Refine
Year of publication
Document Type
- Conference Proceeding (20)
- Report (6)
- Part of a Book (3)
Institute
Is part of the Bibliography
- yes (29)
Keywords
- Data science (2)
- SME (2)
- Supply Chain Management (2)
- Value co-creation (2)
- Blockchain (1)
- Collaboration (1)
- Collaborative models (1)
- Customs (1)
- Cyber-Physical Systems (1)
- Data Sharing (1)
Daten werden heute oft auch als das «neue Gold» bezeichnet. Denn die letzten Jahre haben gezeigt, dass Daten die Grundlage erstaunlicher unter- nehmerischer Erfolgsgeschichten sein können. Dabei ist die Arbeit mit Daten nicht grundlegend neu. Vielmehr geht es heute im Vergleich zu früher um nahezu unendlich grossen Mengen an Daten, die im Rahmen nahezu aller denkbaren Prozesse oder Schnittstellen gesammelt, gespeichert und ausgewertet werden können. Unter anderem beinhaltet dies Maschinendaten, unternehmens- interne Prozesse oder Daten über Kunden und den Markt, welche die Grundlage für lernende Systeme (Künstliche Intelligenz) bilden. Wir können heute davon ausgehen, dass künftig nicht mehr die technische Machbarkeit, sondern die mensch- liche Vorstellungskraft die Grenzen des Möglichen definiert.
Bekannt sind vor allem etliche Erfolgsgeschichten von Grossunternehmen, die ihr Geschäft auf Daten aufbauen. Etablierte KMU sind hingegen noch zögerlicher, mit Daten zu arbeiten und diese wertschöpfend einzusetzen. Diese Broschüre geht auf die besondere Situation von KMU im Umgang mit Daten und Data Science ein. Denn auch für KMU kann es lohnend oder sogar zwingend notwendig sein, sich mit dem Thema «Data Science» zu beschäftigen. Daten und Data Science bieten grosse
Chancen, sie können aber auch zu einer Bedrohung im Wettbewerb werden. Und, zu lange warten sollten KMU nicht, die Zeit drängt. Denn Geschwindigkeit ist einer der zentralen Wettbewerbsfaktoren im digitalen Zeitalter. Das IBH-Lab KMUdigital unter- stützt KMU dabei, den herausfordernden Weg in eine digitale Zukunft schneller und einfacher zu gehen.
Diese Broschüre geht daher insbesondere auf die Rolle von Daten und Data Science für KMU in der Bodenseeregion ein. Sie stellt eine Zusammen- fassung ausgewählter Erkenntnisse und Handlungs- empfehlungen dar, die wir in einem zweijährigen Forschungsprojekt gemeinsam mit 16 Unternehmen aus der Bodenseeregion gewinnen konnten. Die Erkenntnisse sollen KMU bei der Nutzung von Daten anhand von Data Science unterstützen. Dabei ist es kein Ziel, dass KMU zu einem «kleinen Google» werden. Vielmehr braucht es KMU- spezifische Lösungen und Überlegungen, wie mit Daten sinnvoll, zielorientiert und ressourcen- schonend umgegangen werden kann. Wie kann das aussehen? Welche Chancen, Herausforderungen und Lösungen bieten sich KMU vor dem Hinter- grund ihrer besonderen Situation? Was muss dazu im Unternehmen verändert werden? Welche Unterschiede bestehen im Vergleich zu Gross- unternehmen auf diesem Weg?
Diese und weitere Fragen stehen im Mittelpunkt des vorliegenden Projektberichts zum Einzelprojekt «Data Science für KMU leicht gemacht» oder kurz «Data Science 4 KMU» bzw. «Data4KMU», welches unter dem Dach des IBH-Labs KMUdigital in den Jahren 2018 bis 2019 durchgeführt wurde. Dazu werden Daten und Data Science aus mehreren Perspektiven betrachtet, die nicht unabhängig voneinander sind: Strategie und Geschäftsmodell, Services und Prozesse, Leadership, HRM und
Organisation, Organisationskultur und Ganzheitichkeit, sowie Technologie. Diese Perspektiven greifen wir in den nachfolgenden Kapiteln auf.
