Refine
Year of publication
Document Type
- Article (401) (remove)
Institute
- Wirtschaft (118)
- Forschungszentrum Mikrotechnik (94)
- Forschungszentrum Business Informatics (61)
- Technik | Engineering & Technology (56)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (54)
- Forschungszentrum Energie (49)
- Soziales & Gesundheit (41)
- Forschungsgruppe Empirische Sozialwissenschaften (21)
- Didaktik (mit 31.03.2021 aufgelöst; Integration ins TELL Center) (20)
- Josef Ressel Zentrum für Materialbearbeitung (15)
- Forschungszentrum Human Centred Technologies (8)
- Forschungszentrum Digital Factory Vorarlberg (4)
- Forschung (3)
- Gestaltung (3)
- Hochschulservices (2)
- Department of Engineering (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (1)
- Josef Ressel Zentrum für Robuste Entscheidungen (1)
Language
- English (257)
- German (142)
- Multiple languages (2)
Keywords
- Laser ablation (8)
- Entscheidung (6)
- Volatile organic compounds (5)
- Y-branch splitter (5)
- Ausscheidung (4)
- Evolution strategy (4)
- Soziale Arbeit (4)
- AWG (3)
- Demand side management (3)
- Desalination (3)
Real-time measurements of the differences in inhaled and exhaled, unlabeled and fully deuterated acetone concentration levels, at rest and during exercise, have been conducted using proton transfer reaction mass spectrometry. A novel approach to continuously differentiate between the inhaled and exhaled breath acetone concentration signals is used. This leads to unprecedented fine grained data of inhaled and exhaled concentrations. The experimental results obtained are compared with those predicted using a simple three compartment model that theoretically describes the influence of inhaled concentrations on exhaled breath concentrations for volatile organic compounds with high blood:air partition coefficients, and hence is appropriate for acetone. An agreement between the predicted and observed concentrations is obtained. Our results highlight that the influence of the upper airways cannot be neglected for volatiles with high blood:air partition coefficients, i.e. highly water soluble volatiles.
Optoelectronic system based on photonic integrated circuits to miniaturize spectral domain OCT
(2023)
We present a miniaturized optical coherence tomography (OCT) setup based on photonic integrated circuits (PIC) for the 850 nm range. We designed a 512-channel arrayed waveguide grating (AWG) on a PIC for spectral domain OCT (SD-OCT) that is co-integrated with PIN-photodiodes and analog-to-digital-converters on one single chip. This image sensor is combined with all the necessary electronics to act as a camera. It is integrated into a fiber-based OCT system, achieving a sensitivity of >80dB and various samples are imaged. This optoelectronic system will allow building small and cost-effective OCT systems to monitor retinal diseases.
X-ray micro tomography of three-dimensional embroidered current collectors for lithium-ion batteries
(2016)
Greater specific energy densities in lithium-ion batteries can be achieved by using three-dimensional (3D) porous current collectors, which allow for greater areal mass loadings of the electroactive material. In this paper, we present the use of embroidered current collectors for the preparation of thick, pouch-type Li-ion batteries. Experiments were performed on LiFePO 4 (LFP) water-based slurries using styrene-butadiene rubber (SBR) as binder and sodium carboxymethyl cellulose (CMC) as thickener, and formulations of different rheological characteristics were investigated. The electrochemical performance (cyclic voltammetry, rate capability) and morphological characteristics of the LFP half-pouch cells (X-ray micro computed tomography and scanning electron microscopy) were compared between the formulations. An optimum electrode formulation was identified, and a mechanism is proposed to explain differences between the formulations. With the optimum electrode formulation, 350 µm casted electrodes with high mechanical stability were achieved. Electrodes exhibited 4–6 times greater areal mass loadings (4–6 mAh cm −2 ) and 50% greater electroactive material weight than with foils. In tests of half- and full-pouch embroidered cells, a 50% capacity utilization at 1C-rate and 11% at 2C-rate were observed, with a full recovery at C/5-rate. The cycling stability was also maintained over 55 cycles.
Coupling is one of the most frequently mentioned metric in software systems. However, to measure logical coupling between microservices, runtime information is needed or the availability of service-log files to analyze the calls between services is required. This work presents our emerging results, in which we propose a metric to statically calculate logical coupling between microservices based on commits to versioning systems. We performed an initial validation of the proposed metric with a dataset containing 145 open-source microservices projects. The results illustrate how logical coupling affects every system and increases overtime. However, we did not find a correlation between the number of commits or the number of developers and the introduction of logical coupling. In future, we investigate why, how, and when logical coupling is introduced in a system.
