Refine
Year of publication
Document Type
- Article (365) (remove)
Institute
- Wirtschaft (109)
- Forschungszentrum Mikrotechnik (83)
- Forschungszentrum Business Informatics (59)
- Department of Computer Science (Ende 2021 aufgelöst) (54)
- Forschungszentrum Energie (43)
- Soziales und Gesundheit (35)
- Didaktik (21)
- Forschungsgruppe Empirische Sozialwissenschaften (18)
- Forschungszentrum Nutzerzentrierte Technologien (7)
- Gestaltung (3)
Language
- English (235)
- German (128)
- Multiple languages (2)
Is part of the Bibliography
- yes (365) (remove)
Keywords
- Laser ablation (8)
- Entscheidung (6)
- Volatile organic compounds (5)
- Ausscheidung (4)
- Evolution strategy (4)
- Y-branch splitter (4)
- Desalination (3)
- Evolution strategies (3)
- Fragmentation patterns (3)
- Mathematical model (3)
Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.
Kommunikation ist Begegnung
(2022)
Sie werden beobachtet
(2022)
In this paper, low-loss Y-branch splitters up to 128 splitting ratio are designed, simulated, and optimized by using 2D beam propagation method in OptiBPM tool by Optiwave. For an optical waveguide, a silica-on-silicon material platform is used. The splitters were designed as a planar structure for a telecommunication operating wavelength of 1.55 m. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. The influence of the pre-defined S-Bend waveguide shapes (Arc, Cosine, Sine) and of the waveguide core size reduction on the splitter performance has been also studied. The obtained simulation results of all designed splitters with different S-Bend shape waveguides together with the different waveguide core sizes are discussed and compared with each other.
In this paper, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. The splitter was proposed on the square basis with the width of 20 x 20 µm2 using the IP-Dip polymer as a standard material for 3D laser lithography. We present the optical field distribution in the proposed MMI splitter and its integration possibility on optical fiber. The design is aimed to the possible fabrication process using the 3D laser lithography for forthcoming experiments.
Brainstorming ist ein Mythos
(2021)
Background: Mobile health interventions are intended to support complex health care needs in chronic diseases digitally, but they are mainly targeted at general health improvement and neglect disease-specific requirements. Therefore, we designed TrackPAD, a smartphone app to support supervised exercise training in patients with peripheral arterial disease.
Objective: This pilot study aimed to evaluate changes in the 6-minute walking distance (meters) as a primary outcome measure. The secondary outcome measures included changes in physical activity and assessing the patients’ peripheral arterial disease–related quality of life.
Methods: This was a pilot two-arm, single-blinded, randomized controlled trial. Patients with symptomatic PAD (Fontaine stage IIa/b) and access to smartphones were eligible. Eligible participants were randomly assigned to the study, with the control group stratified by the distance covered in the 6-minute walking test using the TENALEA software. Participants randomized to the intervention group received usual care and the mobile intervention (TrackPAD) for the follow-up period of 3 months, whereas participants randomized to the control group received routine care only. TrackPAD records the frequency and duration of training sessions and pain levels using manual user input. Clinical outcome data were collected at the baseline and after 3 months via validated tools (the 6-minute walk test and self-reported quality of life). The usability and quality of the app were determined using the Mobile Application Rating Scale user version.
Results: The intervention group (n=19) increased their mean 6-minute walking distance (83 meters, SD 72.2), while the control group (n=20) decreased their mean distance after 3 months of follow-up (–38.8 meters, SD 53.7; P=.01). The peripheral arterial disease–related quality of life increased significantly in terms of “symptom perception” and “limitations in physical functioning.” Users’ feedback showed increased motivation and a changed attitude toward performing supervised exercise training.
Conclusions: Besides the rating providing a valuable support tool for the user group, the mobile intervention TrackPAD was linked to a change in prognosis-relevant outcome measures combined with enhanced coping with the disease. The influence of mobile interventions on long-term prognosis must be evaluated in the future.
Ethikorientiert entscheiden
(2021)
A Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. Progress in integrated photonics enables development of photonic chips with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic chips is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications. One important step of packaging is effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic chip optical waveguide with submicron dimensions. For complex photonic chips, it is necessary to couple not one optical fiber but several optical fibers, which are arranged in fiber arrays. In this case, it is necessary to use a 6D positioning system, which allows to optimally adjust the relative position of the photonic chip and the fiber arrays. After setting the optimal relative position of the photonic chip and the fiber array, the process of their fixation follows. One possibility of fixation is gluing with an adhesive in the optical path between the photonic chip and an array of optical fibers with a refractive index close to the refractive index of the optical fiber core. This paper is focused on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths fixed themselves by UV adhesive in the optical path. The main aims of this works are selection of better adhesive from two types for gluing of photonic chip and fiber array in packaging process of photonics chips and validation of gluing process developing. The coupling and alignment of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 °C to 80 °C in climatic chamber according to Telcordia. Spectral dependence of insertion losses were measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature.
This work was supported by the Slovak Research and Development Agency under the contracts APVV-17-0662 and SK-AT-20-0017 and by the COST Action “European Network for High Performance Integrated Microwave Photonics” (EUIMWP) CA16220.