Refine
Document Type
- Article (6)
- Doctoral Thesis (1)
Institute
Language
- English (7)
Is part of the Bibliography
- yes (7)
Keywords
- Air clathrate hydrate (1)
- Air energy storage (1)
- Clathrate Hydrates (1)
- Clathrate hydrates (1)
- Computed tomography (1)
- Electrical energy storage (1)
- Thermal energy storage (1)
- pejoPapers (1)
- printed (1)
Grid-scale electrical energy storage (EES) is a key component in cost-effective transition scenarios to renewable energy sources. The requirement of scalability favors EES approaches such as pumped-storage hydroelectricity (PSH) or compressed-air energy storage (CAES), which utilize the cheap and abundant storage materials water and air, respectively. To overcome the site restriction and low volumetric energy densities attributed to PSH and CAES, liquid-air energy storage (LAES) has been devised; however, it suffers from a rather small round-trip efficiency (RTE) and challenging storage conditions. Aiming to overcome these drawbacks, a novel system for EES is developed using solidified air (i.e., clathrate hydrate of air) as the storable phase of air. A reference plant for solidified-air energy storage (SAES) is conceptualized and modeled thermodynamically using the software CoolProp for water and air as well as empirical data and first-order approximations for the solidified air (SA). The reference plant exhibits a RTE of 52% and a volumetric storage density of 47 kWh per m3 of SA. While this energy density relates to only one half of that in LAES plants, the modeled RTE of SAES is comparable already. Since improved thermal management and the use of thermodynamic promoters can further increase the RTEs in SAES, the technical potential of SAES is in place already. Yet, for a successful implementation of the concept - in addition to economic aspects - questions regarding the stability of SA must be first clarified and challenges related to the processing of SA resolved.
Greater specific energy densities in lithium-ion batteries can be achieved by using three-dimensional (3D) porous current collectors, which allow for greater areal mass loadings of the electroactive material. In this paper, we present the use of embroidered current collectors for the preparation of thick, pouch-type Li-ion batteries. Experiments were performed on LiFePO 4 (LFP) water-based slurries using styrene-butadiene rubber (SBR) as binder and sodium carboxymethyl cellulose (CMC) as thickener, and formulations of different rheological characteristics were investigated. The electrochemical performance (cyclic voltammetry, rate capability) and morphological characteristics of the LFP half-pouch cells (X-ray micro computed tomography and scanning electron microscopy) were compared between the formulations. An optimum electrode formulation was identified, and a mechanism is proposed to explain differences between the formulations. With the optimum electrode formulation, 350 µm casted electrodes with high mechanical stability were achieved. Electrodes exhibited 4–6 times greater areal mass loadings (4–6 mAh cm −2 ) and 50% greater electroactive material weight than with foils. In tests of half- and full-pouch embroidered cells, a 50% capacity utilization at 1C-rate and 11% at 2C-rate were observed, with a full recovery at C/5-rate. The cycling stability was also maintained over 55 cycles.
Gas hydrates are usually synthesized by bringing together a pressurized gas and liquid or solid water. In both cases, the transport of gas or water to the hydrate growth site is hindered once an initial film of hydrate has grown at the water–gas interface. A seemingly forgotten gas-phase technique overcomes this problem by slowly depositing water vapor on a cold surface in the presence of the pressurized guest gas. Despite being used for the synthesis of low-formation-pressure hydrates, it has not yet been tested for hydrates of CO 2 and CH 4 . Moreover, the potential of the technique for the study of hydrate decomposition has not been recognized yet. We employ two advanced implementations of the condensation technique to form hydrates of CO 2 and CH 4 and demonstrate the applicability of the process for the study of hydrate decomposition and the phenomenon of self-preservation. Our results show that CO 2 and CH 4 hydrate samples deposited on graphite at 261–265 K are almost pure hydrates with an ice fraction of less than 8%. Rapid depressurization experiments with thin deposits (approx. 330 mm thickness) of CO 2 hydrate on an aluminum surface at 265 K yield identical dissociation curves when the deposition is done at identical pressure. However, hydrates deposited at 1 MPa almost completely withstand decomposition after rapid depressurization to 0.1 MPa, while samples deposited at 2 MPa decompose 7 times faster. Therefore, this synthesis technique is not only applicable for the study of hydrate decomposition but can also be used for the controlled deposition of a super-preserved hydrate.
Clathrate hydrates, or hydrates for short, are inclusion compounds in which water molecules form a hydrogen-bonded host lattice that accommodates the guest molecules. While vast amounts of hydrates are known to exist in seafloor sediments and in the permafrost on Earth, these occurrences might be dwarfed by the amounts of hydrates occurring in space and on celestial bodies. Since methane is the primary guest molecule in most of the natural occurrences on Earth, hydrates are considered a promising source of energy. Moreover, the ability of one volume of hydrate to store about 170 volumes of gas, make hydrates a promising functional material for various industrial applications. While the static properties of hydrates are reasonably well known, the dynamics of hydrate formation and decomposition are insufficiently understood. For instance, the stochastic period of hydrate nucleation, the memory effect, and the self-preservation phenomenon complicate the development of predictive models of hydrate dynamics. Additionally, the influence of meso- and macroscopic defects as well as the roles of mass and heat transport on different length scales remain to be clarified.
Due to its non-invasive and non-destructive nature and the high spatial resolution of approx. 1µm or even less, micro-computed X-ray attenuation tomography ( µCT ) seems to be the perfect method for the study of the evolving structures of forming or decomposing hydrates on the meso- and macroscopic length scale. However, for the naturally occurring hydrates of low atomic number guests the contrast between hydrate, ice, and liquid water is typically very weak because of similar X-ray attenuation coefficients. So far, good contrast was only restricted to synchrotron beamline experiments which utilize the phase information of monochromatic X-rays.
In this thesis it is shown that with the help of a newly developed sample cell, a contrast between the hydrate and the ice phase sufficiently good for the reliable segmentation of the materials can also be achieved in conventional tube-based µCT. An accurate pressure and temperature management, i.e., the added functionality of the cell, further allows for cross-correlation of structural and thermodynamic data. The capability of this µCT setup is demonstrated in a series of studies on the formation and decomposition of hydrates which yield new insights for the development of a novel route to hydrate synthesis. At last, this thesis points towards possibilities how better models of hydrate formation and decomposition can be developed with the aid of µCT and computer simulations.