Refine
Year of publication
Document Type
- Master's Thesis (12)
- Article (6)
- Conference Proceeding (6)
- Book (2)
Institute
Keywords
- Demand Side Management (3)
- Energy storage (2)
- Power tracking (2)
- +WAA 300 (1)
- +WBH 725 (1)
- A96 (1)
- Anomalie (1)
- Ausgleichsenergie (1)
- Ausreißer (1)
- Auswahlverfahren (1)
Die Anforderungen an gute Prognosen im Energiehandel der illwerke vkw AG steigen kontinuierlich an, da diese dazu verwendet werden, die richtigen Energiemengen auf dem Day-Ahead-Markt zu kaufen oder zu verkaufen. Zusätzliche Herausforderungen wie Wettereinflüsse und der steigende Energiebedarf von E-Autos erschweren die Prognose. Darüber hinaus gestaltet es sich mit den herkömmlichen Prognosebewertungen schwierig, die Kostenaspekte angemessen abzubilden. Aus diesem Grund wird in dieser Masterarbeit eine neue Methode zur Bewertung der Prognosequalität implementiert und mit bewährten Kennzahlen wie R², MAE, MAPE und RMSE verglichen. Diese Methode nutzt einen Preisverlauf, der die durchschnittlichen Marktpreise der Ausgleichsenergiepreise als Bewertungsmaßstab widerspiegelt. Die neue Bewertungsmethode wird mit Algorithmen wie dem Artificial Neural Network von Tensorflow, dem Decision Tree Regressor, der Linearen Regression, dem Multi-Layer Perception und dem Random Forest Regressor von Scikit-Learn verglichen. Zudem wird ein eigens erstelltes Gurobi-Modell, welches die Ausgleichsenergiepreise für die Gewichtung der absoluten Prognosefehler heranzieht, als Lineare Regression implementiert. Die genannten Modelle werden mithilfe von Python implementiert. Es werden tägliche Vorhersagen basierend auf viertelstündlichen Daten für Zeiträume von bis zu einem Jahr unter Verwendung eines Sliding-Window-Verfahrens mit unterschiedlichen Trainingsdaten erstellt. Die neue Bewertungsmethode mit der Einbeziehung von Kostenfaktoren, konnte sich im Vergleich zu MAPE, MAE, RMSE und R² nicht deutlich von den anderen unterscheiden. Die besten Ergebnisse wurden mit der Linearen Regression von Scikit-Learn und dem Gurobi-Modell mit der preisgewichteten Minimierung erzielt. Dabei sind die anderen Algorithmen nicht weit von den Resultaten der LR und GP entfernt. Unter dem Aspekt, dass das eigene Modell die Kosten minimieren soll, konnte es aber nicht als die beste Methode bewertet werden. Deswegen müssen das Modell und die gewählten Ausgleichsenergiepreise optimiert werden. Hierzu erzielte unter den sieben verwendeten Methoden die Lineare Regression das beste Ergebnis.
The number of electric vehicles will increase rapidly in the coming years. Studies suggest that most owners prefer to charge their electric vehicle at home, which will fuel the need for charging stations in residential complexes where vehicles can be charged overnight. Currently, there already are over 100 such residential complexes, with another 70 added every year in Vorarlberg alone. In most existing residential complexes, however, the grid connections are not sufficient to charge all vehicles at the same time with maximum power. In addition, it is also desirable for grid operators and electricity producers that the power demand be as smooth and predictable as possible. To achieve this, ways to manage flexible loads need to be found, which can operate within the technical constraints. Therefore, the most common scenarios how the load can be made grid-friendly with the help of optional battery storage and/or photovoltaics using optimization methods of linear and stochastic programming were examined. At the same time, the needs of the vehicle owners for charging comfort - namely to find their vehicles reliably charged at the time of their respective departure - were addressed by combining both objectives using suitable weights. The algorithms determined were verified in practice on an existing Vlotte prototype installation. For this purpose, the necessary programs were implemented in Python, so that the data obtained during the test operation, which lasted one month, could be subjected to a well-founded analysis. In addition, simulation studies helped to further reveal the influence of PV and BESS sizing on the achievable optimums and confirm that advanced optimization algorithms such as the ones discussed are a vital contribution in reducing the charging stations’ peak load while at the same time maintaining high satisfaction levels.
Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.
Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.
Ein weit verbreitetes Problem von Heizungs-, Lüftungs- und Kühlungsanlagen (HLK-Anlagen) ist das Schwingungsverhalten der Regelung. Dieses führt zu unerwünschten Taktzyklen und damit zu erhöhtem Energieverbrauch, sowie zu verringerter Lebensdauer der Anlagenkomponenten. Deshalb besteht ein wirtschaftliches und ökologisches Interesse an der Vermeidung des Schwingungsverhaltens. Zum Auffinden von Fehlern, sowie deren Ursachenanalyse, steht in der Literatur ein weites Spektrum an möglichen Werkzeugen zur Fehlerdetektion und -diagnose (FDD) zur Verfügung. Klassische FDD-Werkzeuge für den Bereich von HLK-Anlagen basieren auf umfangreichem Domänenwissen zur Bestimmung der Ursache-Wirkungs-Beziehung von Fehlertypen, wie zum Beispiel Schwingungen. Deren Anwendung im HLK-Bereich ist deshalb mit zeitaufwändigen Analysen durch Fachpersonal verbunden, was hohe Kosten zur Folge hat.
Im Zuge dieser Masterarbeit wird ein FDD-Werkzeug für den Fehlertyp Schwingungen entwickelt, welches den hohen Zeitaufwand der Ursachenanalyse des Schwingens von HLK-Anlagen verringert. Durch die Anwendung von Methoden des maschinellen Lernens werden potenzielle Ursachen lokalisiert. Außerdem wird gezeigt, wie mit Hilfe des maschinellen Lernens eine Abschätzung über Gegenmaßnahmen zur Behebung der Schwingungsursachen getroffen werden kann.
Die Herausforderung in der Umsetzung des FDD-Werkzeugs liegt dabei in der Auswahl der Methoden für die Implementierung des datenbasierten Modells. Zur Umsetzung werden Daten einer HLK-Anlage eines Gewerbebetriebs am Standort Vorarlberg verwendet. Das entwickelte FDD-Werkzeug dient der fortlaufenden Auswertung von Schwingungen und der Optimierung bestehender Anlagen. Schlussendlich soll damit der Erhöhung der Energieeffizienz und der Erhöhung der Lebensdauer der Komponenten von HLK-Anlagen beigetragen werden.
Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.
In the regime of incentive-based autonomous demand response, time dependent prices are typically used to serve as signals from a system operator to consumers. However, this approach has been shown to be problematic from various perspectives. We clarify these shortcomings in a geometric way and thereby motivate the use of power signals instead of price signals. The main contribution of this paper consists of demonstrating in a standard setting that power tracking signals can control flexibilities more efficiently than real-time price signals. For comparison by simulation, German renewable energy production and German standard load profiles are used for daily production and demand profiles, respectively. As for flexibility, an energy storage system with realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is outperformed with regards to imbalance energy, peak consumption, storage variation, and storage losses without the need for additional communication or computation efforts. It is further shown that the advantages of the optimal power tracking approach compared to the pricing approach increase with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal power tracking is able to integrate renewable energy production efficiently, has additional benefits, and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and economic implementation.
