Refine
Year of publication
Document Type
- Article (391)
- Conference Proceeding (374)
- Part of a Book (225)
- Book (102)
- Report (25)
- Other (15)
- Doctoral Thesis (12)
- Working Paper (8)
- Master's Thesis (6)
- Periodical (3)
Institute
- Wirtschaft (320)
- Forschungszentrum Mikrotechnik (226)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (164)
- Forschungszentrum Business Informatics (152)
- Soziales & Gesundheit (131)
- Forschungsgruppe Empirische Sozialwissenschaften (112)
- Forschungszentrum Nutzerzentrierte Technologien (94)
- Forschungszentrum Energie (79)
- Didaktik (mit 31.03.2021 aufgelöst; Integration ins TELL Center) (68)
- Gestaltung (32)
Language
- English (631)
- German (527)
- Multiple languages (5)
- French (1)
- Dutch (1)
Is part of the Bibliography
- yes (1165) (remove)
Keywords
- Social Work (18)
- Organizational Studies, Economic Sociology (17)
- Social Structure, Social Inequality (17)
- Laser ablation (11)
- Y-branch splitter (11)
- Soziale Arbeit (10)
- +KDC 122 (9)
- Design : Theorie, Reflexion (9)
- arrayed waveguide gratings (8)
- Entscheidung (6)
The paper shows concepts of optical splitting based on three dimensional (3D) optical splitters based on multimode interference principle. This paper is focused on the design, fabrication and characterization of 3D MMI splitter with formed output waveguides based on IP-Dip polymer for direct application on optical fiber. The MMI optical splitter was simulated and fabricated using direct laser writing process. Output characteristics were characterized by highly resolved near-field scanning optical microscope (NSOM) and compared with 3D MMI splitter without output waveguides.
In this paper, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. The splitter was proposed on the square basis with the width of 20 x 20 µm2 using the IP-Dip polymer as a standard material for 3D laser lithography. We present the optical field distribution in the proposed MMI splitter and its integration possibility on optical fiber. The design is aimed to the possible fabrication process using the 3D laser lithography for forthcoming experiments.
In this paper, we document optical splitters based on Y-branch and also on MMI splitting principle. The 1×4 Y-branch splitter was prepared in 3D geometry fully from polymer approaching the single mode transmission at 1550 nm. We also prepared new concept of 1×4 MMI optical splitter. Their optical properties and character of output optical field were measured by near-field scanning optical microscope. Splitting properties and optical outputs of both splitters are very promising and increase an attractiveness of presented 3D technology and polymers.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
The Digital Factory Vorarlberg is the youngest Research Center of Vorarlberg University of Applied Sciences. In the lab of the research center a research and learning factory has been established for educating students and employees of industrial partners. Showcases and best practice scenarios for various topics of digitalization in the manufacturing industry are demonstrated. In addition, novel methods and technologies for digital production, cloud-based manufacturing, data analytics, IT- and OT-security or digital twins are being developed. The factory comprises only a minimum core of logistics and fabrication processes to guarantee manageability within an academic setup. As a product, fidget spinners are being fabricated. A webshop allows customers to individually design their products and directly place orders in the factory. A centralized SCADA-System is the core data hub for the factory. Various data analytic tools and methods and a novel database for IoT-applications are connected to the SCADA-System. As an alternative to on premise manufacturing, orders can be pushed into a cloud-based manufacturing platform, which has been developed at the Digital Factory. A broker system allows fabrication in distributed facilities and offers various optimization services. Concepts, such as outsourcing product configuration to customers or new types of engineering services in cloud-based manufacturing can be explored and demonstrated. In this paper, we present the basic concept of the Digital Factory Vorarlberg, as well as some of the newly developed topics.
