Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 7 of 52
Back to Result List

Life Cycle Assessment of biochar, electricity, and heat from a wood gasification plant

  • In recent years, numerous studies around the world have examined the environmental potential of biochar to determine whether it can help address climate challenges. Several of these studies have used the Life Cycle Assessment (LCA) method to evaluate the environmental impacts of biochar systems. However, studies focus mainly on biochar obtained from pyrolysis, while the number of studies on biochar from gasification is small. To contribute to the current state of LCA research on biochar from gasification, LCA was performed for biochar, electricity, and heat from a wood gasification plant in Vorarlberg, Austria. Woodchips from local woods are used as biomass feedstock to produce energy, i.e., electricity and heat. Thereby, biochar is obtained as a side product from gasification. The production of syngas and biochar takes place in a floating fixed-bed gasifier. Eventually, the syngas is converted to electricity in a gas engine and fed to the power grid. Throughout different stages within the gasification process, heat is obtained and fed into local heat grid to be delivered to customers. The biochar produced complies with the European Biochar Industry (EBI) guidelines and is used on a nearby farm for manure treatment and eventually for soil application. Thereby, the effect of biochar used for manure treatment is considered to reduce emissions occurring from manure, i.e., nitrogen monoxide (N2O). Further, the CO2 sequestration potential of biochar, i.e., removal of CO2 from the atmosphere and long-term storage, is considered. Several constructions, such as the construction of the gasification system and the heating grid, are included in the evaluation. As input related reference flow, 1 kg of woodchips with water content of 40 % is used. Three functionals units are eventually obtained, i.e., 0.17 kg of biochar applied to soil, 4.47 MJ of heat and 2.82 MJ of electricity, each per reference flow. The results for Global Warming Potential (GWP) for biochar is – 274.7*10 - 3 kg CO2eq per functional unit, which corresponds to – 1.6 kg CO2eq per 1 kg biochar applied to soil. The GWP for heat results in 17.1*10 - 3 CO2eq per functional unit, which corresponds to 3.6*10 - 3 kg CO2eq per 1 MJ. For electricity, a GWP of 38.1*10 - 3 kg CO2eq per functional unit is obtained, which is equivalent to 13.5*10 - 3 kg CO2eq per 1 MJ. The calculation was performed using SimaPro Version 9.1 and the ReCiPe method with hierarchist perspective.

Download full text files

Export metadata

Additional Services

Search Google Scholar
Metadaten
Author:Maren Sistek
DOI:https://doi.org/10.25924/opus-4376
Advisor:Babette Hebenstreit, Reyn Joseph O’Born
Document Type:Master's Thesis
Language:English
Year of publication:2021
Publishing Institution:FH Vorarlberg (Fachhochschule Vorarlberg)
Granting Institution:FH Vorarlberg (Fachhochschule Vorarlberg)
Release Date:2022/03/17
Tag:Biokohle
Biochar
Number of pages:VII, 100
DDC classes:600 Technik, Medizin, angewandte Wissenschaften
Open Access?:ja
Course of Studies:Energietechnik und Energiewirtschaft
Licence (German):License LogoUrhG - The Austrian Copyright Act applies - Es gilt das österr. Urheberrechtsgesetz