Gas hydrates are usually synthesized by bringing together a pressurized gas and liquid or solid water. In both cases, the transport of gas or water to the hydrate growth site is hindered once an initial film of hydrate has grown at the water–gas interface. A seemingly forgotten gas-phase technique overcomes this problem by slowly depositing water vapor on a cold surface in the presence of the pressurized guest gas. Despite being used for the synthesis of low-formation-pressure hydrates, it has not yet been tested for hydrates of CO 2 and CH 4 . Moreover, the potential of the technique for the study of hydrate decomposition has not been recognized yet. We employ two advanced implementations of the condensation technique to form hydrates of CO 2 and CH 4 and demonstrate the applicability of the process for the study of hydrate decomposition and the phenomenon of self-preservation. Our results show that CO 2 and CH 4 hydrate samples deposited on graphite at 261–265 K are almost pure hydrates with an ice fraction of less than 8%. Rapid depressurization experiments with thin deposits (approx. 330 mm thickness) of CO 2 hydrate on an aluminum surface at 265 K yield identical dissociation curves when the deposition is done at identical pressure. However, hydrates deposited at 1 MPa almost completely withstand decomposition after rapid depressurization to 0.1 MPa, while samples deposited at 2 MPa decompose 7 times faster. Therefore, this synthesis technique is not only applicable for the study of hydrate decomposition but can also be used for the controlled deposition of a super-preserved hydrate.
Rückblicke zur 5. ogsaTAGUNG
(2021)
The dynamics of self-adaptive multi-recombinant evolution strategies on the general ellipsoid model
(2014)
Quasilineare Tauchankerspule
(2020)
Combining parallel pattern generation of electrohydrodynamic lithography with serial addressing
(2018)
For a given set of banks, how big can losses in bad economic or financial scenarios possibly get, and what are these bad scenarios? These are the two central questions of stress tests for banks and the banking system. Current stress tests select stress scenarios in a way which might leave aside many dangerous scenarios and thus create an illusion of safety; and which might consider highly implausible scenarios and thus trigger a false alarm. We show how to select scenarios systematically for a banking system in a context of multiple credit exposures. We demonstrate the application of our method in an example on the Spanish and Italian residential real estate exposures of European banks. Compared to the EBA 2016 stress test our method produces scenarios which are equally plausible as the EBA stress scenario but yield considerably worse system wide losses.
Recently the use of microRNAs (miRNAs) as biomarkers for a multitude of diseases has gained substantial significance for clinical as well as point-of-care diagnostics. Amongst other challenges, however, it holds the central requirement that the concentration of a given miRNA must be evaluated within the context of other factors in order to unambiguously diagnose one specific disease. In terms of the development of diagnostic methods and devices, this implies an inevitable demand for multiplexing in order to be able to gauge the abundance of several components of interest in a patient’s sample in parallel. In this study, we design and implement different multiplexed versions of our electrochemical microfluidic biosensor by dividing its channel into subsections, creating four novel chip designs for the amplification-free and simultaneous quantification of up to eight miRNAs on the CRISPR-Biosensor X (‘X’ highlighting the multiplexing aspect of the device). We then use a one-step model assay followed by amperometric readout in combination with a 2-minute-stop-flow-protocol to explore the fluidic and mechanical characteristics and limitations of the different versions of the device. The sensor showing the best performance, is subsequently used for the Cas13a-powered proof-of-concept measurement of two miRNAs (miRNA-19b and miRNA-20a) from the miRNA-17∼92 cluster, which is dysregulated in the blood of pediatric medulloblastoma patients. Quantification of the latter, alongside simultaneous negative control measurements are accomplished on the same device. We thereby confirm the applicability of our platform to the challenge of amplification-free, parallel detection of multiple nucleic acids.
The spatial redistribution of Japanese direct investment in the United Kingdom between 1991 and 2010
(2013)
The goal of this paper is to design a low-loss 1 x 32 Y-branch optical splitter for optical transmission systems, using two different design tools employing Beam Propagation Method. As a first step, a conventional 1 x 32 Y-branch splitter was designed and simulated in two-dimensional environment of OptiBPM photonic tool. The simulated optical properties feature high loss, high asymmetric splitting ratio and a large size of the designed structure, too. In the second step of this work we propose an optimization of the conventional splitter design leading to suppression of the asymmetric splitting ratio to one-third of its initial value and to the improvement of the losses by nearly 2 dB. In addition, 50% size reduction of the designed structure was also achieved. This length-optimized low-loss splitter was then modelled in a three-dimensional environment of RSoft photonic tool and the simulated results confirm the strong improvement of the optical properties.