A covariance matrix self-adaptation evolution strategy for optimization under linear constraints
(2018)
A modified matrix adaptation evolution strategy with restarts for constrained real-world problems
(2020)
In combination with successful constraint handling techniques, a Matrix Adaptation Evolution Strategy (MA-ES) variant (the εMAg-ES) turned out to be a competitive algorithm on the constrained optimization problems proposed for the CEC 2018 competition on constrained single objective real-parameter optimization. A subsequent analysis points to additional potential in terms of robustness and solution quality. The consideration of a restart scheme and adjustments in the constraint handling techniques put this into effect and simplify the configuration. The resulting BP-εMAg-ES algorithm is applied to the constrained problems proposed for the IEEE CEC 2020 competition on Real-World Single-Objective Constrained optimization. The novel MA-ES variant realizes improvements over the original εMAg-ES in terms of feasibility and effectiveness on many of the real-world benchmarks. The BP-εMAg-ES realizes a feasibility rate of 100% on 44 out of 57 real-world problems and improves the best-known solution in 5 cases.
A multi-recombinative active matrix adaptation evolution strategy for constrained optimization
(2019)
In engineering design, optimization methods are frequently used to improve the initial design of a product. However, the selection of an appropriate method is challenging since many
methods exist, especially for the case of simulation-based optimization. This paper proposes a systematic procedure to support this selection process. Building upon quality function deployment, end-user and design use case requirements can be systematically taken into account via a decision
matrix. The design and construction of the decision matrix are explained in detail. The proposed
procedure is validated by two engineering optimization problems arising within the design of box-type boom cranes. For each problem, the problem statement and the respectively applied optimization methods are explained in detail. The results obtained by optimization validate the use
of optimization approaches within the design process. The application of the decision matrix shows the successful incorporation of customer requirements to the algorithm selection.
A systemic-constructivist approach to the facilitation and debriefing of simulations and games
(2010)
Abseits - aside - à'lécart
(2012)
Issues with professional conduct and discrimination against Lesbian, Gay, Bisexual, Transgender (LGBT+) people in health and social care, continue to exist in most EU countries and worldwide.
The project IENE9 titled: “Developing a culturally competent and compassionate LGBT+ curriculum in health and social care education” aims to enable teacher/trainers of theory and practice to enhance their skills regarding LGBT+ issues and develop teaching tools to support the inclusion of LGBT+ issues within health and social care curricula. The newly culturally competent and compassionate LGBT+ curriculum will be delivered though a Massive Open Online Course (MOOC) which is aimed at health and social care workers, professionals and learners across Europe and worldwide.
We have identified educational policies and guidelines at institutions teaching in health and social care, taken into account for developing the learning/teaching resources. The MOOC will be an innovative training model based on the Papadopoulos (2014) model for “Culturally Competent Compassion”. The module provides a logical and easy to follow structure based on its four constructs 'Culturally Aware and Compassionate Learning', 'Culturally Knowledgeable and Compassionate Learning', 'Culturally Sensitive and Compassionate Learning', 'Culturally Competent and Compassionate Learning'.
Specific training may result in better knowledge and skills of the health and social care workforce, which helps to reduce inequalities and communication with LGBT+ people, as well as diminishing the feelings of stigma or discrimination experienced.
Active demand side management with domestic hot water heaters using binary integer programming
(2013)
Adaptive indirect fieldoriented control of an induction machine in the armature control range
(2012)
Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.
Akademische Lehre 2.0
(2014)
Alles bleibt anders? Profession und Disziplin Sozialer Arbeit im Kontext der Covid-19-Pandemie
(2022)
Alles muss raus
(2022)
With Cloud Computing and multi-core CPUs parallel computing resources are becoming more and more affordable and commonly available. Parallel programming should as well be easily accessible for everyone. Unfortunately, existing frameworks and systems are powerful but often very complex to use for anyone who lacks the knowledge about underlying concepts. This paper introduces a software framework and execution environment whose objective is to provide a system which should be easily usable for everyone who could benefit from parallel computing. Some real-world examples are presented with an explanation of all the steps that are necessary for computing in a parallel and distributed manner.