Die vorliegende Arbeit beschreibt eine Methode zur Prognose von Anomalien in einzelnen Sensordaten für die Anwendung in Expertensystemen im Bereich der Biomassekraftwerke. Die in fünf Schritten beschriebene Methode beinhaltet neben der Datenaufbereitung eine Anomalievorauswahl durch eine unüberwachte Ausreißererkennung, welche mittels des PYOD-Toolkit umgesetzt wurde. Bei der anschließenden Anomaliebestimmung wird der zuvor generierte binäre Zielvektor durch einen mit dem System vertrauten Experten validiert. Eine darauffolgende überwachte binäre Klassifikation mit unbekannten Betriebsdaten ergibt, dass mittel- bis langfristige Anomalien im Mehrstunden- bis Mehrtagesbereich in Form eines Trends reproduktiv vorhergesagt werden können. Kurzfristige Anomalien im Minutenbereich in Form von Extremfällen können hingegen nicht reproduktiv vorhergesagt werden. Eine zusätzliche Untersuchung zur Vorhersage einer Anomalie noch vor deren tatsächlichen Eintrittszeitpunkt brachte keine zufriedenstellenden Ergebnisse. Demnach lässt sich mit dieser Methode nur eine bestimmte Art von Anomalien in Expertensystemen für Biomassekraftwerke vorhersagen. Dazu sollte zudem darauf geachtet werden, dass es trotz positiv erzielter quantitativer Ergebnisse notwendig ist, für die qualitative Prüfung einen mit dem System vertrauten Experten hinzuzuziehen und dass für die zu prognostizierende Anomalie die geeignete Abtastzeit zu wählen ist. Abschließend bleibt zu erwähnen, dass Anomalien, welche nur durch Über- bzw. Unterschreitung eines definierten Grenzwertes gekennzeichnet werden, als zu trivial für diese Methode gelten. Diese können über eine einfache Grenzwertbetrachtung identifiziert werden.
Mit dem entwickelten, gemischt-ganzzahligen linearen Optimierungsmodell wird ein grosser Beitrag geleistet, das die wichtigen Betriebskennzahlen einer PV-Speicheranlage, wie der Eigenverbrauchsanteil um bis zu 89 % und der Autarkiegrad um bis zu 73 % durch eine variable Grenzkostenoptimierung bei zusätzlicher E-Auto Berücksichtigung gesteigert werden können. Der Eigenverbrauch der PV-Erzeugung wird durch den stationären Batteriespeicher auf 71 % mehr als verdoppelt. Das beispielhafte Szenario hat einen Haushaltsverbrauch von 5 MWh pro Jahr und besteht aus einer 5 kWp PV-Anlage, mit einem 5 kWh Batteriespeicher und dem Tesla Model 3 mit einer Jahresfahrleistung von 16778 km.
Das erstellte Softwareprogramm kann einfach auf weitere verschiedene Anlagenkonstellationen und mit eigenen Eingangszeitreihenprofile der Haushaltslast, der PV-Erzeugung und der E-Auto Nutzung parametriert werden. Neben der Kennzahlenberechnung des konkreten Szenarios wird der jeweilige Einfluss einer Anlagenkomponente, wie PV, Batterie und Last bei deren Variation, auf die Kennzahlen grafisch gut sichtbar dargestellt.
Die Ergebnisse bestätigen bisherige Arbeiten, dass die Dimensionierung der Anlagenkomponenten nach der einfachen Faust-Formel 1:1:1 erfolgen soll: Der stationäre Batteriespeicher und die PV-Anlage sollen gleich gross sein und ihre Grösse in kWh soll der Jahreslast in MWh entsprechen. Damit wird nahezu schon ein gutes Optimum von Eigenverbrauch, Eigenverbrauchsanteil und Autarkiegrad bei minimalen Energiekosten gefunden und die Netzbelastung durch Bezug und Einspeisung kann reduziert werden.
