Refine
Year of publication
Document Type
- Article (401)
- Conference Proceeding (374)
- Master's Thesis (339)
- Part of a Book (225)
- Book (102)
- Report (25)
- Other (15)
- Doctoral Thesis (12)
- Working Paper (8)
- Periodical (3)
Institute
- Wirtschaft (324)
- Forschungszentrum Mikrotechnik (233)
- Technik | Engineering & Technology (192)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (164)
- Forschungszentrum Business Informatics (152)
- Soziales & Gesundheit (131)
- Forschungsgruppe Empirische Sozialwissenschaften (112)
- Forschungszentrum Human Centred Technologies (94)
- Forschungszentrum Energie (80)
- Didaktik (mit 31.03.2021 aufgelöst; Integration ins TELL Center) (68)
Language
- German (773)
- English (727)
- Multiple languages (6)
- French (1)
- Dutch (1)
Keywords
- Social Work (18)
- Organizational Studies, Economic Sociology (17)
- Social Structure, Social Inequality (17)
- Laser ablation (11)
- Soziale Arbeit (11)
- Y-branch splitter (11)
- Digitalisierung (10)
- +KDC 122 (9)
- Design : Theorie, Reflexion (9)
- arrayed waveguide gratings (9)
This paper presents design, simulation, and optimization of the three-dimensional 1×4 optical multimode interference splitter using IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was simulated by using beam propagation method in BeamPROP simulation engine of RSoft photonic tool and optimized for an operating wavelength of 1.55 µm. According to the minimum insertion loss, the dimensions of the MMI coupler and the length of the whole MMI splitter structure were optimized applying a waveguide with a core size of 4×4 µm2. The objective of the study is to create a design for fabrication by three-dimensional direct laser writing optical lithography.
We present design of planar 16-channel, 100-GHz multi-mode polymer-based AWG. This AWG was designed for central wavelength of 1550 nm applying AWG-Parameters tool. The AWG structure was created and simulated in the commercial photonic tool PHASAR from Optiwave. Achieved transmission characteristics were evaluated by AWG-Analyzer tool. For the design, multi-mode waveguides having a cross-section of (4x4) µm2 were used. The simulated results show strong worsening of the transmission characteristics in comparison when using single-mode waveguides. Nevertheless, the transmitting channels are clearly separated. The reason for using thicker multi-mode waveguides in the design is possibility to fabricate the AWG structure on polymer basis using direct laser writing lithography.
Coupling is one of the most frequently mentioned metric in software systems. However, to measure logical coupling between microservices, runtime information is needed or the availability of service-log files to analyze the calls between services is required. This work presents our emerging results, in which we propose a metric to statically calculate logical coupling between microservices based on commits to versioning systems. We performed an initial validation of the proposed metric with a dataset containing 145 open-source microservices projects. The results illustrate how logical coupling affects every system and increases overtime. However, we did not find a correlation between the number of commits or the number of developers and the introduction of logical coupling. In future, we investigate why, how, and when logical coupling is introduced in a system.
Die persönliche Black-Box
(2023)
Redundanz und Varietät
(2023)
The paper deals with designing and numerical modelling a 2 x 2 optical switch for photonic integrated circuits based on 2 x 2 MMI elements and phase modulators. The 2 x 2 optical switch was modelled in the RsoftCAD with the simulation tool BeamPROP. The 2 x 2 optical switch is a common element for creating more complex 1 x N or N x N optical switches in all-optical signal processing.
In this paper, the design of three-dimensional configuration of Y-branch splitter is compared with Multimode Interference splitter. Both splitters use the IP-Dip polymer as a standard material for 3D laser lithography. The optical properties of the splitters for both approaches are discussed and compared.
In this work, we investigated the influence of different etch depths of the rib waveguides on the performance of SiN-based AWGs. For this purpose, an 8-channel 100 GHz AWG was designed for a center wavelength of 850 nm. The design parameters entered were calculated using the AWG-Parameters tool. The simulations were performed with a commercial photonic tool PHASAR from Optiwave. The simulated performance was evaluated using the AWG-Analyzer tool. For the AWG design, we used three identical rib waveguides with different etch depths to simulate possible etch imperfection. The simulations show the wavelength shift and degradation of the AWG performance.
Optoelectronic system based on photonic integrated circuits to miniaturize spectral domain OCT
(2023)
We present a miniaturized optical coherence tomography (OCT) setup based on photonic integrated circuits (PIC) for the 850 nm range. We designed a 512-channel arrayed waveguide grating (AWG) on a PIC for spectral domain OCT (SD-OCT) that is co-integrated with PIN-photodiodes and analog-to-digital-converters on one single chip. This image sensor is combined with all the necessary electronics to act as a camera. It is integrated into a fiber-based OCT system, achieving a sensitivity of >80dB and various samples are imaged. This optoelectronic system will allow building small and cost-effective OCT systems to monitor retinal diseases.