Refine
Year of publication
Document Type
- Conference Proceeding (66)
- Article (18)
- Part of a Book (2)
- Book (1)
- Habilitation (1)
Institute
Language
- English (87)
- Multiple languages (1)
Is part of the Bibliography
- yes (88)
Keywords
- Y-branch splitter (10)
- arrayed waveguide gratings (6)
- integrated optics (6)
- Arrayed waveguide gratings (5)
- OCT (5)
- insertion loss (5)
- MMI splitters (4)
- Optical coherence tomography (4)
- Couplers (3)
- Crosstalk (3)
The goal of this paper is to design a low-loss 1 x 32 Y-branch optical splitter for optical transmission systems, using two different design tools employing Beam Propagation Method. As a first step, a conventional 1 x 32 Y-branch splitter was designed and simulated in two-dimensional environment of OptiBPM photonic tool. The simulated optical properties feature high loss, high asymmetric splitting ratio and a large size of the designed structure, too. In the second step of this work we propose an optimization of the conventional splitter design leading to suppression of the asymmetric splitting ratio to one-third of its initial value and to the improvement of the losses by nearly 2 dB. In addition, 50% size reduction of the designed structure was also achieved. This length-optimized low-loss splitter was then modelled in a three-dimensional environment of RSoft photonic tool and the simulated results confirm the strong improvement of the optical properties.
We present a new concept of 3D polymer-based 1 × 4 beam splitter for wavelength splitting around 1550 nm. The beam splitter consists of IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was designed and simulated with two different photonics tools and the results show high splitting ratio for single-mode and multi-mode operation with low losses. Based on the simulations, a 3D beam splitter was designed and realized using direct laser writing (DLW) process with adaptation to coupling to standard single-mode fiber. With respect to the technological limits, the multi-mode splitter having core of (4 × 4) μm 2 was designed and fabricated together with supporting stable mechanical construction. Splitting properties were investigated by intensity monitoring of splitter outputs using optical microscopy and near-field scanning optical microscopy. In the development phase, the optical performance of fabricated beam splitter was examined by splitting of short visible wavelengths using red light emitting diode. Finally, the splitting of 1550 nm laser light was studied in detail by near-field measurements and compared with the simulated results. The nearly single-mode operation was observed and the shape of propagating mode and mode field diameter was well recognized.
Design and optimization of 1x2N Y-branch optical splitters for telecommunication applications
(2020)
This paper presents the design and optimization of 1x2N Y-branch optical splitters for telecom applications. A waveguide channel profile, used in the splitter design, is based on a standard silica-on-silicon material platform. Except for the lengths of the used Y-branches, design parameters such as port pitch between the waveguides and simulation parameters for all splitters were considered fixed. For every Y-branch splitter, insertion loss, non-uniformity, and background crosstalk are calculated. According to the minimum insertion loss and minimum non-uniformity, the optimum length for each Y-branch is determined. Finally, the individual Y-branches are cascade joined to design various Y-branch optical splitters, from 1x2 to 1x64.
Progress in integrated photonics enables development of integrated photonics circuits with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic integrated circuits is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications.
Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. The effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic integrated circuits optical waveguides with submicron dimensions are necessary. To address these challenges, we present our concept of photonics integrated circuit packaging with radio frequency, direct current and fiber array ports with automated active alignment system.