Forschungszentrum Mikrotechnik
Refine
Year of publication
Document Type
- Conference Proceeding (131)
- Article (94)
- Part of a Book (3)
- Doctoral Thesis (2)
- Book (1)
- Habilitation (1)
- Other (1)
Institute
- Forschungszentrum Mikrotechnik (233)
- Josef Ressel Zentrum für Materialbearbeitung (28)
- Forschungszentrum Digital Factory Vorarlberg (7)
- Forschung (5)
- Technik | Engineering & Technology (3)
- Department of Engineering (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (2)
- Forschungszentrum Energie (2)
- Department of Computer Science (Ende 2021 aufgelöst; Integration in die übergeordnete OE Technik) (1)
- Forschungszentrum Human Centred Technologies (1)
- Josef Ressel Zentrum für Robuste Entscheidungen (1)
Language
- English (227)
- German (5)
- Multiple languages (1)
Keywords
- Laser ablation (11)
- Y-branch splitter (11)
- arrayed waveguide gratings (9)
- integrated optics (6)
- photonics (6)
- Arrayed waveguide gratings (5)
- OCT (5)
- insertion loss (5)
- AWG (4)
- MMI splitter (4)
Optoelectronic system based on photonic integrated circuits to miniaturize spectral domain OCT
(2023)
We present a miniaturized optical coherence tomography (OCT) setup based on photonic integrated circuits (PIC) for the 850 nm range. We designed a 512-channel arrayed waveguide grating (AWG) on a PIC for spectral domain OCT (SD-OCT) that is co-integrated with PIN-photodiodes and analog-to-digital-converters on one single chip. This image sensor is combined with all the necessary electronics to act as a camera. It is integrated into a fiber-based OCT system, achieving a sensitivity of >80dB and various samples are imaged. This optoelectronic system will allow building small and cost-effective OCT systems to monitor retinal diseases.
We present design of planar 16-channel, 100-GHz multi-mode polymer-based AWG. This AWG was designed for central wavelength of 1550 nm applying AWG-Parameters tool. The AWG structure was created and simulated in the commercial photonic tool PHASAR from Optiwave. Achieved transmission characteristics were evaluated by AWG-Analyzer tool. For the design, multi-mode waveguides having a cross-section of (4x4) µm2 were used. The simulated results show strong worsening of the transmission characteristics in comparison when using single-mode waveguides. Nevertheless, the transmitting channels are clearly separated. The reason for using thicker multi-mode waveguides in the design is possibility to fabricate the AWG structure on polymer basis using direct laser writing lithography.
This paper presents design, simulation, and optimization of the three-dimensional 1×4 optical multimode interference splitter using IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding. The splitter was simulated by using beam propagation method in BeamPROP simulation engine of RSoft photonic tool and optimized for an operating wavelength of 1.55 µm. According to the minimum insertion loss, the dimensions of the MMI coupler and the length of the whole MMI splitter structure were optimized applying a waveguide with a core size of 4×4 µm2. The objective of the study is to create a design for fabrication by three-dimensional direct laser writing optical lithography.
The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25, 50, 100, 200 and 300 μm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.
In previous studies of linear rotary systems with active magnetic bearings, parametric excitation was introduced as an open-loop control strategy. The parametric excitation was realized by a periodic, in-phase variation of the bearing stiffness. At the difference between two of the eigenfrequencies of the system, a stabilizing effect, called anti-resonance, was found numerically and validated in experiments. In this work, preliminary results of further exploration of the parametric excitation are shared. A Jeffcott rotor with two active magnetic bearings and a disk is investigated. Using Floquet theory, a deeper insight into the dynamic behavior of the system is obtained. Aiming at a further increase of stability, a phase difference between excitation terms is introduced.
The production of liquid-gas dispersions places high demands on the process technology, which requires knowledge of the bubble formation mechanisms, as well as the phase parameters of the media combinations used. To obtain the bubble sizes introduced to a flow not knowing the phase parameters, different process parameters are investigated. Their quality and applicability are evaluated. The results obtained make it possible to simplify long design processes of dispersion processes in manufacturing plants and to ensure the product quality of the products manufactured, by reducing waste.
