Refine
Year of publication
Document Type
- Conference Proceeding (257)
- Article (236)
- Master's Thesis (61)
- Part of a Book (46)
- Book (17)
- Doctoral Thesis (8)
- Report (6)
- Periodical (3)
- Other (2)
- Part of Periodical (2)
Institute
- Forschungszentrum Mikrotechnik (202)
- Forschungszentrum Business Informatics (124)
- Department of Computer Science (Ende 2021 aufgelöst) (112)
- Wirtschaft (91)
- Forschungszentrum Energie (60)
- Didaktik (40)
- Forschungszentrum Nutzerzentrierte Technologien (27)
- Soziales und Gesundheit (27)
- Department of Engineering (Ende 2021 aufgelöst) (12)
- Forschungsgruppe Empirische Sozialwissenschaften (9)
Language
- English (641) (remove)
Keywords
- Laser ablation (11)
- Y-branch splitter (10)
- Optimization (6)
- arrayed waveguide gratings (6)
- integrated optics (6)
- Arrayed waveguide gratings (5)
- Evolution strategy (5)
- Mathematical model (5)
- OCT (5)
- Volatile organic compounds (5)
In this paper, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. The splitter was proposed on the square basis with the width of 20 x 20 µm2 using the IP-Dip polymer as a standard material for 3D laser lithography. We present the optical field distribution in the proposed MMI splitter and its integration possibility on optical fiber. The design is aimed to the possible fabrication process using the 3D laser lithography for forthcoming experiments.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
This thesis aims to support the product development process. Therefore, an approach is developed, implemented as a prototype and evaluated, for automated solution space exploration of formally predefined design automation tasks holding the product knowledge of engineers. For this reason, a classification of product development tasks related to the representation of the mathematical model is evaluated based on the parameters defined in this thesis. In a second step, the mathematical model should be solved. A Solver is identified able to handle the given problem class.
Due to the context of this work, System Modelling Language (SysML) is chosen for the product knowledge formalisation. In the next step the given SysML model has to be translated into an object-oriented model. This translation is implemented by extracting information of a ".xml"-file using the XML Metadata Interchanging (XMI) standard. The information contained in the file is structured using the Unified Modelling Language (UML) profile for SysML. Afterwards a mathematical model in MiniZinc language is generated. MiniZinc is a mathematical modelling language interpretable by many different Solvers. The generated mathematical model is classified related to the Variable Type and Linearity of the Constraints and Objective of the generated mathematical model. The output is stored in a ".txt"-file.
To evaluate the functionality of the prototype, time consumption of the different performed procedures is measured. This data shows that models containing Continuous Variables need a longer time to be classified and optimised. Another observation shows that the transformation into an object-oriented model and the translation of this model into a mathematical representation are dependent on the number of SysML model elements. Using MiniZinc resulted in the restriction that models which use non-linear functions and Boolean Expressions cannot be solved. This is because the implementation of non-linear Solvers at MiniZinc is still in the development phase. An investigation of the optimally of the results, provided by the Solvers, was left for further work.
The Digital Factory Vorarlberg is the youngest Research Center of Vorarlberg University of Applied Sciences. In the lab of the research center a research and learning factory has been established for educating students and employees of industrial partners. Showcases and best practice scenarios for various topics of digitalization in the manufacturing industry are demonstrated. In addition, novel methods and technologies for digital production, cloud-based manufacturing, data analytics, IT- and OT-security or digital twins are being developed. The factory comprises only a minimum core of logistics and fabrication processes to guarantee manageability within an academic setup. As a product, fidget spinners are being fabricated. A webshop allows customers to individually design their products and directly place orders in the factory. A centralized SCADA-System is the core data hub for the factory. Various data analytic tools and methods and a novel database for IoT-applications are connected to the SCADA-System. As an alternative to on premise manufacturing, orders can be pushed into a cloud-based manufacturing platform, which has been developed at the Digital Factory. A broker system allows fabrication in distributed facilities and offers various optimization services. Concepts, such as outsourcing product configuration to customers or new types of engineering services in cloud-based manufacturing can be explored and demonstrated. In this paper, we present the basic concept of the Digital Factory Vorarlberg, as well as some of the newly developed topics.
A covariance matrix self-adaptation evolution strategy for optimization under linear constraints
(2018)
A modified matrix adaptation evolution strategy with restarts for constrained real-world problems
(2020)
In combination with successful constraint handling techniques, a Matrix Adaptation Evolution Strategy (MA-ES) variant (the εMAg-ES) turned out to be a competitive algorithm on the constrained optimization problems proposed for the CEC 2018 competition on constrained single objective real-parameter optimization. A subsequent analysis points to additional potential in terms of robustness and solution quality. The consideration of a restart scheme and adjustments in the constraint handling techniques put this into effect and simplify the configuration. The resulting BP-εMAg-ES algorithm is applied to the constrained problems proposed for the IEEE CEC 2020 competition on Real-World Single-Objective Constrained optimization. The novel MA-ES variant realizes improvements over the original εMAg-ES in terms of feasibility and effectiveness on many of the real-world benchmarks. The BP-εMAg-ES realizes a feasibility rate of 100% on 44 out of 57 real-world problems and improves the best-known solution in 5 cases.
