Vast amounts of oily wastewater are byproducts of the petrochemical and the shipping industry and to this day frequently discharged into water bodies either without or after insufficient treatment. To alleviate the resulting pollution, water treatment processes are in great demand. Bubble column humidifiers (BCHs) as part of humidification–dehumidification systems are predestined for such a task, since they are insensitive to different feed liquids, simple in design and have low maintenance requirements. While humidification in a bubble column has been investigated plentiful for desalination, a systematic investigation of oily wastewater treatment is missing in literature. We filled this gap by analyzing the treatment of an oil–water emulsion experimentally to derive recommendations for future design and operation of BCHs. Our humidity measurements indicate that the air stream is always saturated after humidification for a liquid height of only 10 cm. A residual water mass fraction of 3.5 wt% is measured after a batch run of six hours. Furthermore, continuous measurements show that an increase in oil mass fraction leads to a decrease in system productivity especially for high oil mass fractions. This decrease is caused by the heterogeneity of the liquid temperature profile. A lower liquid height mitigates this heterogeneity, therefore decreasing the heat demand and improving the overall efficiency. The oil content of the produced condensate is below 15 ppm, allowing discharge into various water bodies. The results of our systematic investigation prove suitability and indicate a strong future potential for the use of BCHs in oily wastewater treatment.
Bubble columns are recently used for the humidification of air in water treatment systems and fuel cells. They are well applicable due to their excellent heat and mass transfer and their low technical complexity. To design and operate such devices with high efficiency, the humidification process and the impact of the operating parameters need to be understood to a sufficient degree. To extend this knowledge, we use a refined and novel method to determine the volumetric air–liquid heat and mass transfer coefficients and the humidifier efficiency for various parametric settings. The volumetric transfer coefficients increase with both of the superficial air velocity and the liquid temperature. It is further shown that the decrease of vapor pressure with an increase of the salinity results in a corresponding decrease in the outlet humidity ratio. In contrast to previous studies, liquid heights smaller than 0.1 m are investigated and significant changes in the humidifier efficiency are seen in this range. We present the expected humidifier efficiency with respect to the superficial air velocity and the liquid height in an efficiency chart, such that optimal operating conditions can be determined. Based on this efficiency chart, recommendations for industrial applications as well as future scientific challenges are drawn.
Bubble column humidifiers (BCHs) are frequently used for the humidification of air in various water treatment applications. A potential but not yet profoundly investigated application of such devices is the treatment of oily wastewater. To evaluate this application, the accumulation of an oil-water emulsion using a BCH is experimentally analyzed. The amount of evaporating water vapor can be evaluated by measuring the humidity ratio of the outlet air. However, humidity measurements are difficult in close to saturated conditions, as the formation of liquid droplets on the sensor impacts the measurement accuracy. We use a heating section after the humidifier, such that no liquid droplets are formed on the sensor. This enables us a more accurate humidity measurement. Two batch measurement runs are conducted with (1) tap water and (2) an oil-water emulsion as the respective liquid phase. The humidity measurement in high humidity conditions is highly accurate with an error margin of below 3 % and can be used to predict the oil concentration of the remaining liquid during operation. The measured humidity ratio corresponds with the removed amount of water vapor for both tap water and the accumulation of an oil-water emulsion. Our measurements show that the residual water content
in the oil-water emulsion is below 4 %.
The humidification-dehumidification process (HDH) for desalination is a promising technology to address water scarcity issues in rural regions. However, a low humidifier efficiency is a weakness of the process. Bubble column humidifiers (BCH) are promising for HDH, as they provide enhanced heat and mass transfer and have low maintenance requirements. Previous studies of HDH-systems with BCHs draw different conclusions regarding the impact of superficial air velocity and liquid height on the humidification. Furthermore, the impact of flow characteristics has never been investigated systematically at all. In this study, an optimized BCH test setup that allows for optical analysis of the humidifier is used and evaluated. Our test setup is validated, since the influence of water temperature on the humidification, which is exponential, is reproduced. Measurements with seawater show that the normalised system productivity is increased by about 56 % with an increase in superficial air velocity from 0.5 to 5 cm/s. Furthermore, the system productivity is increased by around 29 % with an increase in liquid height from 60 to 378 mm. While the impact of superficial air velocity can be traced back to temperature changes at the humidifier and dehumidifier outlets, the impact of liquid height is shown to be caused by a smaller heat loss surface in the humidifier with an increase in liquid height. For the impact of sieve plate orifice diameter, a clear influence on the humidification is not apparent, this parameter needs to be investigated further. Finally, our new test setup allows for analysing the humidification of air (1) in a systematic way, (2) in relevant measurement ranges and (3) in comparison with optical analyses of the flow characteristics.
