### Refine

#### Year of publication

#### Document Type

- Article (7)
- Conference Proceeding (5)
- Preprint (1)

#### Institute

#### Keywords

- Demand response (2)
- Demand side management (2)
- Energy storage (2)
- Minkowski sum (2)
- Power tracking (2)
- Autonomous optimization (1)
- Bankruptcy (1)
- Credit risk (1)
- D52 (1)
- D53 (1)

Demand side management holds potential for improving energy efficiency and cutting energy consumption within the food industry. This research introduces a demand response approach tailored for an industrial food processing facility, utilizing a chilled water buffer as active thermal energy storage and the plant building as passive thermal energy storage. The plant building and production process are modeled using transient thermal energy balances and the demand side management problem is formulated as a linear program. Model predictive control is employed to manage uncertainties in the optimization process. A simulated case study of an Austrian food processing plant shows reductions in electrical power consumption by up to 18%, electricity costs by up to 24%, and peak load by up to 36% in three distinct optimization scenarios. Simple prediction approaches via averaging historical data already lead to nearly optimal results concerning energy consumption and cost reduction. Highly accurate predictions are necessary for peak load reduction, as considering the simple prediction method only roughly a third of the potential reductions are achieved.

Alleviating the curse of dimensionality in minkowski sum approximations of storage flexibility
(2023)

Many real-world applications require the joint optimization of a large number of flexible devices over some time horizon. The flexibility of multiple batteries, thermostatically controlled loads, or electric vehicles, e.g., can be used to support grid operations and to reduce operation costs. Using piecewise constant power values, the flexibility of each device over d time periods can be described as a polytopic subset in power space. The aggregated flexibility is given by the Minkowski sum of these polytopes. As the computation of Minkowski sums is in general demanding, several approximations have been proposed in the literature. Yet, their application potential is often objective-dependent and limited by the curse of dimensionality. In this paper, we show that up to 2d vertices of each polytope can be computed efficiently and that the convex hull of their sums provides a computationally efficient inner approximation of the Minkowski sum. Via an extensive simulation study, we illustrate that our approach outperforms ten state-of-the-art inner approximations in terms of computational complexity and accuracy for different objectives. Moreover, we propose an efficient disaggregation method applicable to any vertex-based approximation. The proposed methods provide an efficient means to aggregate and to disaggregate typical battery storages in quarter-hourly periods over an entire day with reasonable accuracy for aggregated cost and for peak power optimization.

Traditional power grids are mainly based on centralized power generation and subsequent distribution. The increasing penetration of distributed renewable energy sources and the growing number of electrical loads is creating difficulties in balancing supply and demand and threatens the secure and efficient operation of power grids. At the same time, households hold an increasing amount of flexibility, which can be exploited by demand-side management to decrease customer cost and support grid operation. Compared to the collection of individual flexibilities, aggregation reduces optimization complexity, protects households’ privacy, and lowers the communication effort. In mathematical terms, each flexibility is modeled by a set of power profiles, and the aggregated flexibility is modeled by the Minkowski sum of individual flexibilities. As the exact Minkowski sum calculation is generally computationally prohibitive, various approximations can be found in the literature. The main contribution of this paper is a comparative evaluation of several approximation algorithms in terms of novel quality criteria, computational complexity, and communication effort using realistic data. Furthermore, we investigate the dependence of selected comparison criteria on the time horizon length and on the number of households. Our results indicate that none of the algorithms perform satisfactorily in all categories. Hence, we provide guidelines on the application-dependent algorithm choice. Moreover, we demonstrate a major drawback of some inner approximations, namely that they may lead to situations in which not using the flexibility is impossible, which may be suboptimal in certain situations.

Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.

Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.

In the regime of incentive-based autonomous demand response, time dependent prices are typically used to serve as signals from a system operator to consumers. However, this approach has been shown to be problematic from various perspectives. We clarify these shortcomings in a geometric way and thereby motivate the use of power signals instead of price signals. The main contribution of this paper consists of demonstrating in a standard setting that power tracking signals can control flexibilities more efficiently than real-time price signals. For comparison by simulation, German renewable energy production and German standard load profiles are used for daily production and demand profiles, respectively. As for flexibility, an energy storage system with realistic efficiencies is considered. Most critically, the new approach is able to induce consumptions on the demand side that real-time pricing is unable to induce. Moreover, the pricing approach is outperformed with regards to imbalance energy, peak consumption, storage variation, and storage losses without the need for additional communication or computation efforts. It is further shown that the advantages of the optimal power tracking approach compared to the pricing approach increase with the extent of the flexibility. The results indicate that autonomous flexibility control by optimal power tracking is able to integrate renewable energy production efficiently, has additional benefits, and the potential for enhancements. The latter include data uncertainties, systems of flexibilities, and economic implementation.

In contrast to fossil energy sources, the supply by renewable energy sources likewind and photovoltaics can not be controlled. Therefore, flexibilities on the demandside of the electric power grid, like electro-chemical energy storage systems, are usedincreasingly to match electric supply and demand at all times. To control those flex-ibilities, we consider two algorithms that both lead to linear programming problems.These are solved autonomously on the demand side, i.e., by household computers.In the classic approach, an energy price signal is sent by the electric utility to thehouseholds, which, in turn, optimize the cost of consumption within their constraints.Instead of an energy price signal, we claim that an appropriate power signal that istracked in L1-norm as close as possible by the household has favorable character-istics. We argue that an interior point of the household’s feasibility region is neveran optimal price-based point but can result in a L1-norm optimal point. Thus, pricesignals can not parametrize the complete feasibility region which may not lead to anoptimal allocation of consumption.We compare the price and power tracking algorithms over a year on the base ofone-day optimizations regarding different information settings and using a large dataset of daily household load profiles. The computational task constitutes an embarrassingly parallel problem. To this end, the performance of the two parallel computation frameworks DEF [1] and Ray [2] are investigated. The Ray framework is used to run the Python applications locally on several cores. With the DEF frameworkwe execute our Python routines parallelly in a cloud. All in all, the results providean understanding of when which computation framework and autonomous algorithmwill outperform the other.

Verbraucherseitige Laststeuerung (Demand Side Management – DSM) wird als ein möglicher Ansatz betrachtet, um die Auswirkungen des Ausbaus von fluktuierenden Erneuerbaren im Stromnetz auszugleichen. Sollen viele verteilte Energiesysteme damit angesprochen werden, stellen zentralistische Ansätze dabei hohe Anforderungen an die Kommunikationsinfrastruktur. Als Alternative wird vielfach eine autonome Laststeuerung (ADSM) mit anreizbasierter Optimierung direkt auf dem Verbrauchergerät betrachtet. Dabei kann die Anreizfunktion mittels unidirektionaler Kommunikation übertragen werden.
Am Forschungszentrum Energie der Fachhochschule Vorarlberg wurden in den letzten Jahren Algorithmen und Prototypen für den Einsatz von ADSM auf verschiedensten verteilten Energiespeichern im elektrischen Stromnetz entwickelt. Dabei werden sowohl thermische Energiespeicher (z. B. Haushalts-Warmwasserspeicher) als auch elektrochemische Speicher (z. B. Batteriespeichersysteme oder Elektroautos) betrachtet. Außerdem werden die Auswirkungen solcher Systeme auf das elektrische Verteilnetz untersucht. Dieser Artikel gibt einen Überblick über die entwickelten Methoden und Ergebnisse aus diesem Forschungsfeld mit dem Ziel, ein weitreichendes Verständnis für die Chancen und Grenzen des ADSM zu schaffen.