Die vorliegende Broschüre wäre ohne die wertvolle Unterstützung der Praxispartner des Projektes, des Managements des IBH-Labs KMUdigital sowie ohne die finanzielle Projektförderung durch die Inter- nationale Bodenseehochschule (IBH) und Interreg nicht möglich gewesen. Ihnen allen gilt unser ganz besonderer Dank!
Wer wünscht ihn nicht: den intelligenten, effizienten und wirtschaftlichen Herstellungsprozess? Viele Firmen setzten aktuell auf die Digitalisierung und verbessern so die eigene sowie die mit externen Stellen vernetzte Produktion. Die Digitalisierung bringt einerseits Fortschritt, zeigt aber auch die zunehmende Komplexität der heutigen Produktionsnetzwerke auf. Zahlreiche Entscheidungen sind zu fällen, um einen effizienten und sicheren Austausch mit verschiedenen Betrieben zu gewährleisten.
Ein Blick auf vorhandene Modelle kann da weiterhelfen: Im Projekt i4Production des IBH-Labs KMUdigital haben Teams an drei Standorten in den drei Nachbarländern Deutschland (HTWG Konstanz), Österreich (FH Vorarlberg) und der Schweiz (NTB Buchs, RhySearch) an einer vernetzten Prozesslandschaft gearbeitet. In einem gemeinsamen, standardisierten Automatisierungskonzept wird in der international vernetzten Modellfabrik ein cyberphysisches System (CPS) in Form eines kundenindividualisierten Modellfahrzeuges produziert, das durch den Kunden in diversen Varianten zusammengestellt oder individuell konstruiert werden kann. Die dezentrale Produktion erlaubt eine Datenweitergabe über die Landesgrenzen in Echtzeit und bildet die Simulation eines länderübergreifenden Business-Eco-Systems ab.
Die Erkenntnisse des Projekts i4Production zeigen wie in kleineren und mittleren Unternehmen (KMU) eine verteilte Produktion, inklusive der Einbindung von Mitarbeitenden und Kunden in eine digitalisierte, hochautomatisierte und kundenindividuelle Produktion, organisiert werden kann.
Für Unternehmen wird diese Industrie 4.0-Prozesslandschaft als Modell für die eigene Fertigung in dem neu aufgebauten CNC Präzisionsfertigungslabor „Werkstatt4“ bei RhySearch öffentlich zur Verfügung gestellt. Die „Werkstatt4“ bietet KMU ein digitales Prozessumfeld, in dem getestet werden kann, mit welchen Maßnahmen der eingangs gestellte Wunsch zur optimierten Herstellung, seinen Weg in die Realität finden kann.
Im Folgenden stellen wir Ihnen das Konzept der internationalen Musterfabrik i4Production, die diversen Arbeitsschritte an den beteiligten Hochschulen sowie die wichtigsten Erkenntnisse für KMU der Bodenseeregion vor. Gerne unterstützen wir Sie bei der Gestaltung des Wandels hin zum Unternehmen 4.0: Sprechen Sie uns an.
With the emergence of the recent Industry 4.0 movement, data integration is now also being driven along the production line, made possible primarily by the use of established concepts of intelligent supply chains, such as the digital avatars. Digital avatars – sometimes also called Digital Twins or more broadly Cyber-Physical Systems (CPS) – are already successfully used in holistic systems for intelligent transport ecosystems, similar to the use of Big Data and artificial intelligence technologies interwoven with modern production and supply chains. The goal of this paper is to describe how data from interwoven, autonomous and intelligent supply chains can be integrated into the diverse data ecosystems of the Industry 4.0, influenced by a multitude of data exchange formats and varied data schemas. In this paper, we describe how a framework for supporting SMEs was established in the Lake Constance region and describe a demonstrator sprung from the framework. The demonstrator project’s goal is to exhibit and compare two different approaches towards optimisation of manufacturing lines. The first approach is based upon static optimisation of production demand, i.e. exact or heuristic algorithms are used to plan and optimise the assignment of orders to individual machines. In the second scenario, we use real-time situational awareness – implemented as digital avatar – to assign local intelligence to jobs and raw materials in order to compare the results to the traditional planning methods of scenario one. The results are generated using event-discrete simulation and are compared to common (heuristic) job scheduling algorithms.