Refine
Year of publication
Document Type
- Article (366) (remove)
Institute
- Wirtschaft (109)
- Forschungszentrum Mikrotechnik (84)
- Forschungszentrum Business Informatics (59)
- Department of Computer Science (Ende 2021 aufgelöst) (54)
- Forschungszentrum Energie (43)
- Soziales und Gesundheit (35)
- Didaktik (21)
- Forschungsgruppe Empirische Sozialwissenschaften (18)
- Forschungszentrum Nutzerzentrierte Technologien (7)
- Gestaltung (3)
Language
- English (236)
- German (128)
- Multiple languages (2)
Keywords
- Laser ablation (8)
- Entscheidung (6)
- Volatile organic compounds (5)
- Ausscheidung (4)
- Evolution strategy (4)
- Y-branch splitter (4)
- Desalination (3)
- Evolution strategies (3)
- Fragmentation patterns (3)
- Mathematical model (3)
In this paper, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. The splitter was proposed on the square basis with the width of 20 x 20 µm2 using the IP-Dip polymer as a standard material for 3D laser lithography. We present the optical field distribution in the proposed MMI splitter and its integration possibility on optical fiber. The design is aimed to the possible fabrication process using the 3D laser lithography for forthcoming experiments.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
The Digital Factory Vorarlberg is the youngest Research Center of Vorarlberg University of Applied Sciences. In the lab of the research center a research and learning factory has been established for educating students and employees of industrial partners. Showcases and best practice scenarios for various topics of digitalization in the manufacturing industry are demonstrated. In addition, novel methods and technologies for digital production, cloud-based manufacturing, data analytics, IT- and OT-security or digital twins are being developed. The factory comprises only a minimum core of logistics and fabrication processes to guarantee manageability within an academic setup. As a product, fidget spinners are being fabricated. A webshop allows customers to individually design their products and directly place orders in the factory. A centralized SCADA-System is the core data hub for the factory. Various data analytic tools and methods and a novel database for IoT-applications are connected to the SCADA-System. As an alternative to on premise manufacturing, orders can be pushed into a cloud-based manufacturing platform, which has been developed at the Digital Factory. A broker system allows fabrication in distributed facilities and offers various optimization services. Concepts, such as outsourcing product configuration to customers or new types of engineering services in cloud-based manufacturing can be explored and demonstrated. In this paper, we present the basic concept of the Digital Factory Vorarlberg, as well as some of the newly developed topics.
A covariance matrix self-adaptation evolution strategy for optimization under linear constraints
(2018)
A multi-recombinative active matrix adaptation evolution strategy for constrained optimization
(2019)
In engineering design, optimization methods are frequently used to improve the initial design of a product. However, the selection of an appropriate method is challenging since many
methods exist, especially for the case of simulation-based optimization. This paper proposes a systematic procedure to support this selection process. Building upon quality function deployment, end-user and design use case requirements can be systematically taken into account via a decision
matrix. The design and construction of the decision matrix are explained in detail. The proposed
procedure is validated by two engineering optimization problems arising within the design of box-type boom cranes. For each problem, the problem statement and the respectively applied optimization methods are explained in detail. The results obtained by optimization validate the use
of optimization approaches within the design process. The application of the decision matrix shows the successful incorporation of customer requirements to the algorithm selection.
A systemic-constructivist approach to the facilitation and debriefing of simulations and games
(2010)
Issues with professional conduct and discrimination against Lesbian, Gay, Bisexual, Transgender (LGBT+) people in health and social care, continue to exist in most EU countries and worldwide.
The project IENE9 titled: “Developing a culturally competent and compassionate LGBT+ curriculum in health and social care education” aims to enable teacher/trainers of theory and practice to enhance their skills regarding LGBT+ issues and develop teaching tools to support the inclusion of LGBT+ issues within health and social care curricula. The newly culturally competent and compassionate LGBT+ curriculum will be delivered though a Massive Open Online Course (MOOC) which is aimed at health and social care workers, professionals and learners across Europe and worldwide.
We have identified educational policies and guidelines at institutions teaching in health and social care, taken into account for developing the learning/teaching resources. The MOOC will be an innovative training model based on the Papadopoulos (2014) model for “Culturally Competent Compassion”. The module provides a logical and easy to follow structure based on its four constructs 'Culturally Aware and Compassionate Learning', 'Culturally Knowledgeable and Compassionate Learning', 'Culturally Sensitive and Compassionate Learning', 'Culturally Competent and Compassionate Learning'.
Specific training may result in better knowledge and skills of the health and social care workforce, which helps to reduce inequalities and communication with LGBT+ people, as well as diminishing the feelings of stigma or discrimination experienced.
