Refine
Document Type
- Article (4)
- Conference Proceeding (3)
Institute
Language
- English (7)
Is part of the Bibliography
- yes (7)
Keywords
- AWG (2)
- HEMT (1)
- LIPPS (1)
- MEMS (1)
- Measurement by laser beam (1)
- Micromechanical devices (1)
- Semiconductor device measurement (1)
- Semiconductor lasers (1)
- Wet etching (1)
- active magnetic bearings (1)
We present design of planar 16-channel, 100-GHz multi-mode polymer-based AWG. This AWG was designed for central wavelength of 1550 nm applying AWG-Parameters tool. The AWG structure was created and simulated in the commercial photonic tool PHASAR from Optiwave. Achieved transmission characteristics were evaluated by AWG-Analyzer tool. For the design, multi-mode waveguides having a cross-section of (4x4) µm2 were used. The simulated results show strong worsening of the transmission characteristics in comparison when using single-mode waveguides. Nevertheless, the transmitting channels are clearly separated. The reason for using thicker multi-mode waveguides in the design is possibility to fabricate the AWG structure on polymer basis using direct laser writing lithography.
The properties of diamond make it an attractive material for MEMS and sensor devices. We present the feasibility to fabricate membranes and cantilevers made of nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates using microwave chemical vapour deposition (MWCVD). The patterning of micromechanical structures was performed by a combined process of femtosecond laser ablation and wet etching. We designed cantilever structures with varying lengths and widths (25, 50, 100, 200 and 300 μm). The cantilevers were made in a symmetric left- and right-hand configuration. An additional laser treatment was used to modify the mechanical properties of the left-hand cantilever. The deflection of the laser-treated, and non-treated sections was measured. The global mechanical system properties were simulated and corresponded with high accuracy to the measured results of deflection.
In previous studies of linear rotary systems with active magnetic bearings, parametric excitation was introduced as an open-loop control strategy. The parametric excitation was realized by a periodic, in-phase variation of the bearing stiffness. At the difference between two of the eigenfrequencies of the system, a stabilizing effect, called anti-resonance, was found numerically and validated in experiments. In this work, preliminary results of further exploration of the parametric excitation are shared. A Jeffcott rotor with two active magnetic bearings and a disk is investigated. Using Floquet theory, a deeper insight into the dynamic behavior of the system is obtained. Aiming at a further increase of stability, a phase difference between excitation terms is introduced.
The production of liquid-gas dispersions places high demands on the process technology, which requires knowledge of the bubble formation mechanisms, as well as the phase parameters of the media combinations used. To obtain the bubble sizes introduced to a flow not knowing the phase parameters, different process parameters are investigated. Their quality and applicability are evaluated. The results obtained make it possible to simplify long design processes of dispersion processes in manufacturing plants and to ensure the product quality of the products manufactured, by reducing waste.
The properties of SiC and diamond make them attractive materials for MEMS and sensor devices. We innovated specific laser ablation techniques to fabricate membranes and cantilevers made of SiC or nano-(micro-) crystalline diamond films grown on Si/SiO2 substrates by microwave chemical vapour deposition (MWCVD). We started research to generate surface moulds to grow corrugated diamond films for membranes and cantilevers. A software tool was developed to support the design of micromechanical cantilevers. We can measure deformation and resonant frequency of diamond cantilevers and identify the global mechanical properties. A benchmark against finite element simulations enables an inverse identification of the specific system parameters and simplifies the characterization procedure.
Semiconducting metal oxides are widely used for solar cells, poto-catalysis, bio-active materials and gas sensors. Besides the material properties of the used semiconductor,the specific surface topology of the sensor determines the device performance. We investigate the preparation and transfer suitable metals onto LIPPS structures on glass for gas sensing applications.
In this work, we investigated the influence of different etch depths of the rib waveguides on the performance of SiN-based AWGs. For this purpose, an 8-channel 100 GHz AWG was designed for a center wavelength of 850 nm. The design parameters entered were calculated using the AWG-Parameters tool. The simulations were performed with a commercial photonic tool PHASAR from Optiwave. The simulated performance was evaluated using the AWG-Analyzer tool. For the AWG design, we used three identical rib waveguides with different etch depths to simulate possible etch imperfection. The simulations show the wavelength shift and degradation of the AWG performance.