Refine
Year of publication
- 2020 (139) (remove)
Document Type
- Master's Thesis (80)
- Article (30)
- Conference Proceeding (10)
- Part of a Book (6)
- Report (6)
- Other (4)
- Doctoral Thesis (2)
- Book (1)
Institute
- Soziales und Gesundheit (20)
- Forschungszentrum Business Informatics (13)
- Forschungszentrum Mikrotechnik (11)
- Department of Computer Science (6)
- Wirtschaft (5)
- Forschungszentrum Energie (4)
- Department of Engineering (2)
- Gestaltung (2)
- Forschungszentrum Digital Factory Vorarlberg (1)
- Forschungszentrum Sozial- und Wirtschaftswissenschaften (1)
Keywords
- Ausscheidung (4)
- Controlling (3)
- Digitalisierung (3)
- Machine learning (3)
- Optical coherence tomography (3)
- Arrayed waveguide gratings (2)
- Change management (2)
- Demand Side Management (2)
- Digitale Transformation (2)
- Erfolgsfaktor (2)
Wer wünscht ihn nicht: den intelligenten, effizienten und wirtschaftlichen Herstellungsprozess? Viele Firmen setzten aktuell auf die Digitalisierung und verbessern so die eigene sowie die mit externen Stellen vernetzte Produktion. Die Digitalisierung bringt einerseits Fortschritt, zeigt aber auch die zunehmende Komplexität der heutigen Produktionsnetzwerke auf. Zahlreiche Entscheidungen sind zu fällen, um einen effizienten und sicheren Austausch mit verschiedenen Betrieben zu gewährleisten.
Ein Blick auf vorhandene Modelle kann da weiterhelfen: Im Projekt i4Production des IBH-Labs KMUdigital haben Teams an drei Standorten in den drei Nachbarländern Deutschland (HTWG Konstanz), Österreich (FH Vorarlberg) und der Schweiz (NTB Buchs, RhySearch) an einer vernetzten Prozesslandschaft gearbeitet. In einem gemeinsamen, standardisierten Automatisierungskonzept wird in der international vernetzten Modellfabrik ein cyberphysisches System (CPS) in Form eines kundenindividualisierten Modellfahrzeuges produziert, das durch den Kunden in diversen Varianten zusammengestellt oder individuell konstruiert werden kann. Die dezentrale Produktion erlaubt eine Datenweitergabe über die Landesgrenzen in Echtzeit und bildet die Simulation eines länderübergreifenden Business-Eco-Systems ab.
Die Erkenntnisse des Projekts i4Production zeigen wie in kleineren und mittleren Unternehmen (KMU) eine verteilte Produktion, inklusive der Einbindung von Mitarbeitenden und Kunden in eine digitalisierte, hochautomatisierte und kundenindividuelle Produktion, organisiert werden kann.
Für Unternehmen wird diese Industrie 4.0-Prozesslandschaft als Modell für die eigene Fertigung in dem neu aufgebauten CNC Präzisionsfertigungslabor „Werkstatt4“ bei RhySearch öffentlich zur Verfügung gestellt. Die „Werkstatt4“ bietet KMU ein digitales Prozessumfeld, in dem getestet werden kann, mit welchen Maßnahmen der eingangs gestellte Wunsch zur optimierten Herstellung, seinen Weg in die Realität finden kann.
Im Folgenden stellen wir Ihnen das Konzept der internationalen Musterfabrik i4Production, die diversen Arbeitsschritte an den beteiligten Hochschulen sowie die wichtigsten Erkenntnisse für KMU der Bodenseeregion vor. Gerne unterstützen wir Sie bei der Gestaltung des Wandels hin zum Unternehmen 4.0: Sprechen Sie uns an.
