Refine
Document Type
- Conference Proceeding (3)
- Article (2)
Institute
Language
- English (5)
Has Fulltext
- no (5)
Is part of the Bibliography
- yes (5)
Keywords
- 2x2 optical switch (1)
- Active alignment (1)
- Automated Adjustment (1)
- Characterization (1)
- Coupling of Fiber Array (1)
- Fiber arrays (1)
- Fibre array (1)
- MMI splitter (1)
- PICs (1)
- Photonics integrated circuit (1)
Progress in integrated photonics enables development of integrated photonics circuits with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic integrated circuits is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications.
Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. The effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic integrated circuits optical waveguides with submicron dimensions are necessary. To address these challenges, we present our concept of photonics integrated circuit packaging with radio frequency, direct current and fiber array ports with automated active alignment system.
The paper deals with the optimization of 2x2 optical switch for photonic integrated circuits based on two 2x2 MMI splitters and two phase-modulators. The optical switch was modelled in the RSoftCAD with the simulation tool BeamPROP. The optimization was done to minimise the insertion losses and broaden the spectral band at 1550 nm by using linear tapers in a 2x2 MMI splitter topology. The 2x2 optical switch is a common element for creating more complex 1xN or NxN optical switches in all-optical signal processing.
A Telecom optical fibers are still being the best transmission medium of digital data and analogue signals for long distance applications. Progress in integrated photonics enables development of photonic chips with new unique properties, circuits of the future, and overcomes current limits in information and communication technologies. The packaging of photonic chips is necessary for taking them out of research laboratories into real implementation in the information and communication technology applications. One important step of packaging is effective coupling of optical radiation between telecom optical fiber with ten microns core dimension and photonic chip optical waveguide with submicron dimensions. For complex photonic chips, it is necessary to couple not one optical fiber but several optical fibers, which are arranged in fiber arrays. In this case, it is necessary to use a 6D positioning system, which allows to optimally adjust the relative position of the photonic chip and the fiber arrays. After setting the optimal relative position of the photonic chip and the fiber array, the process of their fixation follows. One possibility of fixation is gluing with an adhesive in the optical path between the photonic chip and an array of optical fibers with a refractive index close to the refractive index of the optical fiber core. This paper is focused on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths fixed themselves by UV adhesive in the optical path. The main aims of this works are selection of better adhesive from two types for gluing of photonic chip and fiber array in packaging process of photonics chips and validation of gluing process developing. The coupling and alignment of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 °C to 80 °C in climatic chamber according to Telcordia. Spectral dependence of insertion losses were measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature.
This work was supported by the Slovak Research and Development Agency under the contracts APVV-17-0662 and SK-AT-20-0017 and by the COST Action “European Network for High Performance Integrated Microwave Photonics” (EUIMWP) CA16220.
In this paper we report on the experimental test set-up for the temperature characterization of fiber array to photonics chip butt coupling at 1310 nm and 1550 nm wavelengths. The alignment and gluing of fiber arrays to photonics chip were done by automated active alignments system and they were fixed themselves by UV curable epoxy adhesive. Temperature changes of coupling insertion losses are measured and investigated for two different UV adhesives during three temperature cycles from -40 °C to 80 °C in climatic chamber. Spectral dependence of insertion losses was measured and compared before and after three temperature cycles for 1530 nm to 1570 nm spectral range at room temperature.