times higher than for the static
dataset. KNN and lasso did not notice such a difference. The deviation of MAE between the
algorithms among training datasets is minor, and only the results of KNN differ from the other
three. Directly comparing two training datasets, we see the major MAE improvement from
40 % in the case of KNN up to 68 % in the case of RFR, the results of MLP and lasso are in
between. In turn, R2 of algorithms increased up to three times.
If we compare Tab. 2 and Tab. 3, we see that all algorithms become more computationally
demanding, but still six out of eight combinations have calculation times less than a minute.
For the static dataset, swap from the basic to the extended feature set results in a higher MAE.
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A possible reason for this is that the additional sensors increase the complexity of the model,
resulting in overfitting. Removing some of the less correlated features might improve the pre-
diction in these instances. Meanwhile, the use of the extended feature set in combination with
the dynamic training set reduces the MAE from 2.05 t/h to 1.92 t/h in the case of KNN, from
2.19 t/h to 1.19 t/h for RFR, from 1.91 t/h to 1.33 t/h for MLP, and from 2.19 t/h to 1.18 t/h
for lasso. We also see that KNN isn’t profiting from the extended feature set. That is because of
its computational ease and the non-complex model. Ultimately, the extended feature set based
on expert knowledge increases R2 in some cases by more than 50 % from 0.61 to 0.93 (RFR).

Table 3. Calculation time, coefficient of performance and MAE for the extended feature set

Algorithm Training Set tcalc (s) R2 (−) MAE (t/h)

KNN Static 3 0.31 3.39
Dynamic 4 0.89 1.92

RFR Static 2 0.31 3.73
Dynamic 186 0.93 1.19

MLP Static 57 0.41 3.84
Dynamic 1120 0.94 1.33

Lasso Static 20 0.52 3.41
Dynamic 25 0.91 1.18

The results show that detecting long-term changes is possible using an ANN-based MLP algo-
rithm. Fig. 8 visualizes the best configurations for long-term and short-term state detection in
the thermal power plant.

Figure 8. The best results for (a) long-term prediction based on the static dataset, MLP algorithm,
and basic feature set (b) short-term prediction based on the dynamic dataset, lasso algorithm,
and extended feature set
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Fig. 8 (a) visualizes the most appropriate setting for a long-term prediction using the MLP
algorithm and four sensors. In our specific case, we can use one week of the data, where
we know that the equipment operates in a normal state, and then predict several months. The
computational effort is not a crucial criterion, as the algorithm only needs to be computed every
couple of months. With the resulting predictions, long-term deterioration or degradation of the
equipment is detected.

Fig. 8 (b) represents the result of the Lasso regressor using a dynamic training set and the
extended feature set. Although RFR predicts approximately 3% more accurately than Lasso, it
is time-consuming for retraining and suffers from an inability to extrapolate, as shown in Fig. 6.
Therefore, all aspects considered we see that lasso is one of the best algorithms in every quality
estimation.

Conclusion and Outlook

To predict the live steam flow of a thermal power plant with high accuracy, four different
machine-learning algorithms are compared. To detect short-term and long-term developments
in the power plant, (1) different training sets, (2) different feature sets, and (3) different hyper-
parameter settings are investigated. With this respect, the conducted study has come up with
the following findings:

• The dependency of the prediction quality is studied for different settings, and the ideal
settings result in a live steam prediction with R2 = 0.95.

• Long-term change in the power plant operation can be tracked by predicting with the
basic feature set, which includes only fuel inputs.

• A high accuracy prediction is possible by using a lasso regressor and the extended
feature set. It can be used to monitor short-term changes in the power plant operation.

Therefore, ideal configurations to monitor short-term and long-term problems in the power
plant operation are recommended in our study. To increase the prediction accuracy even further
and to detect typical anomalies in the power plant operation, unsupervised learning methods
can be of great use. Therefore, in a following study, we plan to focus on unsupervised learning
methods that help power plant operators to react effectively and on time to anomalies and state
changes.
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