A multi-recombinative active matrix adaptation evolution strategy for constrained optimization
(2019)
A novel calorimetric technique for the analysis of gas-releasing endothermic dissociation reactions
(2020)
In engineering design, optimization methods are frequently used to improve the initial design of a product. However, the selection of an appropriate method is challenging since many
methods exist, especially for the case of simulation-based optimization. This paper proposes a systematic procedure to support this selection process. Building upon quality function deployment, end-user and design use case requirements can be systematically taken into account via a decision
matrix. The design and construction of the decision matrix are explained in detail. The proposed
procedure is validated by two engineering optimization problems arising within the design of box-type boom cranes. For each problem, the problem statement and the respectively applied optimization methods are explained in detail. The results obtained by optimization validate the use
of optimization approaches within the design process. The application of the decision matrix shows the successful incorporation of customer requirements to the algorithm selection.
A systemic-constructivist approach to the facilitation and debriefing of simulations and games
(2010)
Purpose: The purpose of this qualitative phenomenological study is to explore the of self-initiated expatriates prior to and during acculturation to life in a smaller periphery region such as Vorarlberg, Austria. By providing insights into their lived experience this research aims to fill in the gaps of missing information on motivators, success factors to adjustment, issues, and stressors, and more that SIEs experience when adjusting. Specifically, what items promote adjustment and what items hinder adjustment.
Findings: Developed a better understanding of how and what motivational factors lead to expatriation. Furthermore, that opportunities arise by chance. During acculturation, language factors (dialect), cultural differences act as stressors. While social support, and organizational support, learning of the language act as promoters of acculturation.
Further Research could be done including ethnicities, SIEs moving from developed to developing countries, adjustment in regions with dialect vs no dialect.
Key words: self-initiated expatriates, expatriation, acculturation, adjustment, promoting acculturation, hindering acculturation.
Issues with professional conduct and discrimination against Lesbian, Gay, Bisexual, Transgender (LGBT+) people in health and social care, continue to exist in most EU countries and worldwide.
The project IENE9 titled: “Developing a culturally competent and compassionate LGBT+ curriculum in health and social care education” aims to enable teacher/trainers of theory and practice to enhance their skills regarding LGBT+ issues and develop teaching tools to support the inclusion of LGBT+ issues within health and social care curricula. The newly culturally competent and compassionate LGBT+ curriculum will be delivered though a Massive Open Online Course (MOOC) which is aimed at health and social care workers, professionals and learners across Europe and worldwide.
We have identified educational policies and guidelines at institutions teaching in health and social care, taken into account for developing the learning/teaching resources. The MOOC will be an innovative training model based on the Papadopoulos (2014) model for “Culturally Competent Compassion”. The module provides a logical and easy to follow structure based on its four constructs 'Culturally Aware and Compassionate Learning', 'Culturally Knowledgeable and Compassionate Learning', 'Culturally Sensitive and Compassionate Learning', 'Culturally Competent and Compassionate Learning'.
Specific training may result in better knowledge and skills of the health and social care workforce, which helps to reduce inequalities and communication with LGBT+ people, as well as diminishing the feelings of stigma or discrimination experienced.
Active demand side management with domestic hot water heaters using binary integer programming
(2013)
Adaptive indirect fieldoriented control of an induction machine in the armature control range
(2012)
With Cloud Computing and multi-core CPUs parallel computing resources are becoming more and more affordable and commonly available. Parallel programming should as well be easily accessible for everyone. Unfortunately, existing frameworks and systems are powerful but often very complex to use for anyone who lacks the knowledge about underlying concepts. This paper introduces a software framework and execution environment whose objective is to provide a system which should be easily usable for everyone who could benefit from parallel computing. Some real-world examples are presented with an explanation of all the steps that are necessary for computing in a parallel and distributed manner.
An electrochemical study with three redox substances on a carbon based nanogap electrode array
(2020)
An implementation approach of the gap navigation tree using the TurtleBot 3 Burger and ROS Kinetic
(2020)
The creation of a spatial model of the environment is an important task to allow the planning of routes through the environment. Depending on the number of sensor inputs different ways of creating a spatial environment model are possible. This thesis introduces an implementation approach of the Gap Navigation Tree which is aimed for usage with robots that have a limited amount of sensors. The Gap Navigation Tree is a tree structure based on depth discontinuities constructed from the data of a laser scanner. Using the simulated TurtleBot 3 Burger and ROS kinetic a framework is created that implements the theory of the Gap Navigation Tree. The framework is structured in a way that allows using different robots with different sensor types by separating the detection of depth discontinuities from the building and updating of the Gap Navigation Tree.