Forschungszentrum Energie
Refine
Year of publication
Document Type
- Article (51)
- Conference Proceeding (26)
- Doctoral Thesis (3)
- Book (2)
- Master's Thesis (1)
Institute
- Forschungszentrum Energie (83)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (5)
- Technik | Engineering & Technology (5)
- Forschungszentrum Business Informatics (3)
- Josef Ressel Zentrum für Intelligente Thermische Energiesysteme (3)
- Forschungszentrum Mikrotechnik (2)
- Forschung (1)
- Josef Ressel Zentrum für Materialbearbeitung (1)
- Wirtschaft (1)
Language
- English (74)
- German (8)
- Multiple languages (1)
Keywords
- Demand side management (6)
- Demand response (3)
- Desalination (3)
- Grid balancing (3)
- Optimization (3)
- Autonomous optimization (2)
- Bubble column humidifier (2)
- Demand Side Management (2)
- Distributed storage (2)
- Distribution grids (2)
Hot water heat pumps are well suited for demand side management, as the heat pump market faced a rapid growth in the past years with the trend to decentralized domestic hot water use. Sales were accelerated through wants and needs of energy conservation, energy efficiency, and less restrictive rules regarding Legionella. While in literature the model predictive control potential for heat pumps is commonly shown in simulations, the share of experimental studies is relatively low. To this day, experimental studies considering solely domestic hot water use are not available. In this paper, the realistic achievable model predictive control potential of a hot water heat pump is compared to the standard hysteresis control, to provide an experimental proof. We show for the first time, how state-of-the-art approaches (model predictive control, system identification, live state estimation, and demand prediction) can be transferred from electric hot water heaters to hot water heat pumps, combined, and implemented into a real-world hot water heat pump setup. The optimization approach, embedded in a realistic experimental setting, leads to a decrease in electric energy demand and cost per unit electricity by approximately 12% and 14%, respectively. Further, an increase in efficiency by approximately 13% has been achieved.
Vast amounts of oily wastewater are byproducts of the petrochemical and the shipping industry and to this day frequently discharged into water bodies either without or after insufficient treatment. To alleviate the resulting pollution, water treatment processes are in great demand. Bubble column humidifiers (BCHs) as part of humidification–dehumidification systems are predestined for such a task, since they are insensitive to different feed liquids, simple in design and have low maintenance requirements. While humidification in a bubble column has been investigated plentiful for desalination, a systematic investigation of oily wastewater treatment is missing in literature. We filled this gap by analyzing the treatment of an oil–water emulsion experimentally to derive recommendations for future design and operation of BCHs. Our humidity measurements indicate that the air stream is always saturated after humidification for a liquid height of only 10 cm. A residual water mass fraction of 3.5 wt% is measured after a batch run of six hours. Furthermore, continuous measurements show that an increase in oil mass fraction leads to a decrease in system productivity especially for high oil mass fractions. This decrease is caused by the heterogeneity of the liquid temperature profile. A lower liquid height mitigates this heterogeneity, therefore decreasing the heat demand and improving the overall efficiency. The oil content of the produced condensate is below 15 ppm, allowing discharge into various water bodies. The results of our systematic investigation prove suitability and indicate a strong future potential for the use of BCHs in oily wastewater treatment.
Activation of heat pump flexibilities is a viable solution to support balancing the grid via Demand Side Management measures and fulfill the need for flexibility options. Aggregators as interface between prosumers, distribution system operators and balance responsible parties face the challenge due to data privacy and technical restrictions to transform prosumer information into aggregated available flexibility to enable trading thereof. Thereby, literature lacks a generic, applicable and widely accepted flexibility estimation method for heat pumps,which incorporates reduced sensor and system information, system- and demand-dependent behaviour. In this paper, we adapt and extend a method from literature, by incorporating domain knowledge to overcome reduced sensor and system information. We apply data of five real-world heat pump systems, distinguish operation modes, estimate power and energy flexibility of each single heat pump system, proof transferability of the method, and aggregate the flexibilities available to showcase a small HP pool as a proof of concept.
Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.
Grid-scale electrical energy storage (EES) is a key component in cost-effective transition scenarios to renewable energy sources. The requirement of scalability favors EES approaches such as pumped-storage hydroelectricity (PSH) or compressed-air energy storage (CAES), which utilize the cheap and abundant storage materials water and air, respectively. To overcome the site restriction and low volumetric energy densities attributed to PSH and CAES, liquid-air energy storage (LAES) has been devised; however, it suffers from a rather small round-trip efficiency (RTE) and challenging storage conditions. Aiming to overcome these drawbacks, a novel system for EES is developed using solidified air (i.e., clathrate hydrate of air) as the storable phase of air. A reference plant for solidified-air energy storage (SAES) is conceptualized and modeled thermodynamically using the software CoolProp for water and air as well as empirical data and first-order approximations for the solidified air (SA). The reference plant exhibits a RTE of 52% and a volumetric storage density of 47 kWh per m3 of SA. While this energy density relates to only one half of that in LAES plants, the modeled RTE of SAES is comparable already. Since improved thermal management and the use of thermodynamic promoters can further increase the RTEs in SAES, the technical potential of SAES is in place already. Yet, for a successful implementation of the concept - in addition to economic aspects - questions regarding the stability of SA must be first clarified and challenges related to the processing of SA resolved.
Bubble column humidifiers (BCHs) are frequently used for the humidification of air in various water treatment applications. A potential but not yet profoundly investigated application of such devices is the treatment of oily wastewater. To evaluate this application, the accumulation of an oil-water emulsion using a BCH is experimentally analyzed. The amount of evaporating water vapor can be evaluated by measuring the humidity ratio of the outlet air. However, humidity measurements are difficult in close to saturated conditions, as the formation of liquid droplets on the sensor impacts the measurement accuracy. We use a heating section after the humidifier, such that no liquid droplets are formed on the sensor. This enables us a more accurate humidity measurement. Two batch measurement runs are conducted with (1) tap water and (2) an oil-water emulsion as the respective liquid phase. The humidity measurement in high humidity conditions is highly accurate with an error margin of below 3 % and can be used to predict the oil concentration of the remaining liquid during operation. The measured humidity ratio corresponds with the removed amount of water vapor for both tap water and the accumulation of an oil-water emulsion. Our measurements show that the residual water content
in the oil-water emulsion is below 4 %.
Violation-mitigation-based method for PV hosting capacity quantification in low voltage grids
(2022)
Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited building rooftop solar potential. A downward process is proposed - from the starting state with expected violations on the grid operation to a state with no violations. In this process, the installed PV capacity is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity in a more general setting with the method proposed.
Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.
PV hosting capacity provides utilities the knowledge of the maximum amount of solar installations possible to accommodate in low voltage grids such that no operational problems arise. As the quantification of the hosting capacity requires data collection, grid modelling, and often time-consuming simulations, simplified estimations for large-scale applications are of interest. In this paper, Bayesian statistical inference is applied to estimate the hosting capacities of more than 5000 real feeders in Austria. The results show that the hosting capacity of 95% of the total feeders can be estimated with a mean error below 20% by only having knowledge of a random sample of 5%. Moreover, the hosting capacity estimation at a regional level shows a maximum error below 9%, also relying on a random sample of 5% of the total feeders. Furthermore, the approach proposed provides a methodology to assess new parameters aiming to improve the accuracy of the hosting capacity estimation at a feeder level.