Der Befeuchtungs-Entfeuchtungs-Prozess (HDH) wird zur Meerwasserentsalzung eingesetzt und bietet Vorteile wie die Nutzung von Wärme auf einem geringen Temperaturniveau sowie die Realisierbarkeit dezentraler Anlagen. Bei diesem Prozess wird Luft im Kontakt mit warmem Salzwasser im Optimalfall bis zur Sättigung befeuchtet. Die feuchte Luft wird anschließend abgekühlt, um das in ihr befindliche Wasser wieder zu kondensieren. Obwohl der HDH-Prozess bereits mehrfach Gegenstand der Forschung war, besitzt die Effizienz des Prozesses nach wie vor ein hohes Steigerungspotential. Das Ziel dieser Masterarbeit besteht in der Konzeption und der Realisierung eines Versuchsaufbaus zur Analyse der Befeuchtung von Luft in Wasser. Dabei soll der Untersuchungsgegenstand zukünftiger Versuche die Befeuchtereinheit sein, die ein hohes Potential hinsichtlich der Effizienzsteigerung von HDH-Systemen bietet. In neueren Publikationen wurden zum Einsatz in HDH-Systemen Blasensäulenbefeuchter als eine bessere Alternative zu Festbettbefeuchtern oder Sprühtürmen vorgeschlagen, weswegen die Befeuchtung in solchen Aggregaten näher untersucht werden muss. Das Hauptziel dieser Masterarbeit ist ein Versuchsaufbau, der die Möglichkeit bietet, die Parameter, die die Befeuchtung von Luft in einer Blasensäule maßgeblich beeinflussen, mit einer ausreichenden Genauigkeit zu messen, um aus diesen Messungen semiempirische Korrelationen ableiten zu können. Die die Befeuchtung von Luft maßgeblich beeinflussenden Parameter sind die Wassertemperatur, der Füllstand im Befeuchter, die Luftgeschwindigkeit sowie die Blasengröße.
Zum aktuellen Stand ist ein HDH-System, bestehend aus einem Blasensäulenbefeuchter, einem Querstromwärmetauscher sowie einer Dosierpumpe errichtet. Mit diesem System können wissenschaftlich notwendige empirische Zusammenhänge zwischen den die Befeuchtung beeinflussenden Parametern und der Befeuchtung von Luft aus Versuchen abgeleitet werden. Die im Versuchsaufbau verbaute Messtechnik wurde derart ausgewählt, dass deren Einfluss auf das System so gering wie möglich gehalten werden kann.
Mit dem Versuchsaufbau ist es darüber hinaus möglich, invasive Messmethoden mit nicht invasiven Messmethoden direkt zu vergleichen. Um eine für die Messungen optimale Befeuchtergeometrie zu finden, sind zwei Blasensäulenbefeuchtereinheiten aufgebaut, davon eine mit planarem und eine mit zylindrischem Querschnitt. So ist es möglich, im Direktvergleich die Vor- und Nachteile der Querschnittsanordnungen nachzuweisen. Die Komponenten der beiden HDH-Systeme wurden anhand von wissenschaftlich akzeptierten Modellen bezüglich der dazugehörigen Wärmeübertragungsraten, der Wärmeverluste und der Druckverluste ausgelegt.
Eine Modellierung des Stoffübergangs in der Blasensäule ist durchgeführt. Anhand dieser Modellierung konnte der Stoffübergangskoeffizient in der Grenzschicht zwischen Luftblase und Flüssigkeitssäule ermittelt werden. Anhand einer Massenbilanz konnte über den Stoffübergangskoeffizienten die Austrittswasserbeladung der feuchten Luft modelliert werden.
Die Funktionalität des Versuchsaufbaus ist gegeben. Messungen des Gasgehalts zeigen eine sehr gute Übereinstimmung mit wissenschaftlich anerkannten Korrelationen zum Gasgehalt. Die optische Zugänglichkeit des Versuchsaufbaus ist evaluiert und lässt die Tendenz ableiten, dass sich ein planarer Befeuchterquerschnitt in Verbindung mit Fotoaufnahmen von den durchgeführten Varianten am besten zur digitalen Bildanalyse eignet.
Aus den Experimenten, die am realisierten Versuchsaufbau durchgeführt werden, kann sich eine allgemeingültige Auslegungsgrundlage für Versuchsaufbauten ergeben, mit denen Messungen der Befeuchtung von Luft in Blasensäulenbefeuchtern durchgeführt werden sollen.