An electrochemical study with three redox substances on a carbon based nanogap electrode array
(2020)
Bubble column humidifiers (BCHs) are frequently used for the humidification of air in various water treatment applications. A potential but not yet profoundly investigated application of such devices is the treatment of oily wastewater. To evaluate this application, the accumulation of an oil-water emulsion using a BCH is experimentally analyzed. The amount of evaporating water vapor can be evaluated by measuring the humidity ratio of the outlet air. However, humidity measurements are difficult in close to saturated conditions, as the formation of liquid droplets on the sensor impacts the measurement accuracy. We use a heating section after the humidifier, such that no liquid droplets are formed on the sensor. This enables us a more accurate humidity measurement. Two batch measurement runs are conducted with (1) tap water and (2) an oil-water emulsion as the respective liquid phase. The humidity measurement in high humidity conditions is highly accurate with an error margin of below 3 % and can be used to predict the oil concentration of the remaining liquid during operation. The measured humidity ratio corresponds with the removed amount of water vapor for both tap water and the accumulation of an oil-water emulsion. Our measurements show that the residual water content
in the oil-water emulsion is below 4 %.
Vast amounts of oily wastewater are byproducts of the petrochemical and the shipping industry and to this day frequently discharged into water bodies either without or after insufficient treatment. To alleviate the resulting pollution, water treatment processes are in great demand. Bubble column humidifiers (BCHs) as part of humidification–dehumidification systems are predestined for such a task, since they are insensitive to different feed liquids, simple in design and have low maintenance requirements. While humidification in a bubble column has been investigated plentiful for desalination, a systematic investigation of oily wastewater treatment is missing in literature. We filled this gap by analyzing the treatment of an oil–water emulsion experimentally to derive recommendations for future design and operation of BCHs. Our humidity measurements indicate that the air stream is always saturated after humidification for a liquid height of only 10 cm. A residual water mass fraction of 3.5 wt% is measured after a batch run of six hours. Furthermore, continuous measurements show that an increase in oil mass fraction leads to a decrease in system productivity especially for high oil mass fractions. This decrease is caused by the heterogeneity of the liquid temperature profile. A lower liquid height mitigates this heterogeneity, therefore decreasing the heat demand and improving the overall efficiency. The oil content of the produced condensate is below 15 ppm, allowing discharge into various water bodies. The results of our systematic investigation prove suitability and indicate a strong future potential for the use of BCHs in oily wastewater treatment.
Diese Arbeit analysiert mithilfe von Umfragen allgemeine Themen über Erneuerbare-Energie-Gemeinschaft (EEG) und deren Verrechnungs-Visualisierung. Sie befasst sich im speziellen mit der Verrechnungs-Visualisierungsplattform der Firma Exnaton. Diese wird von den Teilnehmenden der Pilot-EEG-Schnifis für die Proformarechnung verwendet.
Die Umfrageergebnisse werden grafisch und in Textform dargestellt und präsentiert. Auf Basis einer eigenen Interpretation und einer SWOT-Analyse wurde die Bewertung durchgeführt. Es soll eine strategische Entscheidungsmöglichkeit, für die Anwendung einer Verrechnungs-Visualisierungsplattform, geschaffen werden.
Die meistgewählten Erwartungen bzw. Wünsche an eine EEG (Klimaschutz, Umweltschutz und Stärkung der regionalen Gemeinschaft) werden als großes Potential der Energiewende gesehen. Mit knapp 78 % kann sich die Mehrheit der Befragten „Gut“ bis „Sehr gut“ vorstellen, sich an einer EEG zu beteiligen. Die nutzerfreundliche Gestaltung der relevanten Daten und die einfache Anwendung werden als Stärke der Exnaton-Verrechnungs-Visualisierungsplattform angesehen. Von den Teilnehmenden der Pilot-EEG-Schnifis bestehen schon 50 % der Befragten im Jahr 2021 auf eine 15-minütige Visualisierung ihrer EEG-Daten. Dies lässt auf ein großes Potential an EEGs und den damit benötigten Verrechnungs-Visualisierungsplattformen schließen.
