Refine
Year of publication
Document Type
- Article (49)
- Conference Proceeding (44)
- Part of a Book (10)
- Doctoral Thesis (4)
- Report (4)
Institute
- Forschungszentrum Business Informatics (111) (remove)
Language
- English (111) (remove)
Has Fulltext
- no (111) (remove)
Is part of the Bibliography
- yes (111)
Keywords
A covariance matrix self-adaptation evolution strategy for optimization under linear constraints
(2018)
A modified matrix adaptation evolution strategy with restarts for constrained real-world problems
(2020)
In combination with successful constraint handling techniques, a Matrix Adaptation Evolution Strategy (MA-ES) variant (the εMAg-ES) turned out to be a competitive algorithm on the constrained optimization problems proposed for the CEC 2018 competition on constrained single objective real-parameter optimization. A subsequent analysis points to additional potential in terms of robustness and solution quality. The consideration of a restart scheme and adjustments in the constraint handling techniques put this into effect and simplify the configuration. The resulting BP-εMAg-ES algorithm is applied to the constrained problems proposed for the IEEE CEC 2020 competition on Real-World Single-Objective Constrained optimization. The novel MA-ES variant realizes improvements over the original εMAg-ES in terms of feasibility and effectiveness on many of the real-world benchmarks. The BP-εMAg-ES realizes a feasibility rate of 100% on 44 out of 57 real-world problems and improves the best-known solution in 5 cases.
A multi-recombinative active matrix adaptation evolution strategy for constrained optimization
(2019)
With Cloud Computing and multi-core CPUs parallel computing resources are becoming more and more affordable and commonly available. Parallel programming should as well be easily accessible for everyone. Unfortunately, existing frameworks and systems are powerful but often very complex to use for anyone who lacks the knowledge about underlying concepts. This paper introduces a software framework and execution environment whose objective is to provide a system which should be easily usable for everyone who could benefit from parallel computing. Some real-world examples are presented with an explanation of all the steps that are necessary for computing in a parallel and distributed manner.
Analysis of the (μ/μI,λ)-CSA-ES with repair by projection applied to a conically constrained problem
(2019)
Blood and breath profiles of volatile organic compounds in patients with end-stage renal disease
(2014)
Comparison of constraint-handling mechanisms for the (1,λ)-ES on a simple constrained problem
(2016)
Complementarities and synergies of quadruple helix innovation design in smart city development
(2020)
Increased urbanization trends are stimulating regional needs to support transitions from urban environments to smart cities, using its holistic perspective as a source to innovation. Strong relations between smart cities, urban and regional development, are getting increased attention both at policy and implementation level, providing fertile ground for execution of the new European policy frameworks that supports quadruple helix approaches to innovation. Smart specialization strategies (RIS3) encompass such initiatives, placing ICT and collaboration between academia, industry, government, and citizen at the center of urban innovation. However, there is still lack of research on effects of such approaches to innovation, involving both quadruple helix clusters and ICT in utilizing innovation potentials for developing smart cities. This study aims to increase the understanding on how quadruple helix urban innovation strengthens competitiveness of regions by improving its local smart areas – RIS3. We identified smart specialization patterns and applied comparative benchmark between nine smallmedium sized urban regions in Central Europe. Building on these results, the study provides an overview of the effects of RIS3 strategies implemented through quadruple helix innovation clusters on competitiveness of regions and Smart City development.