Die EU-Ziele umfassen die Steigerung des Anteils an erneuerbaren Energien an der Energieerzeugung um 32 % bis 2030. Doch erneuerbare Energien bringen neben den Vorteilen für den Umweltschutz auch Probleme mit sich. Ihre Schwankungen und Unkontrollierbarkeit stellen große Herausforderungen für das Stromnetz dar. Um die Netz- und damit die Versorgungssicherheit weiterhin gewährleisten zu können, braucht es Lösungen, die weder das Stromnetz, die Verbraucher noch die Energieversorger benachteiligen. Eine Möglichkeit wäre es, zusätzliche Kraftwerke und Infrastruktur (Redundanzen) aufzubauen, welche potenzielle Schwankungen ausgleichen können. Dieser Lösungsansatz gilt als traditioneller Weg, der hohe Kosten und negative Umweltauswirkungen mit sich bringt. Demand Side Management hat das Potenzial, effiziente Lösungen diesbezüglich anzubieten. Welche Vorteile der Einsatz von DSM auf Ebene der Haushaltsverbraucher für die Energieversorger in Bezug auf den Abruf von Ausgleichsenergie bringt, wird in dieser Arbeit behandelt. Dafür wurde ein agentenbasiertes Modell entwickelt, welches darauf abzielt, die Abweichung zwischen dem von dem Energieversorger prognostizierten Verbrauch und dem realen Verbrauch seiner Haushaltskunden zu verringern. Jeder Haushalt in dem vorgestellten Modell ist mit einer Flexibilität in Form eines Batteriespeichers ausgestattet. Die Speicherbewirtschaftung wird basierend auf einem Signal, welches der Energieversorger übermittelt, automatisch vom Haushalt für jeden Tag im Betrachtungszeitraum optimiert. Jede Abweichung zwischen der vom Energieversorger erstellten Prognose und der tatsächlich bezogenen Strommenge stellt dabei einen Bezug von Ausgleichsenergie dar. Untersucht werden die Auswirkungen der Anzahl an Haushalten sowie ein unterschiedlicher Wissensstand auf die Prognose. Weiters werden zwei unterschiedliche Arten von Demand Side Management analysiert. Einmal die Einflussnahme auf die Last der Haushalte durch ein Preissignal, einmal durch das Vorgeben eines Lastgangs. Um die Effektivität der beiden Varianten bestimmen zu können, wird auch die Menge an Ausgleichsenergie erhoben, welche ohne das Vorhandensein eines Batteriespeichers (also ohne Steuerung) anfallen würde. Das Modell wurde entwickelt, um einen Trend aufzuzeigen und keine spezifische Einsparungsmenge zu ermitteln, da dies von der jeweiligen Situation des Energieversorgers abhängt. Die Erstellung der unterschiedlichen Wissensstände basiert auf den österreichischen rechtlichen Vorgaben bezüglich der Datenübertragung bei intelligenten Messgeräten. Dabei ist einmal der Jahresverbrauch, einmal der Tagesverbrauch und einmal die stündlichen Verbrauchswerte bekannt. Das Preissignal ist negativ korreliert zu den am Day-Ahead-Markt gehandelten Mengen und das Lastsignal basiert auf einer der Prognosen des Energieversorgers, je nach Variante, die untersucht wird. Es zeigte sich, dass ein besserer Wissensstand nur teilweise eine Verbesserung der Prognose erzielte. Wobei die unterschiedlichen Wissensstände auf den realen Werten der nicht verwendeten Haushalte aus dem gleichen Datensatz aufbauen und so beispielsweise Wettereinflüsse in der Prognose schon bekannt waren, was die Prognose basierend auf Jahreswerten sehr genau machte. Der Aggregationseffekt von mehreren Haushalten beeinflusst die Prognose positiv. Auf einzelner Haushaltsebene schneiden die Vorhersagen deutlich schlechter ab als bei Prognosen des Gesamtverbrauchs aller Haushalte. Die Optimierung basierend auf dem Lastsignal generiert eine geringere Menge an Ausgleichsenergie als das Preissignal. Das liegt unter anderem daran, dass die Prognose nur die Verbräuche der Haushaltskunden berücksichtigt und nicht die Mengen, die am Markt gehandelt werden. In den untersuchten Varianten stellte sich heraus, dass am wenigsten Ausgleichsenergie über alle Haushalte erzeugt wird, wenn kein Demand Side Management betrieben wird, also keine Batteriespeicher vorhanden sind und die Prognose des Energieversorgers auf Stundenwerten basiert. Auf einzelner Haushaltsebene fällt bei der Optimierung mittels Lastsignal am wenigsten Ausgleichsenergie an.