Analysis of the (μ/μI,λ)-CSA-ES with repair by projection applied to a conically constrained problem
(2019)
In contrast to fossil energy sources, the supply by renewable energy sources likewind and photovoltaics can not be controlled. Therefore, flexibilities on the demandside of the electric power grid, like electro-chemical energy storage systems, are usedincreasingly to match electric supply and demand at all times. To control those flex-ibilities, we consider two algorithms that both lead to linear programming problems.These are solved autonomously on the demand side, i.e., by household computers.In the classic approach, an energy price signal is sent by the electric utility to thehouseholds, which, in turn, optimize the cost of consumption within their constraints.Instead of an energy price signal, we claim that an appropriate power signal that istracked in L1-norm as close as possible by the household has favorable character-istics. We argue that an interior point of the household’s feasibility region is neveran optimal price-based point but can result in a L1-norm optimal point. Thus, pricesignals can not parametrize the complete feasibility region which may not lead to anoptimal allocation of consumption.We compare the price and power tracking algorithms over a year on the base ofone-day optimizations regarding different information settings and using a large dataset of daily household load profiles. The computational task constitutes an embarrassingly parallel problem. To this end, the performance of the two parallel computation frameworks DEF [1] and Ray [2] are investigated. The Ray framework is used to run the Python applications locally on several cores. With the DEF frameworkwe execute our Python routines parallelly in a cloud. All in all, the results providean understanding of when which computation framework and autonomous algorithmwill outperform the other.
Application of various tools to design, simulate and evaluate optical demultiplexers based on AWG
(2015)
Arbeitspaket 3: Ausschöpfung des Innovationspotentials von smarten Technologien - FH Vorarlberg
(2022)
Anhand von empirischem Material aus zwei Forschungsprojekten gibt die Broschüre Einblick in zentrale Harausforderungen, die sich in der pädagogischen Praxis beim Umgang mit (Kinder-)Armut stellen. Die Broschüre vermittelt relevantes Wissen über Armut als gesamtgesellschaftliches Problem. Zudem setzt sie Impulse für die Entwicklung einer kritsch-reflexiven Perspektive auf die Arbeit mit armutserfahrenen Kindern, Eltern und Familien.
Arrayed Waveguide Gratings
(2016)
Arrayed Waveguide Grating (AWG) is a passive optical component, which have found applications in a wide range of photonic applications including telecommunications and medicine. Silica-on-Silicon (SoS) based AWGs use a low refractive-index contrast between the core (waveguide) and the cladding which leads to some significant advantages such as low propagation losses and low fiber coupling losses between the AWG waveguides and the fibres. Therefore, they are an attractive DWDM solution offering higher channel count technology and good performance characteristics compared to other methods. However, the very low refractive-index contrast means the bending radius of the waveguides needs to be very large (on the order of several millimeters) and may not fall below a particular critical value to suppress bending losses. As a result, silica-based waveguide devices usually have a very large size that limits the integration density of SiO2-based photonic integrated devices. High-index contrast AWGs (such as silicon, silicon nitride or polymer-based waveguide devices) feature much smaller waveguide size compared to low index contrast AWGs. Such compact devices can easily be implemented on a chip and have already found applications in emerging applications such as optical sensors, devices for DNA diagnostics and optical spectrometers for infrared spectroscopy.In this work, we present the design, simulation, technological verification and applications of both, the low-index contrast and high-index contrast AWGs. For telecommunication applications AWG-MUX/Demux with up to 128-channels will be presented. For medical applications the AWG-spectrometer with up to 512-channels will be presented.This work was carried out in the framework of the projects: ADOPT No. SK-AT-20-0012, NOVASiN No. SK-AT-20-0017 and AUTOPIC No. APVV-17-0662 from Slovak research and development agency of Ministry of Education, Science, Research and Sport of the Slovak Republic and No. SK 07/2021 and SK 08/2021 from Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH); and project PASTEL, no. 2020-10-15-001, funded by SAIA.