Refine
Year of publication
Document Type
- Article (43) (remove)
Institute
- Forschungszentrum Energie (43) (remove)
Language
- English (41)
- German (1)
- Multiple languages (1)
Is part of the Bibliography
- yes (43)
Keywords
- Desalination (3)
- Autonomous optimization (2)
- Bubble column humidifier (2)
- Demand response (2)
- Demand side management (2)
- Distributed storage (2)
- Grid balancing (2)
- Humidification-dehumidification (2)
- Organic Rankine Cycle (2)
- Tomography (2)
X-ray micro tomography of three-dimensional embroidered current collectors for lithium-ion batteries
(2016)
Effects of hole-transport layer homogeneity in organic solar cells – A multi-length scale study
(2017)
Verbraucherseitige Laststeuerung (Demand Side Management – DSM) wird als ein möglicher Ansatz betrachtet, um die Auswirkungen des Ausbaus von fluktuierenden Erneuerbaren im Stromnetz auszugleichen. Sollen viele verteilte Energiesysteme damit angesprochen werden, stellen zentralistische Ansätze dabei hohe Anforderungen an die Kommunikationsinfrastruktur. Als Alternative wird vielfach eine autonome Laststeuerung (ADSM) mit anreizbasierter Optimierung direkt auf dem Verbrauchergerät betrachtet. Dabei kann die Anreizfunktion mittels unidirektionaler Kommunikation übertragen werden.
Am Forschungszentrum Energie der Fachhochschule Vorarlberg wurden in den letzten Jahren Algorithmen und Prototypen für den Einsatz von ADSM auf verschiedensten verteilten Energiespeichern im elektrischen Stromnetz entwickelt. Dabei werden sowohl thermische Energiespeicher (z. B. Haushalts-Warmwasserspeicher) als auch elektrochemische Speicher (z. B. Batteriespeichersysteme oder Elektroautos) betrachtet. Außerdem werden die Auswirkungen solcher Systeme auf das elektrische Verteilnetz untersucht. Dieser Artikel gibt einen Überblick über die entwickelten Methoden und Ergebnisse aus diesem Forschungsfeld mit dem Ziel, ein weitreichendes Verständnis für die Chancen und Grenzen des ADSM zu schaffen.
The humidification-dehumidification process (HDH) for desalination is a promising technology to address water scarcity issues in rural regions. However, a low humidifier efficiency is a weakness of the process. Bubble column humidifiers (BCH) are promising for HDH, as they provide enhanced heat and mass transfer and have low maintenance requirements. Previous studies of HDH-systems with BCHs draw different conclusions regarding the impact of superficial air velocity and liquid height on the humidification. Furthermore, the impact of flow characteristics has never been investigated systematically at all. In this study, an optimized BCH test setup that allows for optical analysis of the humidifier is used and evaluated. Our test setup is validated, since the influence of water temperature on the humidification, which is exponential, is reproduced. Measurements with seawater show that the normalised system productivity is increased by about 56 % with an increase in superficial air velocity from 0.5 to 5 cm/s. Furthermore, the system productivity is increased by around 29 % with an increase in liquid height from 60 to 378 mm. While the impact of superficial air velocity can be traced back to temperature changes at the humidifier and dehumidifier outlets, the impact of liquid height is shown to be caused by a smaller heat loss surface in the humidifier with an increase in liquid height. For the impact of sieve plate orifice diameter, a clear influence on the humidification is not apparent, this parameter needs to be investigated further. Finally, our new test setup allows for analysing the humidification of air (1) in a systematic way, (2) in relevant measurement ranges and (3) in comparison with optical analyses of the flow characteristics.
