## Preißinger, Markus

### Refine

#### Document Type

- Article (15)
- Conference Proceeding (12)
- Book (1)
- Preprint (1)

#### Institute

#### Is part of the Bibliography

- yes (29)

#### Keywords

- Demand side management (4)
- Desalination (3)
- Bubble column humidifier (2)
- Demand response (2)
- Energy storage (2)
- Heat pump (2)
- Humidification-dehumidification (2)
- Minkowski sum (2)
- Organic Rankine Cycle (2)
- Power tracking (2)

Hot water heat pumps are well suited for demand side management, as the heat pump market faced a rapid growth in the past years with the trend to decentralized domestic hot water use. Sales were accelerated through wants and needs of energy conservation, energy efficiency, and less restrictive rules regarding Legionella. While in literature the model predictive control potential for heat pumps is commonly shown in simulations, the share of experimental studies is relatively low. To this day, experimental studies considering solely domestic hot water use are not available. In this paper, the realistic achievable model predictive control potential of a hot water heat pump is compared to the standard hysteresis control, to provide an experimental proof. We show for the first time, how state-of-the-art approaches (model predictive control, system identification, live state estimation, and demand prediction) can be transferred from electric hot water heaters to hot water heat pumps, combined, and implemented into a real-world hot water heat pump setup. The optimization approach, embedded in a realistic experimental setting, leads to a decrease in electric energy demand and cost per unit electricity by approximately 12% and 14%, respectively. Further, an increase in efficiency by approximately 13% has been achieved.

Vast amounts of oily wastewater are byproducts of the petrochemical and the shipping industry and to this day frequently discharged into water bodies either without or after insufficient treatment. To alleviate the resulting pollution, water treatment processes are in great demand. Bubble column humidifiers (BCHs) as part of humidification–dehumidification systems are predestined for such a task, since they are insensitive to different feed liquids, simple in design and have low maintenance requirements. While humidification in a bubble column has been investigated plentiful for desalination, a systematic investigation of oily wastewater treatment is missing in literature. We filled this gap by analyzing the treatment of an oil–water emulsion experimentally to derive recommendations for future design and operation of BCHs. Our humidity measurements indicate that the air stream is always saturated after humidification for a liquid height of only 10 cm. A residual water mass fraction of 3.5 wt% is measured after a batch run of six hours. Furthermore, continuous measurements show that an increase in oil mass fraction leads to a decrease in system productivity especially for high oil mass fractions. This decrease is caused by the heterogeneity of the liquid temperature profile. A lower liquid height mitigates this heterogeneity, therefore decreasing the heat demand and improving the overall efficiency. The oil content of the produced condensate is below 15 ppm, allowing discharge into various water bodies. The results of our systematic investigation prove suitability and indicate a strong future potential for the use of BCHs in oily wastewater treatment.

Alleviating the curse of dimensionality in minkowski sum approximations of storage flexibility
(2023)

Many real-world applications require the joint optimization of a large number of flexible devices over some time horizon. The flexibility of multiple batteries, thermostatically controlled loads, or electric vehicles, e.g., can be used to support grid operations and to reduce operation costs. Using piecewise constant power values, the flexibility of each device over d time periods can be described as a polytopic subset in power space. The aggregated flexibility is given by the Minkowski sum of these polytopes. As the computation of Minkowski sums is in general demanding, several approximations have been proposed in the literature. Yet, their application potential is often objective-dependent and limited by the curse of dimensionality. In this paper, we show that up to 2d vertices of each polytope can be computed efficiently and that the convex hull of their sums provides a computationally efficient inner approximation of the Minkowski sum. Via an extensive simulation study, we illustrate that our approach outperforms ten state-of-the-art inner approximations in terms of computational complexity and accuracy for different objectives. Moreover, we propose an efficient disaggregation method applicable to any vertex-based approximation. The proposed methods provide an efficient means to aggregate and to disaggregate typical battery storages in quarter-hourly periods over an entire day with reasonable accuracy for aggregated cost and for peak power optimization.

Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.

Bubble column humidifiers (BCHs) are frequently used for the humidification of air in various water treatment applications. A potential but not yet profoundly investigated application of such devices is the treatment of oily wastewater. To evaluate this application, the accumulation of an oil-water emulsion using a BCH is experimentally analyzed. The amount of evaporating water vapor can be evaluated by measuring the humidity ratio of the outlet air. However, humidity measurements are difficult in close to saturated conditions, as the formation of liquid droplets on the sensor impacts the measurement accuracy. We use a heating section after the humidifier, such that no liquid droplets are formed on the sensor. This enables us a more accurate humidity measurement. Two batch measurement runs are conducted with (1) tap water and (2) an oil-water emulsion as the respective liquid phase. The humidity measurement in high humidity conditions is highly accurate with an error margin of below 3 % and can be used to predict the oil concentration of the remaining liquid during operation. The measured humidity ratio corresponds with the removed amount of water vapor for both tap water and the accumulation of an oil-water emulsion. Our measurements show that the residual water content
in the oil-water emulsion is below 4 %.

Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.

Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.

Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.

Flexibility estimation is the first step necessary to incorporate building energy systems into demand side management programs. We extend a known method for temporal flexibility estimation from literature to a real-world residential heat pump system, solely based on historical cloud data. The method proposed relies on robust simplifications and estimates employing process knowledge, energy balances and manufacturer's information. Resulting forced and delayed temporal flexibility, covering both domestic hot water and space heating demands as constraints, allows to derive a flexibility range for the heat pump system. The resulting temporal flexibility lay within the range of 24 minutes and 6 hours for forced and delayed flexibility, respectively. This range provides new insights into the system's behaviour and is the basis for estimating power and energy flexibility - the first step necessary to incorporate building energy systems into demand side management programs.