Refine
Year of publication
Document Type
- Conference Proceeding (28)
- Article (14)
Institute
Language
- English (42)
Has Fulltext
- no (42)
Keywords
- Laser ablation (6)
- HEMT (2)
- Laser beam machining (2)
- Measurement by laser beam (2)
- Micromechanical devices (2)
- diamond (2)
- AWG (1)
- AlGaN-GaN (1)
- AlGaN/GaN HEMT (1)
- Aluminum gallium nitride (1)
Femtosecond laser ablation on Si generates 2D ripple structures, known as laser induced periodic surface structures (LIPSS) and pinholes. We fabricated membranes with 20 to 50 μm thickness perforated by an array of tapered pinholes up to 5 μm in diameter and 10 to 20 μm spacing. Within several micrometer the pinholes transform into hollow photonic waveguides with constant diameter from 1μm to 2μm. Such structures offer a 3D photonic coupling device for polymer Y-branch- and MMI-splitter. We measured a considerable change of electrical resistivity for 500 ppm H2 in air using Si/SiO2/TiO2 substrates with 2D LIPSS. We propose to investigate 3D waveguide arrays also for photonic-chemical sensors.
We present design, simulation and optimization of polymer based 16-channel, 100-GHz AWG designed for central wavelength of 1550 nm. The input design parameters were calculated applying AWG-Parameters tool. The simulations were performed applying a commercial photonic tool PHASAR from Optiwave. The achieved transmission characteristics were evaluated by AWG-Analyzer tool and show a satisfying agreement between designed and simulated AWG optical properties. Finally, the influence of the number of phased array (PA) waveguides on the AWG performance was studied. The results show that there is a certain minimum number of PA waveguides necessary to reach sufficient AWG performance.