Refine
Document Type
- Article (15)
- Conference Proceeding (12)
- Preprint (1)
Institute
Is part of the Bibliography
- yes (28)
Keywords
- Demand side management (4)
- Desalination (3)
- Bubble column humidifier (2)
- Demand response (2)
- Energy storage (2)
- Heat pump (2)
- Humidification-dehumidification (2)
- Minkowski sum (2)
- Organic Rankine Cycle (2)
- Power tracking (2)
The humidification-dehumidification process (HDH) for desalination is a promising technology to address water scarcity issues in rural regions. However, a low humidifier efficiency is a weakness of the process. Bubble column humidifiers (BCH) are promising for HDH, as they provide enhanced heat and mass transfer and have low maintenance requirements. Previous studies of HDH-systems with BCHs draw different conclusions regarding the impact of superficial air velocity and liquid height on the humidification. Furthermore, the impact of flow characteristics has never been investigated systematically at all. In this study, an optimized BCH test setup that allows for optical analysis of the humidifier is used and evaluated. Our test setup is validated, since the influence of water temperature on the humidification, which is exponential, is reproduced. Measurements with seawater show that the normalised system productivity is increased by about 56 % with an increase in superficial air velocity from 0.5 to 5 cm/s. Furthermore, the system productivity is increased by around 29 % with an increase in liquid height from 60 to 378 mm. While the impact of superficial air velocity can be traced back to temperature changes at the humidifier and dehumidifier outlets, the impact of liquid height is shown to be caused by a smaller heat loss surface in the humidifier with an increase in liquid height. For the impact of sieve plate orifice diameter, a clear influence on the humidification is not apparent, this parameter needs to be investigated further. Finally, our new test setup allows for analysing the humidification of air (1) in a systematic way, (2) in relevant measurement ranges and (3) in comparison with optical analyses of the flow characteristics.
Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.
Bubble column humidifiers (BCHs) are frequently used for the humidification of air in various water treatment applications. A potential but not yet profoundly investigated application of such devices is the treatment of oily wastewater. To evaluate this application, the accumulation of an oil-water emulsion using a BCH is experimentally analyzed. The amount of evaporating water vapor can be evaluated by measuring the humidity ratio of the outlet air. However, humidity measurements are difficult in close to saturated conditions, as the formation of liquid droplets on the sensor impacts the measurement accuracy. We use a heating section after the humidifier, such that no liquid droplets are formed on the sensor. This enables us a more accurate humidity measurement. Two batch measurement runs are conducted with (1) tap water and (2) an oil-water emulsion as the respective liquid phase. The humidity measurement in high humidity conditions is highly accurate with an error margin of below 3 % and can be used to predict the oil concentration of the remaining liquid during operation. The measured humidity ratio corresponds with the removed amount of water vapor for both tap water and the accumulation of an oil-water emulsion. Our measurements show that the residual water content
in the oil-water emulsion is below 4 %.
Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.
Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.
The electricity demand due to the increasing number of EVs presents new challenges for the operation of the electricity network, especially for the distribution grids. The existing grid infrastructure may not be sufficient to meet the new demands imposed by the integration of EVs. Thus, EV charging may possibly lead to reliability and stability issues, especially during the peak demand periods. Demand side management (DSM) is a potential and promising approach for mitigation of the resulting impacts. In this work, we developed an autonomous DSM strategy for optimal charging of EVs to minimize the charging cost and we conducted a simulation study to evaluate the impacts to the grid operation. The proposed approach only requires a one way communicated incentive. Real profiles from an Austrian study on mobility behavior are used to simulate the usage of the EVs. Furthermore, real smart meter data are used to simulate the household base load profiles and a real low voltage grid topology is considered in the load flow simulation. Day-ahead electricity stock market prices are used as the incentive to drive the optimization. The results for the optimum charging strategy is determined and compared to uncontrolled EV charging. The results for the optimum charging strategy show a potential cost saving of about 30.8% compared to uncontrolled EV charging. Although autonomous DSM of EVs achieves a shift of load as pursued, distribution grid operation may be substantially affected by it. We show that in the case of real time price driven operation, voltage drops and elevated peak to average powers result from the coincident charging of vehicles during favourable time slots.
In the regime of incentive-based autonomous demand response, time dependent prices are typically used to serve as signals from a system operator to consumers. However, this approach has been shown to be problematic from various perspectives. We clarify these shortcomings in a geometric way and thereby motivate the use of power signals instead of price signals. The main contribution of this paper consists of demonstrating in a standard setting that power tracking signals can control flexibilities more efficiently than real-time price signals. For comparison by simulation, German renewable energy production and German standard load profiles are used for daily production and demand profiles, respectively. As for flexibility, an energy storage system with realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is outperformed with regards to imbalance energy, peak consumption, storage variation, and storage losses without the need for additional communication or computation efforts. It is further shown that the advantages of the optimal power tracking approach compared to the pricing approach increase with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal power tracking is able to integrate renewable energy production efficiently, has additional benefits, and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and economic implementation.