This paper aims to study the design, simulation, and optimization of low-loss Y-branch passive optical splitters up to 64 output ports for telecommunication applications. For a waveguide channel profile, the standard material silica-on-silicon is used. The Y-splitters are designed and simulated at telecommunication operating wavelength, λ = 1550 nm. Except for the lengths of the used Y-branches, and a core size of the waveguides, design parameters such as port pitch between the waveguides and simulation parameters for all splitters are considered fixed. The simulation results are analyzed to determine the optimum length of the splitters and the optimum core size. Based on this optimization the total length of the highest designed 1×64 Y-branch splitter was reduced by 41.14 % for a waveguide core (5×5) μm2 compared to the length of splitter with a standard (6×6) μm2 core size.
A new software tool, called AWG-Wuckler, is developed to calculate geometric parameters of arrayed waveguide grating structures for telecommunication and medical applications. These parameters are crucial for a AWG layout which will be created and simulated using commercial photonic design tools. The design process of AWG is very complex because its geometric dimensions depend on a large number of input design parameters and other input design parameters. Often geometric constraints require an adjustment of the input design parameters and vice versa. Calculation and adjustment of the geometric parameters is a time-consuming process that is currently not fully supported by any commercial photonic tool. AWG-Wuckler tool overcomes this issue and offers a fast and easy to use solution. The tool was already applied in various AWG designs and is technologically well proven.
A new software tool, called AWG-Channel-Spacing, is developed to calculate accurate channel spacing of an arrayed waveguide gratings (AWG) optical multiplexer/demultiplexer. This tool has been developed with the application framework QT in the programming language C++. The tool was evaluated with a design of 20-channel 200 GHz AWG. The achieved simulated transmission characteristics prove the correct functionality of the tool.
In this paper we present various educational activities with Photonics Explorer, an educational kit developed by the photonics research team B - PHOT at VUB (Vrije Universiteit Brussel) for students at secondary schools. The concept is a ‘lab-in-a-box’ that enables students of the 2 nd and 3 rd grade to do photonics experiments themselves at school with lasers, LEDs, lenses, optical fibers, and other high-tech components. Even though, the kit was developed for the secondary schools, we use experiments from the kit also for some other teaching activities such as lectures at the university, photonics workshops for teachers and children at primary/secondary schools or for events such as children's/youth's university or the night of sciences. In the frame of Austrian based project Phorsch! we have organized most of these activities which will be presented here.
Design, simulation, and optimization of the 1×4 optical three-dimensional multimode interference splitter using IP-Dip polymer as a core and polydimethylsiloxane (PDMS) Sylgard 184 as a cladding is demonstrated. The splitter was simulated by using beam propagation method in BeamPROP simulation module of RSoft photonic tool and optimized for an operating wavelength of 1.55 μm . According to the minimum insertion loss, the dimensions of the splitter were optimized for a waveguide with a core size of 4×4 μm2 . The objective of the study is to create the design for fabrication by three-dimensional direct laser writing optical lithography.
The paper deals with the optimization of 2x2 optical switch for photonic integrated circuits based on two 2x2 MMI splitters and two phase-modulators. The optical switch was modelled in the RSoftCAD with the simulation tool BeamPROP. The optimization was done to minimise the insertion losses and broaden the spectral band at 1550 nm by using linear tapers in a 2x2 MMI splitter topology. The 2x2 optical switch is a common element for creating more complex 1xN or NxN optical switches in all-optical signal processing.
In this paper, we document optical splitters based on Y-branch and also on MMI splitting principle. The 1×4 Y-branch splitter was prepared in 3D geometry fully from polymer approaching the single mode transmission at 1550 nm. We also prepared new concept of 1×4 MMI optical splitter. Their optical properties and character of output optical field were measured by near-field scanning optical microscope. Splitting properties and optical outputs of both splitters are very promising and increase an attractiveness of presented 3D technology and polymers.
Due to the increasing trend of photonic element miniaturisation and the need for optical splitting, we propose and simulate a new type of three-dimensional (3D) optical splitter based on multimode interference (MMI) for the wavelength of 1550 nm. We present various designs and simulations of various parameters for the optimized MMI splitter. We focus on the possibility of its integration on an optical fiber. The design is focused on a possible production process using 3D laser lithography for the prepared experiments. The MMI splitter was prepared by laser lithography using direct writing process and finally investigated by output characterisation by the near-field measurement.
