Refine
Document Type
- Conference Proceeding (2)
- Article (1)
- Master's Thesis (1)
Keywords
- Air humidification (1)
- Blasensäule (1)
- Bubble column humidifier (1)
- Desalination (1)
- Digitale Bildanalyse (1)
- HDH-Prozess (1)
- Humidification-dehumidification (1)
- Meerwasserentsalzung (1)
- Wasseraufbereitung (1)
- Water treatment (1)
Der Befeuchtungs-Entfeuchtungs-Prozess (HDH) wird zur Meerwasserentsalzung eingesetzt und bietet Vorteile wie die Nutzung von Wärme auf einem geringen Temperaturniveau sowie die Realisierbarkeit dezentraler Anlagen. Bei diesem Prozess wird Luft im Kontakt mit warmem Salzwasser im Optimalfall bis zur Sättigung befeuchtet. Die feuchte Luft wird anschließend abgekühlt, um das in ihr befindliche Wasser wieder zu kondensieren. Obwohl der HDH-Prozess bereits mehrfach Gegenstand der Forschung war, besitzt die Effizienz des Prozesses nach wie vor ein hohes Steigerungspotential. Das Ziel dieser Masterarbeit besteht in der Konzeption und der Realisierung eines Versuchsaufbaus zur Analyse der Befeuchtung von Luft in Wasser. Dabei soll der Untersuchungsgegenstand zukünftiger Versuche die Befeuchtereinheit sein, die ein hohes Potential hinsichtlich der Effizienzsteigerung von HDH-Systemen bietet. In neueren Publikationen wurden zum Einsatz in HDH-Systemen Blasensäulenbefeuchter als eine bessere Alternative zu Festbettbefeuchtern oder Sprühtürmen vorgeschlagen, weswegen die Befeuchtung in solchen Aggregaten näher untersucht werden muss. Das Hauptziel dieser Masterarbeit ist ein Versuchsaufbau, der die Möglichkeit bietet, die Parameter, die die Befeuchtung von Luft in einer Blasensäule maßgeblich beeinflussen, mit einer ausreichenden Genauigkeit zu messen, um aus diesen Messungen semiempirische Korrelationen ableiten zu können. Die die Befeuchtung von Luft maßgeblich beeinflussenden Parameter sind die Wassertemperatur, der Füllstand im Befeuchter, die Luftgeschwindigkeit sowie die Blasengröße.
Zum aktuellen Stand ist ein HDH-System, bestehend aus einem Blasensäulenbefeuchter, einem Querstromwärmetauscher sowie einer Dosierpumpe errichtet. Mit diesem System können wissenschaftlich notwendige empirische Zusammenhänge zwischen den die Befeuchtung beeinflussenden Parametern und der Befeuchtung von Luft aus Versuchen abgeleitet werden. Die im Versuchsaufbau verbaute Messtechnik wurde derart ausgewählt, dass deren Einfluss auf das System so gering wie möglich gehalten werden kann.
Mit dem Versuchsaufbau ist es darüber hinaus möglich, invasive Messmethoden mit nicht invasiven Messmethoden direkt zu vergleichen. Um eine für die Messungen optimale Befeuchtergeometrie zu finden, sind zwei Blasensäulenbefeuchtereinheiten aufgebaut, davon eine mit planarem und eine mit zylindrischem Querschnitt. So ist es möglich, im Direktvergleich die Vor- und Nachteile der Querschnittsanordnungen nachzuweisen. Die Komponenten der beiden HDH-Systeme wurden anhand von wissenschaftlich akzeptierten Modellen bezüglich der dazugehörigen Wärmeübertragungsraten, der Wärmeverluste und der Druckverluste ausgelegt.
Eine Modellierung des Stoffübergangs in der Blasensäule ist durchgeführt. Anhand dieser Modellierung konnte der Stoffübergangskoeffizient in der Grenzschicht zwischen Luftblase und Flüssigkeitssäule ermittelt werden. Anhand einer Massenbilanz konnte über den Stoffübergangskoeffizienten die Austrittswasserbeladung der feuchten Luft modelliert werden.
Die Funktionalität des Versuchsaufbaus ist gegeben. Messungen des Gasgehalts zeigen eine sehr gute Übereinstimmung mit wissenschaftlich anerkannten Korrelationen zum Gasgehalt. Die optische Zugänglichkeit des Versuchsaufbaus ist evaluiert und lässt die Tendenz ableiten, dass sich ein planarer Befeuchterquerschnitt in Verbindung mit Fotoaufnahmen von den durchgeführten Varianten am besten zur digitalen Bildanalyse eignet.
Aus den Experimenten, die am realisierten Versuchsaufbau durchgeführt werden, kann sich eine allgemeingültige Auslegungsgrundlage für Versuchsaufbauten ergeben, mit denen Messungen der Befeuchtung von Luft in Blasensäulenbefeuchtern durchgeführt werden sollen.
The humidification-dehumidification process (HDH) for desalination is a promising technology to address water scarcity issues in rural regions. However, a low humidifier efficiency is a weakness of the process. Bubble column humidifiers (BCH) are promising for HDH, as they provide enhanced heat and mass transfer and have low maintenance requirements. Previous studies of HDH-systems with BCHs draw different conclusions regarding the impact of superficial air velocity and liquid height on the humidification. Furthermore, the impact of flow characteristics has never been investigated systematically at all. In this study, an optimized BCH test setup that allows for optical analysis of the humidifier is used and evaluated. Our test setup is validated, since the influence of water temperature on the humidification, which is exponential, is reproduced. Measurements with seawater show that the normalised system productivity is increased by about 56 % with an increase in superficial air velocity from 0.5 to 5 cm/s. Furthermore, the system productivity is increased by around 29 % with an increase in liquid height from 60 to 378 mm. While the impact of superficial air velocity can be traced back to temperature changes at the humidifier and dehumidifier outlets, the impact of liquid height is shown to be caused by a smaller heat loss surface in the humidifier with an increase in liquid height. For the impact of sieve plate orifice diameter, a clear influence on the humidification is not apparent, this parameter needs to be investigated further. Finally, our new test setup allows for analysing the humidification of air (1) in a systematic way, (2) in relevant measurement ranges and (3) in comparison with optical analyses of the flow characteristics.