The importance of Agent-Based Simulation (ABS) as scientific method to generate data for scientific models in general and for informed policy decisions in particular has been widely recognised. However, the important technique of code testing of implementations like unit testing has not generated much research interested so far. As a possible solution, in previous work we have explored the conceptual use of property-based testing. In this code testing method, model specifications and invariants are expressed directly in code and tested through automated and randomised test data generation. This paper expands on our previous work and explores how to use property-based testing on a technical level to encode and test specifications of ABS. As use case the simple agent-based SIR model is used, where it is shown how to test agent behaviour, transition probabilities and model invariants. The outcome are specifications expressed directly in code, which relate whole classes of random input to expected classes of output. During test execution, random test data is generated automatically, potentially covering the equivalent of thousands of unit tests, run within seconds on modern hardware. This makes property-based testing in the context of ABS strictly more powerful than unit testing, as it is a much more natural fit due to its stochastic nature.
Over the last years, polymers have gained great attention as substrate material, because of the possibility to produce low-cost sensors in a high-throughput manner or for rapid prototyping and the wide variety of polymeric materials available with different features (like transparency, flexibility, stretchability, etc.). For almost all biosensing applications, the interaction between biomolecules (for example, antibodies, proteins or enzymes) and the employed substrate surface is highly important. In order to realize an effective biomolecule immobilization on polymers, different surface activation techniques, including chemical and physical methods, exist. Among them, plasma treatment offers an easy, fast and effective activation of the surfaces by micro/nanotexturing and generating functional groups (including carboxylic acids, amines, esters, aldehydes or hydroxyl groups). Hence, here we present a systematic and comprehensive plasma activation study of various polymeric surfaces by optimizing different parameters, including power, time, substrate temperature and gas composition. Thereby, the highest immobilization efficiency along with a homogenous biomolecule distribution is achieved with a 5-min plasma treatment under a gas composition of 50% oxygen and nitrogen, at a power of 1000 W and a substrate temperature of 80 C. These results are also confirmed by different surface characterization methods, including SEM, XPS and contact angle measurements.
For a given set of banks, how big can losses in bad economic or financial scenarios possibly get, and what are these bad scenarios? These are the two central questions of stress tests for banks and the banking system. Current stress tests select stress scenarios in a way which might leave aside many dangerous scenarios and thus create an illusion of safety; and which might consider highly implausible scenarios and thus trigger a false alarm. We show how to select scenarios systematically for a banking system in a context of multiple credit exposures. We demonstrate the application of our method in an example on the Spanish and Italian residential real estate exposures of European banks. Compared to the EBA 2016 stress test our method produces scenarios which are equally plausible as the EBA stress scenario but yield considerably worse system wide losses.
Quasilineare Tauchankerspule
(2020)
Gas hydrates are usually synthesized by bringing together a pressurized gas and liquid or solid water. In both cases, the transport of gas or water to the hydrate growth site is hindered once an initial film of hydrate has grown at the water–gas interface. A seemingly forgotten gas-phase technique overcomes this problem by slowly depositing water vapor on a cold surface in the presence of the pressurized guest gas. Despite being used for the synthesis of low-formation-pressure hydrates, it has not yet been tested for hydrates of CO 2 and CH 4 . Moreover, the potential of the technique for the study of hydrate decomposition has not been recognized yet. We employ two advanced implementations of the condensation technique to form hydrates of CO 2 and CH 4 and demonstrate the applicability of the process for the study of hydrate decomposition and the phenomenon of self-preservation. Our results show that CO 2 and CH 4 hydrate samples deposited on graphite at 261–265 K are almost pure hydrates with an ice fraction of less than 8%. Rapid depressurization experiments with thin deposits (approx. 330 mm thickness) of CO 2 hydrate on an aluminum surface at 265 K yield identical dissociation curves when the deposition is done at identical pressure. However, hydrates deposited at 1 MPa almost completely withstand decomposition after rapid depressurization to 0.1 MPa, while samples deposited at 2 MPa decompose 7 times faster. Therefore, this synthesis technique is not only applicable for the study of hydrate decomposition but can also be used for the controlled deposition of a super-preserved hydrate.