Greater specific energy densities in lithium-ion batteries can be achieved by using three-dimensional (3D) porous current collectors, which allow for greater areal mass loadings of the electroactive material. In this paper, we present the use of embroidered current collectors for the preparation of thick, pouch-type Li-ion batteries. Experiments were performed on LiFePO 4 (LFP) water-based slurries using styrene-butadiene rubber (SBR) as binder and sodium carboxymethyl cellulose (CMC) as thickener, and formulations of different rheological characteristics were investigated. The electrochemical performance (cyclic voltammetry, rate capability) and morphological characteristics of the LFP half-pouch cells (X-ray micro computed tomography and scanning electron microscopy) were compared between the formulations. An optimum electrode formulation was identified, and a mechanism is proposed to explain differences between the formulations. With the optimum electrode formulation, 350 µm casted electrodes with high mechanical stability were achieved. Electrodes exhibited 4–6 times greater areal mass loadings (4–6 mAh cm −2 ) and 50% greater electroactive material weight than with foils. In tests of half- and full-pouch embroidered cells, a 50% capacity utilization at 1C-rate and 11% at 2C-rate were observed, with a full recovery at C/5-rate. The cycling stability was also maintained over 55 cycles.
Gas hydrates are usually synthesized by bringing together a pressurized gas and liquid or solid water. In both cases, the transport of gas or water to the hydrate growth site is hindered once an initial film of hydrate has grown at the water–gas interface. A seemingly forgotten gas-phase technique overcomes this problem by slowly depositing water vapor on a cold surface in the presence of the pressurized guest gas. Despite being used for the synthesis of low-formation-pressure hydrates, it has not yet been tested for hydrates of CO 2 and CH 4 . Moreover, the potential of the technique for the study of hydrate decomposition has not been recognized yet. We employ two advanced implementations of the condensation technique to form hydrates of CO 2 and CH 4 and demonstrate the applicability of the process for the study of hydrate decomposition and the phenomenon of self-preservation. Our results show that CO 2 and CH 4 hydrate samples deposited on graphite at 261–265 K are almost pure hydrates with an ice fraction of less than 8%. Rapid depressurization experiments with thin deposits (approx. 330 mm thickness) of CO 2 hydrate on an aluminum surface at 265 K yield identical dissociation curves when the deposition is done at identical pressure. However, hydrates deposited at 1 MPa almost completely withstand decomposition after rapid depressurization to 0.1 MPa, while samples deposited at 2 MPa decompose 7 times faster. Therefore, this synthesis technique is not only applicable for the study of hydrate decomposition but can also be used for the controlled deposition of a super-preserved hydrate.
In the regime of incentive-based autonomous demand response, time dependent prices are typically used to serve as signals from a system operator to consumers. However, this approach has been shown to be problematic from various perspectives. We clarify these shortcomings in a geometric way and thereby motivate the use of power signals instead of price signals. The main contribution of this paper consists of demonstrating in a standard setting that power tracking signals can control flexibilities more efficiently than real-time price signals. For comparison by simulation, German renewable energy production and German standard load profiles are used for daily production and demand profiles, respectively. As for flexibility, an energy storage system with realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is outperformed with regards to imbalance energy, peak consumption, storage variation, and storage losses without the need for additional communication or computation efforts. It is further shown that the advantages of the optimal power tracking approach compared to the pricing approach increase with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal power tracking is able to integrate renewable energy production efficiently, has additional benefits, and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and economic implementation.
If left uncontrolled, electric vehicle charging poses severe challenges to distribution grid operation. Resulting issues are expected to be mitigated by charging control. In particular, voltage-based charging control, by relying only on the local measurements of voltage at the point of connection, provides an autonomous communication-free solution. The controller, attached to the charging equipment, compares the measured voltage to a reference voltage and adapts the charging power using a droop control characteristic. We present a systematic study of the voltage-based droop control method for electric vehicles to establish the usability of the method for all the currently available residential electric vehicle charging possibilities considering a wide range of electric vehicle penetrations. Voltage limits are evaluated according to the international standard EN50160, using long-term load flow simulations based on a real distribution grid topology and real load profiles. The results achieved show that the voltage-based droop controller is able to mitigate the under voltage problems completely in distribution grids in cases either deploying low charging power levels or exhibiting low penetration rates. For high charging rates and high penetrations, the control mechanism improves the overall voltage profile, but it does not remedy the under voltage problems completely. The evaluation also shows the controller’s ability to reduce the peak power at the transformer and indicates the impact it has on users due to the reduction in the average charging rates. The outcomes of the paper provide the distribution grid operators an insight on the voltage-based droop control mechanism for the future grid planning and investments.
Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.