Refine
Year of publication
Document Type
- Article (14)
- Conference Proceeding (14)
- Doctoral Thesis (1)
Institute
Is part of the Bibliography
- yes (29)
Keywords
- Demand side management (6)
- Demand response (3)
- Autonomous optimization (2)
- Demand Side Management (2)
- Distributed storage (2)
- Distribution grids (2)
- Domestic hot water heater (2)
- Electric vehicles (2)
- Grid balancing (2)
- Optimization (2)
Hot water heat pumps are well suited for demand side management, as the heat pump market faced a rapid growth in the past years with the trend to decentralized domestic hot water use. Sales were accelerated through wants and needs of energy conservation, energy efficiency, and less restrictive rules regarding Legionella. While in literature the model predictive control potential for heat pumps is commonly shown in simulations, the share of experimental studies is relatively low. To this day, experimental studies considering solely domestic hot water use are not available. In this paper, the realistic achievable model predictive control potential of a hot water heat pump is compared to the standard hysteresis control, to provide an experimental proof. We show for the first time, how state-of-the-art approaches (model predictive control, system identification, live state estimation, and demand prediction) can be transferred from electric hot water heaters to hot water heat pumps, combined, and implemented into a real-world hot water heat pump setup. The optimization approach, embedded in a realistic experimental setting, leads to a decrease in electric energy demand and cost per unit electricity by approximately 12% and 14%, respectively. Further, an increase in efficiency by approximately 13% has been achieved.
Activation of heat pump flexibilities is a viable solution to support balancing the grid via Demand Side Management measures and fulfill the need for flexibility options. Aggregators as interface between prosumers, distribution system operators and balance responsible parties face the challenge due to data privacy and technical restrictions to transform prosumer information into aggregated available flexibility to enable trading thereof. Thereby, literature lacks a generic, applicable and widely accepted flexibility estimation method for heat pumps,which incorporates reduced sensor and system information, system- and demand-dependent behaviour. In this paper, we adapt and extend a method from literature, by incorporating domain knowledge to overcome reduced sensor and system information. We apply data of five real-world heat pump systems, distinguish operation modes, estimate power and energy flexibility of each single heat pump system, proof transferability of the method, and aggregate the flexibilities available to showcase a small HP pool as a proof of concept.
Violation-mitigation-based method for PV hosting capacity quantification in low voltage grids
(2022)
Hosting capacity knowledge is of great importance for distribution utilities to assess the amount of PV capacity possible to accommodate without troubling the operation of the grid. In this paper, a novel method to quantify the hosting capacity of low voltage grids is presented. The method starts considering a state of fully exploited building rooftop solar potential. A downward process is proposed - from the starting state with expected violations on the grid operation to a state with no violations. In this process, the installed PV capacity is progressively reduced. The reductions are made sequentially and selectively aiming to mitigate specific violations: nodes overvoltage, lines overcurrent and transformer overloading. Evaluated on real data of fourteen low voltage grids from Austria, the method proposed exhibits benefits in terms of higher hosting capacities and lower computational costs compared to stochastic methods. Furthermore, it also quantifies hosting capacity expansions achievable by overcoming the effect of the violations. The usage of a potential different from solar rooftops is also presented, demonstrating that a user-defined potential allows to quantify the hosting capacity in a more general setting with the method proposed.
Increasing electric vehicle penetration leads to undesirable peaks in power if no proper coordination in charging is implemented. We tested the feasibility of electric vehicles acting as flexible demands responding to power signals to minimize the system peaks. The proposed hierarchical autonomous demand side management algorithm is formulated as an optimal power tracking problem. The distribution grid operator determines a power signal for filling the valleys in the non-electric vehicle load profile using the electric vehicle demand flexibility and sends it to all electric vehicle controllers. After receiving the control signal, each electric vehicle controller re-scales it to the expected individual electric vehicle energy demand and determines the optimal charging schedule to track the re-scaled signal. No information concerning the electric vehicles are reported back to the utility, hence the approach can be implemented using unidirectional communication with reduced infrastructural requirements. The achieved results show that the optimal power tracking approach has the potential to eliminate additional peak demands induced by electric vehicle charging and performs comparably to its central implementation. The reduced complexity and computational overhead permits also convenient deployment in practice.
PV hosting capacity provides utilities the knowledge of the maximum amount of solar installations possible to accommodate in low voltage grids such that no operational problems arise. As the quantification of the hosting capacity requires data collection, grid modelling, and often time-consuming simulations, simplified estimations for large-scale applications are of interest. In this paper, Bayesian statistical inference is applied to estimate the hosting capacities of more than 5000 real feeders in Austria. The results show that the hosting capacity of 95% of the total feeders can be estimated with a mean error below 20% by only having knowledge of a random sample of 5%. Moreover, the hosting capacity estimation at a regional level shows a maximum error below 9%, also relying on a random sample of 5% of the total feeders. Furthermore, the approach proposed provides a methodology to assess new parameters aiming to improve the accuracy of the hosting capacity estimation at a feeder level.
The impact of global warming and climate change has forced countries to introduce strict policies and decarbonization goals toward sustainable development. To achieve the decarbonization of the economy, a substantial increase of renewable energy sources is required to meed energy demand and to transition away from fossil fuels. However, renewables are sensitive to environmental conditions, which may lead to imbalances between energy supply and demand. Battery energy storage systems are gaining more attention for balancing energy systems in existing grid networks at various levels such as bulk power management, transmission and distribution, and for end-users. Integrating battery energy storage systems with renewables can also solve reliability issues related to transient energy production and be used as a buffer source for electrical vehicle fast charging. Despite these advantages, batteries are still expensive and typically built for a single application – either for an energy- or power-dense application – which limits economic feasibility and flexibility. This paper presents a theoretical approach of a hybrid energy storage system that utilizes both energy- and power-dense batteries serving multiple grid applications. The proposed system will employ second use electrical vehicle batteries in order to maximise the potential of battery waste. The approach is based on a survey of battery modelling techniques and control methods. It was found that equivalent circuit models as well as unified control methods are best suited for modelling hybrid energy storages for grid applications. This approach for hybrid modelling is intended to help accelerate the renewable energy transition by providing reliable energy storage.
Industrial demand side management has shown significant potential to increase the efficiency of industrial energy systems via flexibility management by model-driven optimization methods. We propose a grey-box model of an industrial food processing plant. The model relies on physical and process knowledge and mass and energy balances. The model parameters are estimated using a predictive error method. Optimization methods are applied to separately reduce the total energy consumption, total energy costs and the peak electricity demand of the plant. A viable potential for demand side management in the plant is identified by increasing the energy efficiency, shifting cooling power to low price periods or by peak load reduction.
Flexibility estimation is the first step necessary to incorporate building energy systems into demand side management programs. We extend a known method for temporal flexibility estimation from literature to a real-world residential heat pump system, solely based on historical cloud data. The method proposed relies on robust simplifications and estimates employing process knowledge, energy balances and manufacturer's information. Resulting forced and delayed temporal flexibility, covering both domestic hot water and space heating demands as constraints, allows to derive a flexibility range for the heat pump system. The resulting temporal flexibility lay within the range of 24 minutes and 6 hours for forced and delayed flexibility, respectively. This range provides new insights into the system's behaviour and is the basis for estimating power and energy flexibility - the first step necessary to incorporate building energy systems into demand side management programs.