This paper describes two different designs of 1×8 passive optical splitters. The first splitter consists of cascade arranged directional waveguide branches (Y-branch splitter) with (0.8×0.16) µm2 waveguide cross-section. The second splitter is based on multimode interference occurring in a large MMI coupler, which uses a self-imaging effect for beam propagation, exhibiting the same waveguide core size as a Y-branch splitter. The waveguide channel profile, used in both approaches, is based on a silicon nitride material platform, with a refractive index of core being nc = 1.925 and a refractive index of cladding ncl = 1.4575. The splitters are designed as a planar structure for a medical operating wavelength 850 nm. Design, simulation, and optimization of passive optical components are performed by a commercial photonic software tool BeamPROP simulation engine by RSoft Photonics Suite tool, employing beam propagation method. This work aims to find the minimum physical dimensions of the designed splitters with the satisfactory optical performance. According to the minimum insertion loss and minimum non-uniformity, the optimum length of the splitters is determined. Finally, the optical properties of splitters for both approaches are discussed and compared with each other.
We present 256-channel, 25-GHz AWG designed for ultra-dense wavelength division multiplexing. For the design two in-house developed tools were used: AWG-Parameters tool for the calculation of input design parameters and AWGAnalyser tool, used to evaluate the simulated transmission characteristics. The AWG structure was designed for AWG central wavelength of 1550 nm and simulated with PHASAR tool from Optiwave. To keep the size of AWG structure as small as possible the number of waveguides in the phased array was tested. The simulations show that there is a certain minimum number of phased array waveguides necessary to reach sufficient AWG performance. After optimization, the AWG structure reached 10 cm x 11 cm in size and satisfying optical properties.
The paper shows concepts of optical splitting based on three dimensional (3D) optical splitters based on multimode interference principle. This paper is focused on the design, fabrication and characterization of 3D MMI splitter with formed output waveguides based on IP-Dip polymer for direct application on optical fiber. The MMI optical splitter was simulated and fabricated using direct laser writing process. Output characteristics were characterized by highly resolved near-field scanning optical microscope (NSOM) and compared with 3D MMI splitter without output waveguides.
Highly-sensitive single-step sensing of levodopa by swellable microneedle-mounted nanogap sensors
(2022)
Microneedle (MN) sensing of biomarkers in interstitial fluid (ISF) can overcome the challenges of self-diagnosis of diseases by a patient, such as blood sampling, handling, and measurement analysis. However, the MN sensing technologies still suffer from poor measurement accuracy due to the small amount of target molecules present in ISF, and require multiple steps of ISF extraction, ISF isolation from MN, and measurement with additional equipment. Here, we present a swellable MN-mounted nanogap sensor that can be inserted into the skin tissue, absorb ISF rapidly, and measure biomarkers in situ by amplifying the measurement signals by redox cycling in nanogap electrodes. We demonstrate that the MN-nanogap sensor measures levodopa (LDA), medication for Parkinson disease, down to 100 nM in an aqueous solution, and 1 μM in both the skin-mimicked gelatin phantom and porcine skin.
The properties of SiC and diamond make them attractive materials for MEMS and sensor devices. We innovated specific laser ablation techniques to fabricate membranes and cantilevers made of SiC or nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates by microwave chemical vapour deposition (MWCVD). We started research to generate surface moulds to grow corrugated diamond films for membranes and cantilevers. A software tool was developed to support the design of micromechanical cantilevers. We can measure deformation and resonant frequency of diamond cantilevers and identify the global mechanical properties. A benchmark against finite element simulations enables an inverse identification of the specific system parameters and simplifies the characterization procedure.
Various carbon (nano-) forms, so-called allotropes, have become one of the most supporting activities in fundamental and applied research trends. Therefore, a universal deposition process capable of “adjusting” system parameters in one “deposition chamber” is highly demanding. Here, we present a low-pressure large area deposition system combining radiofrequency (RF) and microwave (MW) plasma in one chamber in different configurations, which offers a wide deposition window for the growth of sp2 carbon (carbon nanotubes, amorphous carbon), a mixture of sp2 and sp3 (diamond-like films) and pure sp3 carbon represented by diamond films. We will show that not only the type of plasma source (RF vs. MW) but also the gas mixture and plasma chemistry are crucial parameters for the controllable and reproducible growth of these allotropes at temperatures from 250 to 800 °C.