Kepplinger, Peter
Refine
Year of publication
Document Type
- Conference Proceeding (13)
- Article (12)
- Doctoral Thesis (1)
Institute
Is part of the Bibliography
- yes (26)
Keywords
- Demand side management (5)
- Autonomous optimization (2)
- Demand Side Management (2)
- Demand response (2)
- Distributed storage (2)
- Distribution grids (2)
- Domestic hot water heater (2)
- Electric vehicles (2)
- Grid balancing (2)
- Optimization (2)
Violation-mitigation-based method for PV hosting capacity quantification in low voltage grids
(2022)
Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited building rooftop solar potential. A downward process is proposed - from the starting state with expected violations on the grid operation to a state with no violations. In this process, the installed PV capacity is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity in a more general setting with the method proposed.
Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.
PV hosting capacity provides utilities the knowledge of the maximum amount of solar installations possible to accommodate in low voltage grids such that no operational problems arise. As the quantification of the hosting capacity requires data collection, grid modelling, and often time-consuming simulations, simplified estimations for large-scale applications are of interest. In this paper, Bayesian statistical inference is applied to estimate the hosting capacities of more than 5000 real feeders in Austria. The results show that the hosting capacity of 95% of the total feeders can be estimated with a mean error below 20% by only having knowledge of a random sample of 5%. Moreover, the hosting capacity estimation at a regional level shows a maximum error below 9%, also relying on a random sample of 5% of the total feeders. Furthermore, the approach proposed provides a methodology to assess new parameters aiming to improve the accuracy of the hosting capacity estimation at a feeder level.
The impact of global warming and climate change has forced countries to introduce strict policies and decarbonization goals toward sustainable development. To achieve the decarbonization of the economy, a substantial increase of renewable energy sources is required to meed energy demand and to transition away from fossil fuels. However, renewables are sensitive to environmental conditions, which may lead to imbalances between energy supply and demand. Battery energy storage systems are gaining more attention for balancing energy systems in existing grid networks at various levels such as bulk power management, transmission and distribution, and for end-users. Integrating battery energy storage systems with renewables can also solve reliability issues related to transient energy production and be used as a buffer source for electrical vehicle fast charging. Despite these advantages, batteries are still expensive and typically built for a single application – either for an energy- or power-dense application – which limits economic feasibility and flexibility. This paper presents a theoretical approach of a hybrid energy storage system that utilizes both energy- and power-dense batteries serving multiple grid applications. The proposed system will employ second use electrical vehicle batteries in order to maximise the potential of battery waste. The approach is based on a survey of battery modelling techniques and control methods. It was found that equivalent circuit models as well as unified control methods are best suited for modelling hybrid energy storages for grid applications. This approach for hybrid modelling is intended to help accelerate the renewable energy transition by providing reliable energy storage.
Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.
If left uncontrolled, electric vehicle charging poses severe challenges to distribution grid operation. Resulting issues are expected to be mitigated by charging control. In particular, voltage-based charging control, by relying only on the local measurements of voltage at the point of connection, provides an autonomous communication-free solution. The controller, attached to the charging equipment, compares the measured voltage to a reference voltage and adapts the charging power using a droop control characteristic. We present a systematic study of the voltage-based droop control method for electric vehicles to establish the usability of the method for all the currently available residential electric vehicle charging possibilities considering a wide range of electric vehicle penetrations. Voltage limits are evaluated according to the international standard EN50160, using long-term load flow simulations based on a real distribution grid topology and real load profiles. The results achieved show that the voltage-based droop controller is able to mitigate the under voltage problems completely in distribution grids in cases either deploying low charging power levels or exhibiting low penetration rates. For high charging rates and high penetrations, the control mechanism improves the overall voltage profile, but it does not remedy the under voltage problems completely. The evaluation also shows the controller’s ability to reduce the peak power at the transformer and indicates the impact it has on users due to the reduction in the average charging rates. The outcomes of the paper provide the distribution grid operators an insight on the voltage-based droop control mechanism for the future grid planning and investments.
In the regime of incentive-based autonomous demand response, time dependent prices are typically used to serve as signals from a system operator to consumers. However, this approach has been shown to be problematic from various perspectives. We clarify these shortcomings in a geometric way and thereby motivate the use of power signals instead of price signals. The main contribution of this paper consists of demonstrating in a standard setting that power tracking signals can control flexibilities more efficiently than real-time price signals. For comparison by simulation, German renewable energy production and German standard load profiles are used for daily production and demand profiles, respectively. As for flexibility, an energy storage system with realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is outperformed with regards to imbalance energy, peak consumption, storage variation, and storage losses without the need for additional communication or computation efforts. It is further shown that the advantages of the optimal power tracking approach compared to the pricing approach increase with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal power tracking is able to integrate renewable energy production efficiently, has additional benefits, and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and economic implementation.
Verbraucherseitige Laststeuerung (Demand Side Management – DSM) wird als ein möglicher Ansatz betrachtet, um die Auswirkungen des Ausbaus von fluktuierenden Erneuerbaren im Stromnetz auszugleichen. Sollen viele verteilte Energiesysteme damit angesprochen werden, stellen zentralistische Ansätze dabei hohe Anforderungen an die Kommunikationsinfrastruktur. Als Alternative wird vielfach eine autonome Laststeuerung (ADSM) mit anreizbasierter Optimierung direkt auf dem Verbrauchergerät betrachtet. Dabei kann die Anreizfunktion mittels unidirektionaler Kommunikation übertragen werden.
Am Forschungszentrum Energie der Fachhochschule Vorarlberg wurden in den letzten Jahren Algorithmen und Prototypen für den Einsatz von ADSM auf verschiedensten verteilten Energiespeichern im elektrischen Stromnetz entwickelt. Dabei werden sowohl thermische Energiespeicher (z. B. Haushalts-Warmwasserspeicher) als auch elektrochemische Speicher (z. B. Batteriespeichersysteme oder Elektroautos) betrachtet. Außerdem werden die Auswirkungen solcher Systeme auf das elektrische Verteilnetz untersucht. Dieser Artikel gibt einen Überblick über die entwickelten Methoden und Ergebnisse aus diesem Forschungsfeld mit dem Ziel, ein weitreichendes Verständnis für die Chancen und Grenzen des ADSM zu schaffen.