Refine
Year of publication
Document Type
- Conference Proceeding (19)
- Part of a Book (4)
Institute
Is part of the Bibliography
- yes (23)
Keywords
- Digital twin (2)
- 3D modeling (1)
- Aging (1)
- App usage (1)
- Augmented reality (1)
- Biomedical Engineering (1)
- Browsers (1)
- Cameras (1)
- Casual Game Interaction Design (1)
- Cognitive Load (1)
Tap or swipe
(2023)
As the boundary between real and virtual life is becoming increasingly blurred, researchers and practitioners are looking for ways to integrate the two intending to improve human lives in a plethora of domains. A cutting-edge concept is the design of Digital Twins (DT), having a broad range of implications and applications, spanning from education, training, as well as safety and productivity in the workplace. An emergent approach for implementing DTs is the usage of mixed reality (MR) and augmented reality (AR), which are well aligned with merging real and virtual objects to enhance the human’s ability to interact with and manage DTs. Yet, this is still a novel area of research and, as such, a grounded understanding of the current state, challenges, and open questions is still lacking. Towards this, we conducted a PRISMA-based literature review of scientific articles and book chapters dealing with the use of MR and AR for digital twins. After a thorough screening phase and eligibility check, 25 papers were analyzed, sorted and compared by different categories like research topic (e.g., visualization, guidance), domain (e.g., manufacturing, education), paper type (e.g., design study, evaluation), evaluation type (user study, case study or none), used hardware (e.g., Microsoft HoloLens, mobile devices) as well as the different outcomes (result type and topic, problems, outlook). The major finding of this research survey is the predominant focus of the reviewed papers on the technology itself and the neglect of factors regarding the users. We, therefore, encourage researchers in this area to keep the importance of ease and joy of use in mind and include users in multiple stages of their work.
The increasing digitalisation of daily routines confronts people with frequent privacy decisions. However, obscure data processing often leads to tedious decision-making and results in unreflective choices that unduly compromise privacy. Serious Games could be applied to encourage teenagers and young adults to make more thoughtful privacy decisions. Creating a Serious Game (SG) that promotes privacy awareness while maintaining an engaging gameplay requires, however, a carefully balanced game concept. This study explores the benefits of an online role-playing boardgame as a co-designing activity for creating SGs about privacy. In a between-subjects trial, student groups and educator/researcher groups were taking the roles of player, teacher, researcher and designer to co-design a balanced privacy SG concept. Using predefined design proposal cards or creating their own, students and educators played the online boardgame during a video conference session to generate game ideas, resolve potential conflicts and balance the different SG aspects. The comparative results of the present study indicate that students and educators alike perceive support from role-playing when ideating and balancing SG concepts and are happy with their playfully co-designed game concepts. Implications for supporting SG design with role-playing in remote collaboration scenarios are conclusively synthesised.
One goal of the project described in this paper is to create learning algorithms for machines and robots that lack a precise virtual controller for correct simulations. Using a digital twin approach, the developed mixed reality application aims for an overlay of a virtual robot model with the real world counterpart using Microsoft HoloLens 2 smart glasses. The application should help users to have an inside look into the results of the learning algorithm and therefore supervise and improve those results. The main focus of this paper is the visual representation of the digital twin on the smart glasses. One of the challenges is the level of abstraction and specific use of shaders (program code defining material attributes) to help the user differentiating between virtual and real objects. Therefore different presentation methods are described and evaluated. Study results with 48 persons show that the most abstract representation (wireframe) scores lowest, whereas a half-transparent model works best.