Akademische Lehre 2.0
(2014)
An electrochemical study with three redox substances on a carbon based nanogap electrode array
(2020)
Analysis of the (μ/μI,λ)-CSA-ES with repair by projection applied to a conically constrained problem
(2019)
Arrayed Waveguide Grating (AWG) is a passive optical component, which have found applications in a wide range of photonic applications including telecommunications and medicine. Silica-on-Silicon (SoS) based AWGs use a low refractive-index contrast between the core (waveguide) and the cladding which leads to some significant advantages such as low propagation losses and low fiber coupling losses between the AWG waveguides and the fibres. Therefore, they are an attractive DWDM solution offering higher channel count technology and good performance characteristics compared to other methods. However, the very low refractive-index contrast means the bending radius of the waveguides needs to be very large (on the order of several millimeters) and may not fall below a particular critical value to suppress bending losses. As a result, silica-based waveguide devices usually have a very large size that limits the integration density of SiO2-based photonic integrated devices. High-index contrast AWGs (such as silicon, silicon nitride or polymer-based waveguide devices) feature much smaller waveguide size compared to low index contrast AWGs. Such compact devices can easily be implemented on a chip and have already found applications in emerging applications such as optical sensors, devices for DNA diagnostics and optical spectrometers for infrared spectroscopy.In this work, we present the design, simulation, technological verification and applications of both, the low-index contrast and high-index contrast AWGs. For telecommunication applications AWG-MUX/Demux with up to 128-channels will be presented. For medical applications the AWG-spectrometer with up to 512-channels will be presented.This work was carried out in the framework of the projects: ADOPT No. SK-AT-20-0012, NOVASiN No. SK-AT-20-0017 and AUTOPIC No. APVV-17-0662 from Slovak research and development agency of Ministry of Education, Science, Research and Sport of the Slovak Republic and No. SK 07/2021 and SK 08/2021 from Austrian Agency for International Cooperation in Education and Research (OeAD-GmbH); and project PASTEL, no. 2020-10-15-001, funded by SAIA.
Assessing antecedents of entrepreneurial activities of academics at south african universities
(2016)
Ausgehandeltes Verständnis
(2020)
Entscheidungen über die optimierte organisatorische Wertschöpfung werden oft von mehreren Personen getroffen. Möchte die entscheidungsorientierte BWL anwendungsorientiert sein, legt sie den Fokus auf das Gewebe von aufeinander verweisenden (entscheidungsfördernden) Kommunikationen zu legen und auf der Erkenntnisfigur des Beobachters aufzubauen.
Verbraucherseitige Laststeuerung (Demand Side Management – DSM) wird als ein möglicher Ansatz betrachtet, um die Auswirkungen des Ausbaus von fluktuierenden Erneuerbaren im Stromnetz auszugleichen. Sollen viele verteilte Energiesysteme damit angesprochen werden, stellen zentralistische Ansätze dabei hohe Anforderungen an die Kommunikationsinfrastruktur. Als Alternative wird vielfach eine autonome Laststeuerung (ADSM) mit anreizbasierter Optimierung direkt auf dem Verbrauchergerät betrachtet. Dabei kann die Anreizfunktion mittels unidirektionaler Kommunikation übertragen werden.
Am Forschungszentrum Energie der Fachhochschule Vorarlberg wurden in den letzten Jahren Algorithmen und Prototypen für den Einsatz von ADSM auf verschiedensten verteilten Energiespeichern im elektrischen Stromnetz entwickelt. Dabei werden sowohl thermische Energiespeicher (z. B. Haushalts-Warmwasserspeicher) als auch elektrochemische Speicher (z. B. Batteriespeichersysteme oder Elektroautos) betrachtet. Außerdem werden die Auswirkungen solcher Systeme auf das elektrische Verteilnetz untersucht. Dieser Artikel gibt einen Überblick über die entwickelten Methoden und Ergebnisse aus diesem Forschungsfeld mit dem Ziel, ein weitreichendes Verständnis für die Chancen und Grenzen des ADSM zu schaffen.
Besser entscheiden
(2021)
Unüberschaubar viele Vorschläge des systematischen Entscheidens führen bei bestimmten Rahmenbedingungen zum Erfolg. Die berufliche Praxis weicht aber zumeist stark davon ab, daher sind viele Methoden unbrauchbar. Wie kann man dennoch seine Fähigkeit zu Entscheiden verbessern? Man orientiert sich an grundlegenden Handlungsmaximen.
Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease
(2014)
Brainstorming ist ein Mythos
(2021)